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Photon splitting in strong magnetic fields:S-matrix calculations
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The S-matrix approach to the treatment of photon splitting in a magnetized vacuum, with the electron
propagators expressed in the Landau representation, is discussed critically. Although the analytic results of
Mentzel, Berg and Wunner are confirmed, we propose that their available numerical results may be subject to
two previously unidentified sources of error associated with the sum over principal quantum numbern, leading
to spurious contributions to the amplitude, and the extremely slow convergence of the sum for weak fields. It
is shown how the sums may be rearranged to avoid the spurious contributions. If the Euler-Maclaurin sum-
mation formula is used to evaluate the infinite sums overn, the S-matrix approach then reproduces results
derived by the effective Lagrangian and proper-time techniques in the weak-field, low-frequency limit. This
method gives reliable results, forB*0.01 andv&0.1, that reproduce those obtained by proper-time tech-
niques. TheS-matrix approach simplifies in the strong-field limit,B@1, where the sum overn converges
rapidly. Our results show that the branching ratio for the splittings'→'' and'→ii decreases from its
known value;3.4 for B!1 towards zero forB@1. For weak fields theS-matrix approach is unnecessarily
cumbersome, and future numerical work should be based on the alternative approaches.
@S0556-2821~98!04809-7#

PACS number~s!: 12.20.Ds, 95.30.Cq, 97.60.Jd, 98.70.Rz
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I. INTRODUCTION

The third-order quantum electrodynamical process
photon splittingg→g8g9 in a strong magnetic field has be
come of renewed interest after two decades, following
publication of anS-matrix calculation of its rates by Ment
zel, Berg and Wunner@1# ~MBW!. The numerical results o
MBW suggest that the earlier work had seriously undere
mated the strength of this process. MBW’s analytic deri
tion is applicable to the non-dispersive regime below the p
creation threshold~v52 where natural units,\5c51, are
used and energies are in units of the electron rest energ
511 keV!, in which case the momentum vectors of the init
and final photons are collinear; the validity of MBW’s anal
sis extends beyond the weak field~B!1, whereB is in units
of the quantum critical fieldBc54.41331013 G! regime to
arbitrary field strengths. As such, it is the first comprehens
presentation of the application of theS-matrix technique~us-
ing the Landau representation for the electron propagat!
specifically to magnetic photon splitting, although Melro
and Parle@2,3# wrote down theS-matrix forms for splitting
amplitudes. Prior to these works, splitting calculations u
either effective Lagrangian@4–6# or variations of Schwing-
er’s proper-time techniques@7–9#, which yielded compact
analytic forms for the ratesR in the low energy (R}v5) or
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low field (R}B6) cases. MBW did not discuss these releva
limiting cases of their analytic results, and their conclusio
are based on numerical evaluation of the complicated a
braic formulas. Wunner, Sang and Berg@10# ~WSB! dis-
cussed these numerical results further. In particular, th
authors foundg→g8g9 rates just below the pair creatio
threshold comparable to and even exceeding theg→e1e2

pair creation rates at low field strengths. The exceptiona
large splitting rates implied by the numerical results
MBW and WSB are surprising given thatg→g8g9 is a
third-order process and pair production is first-order; he
photon splitting is expected to be of the order ofa f

2 weaker
thang→e1e2, wherea f is the fine structure constant. Th
MBW splitting rates also have a weak dependence onB,
which is uncharacteristic for strong field QED processes. T
claim of greatly enhanced splitting rates was questioned
Baieret al. @11# and Adler and Schubert@12#. This claim has
since been retracted~Wilke and Wunner@13#!, with a sign
error in their numerical coding cited as the cause of the e
in the rates of MBW and WSB. While the elimination of on
coding error has gone a long way toward repairing their
merics, Wilke and Wunner’s@13# S-matrix evaluations still
do not coincide with the recent numerical computatio
based on Stoneham’s proper-time rates@14# ~specifically for
the polarization mode'→ii!, which appear to be in excel
lent agreement with the recent alternative proper-time
merics of Baieret al. @11#. Differences by a factor of 2–3
emerge between the two data points given in@13# for B&1
and @14#, differences that are important in astrophysical a
plications of photon splitting.
5526 © 1998 The American Physical Society
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57 5527PHOTON SPLITTING IN STRONG MAGNETIC . . .
The astrophysical context in which photon splitting is
particular interest is pulsar magnetospheres. The stan
model for pulsars has the magnetosphere of a strongly m
netized (B*0.1) neutron star populated by highly relativist
e6 pairs generated through the processg→e1e2 in the po-
lar cap regions@15–19#. According to the rates found in th
1970s@4–8#, g→g8g9 can be neglected~to a first approxi-
mation! compared tog→e1e2. However, the enhance
rates forg→g8g9 found by MBW and WSB would imply
that photons split before they could decay to produce pa
This would undermine the standard model. At the next le
of refinement, photon splitting at the accepted rates@4–8# is
influential only for sufficiently strongly magnetized neutro
star environments (B*0.4), and has recently been invoke
@20,21# to explain the MeV cutoff in the spectrum of th
gamma-ray pulsar PSR1509-58 and also in magnetar mo
of soft gamma repeaters@22–26#. Any substantial change in
the accepted rate forg→g8g9 would require a major revi-
sion of these astrophysical theories.

The claims of MBW and WSB have raised a number
questions concerning the treatment of photon splitting: C
one show that theS-matrix formalism reproduces the low
energy (R}v5) and low field (R}B6) limits derived by
other techniques? How do the rates change forB*1? How is
the remaining discrepancy between the numerical result
the S-matrix calculations of@13# and the proper-time calcu
lations of @14# to be resolved? Which technique is the mo
convenient and reliable for numerical calculations? In t
paper we report on a detailed investigation of all relev
aspects of the analytic treatment of photon splitting using
S-matrix approach with such questions in mind. We ha
rederived the general analytic expressions quoted in M
and confirm them to be correct, specifically Eqs.~25! and
~26! in MBW; we also note that they are consistent with t
results of@2,3#. It is important to note that the starting poin
for the calculations using the effective Lagrangian appro
of @4–6#, the proper-time approach@7–9,11# and the
S-matrix approach are strictly equivalent; the difference is
the use of different but equivalent@29# forms of the electron
propagator in a magnetic field. Hence the results of@1,4–
9,11# should all be equivalent~indeed the equivalence o
@6,8,11# has been demonstrated in@12#!. ThereforeS-matrix
computations should yieldidentical results to proper-time
numerics. Note that the equivalence of theS-matrix and
proper-time methods has been unequivocally demonstr
in the context of magnetic pair creationg→e1e2 @27,28#.
The form of the propagator used in the proper-time~and
effective Lagrangian! approach involves triple integrals ove
relatively simple ~hyperbolic and exponential! functions,
whereas the form of the propagator used in theS-matrix
approach involves an integral over the parallel momentumpz
and sums over the spins and principal quantum numb
(n,n8,n9) of the intermediate pair states, including a trip
sum over triple products of generalized Laguerre functio
Inspection of the relevant expressions suggests that
former approach should be more convenient for numer
calculations and this inference is supported both by the
ficulties already encountered in numerical calculations us
the S-matrix approach and also by further pitfalls identifie
below.
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effects of dispersion, thereby restricting the splitting to c
linear momenta for the incoming and outgoing photo
Without loss of generality one may then choose an iner
frame in which the axis~chosen to be thex axis! defined by
the collinear momenta is orthogonal to the magnetic fi
~the z axis!. The polarization modes of the magnetize
vacuum are identified asi and' depending on the direction
of the electric vector relative to the magnetostatic field. W
consider all the splittings permitted by theCP invariance
symmetry, which are those that involve an even numberi
modes:'→ii , '→'', i→'i . ~When dispersive effects
of the magnetized vacuum are taken into account, the la
two of these three allowed decay modes are forbidden@6#.! A
preliminary step in our rederivation is to simplify the gene
S-matrix expressions by summing over the spin states
are incorporated in the electron propagators: cf. Appendix
In Sec. II we discuss the low frequency (v!1) limits of
these forms. TheS-matrix amplitudes contain only odd pow
ers of the frequency, and the accepted low-frequency dep
dence (R}v5) requires that the terms linear inv ~referred to
as linear-v terms! in theS-matrix amplitudes vanish. In Sec
III the linear-v terms are shown to sum identically zer
However, for the'→ii this sum involves a relabeling of th
n values, and we show that if this relabeling is not pe
formed, then a substantial nonzero component remains e
when the sum overn is extended to very high values. W
suggest that one feature of the numerical results of MBW
spurious due to failure to make this relabeling. In Sec. IV
terms cubic in frequency are analyzed and it is shown tha
terms sum to zero except for the terms of the correct fo
(}vv8v9) to reproduce the results obtained by other QE
techniques. It is shown that theS-matrix computations con-
verge very rapidly forB@1 where few terms in the summa
tion are required. However forB&1, an alternative numeri-
cal technique is needed. We use the Euler-Maclau
summation formula to perform the sum overn. We show
that this technique is particularly convenient for weak fie
B,1, that it reproduces the numerical results of@13# ~spe-
cifically for'→ii at v50.1 andB.10!, and we discuss the
breakdown of the technique for smallB,0.01. Our conclu-
sions are summarized in Sec. V.

II. ANALYTIC REDUCTION OF THE S-MATRIX
FORMALISM

In deriving the rates for photon splitting within th
S-matrix formulation, we adopt the convention of MBW to
large extent. Within this formalism, the electron propagat
are expressed in terms of Landau spinors. The totalS-matrix
element Sf i

(3) is the sum of the six component elemen
Sf i ,1

(3) –Sf i ,6
(3) . These six components involve only two indepe

dent elements, chosen to beSf i ,1
(3) andSf i ,2

(3) given by Eqs.~25!
and ~26! of MBW, with the others obtained from these tw
via the transformations presented in MBW’s Eq.~15!. These
elements are simplified as follows:

~1! The propagation direction of the incoming~g! and out-
going photons (g8,g9) is chosen to be thex-direction,
and thenkz5kz85kz950 impliespz

25pz8
25pz9

2.
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~2! The spatial integrals of Eq.~23! of MBW may be ex-
pressed in terms of theJ functions of Melrose and Parl
@29# @see Eq.~47! of their paper#, with k'

2 5v2, k'8
2

5v82 andk'9
25v92.

~3! The sum over the spin is performed.

The resulting expressions forSf i ,1
(3) –Sf i ,6

(3) for the'→ii , '

→'' and thei→'i splittings are given in Appendix A.
By taking the low-frequency limit, theS-matrix ampli-

tudes can be further simplified such that an analytic solu
can be obtained for the integral overpz . In taking this limit,
one expands each of the energy sums in the denominat
the S-matrix elements as a Taylor series. For example,
theSf i ,1

(3) amplitude in Eq.~A1!, the product of the two energ
denominator terms is

1

~E01v8!~E11v!
5

1

E0E1

1

~11v8/E0!~11v/E1!
, ~1!

where E05«1«9 and E15«81«9. For v8/E0!1 and
v/E1!1 this becomes

1

~E01v8!~E11v!
'

1

E0E1
F12S v8

E0
1

v

E1
D

1H S v8

E0
D 2

1S v

E1
D 2

1
vv8

E0E1
J 2¯ G .

~2!

The frequency also appears in the arguments of thJ
functions, with each term in theS-matrix involving a product
of such functions; cf. Appendix A. Within theseJ functions
are the generalized Laguerre polynomials expressible
power series inv2. Each term in this series expansion diffe
from its adjacent term by a factor of ordernv2/2B. Hence
provided one has

nv2

2B
!1, ~3!

the expansion of the generalized Laguerre polynomial c
verges rapidly and can be terminated at the desired orde
photon energy. For example, in the linear-v approximation
to the S-matrix, the zero-order frequency terms in both t
generalized Laguerre polynomials and the expansion in
n

of
r

a

-
of

q.

~2! of the energy denominators are coupled to linear f
quency terms arising from factors that relate theJ functions
and the generalized Laguerre polynomials; cf. Eq.~A11!.

The structure of the triple products of theJ functions
implies that only odd power combinations of photon ener
are allowed in theD functions present in theS-matrix ele-
ments of Appendix A. This leads to restrictions on the valu
of the Landau quantum numbersn, n8 andn9. These restric-
tions allow one to writen8 andn9 in terms ofn, so that only
a single sum overn remains.

III. ANALYSIS OF THE LINEAR- v COMPONENT

In the treatment of splitting using the effective Lagrangi
and proper-time techniques it is known that the rates of
splittings are zero when only the terms of first order inv, v8
or v9 are retained~called linear-v terms!. This is not obvi-
ously the case in theS-matrix approach. In this section w
prove that the linear-v terms are indeed zero.

In the linear-v terms the restrictions on the values ofn,
n8 andn9 apply to the indicesa, b, g in the tripleJ product
Ja

aJb
bJg

c ; cf. Appendix A. The allowed values ofa, b, g are
n2n8, n92n, n82n961 for '→ii ; n2n8, n92n61, n8
2n9 for i→'i ; and n2n861, n92n61, n82n961 for
'→''. Only the combinations that satisfy

uau1ubu1ugu51 ~4!

are allowed and we collect them into what we call arran
ments which are treated separately. For'→ii and i→'i

there are only three possible arrangements~with a linear-v
dependence! denotedA1 , A2 andA3 : A1 hasn85n95n; A2
hasn85n11, n95n or n85n, n95n11; andA3 hasn8
5n21, n95n or n85n, n95n21. We show below how
these arrangements combine to give zero for the'→ii split-
ting. The corresponding demonstration fori→'i is closely
analogous, due to these two splittings being related b
crossing symmetry. We comment more briefly on the sp
ting'→''.

A. Analysis of the linear-v component of the'˜ii splitting

There are 16 terms to sum in each of the three arran
ments for'→ii splitting. These give, for theS-matrix ele-
ments,
A15F1v (
n50

`

nE
2`

`

dpz

3«0,n
2 22«n

2

«n
5 , ~5!

A252F1v (
n50

` E
2`

`

dpz

n@2«0,n
2 ~2«n1«n11!2«n

2~3«n1«n11!#1«0,n
2 ~2«n1«n11!2«n

3

«n11«n
3~«n1«n11!2 , ~6!

A352F1v (
n51

` E
2`

`

dpz

~n21!@2«0,n
2 ~2«n1«n21!2«n

2~3«n1«n21!#2~2«n1«n21!~«n
22«0,n

2 !

«n21«n
3~«n211«n!2 , ~7!

where«m5Apz
21«0,m

2 , «0,m5A112mB, and each term has the common factor
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F15
8p2~4pa f !

3/2B

Av9v8v
d~kx91kx82kx!d~v91v82v!

1

~2V!3/2, ~8!

whereV is the volume associated with the interaction. The integral in Eq.~5! givesA150 identically~cf. Sec. 3.241@30#! and
hence the only possible contributions to the linear-v component are fromA2 andA3 .

The sum in Eq.~7! corresponds ton>1. If the Landau levels are relabeled by making the transformationn→n11, then the
sum in Eq.~7! is replaced by one overn>0 and Eq.~7! becomes

A3852F1v (
n50

` E
2`

`

dpz

n@2«0,n11
2 ~2«n111«n!2«n11

2 ~3«n111«n!#2~2«n111«n!~«n11
2 2«0,n11

2 !

«n«n11
3 ~«n1«n11!2 . ~9!

Summing theA2 andA38 contributions, one obtains

A21A3852F1v (
n50

`

2~2n11!E
0

`

dpz

1

«n11«n~«n1«n11!2 F«0,n
2 ~2«n1«n11!

«n
2 1

«0,n11
2 ~2«n111«n!

«n11
2 22~«n1«n11!G .

~10!
f
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If one makes the substitution

s5
«n11

«n
5Apz

21«0,n11
2

pz
21«0,n

2 , ~11!

so that one has

E
0

`

dpz→E
1

~«0,n11 /«0,n!

ds2sBS 1

s221D 3/2 1

A«0,n11
2 2«0,n

2 s2
,

~12!

the integral in Eq.~10! is also zero~cf. @30#, Secs. 2.26–
2.28!. This establishes that the linear-v contribution to the
amplitude for'→ii splitting is zero, as required. The proo
that the linear-v contribution to the amplitude fori→i'
splitting vanishes is analogous, with the same integrals
pearing withv8 in place ofv.

If the relabeling of the sum is not made, then the lineav
contribution to the amplitude for these splittings does
vanish when the sum overn is cut off at any finite value. To
see this, note that if one integratesA2 and A38 separately,
using the substitution in Eq.~11!, then provided that the
relabeling indicated above is performed one obtains, at e
n,

A252A38 . ~13!

However, if the relabeling is not performed, then when o
integratesA2 and A3 ~in its original form!, one obtains, at
eachn,

A2~n!52A3~n11!. ~14!

It follows that the sum to any maximum,nmax, gives

A21A35A2~nmax!. ~15!

We conclude that whenever a finite sum is performed w
out making the relabeling from Eq.~7! to ~9!, a spurious
matrix element proportional tov arises.
p-

t

ch

e

-

It is likely that this spurious term arises in the numeric
work of MBW, who did not make the foregoing relabelin
and who chosenmax530. Consider Fig. 3 of MBW and the
'→ii splitting mode forv50.01. The ratio of the mean
free paths atB50.1 andB51 is approximately 1.6. From
our analysis, forB50.01, 0.1 and 1.0, one obtainsA2(30)
528.4F1v, 6.5F1v and 0.74F1v, respectively. Hence, we
estimate that the spurious term alone fornmax530 would
give for this ratio@specifically, forB2A2

2(B51) to B2A2
2(B

50.1)# a value of 1.5, which is remarkably close to the 1
value obtained from Fig. 3 of MBW. Moreover, asn is in-
creased, the absolute value ofA2 approaches a constant no
zero value. For example, increasingnmax to 60 for B50.1
and B51 changesA2(nmax) by only 6% and 1% respec
tively. Such a small change from a doubling ofnmax could
easily mislead one into believing that the expansion is c
verging to the correct result, and that the choicenmax530
gives good convergence. However, the result is entirely s
rious. We suggest that such spurious contributions may b
hitherto unidentified source of error in the numerical work
MBW. Further, as this spurious linear contribution to t
splitting rate vanishes as;B21/2, its effect is more pro-
nounced at the lower fields.

B. Analysis of the linear-v component of the' '̃' splitting

For'→'' splitting, the linear-v contribution to the am-
plitude contains 12 arrangements:n95n85n11; n95n8
5n21; n95n21, n85n; n95n, n85n21; n95n11,
n85n; n95n, n85n11; n95n21, n85n11; n95n11,
n85n21; n95n12, n85n11; n95n11, n85n12; n9
5n21, n85n22; andn95n22, n85n21. If the sums are
relabeled in the same manner as for the'→ii splitting,
these'→'' arrangements cancel to give a zero linearv
dependence. In the low frequency regime of Fig. 3 in MBW
the'→'' splitting has no apparent linear-v dependence
but rather the correct cubic dependence. It is a little puzzl
that there are no spurious linear-v terms in the'→'' split-
ting results of MBW. This may, however, be due to the i
tegrands, after appropriately relabeling the sums, cance
for the '→'' splitting case rather than the integratio
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TABLE I. Ttotal at various fieldsB for the splittings'→i i and'→' '. The attenuation coefficients
R (cm21) can be obtained from these via Eq.~19!.

B Sn50
200 T'→i i(n) Sn50

` T'→i i(n) Sn50
200 T'→' '(n) Sn50

` T'→' '(n)

1000 20.33207 20.33207 26.58731024 26.57031024

500 20.33083 20.33083 21.30231023 21.29931023

100 20.32129 20.32130 26.06231023 26.04631023

50 20.31022 20.31024 20.01129 20.01126

10 20.24155 20.24163 20.03756 20.03740

5 20.18415 20.18432 20.05126 20.05092

1 20.03828 20.03912 20.03621 20.03454

0.5 29.20831023 20.01088 20.01709 20.01374

0.1 8.10131023 21.58131024 20.01698 22.82631024

0.05 0.01629 22.04131025 20.03333 23.73531025

0.01 0.07349 21.64831027 20.15742 23.06331027
m

n
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-

-

4

the

ite
al
on
over pz which is the case for the'→ii splitting. As these
integrations in MBW are evaluated numerically, the su
that require relabeling for the'→ii splitting may not be so
obvious.

IV. CUBIC- v TERMS

The S-matrix elements that are of third-order in photo
energy are referred to as the cubic-v terms.~The terms qua-
dratic in photon energy are zero.! In this section we describe
the form of these terms, and then discuss the sums oven,
and specifically the use of the Euler-Maclaurin summat
formula in evaluating these sums. For'→ii and'→''

splittings, the cubic-v terms include terms}v3 and
}vv8v9. After appropriate relabeling of the sums over t
Landau quantum numbers, the former sum to zero, consis
with the dependence on photon energy found by Stone
@8#.

The integrations overpz in each of the possiblevv8v9
dependent arrangements are carried out using Eq.~11! and
similar substitutions. For each of the two splittings, the
sults of the integrations are summed together at each Lan
quantum numbern to giveT(n). The totalS-matrix element
is of the form

Sf i
~3!5F3(

n50

`

T~n!, ~16!

F35
4p2~4pa f !

3/2

Avv8v9
d~kx91kx82kx!d~v91v82v!

3
1

~2V!3/2vv8v9. ~17!

The different arrangements that make up theT(n) term, and
which are given explicitly in Appendix B, have no photo
energy dependence. Photon energy dependence appear
in the factorF3 . On the other hand, there is no magne
field dependence in the factorF3 ; this appears only in the
T(n) component. The sum
s

n

nt
m

-
au

only

Ttotal5 (
n50

nmax

T~n! ~18!

appears in the expression for the attenuation coefficient
inverse mean free path, as in MBW:

R5
a f

3

8p2|c

v5

30
uTtotalu254.245S \v

0.511 MeVD
5

uTtotalu2 cm21.

~19!

We perform the sums to evaluate Eq.~19! explicitly for '

→ii and'→'' and for various values ofB, and our re-
sults are summarized in Table I.

The sum overn converges increasingly rapidly with in
creasingB. For example, for the high-B limit for '→ii

splitting, the leading term,T(0)→21/3 for B@1, suffices.
For v50.1, this gives an attenuation coefficient ofR
54.7231026 cm21, which reproduces the high field, low
frequency limits obtained by Adler@6#, Stoneham@8# and
very recently by Baieret al. @11#, and is in excellent agree
ment with Fig. 1 of Baring and Harding@14# and with the
high field portion of Fig. 1 of Wilke and Wunner@13#. As B
is decreased,nmax needs to be increased. In columns 2 and
of Table I,Ttotal is evaluated fornmax5200 and a range ofB
values for'→ii and'→'' splittings respectively. How-
ever, thisnmax is inadequate for the smaller values ofB, and
various computational difficulties arise~e.g., due to rapid
variations in the logarithmic terms! in performing the sum
directly.

A. Euler-Maclaurin summation formula

To circumvent these computational difficulties, we use
Euler-Maclaurin summation formula to extendnmax to `.
This procedure involves terminating the sum after a fin
~usually small! number of terms and estimating the residu
in terms of an integral and odd derivatives of the functi
T(n): namely,
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Ttotal5 (
n50

`

T~n!5T~0!1¯1T~ i 21!1
1

2
T~ i !

1E
i

`

dnT~n!2
1

12
T8~ i !1

1

720
T-~ i !2

1

30240
Tv~ i !

1
1

1209600
Tv i i ~ i !1¯ , ~20!

whereT8, T-, Tv and Tv i i denote the first, third, fifth and
seventh derivatives ofT( i ) and all the derivatives at the in
finity limit are zero.

There is freedom to choose the values ofi and of the
number of derivatives ofT( i ) to be retained, and thes
should be chosen such that the result is not sensitive to
choice. There is an added complication in the present ap
cation in that the sums in the arrangements may startn
50, 1, 2 or 3, and one needs to decide whether to s
counting atn50 or at the first term in each of the sums. T
latter option must be chosen to avoid spurious terms, of
same kind that appear in the linear-v component discusse
above. This is equivalent to relabeling the sums as for
linear-v component. In this way, any spurious terms, such
the arrangementsC12 and C13 for the'→ii splitting ~see
Appendix B!, cancel. Once this relabeling is performed, t
different arrangements are summed together to giveT(n)
~see Appendix C!.

The minimum value ofi , at whichT(n) is well-behaved,
is unity. However, the contributions from the higher ord
derivatives can be made smaller by choosing a higher v
of i . For B>0.1, derivatives of order greater than 5 a
insignificant fori 52 or 3. ForB50.01, contributions from
derivatives of order greater than 5 are negligible at the m
mum i 51 value and hencei 51 was chosen for thisB.
Numerical instabilities occurred in the evaluation ofTtotal at
the lowest field considered, that is 0.01, due to the nat
logarithm terms in Eq.~20!. When these logarithmic term
have arguments close to unity, as is the case for low fie
they produce terms that are only accurate to;10% ofTtotal.
The arguments of these logarithmic terms are ratios of
mass energies, for example,

«0,m11
2

«0,m
2 511

2B

«0,m
2 , ~21!

the natural logarithm of which can be expanded as a po
series using

ln~11x!5x2
x2

2
1

x3

3
2

x4

4
1¯ , 21,x<1, ~22!

where x52B/«0,m
2 . If one uses expansions such as this

place of the natural logarithm terms in Eq.~20! for B
50.01, the numerical instabilities can be overcome and
accurate value ofTtotal is obtained for smalli .

Such numerical instabilities, generated for very sm
fieldsB or very largen, limit the use of the Euler-Maclaurin
summation approach toB*0.01 andi not too large. The
results of the Euler-Maclaurin summation approach are gi
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in columns 3 and 5 of Table I for the'→ii and'→''
splittings respectively and a range ofB values.

B. Value of nmax

In the present analysis for low photon energies,nmax must
be finite. As already noted, forB@1, a high accuracy can b
obtained by retaining only the first fewn; for example, for
B510 we estimate thatnmax520 suffices. By Eq.~3!, for
B>10, such annmax validates the results forv<0.1. How-
ever, with decreasingB one needs to choose largernmax.
Moreover, the requirement of Eq.~3! then imposes a limit on
the frequency for which the sum is valid. ForB51, an
nmax;1000 is suitable~corresponding to a frequency limit o
v<0.01!, but for B,1, nmax should increase as;1/B. Spe-
cifically, for B51, B50.1 andB50.01, this meansnmax
should be;103, ;104 and ;105 which, conservatively
from Eq. ~3!, requiresv<0.01, v<0.001 andv<0.0001
respectively. ForB&1, this results in a difference of abou
1% betweenTtotal as evaluated via the sum from 0 tonmax
andTtotal as evaluated from the Euler-Maclaurin summati
approach. Hence the Euler-Maclaurin results are accurat
at least 1% for the range ofB values presented and the co
responding frequency limits. These frequency limits forB
&1 can be increased@but not beyondv<0.1 as required by
Eq. ~2!#, if one accepts a corresponding increased erro
Ttotal.

MBW chose nmax530 for the two fieldsB51 and B
50.1, and clearly these are not large enough. In the ret
tion paper@13#, Wilke and Wunner stated thatnmax had been
increased in their new evaluations. According to the fore
ing estimates one needsnmax;103– 104 for the smallest
value,B50.5, for which results are presented by@13#, and it
is unlikely that they chosenmax large enough for their result
to be accurate.

C. Decay rate

In Table II,R/v5 is evaluated via Eq.~19! from the Euler-
Maclaurin sums presented in Table I. The results are plo
in Fig. 1 for magnetic fields strengthsB>0.1. Consider first
the '→ii splitting. The graph is similar in shape to th
found by Wilke and Wunner@13#, and it asymptotes to the
high-B limit of Baier et al. @11#. For B>10 andv50.1, our

TABLE II. R/v5 at various fieldsB for the splittings'→i i

and'→' ' calculated from the Euler-Maclaurin summation r
sults of Table I.

B R/v5('→i i) R/v5('→' ')

1000 4.68131021 1.83231026

500 4.64631021 7.16331026

100 4.38231021 1.55231024

50 4.08631021 5.38231024

10 2.47831021 5.93831023

5 1.44231021 1.10131022

1 6.49631023 5.06431023

0.5 5.02531024 8.01431024

0.1 1.06131027 3.39031027

0.05 1.76831029 5.92231029

0.01 1.153310213 3.983310213
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results are in close agreement with those in Fig. 1 of@13#.
We are unable to make comparisons forB&1 where we
expect the results of@13# to be overestimates due to the
nmax not being sufficiently large. Our results are however
excellent agreement with those of Baring and Harding@14# at
the two weakest fields,B51 andB50.1, that they consider
These authors also found significant discrepancies~factors of
2–3! between their proper-time computations and the res
of Wilke and Wunner whenB,1. Furthermore, ourS-matrix
results and the proper-time results of@14# converge on the
B!1 limit of Adler @6#.

As is apparent from Table II and Fig. 1, the channel'

→'' is favored compared to the channel'→ii for B!1,
but there is a changeover such that'→'' becomes negli-
gible for B@1. The weak-B and high-B results are embodied
in the low frequency asymptotic limits obtained by Adler@6#
and Stoneham@8#, the branching ratios for which are give
explicitly in @21#. The high-B results are also consistent wit
those of Baieret al. @11# who found that only'→ii split-
ting is allowed forB@1. The exact behavior of the branch
ing ratios for the two channels between these twoB-limits is
fully described in this analysis. In the next section we co
ment briefly on the possible astrophysical significance of
result.

A comparison of our results with those of Stoneham@8#
provides a useful check on the range of validity of the Eul
Maclaurin summation approach forB!1. Stoneham’s results
imply R/v5 values of 1.1631027 and 1.16310213 for B
50.1 and B50.01 respectively for'→ii splitting and
3.9431027 and 3.94310213 for'→'' splitting. These are
comparable with the correspondingR/v5 values presented in
Table II obtained using the Euler-Maclaurin summation a
proach. For'→'' compared with'→ii splitting, Stone-
ham@8# calculated a branching ratio of 1.85253.42@Eq. ~43!
of @8## for B!1, v!1, and our results give a branching rat
increasing with decreasingB and equal to 1.86253.46 for
the lowest valueB50.01 for which we found that the Euler
Maclaurin summation approach did not encounter noticea
numerical difficulties. We conclude that the Euler-Maclau
summation approach gives reliable results at least for fie
as weak asB50.01.

FIG. 1. R/v5 versus fieldB for the splittings'→ii ~denoted by
solid circles! and'→'' ~denoted by open circles!.
ts

-
is

-

-

le

s

V. CONCLUSIONS

Our investigation of theS-matrix treatment of photon
splitting confirms the analytic results of MBW@1# in detail,
and establishes the equivalence of theS-matrix approach to
the alternative treatments based on the effective Lagran
and proper time techniques. Several new results emerge
our investigation in the low frequency regime:

The expansion of theS-matrix elements leads to elemen
that involve sums over spin states and principal quant
number states; we perform the sums over the spin states
plicitly. For v!1, we show how the sums of principal qua
tum numbers reduce to a set of what we call arrangeme
each of which involves a sum over a single principal qua
tum numbern.

This expansion of theS-matrix elements includes term
that are linear in the frequencies~linear-v terms!, but such
terms are known not to contribute to the transition ra
evaluated using the effective Lagrangian or proper time te
niques. We show that these contributions either integrat
zero for eachn or cancel due to the terms in one arrangem
at n canceling with the terms in another arrangement an
11.

We point out that if the relevant sums are not relabe
appropriately, truncating the sum at any givenn5nmax
leaves a spurious residual term}v. We estimate the magni
tude of this term for the value (nmax530) chosen by MBW,
and note that it appears that some of their numerical res
exhibit ~an incorrect! frequency dependence that is expect
from such a spurious contribution.

We evaluate theS-matrix elements that are cubic in th
frequencies~cubic-v terms! for the two splittings'→ii and
'→'', and note that only terms}vv8v9 contribute to the
transition rates evaluated using the effective Lagrangian
proper time techniques. We show that the terms in
S-matrix treatment which are not of this form integrate
sum to zero. The integrations overpz for the }vv8v9 con-
tributions are evaluated analytically.

We estimate the value ofnmax needed to give reliable
results; forB@1 annmax of a few suffices, but forB&1 we
suggest as a conservative rule of thumb thatnmax5103/B is
needed. This casts doubt on all existing numerical estim
of the splitting rates forB&1 based on theS-matrix ap-
proach. TheS-matrix approach, however, is useful for calc
lating photon splitting rates for strong fields where the s
over n converges rapidly.

We show that the use of the Euler-Maclaurin summat
formula allows one to estimate the sum forB&1; our results
based on this technique reproduce those evaluated usin
effective Lagrangian or proper time techniques forB
*0.01. However, the technique develops numerical fluct
tions that limit its use toB*0.01.

One result that we find comfirms the weak-B and high-B
branching ratios for the splittings'→'' and'→ii : this
ratio decreases from its value;3.4 forB!1 with increasing
B, and approaches zero forB@1; cf. Fig. 1. The behavior of
the branching ratio between these two extremes is fully
scribed herein.

We comment briefly on the possible astrophysical sign
cance of this final result. As discussed in Sec. I, forB
*0.4, photon splitting is important in the context of th
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population of pulsar magnetospheres by pairs. In stron
magnetized neutron stars (B*0.1), photons form bound
pairs ~positronium! rather than free pairs@31,32#. One pos-
sible implication of the change in branching ratio is on t
state in positronium that is formed. Onlyi-polarized photons
decay to form the ground state of positronium whereas'-
polarized photons can decay into positronium with either
electron or the positron in its first Landau level@33,34#. ~The
latter decay to the ground state with emission of a cyclot
photon which may give an observable signature.! Thus the
variation of the branching ratio with fieldB affects the popu-
lation of the Landau levels of the resulting positronium. F
0.4&B&1, the branching ratio for the splittings'→'' and
'→ii is of the order of unity, and forB*1, this ratio de-
creases rapidly with increasingB ~}B22 for B*10!. Hence
as the fieldB increases, the photons produced in the pho
splitting process are increasingly morei-polarized, favoring
the formation of positronium in the ground state.

A general conclusion is that theS-matrix approach is
much more cumbersome than the approaches based o
effective Lagrangian or proper time techniques, especi
for numerical purposes. We have simplified theS-matrix ap-
proach by summing over the spin states, and by introduc
the Euler-Maclaurin summation technique to sum overn.
However, these difficulties simply do not arise in the oth
ly

e

n

r

n

the
ly

g

r

approaches. It should be emphasized that the different
proaches are formally equivalent, as may be shown by s
ing from the propagator used in theS-matrix approach, and
performing the sums and the integral overpz to reconstruct
the propagator used in the other approaches; cf.@3#. Future
numerical calculations for photon splitting are better bas
on the simpler alternative approach, rather than theS-matrix
approach for fieldsB&1.
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APPENDIX A

In this appendix, the simplified forms for theS-matrix
amplitudesSf i , j

(3) for j 51– 6 are presented for the three spl
tings permitted byCP invariance. These amplitudes@with
~1!–~3! of Sec. II implemented# are expressed, using th
scaling factorS0 , as
Sf i ,1
~3! 5S0 (

nn8n9
E

2`

`

dpz

~2 !n92n8

««8«9

1

«1«91v82 i e

1

«81«91v2 i e8
D1 ,

Sf i ,3
~3! 5S0 (

nn8n9
E

2`

`

dpz

~2 !n92n8

««8«9

1

«1«92v82 i e

1

«81«92v2 i e8
D1 ,

Sf i ,2
~3! 5S0 (

nn8n9
E

2`

`

dpz

~2 !n92n8

««8«9

1

«91«81v2 i e8

1

«1«81v92 i e
D2 ,

Sf i ,4
~3! 5S0 (

nn8n9
E

2`

`

dpz

~2 !n92n8

««8«9

1

«91«82v2 i e8

1

«1«82v92 i e
D2 ,

Sf i ,5
~3! 5S0 (

nn8n9
E

2`

`

dpz

~2 !n92n8

««8«9

1

«81«2v92 i e

1

«91«1v82 i e8
D3 ,

Sf i ,6
~3! 5S0 (

nn8n9
E

2`

`

dpz

~2 !n92n8

««8«9

1

«81«1v92 i e

1

«91«2v82 i e8
D3 , ~A1!
e

where

S052p2
~4pa f !

3/2B

Avv8v9

1

~2V!3/2d~kx91kx82kx!

3d~v91v82v!, ~A2!
«5~pz
21«0

2!1/2 and «0
25~112nB!1/2,

«85~pz
21«08

2!1/2 and «08
25~112n8B!1/2,

«95~pz
21«09

2!1/2 and «09
25~112n9B!1/2. ~A3!

The D1 , D2 andD3 components differ for each of th
splittings and are defined as follows:
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~1! '→ii

D15A8nn8n9B3D11A2n9B@««81pz
221#D2

1A2n8B@««92pz
211#D3

1A2nB@«8«91pz
211#D4 ,

D25A8nn8n9B3D12A2n9B@««82pz
211#D2

2A2n8B@««91pz
221#D3

1A2nB@«8«91pz
211#D4 ,

D35A8nn8n9B3D12A2n9B@««82pz
211#D2

1A2n8B@««92pz
211#D3

2A2nB@«8«92pz
221#D4 , ~A4!

where, using theJ-notation of Melrose and Parle@29#,

D15Jn2n8
n821

~x9!Jn92n
n

~x8!Jn82n911
n921

~x!

2Jn2n8
n8 ~x9!Jn92n

n21
~x8!Jn82n921

n9 ~x!,

D25Jn2n8
n821

~x9!Jn92n
n21

~x8!Jn82n921
n9 ~x!

2Jn2n8
n8 ~x9!Jn92n

n
~x8!Jn82n911

n921
~x!,

D35Jn2n8
n821

~x9!Jn92n
n21

~x8!Jn82n911
n921

~x!

2Jn2n8
n8 ~x9!Jn92n

n
~x8!Jn82n921

n9 ~x!,

D45Jn2n8
n821

~x9!Jn92n
n

~x8!Jn82n921
n9 ~x!

2Jn2n8
n8 ~x9!Jn92n

n21
~x8!Jn82n911

n921
~x!. ~A5!

~2! '→''

D15A8nn8n9B3D11A2n9B@««82pz
221#D2

1A2n8B@««91pz
211#D3

1A2nB@«8«91pz
211#D4 ,

D25A8nn8n9B3D12A2n9B@««81pz
211#D2

2A2n8B@««92pz
221#D3

1A2nB@«8«91pz
211#D4 ,

D35A8nn8n9B3D12A2n9B@««81pz
211#D2

1A2n8B@««91pz
211#D3

2A2nB@«8«92pz
221#D4 , ~A6!

where

D15Jn2n811
n821

~x9!Jn92n11
n21

~x8!Jn82n911
n921

~x!

2Jn2n821
n8 ~x9!Jn92n21

n
~x8!Jn82n921

n9 ~x!,

D25Jn2n811
n821

~x9!Jn92n21
n

~x8!Jn82n921
n9 ~x!

2Jn2n821
n8 ~x9!Jn92n11

n21
~x8!Jn82n911

n921
~x!,

D35Jn2n811
n821

~x9!Jn92n21
n

~x8!Jn82n911
n921

~x!
2Jn2n821
n8 ~x9!Jn92n11

n21
~x8!Jn82n921

n9 ~x!,

D45Jn2n811
n821

~x9!Jn92n11
n21

~x8!Jn82n921
n9 ~x!

2Jn2n821
n8 ~x9!Jn92n21

n
~x8!Jn82n911

n921
~x!. ~A7!

~3! i→'i

D15A8nn8n9B3D11A2n9B@««81pz
221#D2

1A2n8B@««91pz
211#D3

1A2nB@«8«92pz
211#D4 ,

D25A8nn8n9B3D12A2n9B@««82pz
211#D2

2A2n8B@««92pz
221#D3

1A2nB@«8«92pz
211#D4 ,

D35A8nn8n9B3D12A2n9B@««82pz
211#D2

1A2n8B@««91pz
211#D3

2A2nB@«8«91pz
221#D4 , ~A8!

where

D15Jn2n8
n821

~x9!Jn92n21
n

~x8!Jn82n9
n9 ~x!

2Jn2n8
n8 ~x9!Jn92n11

n21
~x8!Jn82n9

n921
~x!,

D25Jn2n8
n821

~x9!Jn92n11
n21

~x8!Jn82n9
n921

~x!

2Jn2n8
n8 ~x9!Jn92n21

n
~x8!Jn82n9

n9 ~x!,

D35Jn2n8
n821

~x9!Jn92n11
n21

~x8!Jn82n9
n9 ~x!

2Jn2n8
n8 ~x9!Jn92n21

n
~x8!Jn82n9

n921
~x!,

D45Jn2n8
n821

~x9!Jn92n21
n

~x8!Jn82n9
n921

~x!

2Jn2n8
n8 ~x9!Jn92n11

n21
~x8!Jn82n9

n9 ~x!. ~A9!

The arguments of theJ functions are defined via

x5
v2

2B
, x85

v82

2B
, x95

v92

2B
, ~A10!

where theJ functions are

Jn
n~x!5H n!

~n1n!! J 1/2

e2x/2xn/2Ln
n~x!5~21!nJ2n

n1n

~A11!

and Ln
n(x) are the generalized Laguerre functions. The

functions are related to theI n,n8(x) functions defined by
Sokolov and Ternov@35# by

I n,n8~x!5Jn2n8
n8 ~x!. ~A12!

APPENDIX B

The third order photon energy terms can be obtained
only three possible ways:

~1! by coupling the linear photon energy dependent term
the quadratic terms in the low energy expansion of
product of the energy denominators@denoted by~102!#
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~2! by coupling the linear photon energy dependent term
the quadratic component of the Laguerre polynomial
eachJ in turn out of the three in the tripleJ product and
the zero-order energy component of the low energy
pansion of the product of the energy denominators@de-
noted by~120!#

~3! by selecting those tripleJ products,Ja
aJb

bJg
c , which give

uau1ubu1ugu53 ~B1!

~for example, combinations such asa562, b561, g
50!, where the coupling is to the zero-order compone
of both the Laguerre polynomial and the low energy e
pansion of the product of the energy denominators@de-
noted~300!#.

In the low frequency regime, the totalS-matrix is given
by Eq. ~16!, where

(
n50

`

T~n!5 (
k51

kmax

Ck ~B2!

and kmax is 13 and 30 respectively for the'⇒i i and
'⇒' ' splittings. For these two splitting modes, theCk
components at each of the allowable arrangements are
sented below in their entirety.

1. v9v8v dependent terms of the'ši i splitting mode

There are three~102! type terms corresponding to th
three arrangementsC1 with n95n85n; C2 with n85n11,
n95n or n85n, n95n11; andC3 with n85n21, n95n or
n85n, n95n21, where

C152
4B

3 (
n50

`
n

«0,n
4 , ~B3!

C25
1

2B (
n50

` H 3

2
~6n11!1

2B

3«0,n
2 ~4n21!1

5«0,n
2

2B
~2n11!

2 lnS «0,n11
2

«0,n
2 D F5~2n11!S «0,n

2

2B D 2

12~7n12!
«0,n

2

2B
15nG J , ~B4!

C35
1

2B (
n51

` H 3

2
~6n21!2

2B

3«0,n
2 ~4n11!2

5«0,n
2

2B
~2n21!

1 lnS «0,n
2

«0,n21
2 D F5~2n21!S «0,n

2

2B D 2

22~7n22!
«0,n

2

2B
15nG J . ~B5!

Similarly, there are three~120! type terms correspondin
to the three arrangementsC4 with n95n85n; C5 with n8
5n11, n95n or n85n, n95n11; and C6 with n85n
21, n95n or n85n, n95n21, where
to
r

-

s
-

re-

C450, ~B6!

C552
1

2B (
n50

`

nFn1
2B

«0,n
2 2

1

2 H n«0,n
2

B
1~n21!J

3 lnS «0,n11
2

«0,n
2 D G , ~B7!

and

C65
1

2B (
n51

` F ~n224n12!1
2Bn

«0,n
2 2

1

2 H ~n224n12!«0,n
2

B

2n~n23!J lnS «0,n
2

«0,n21
2 D G . ~B8!

Finally, there are seven~300! type terms, three of which
C7 , C8 and C9 , belong to the setn95n11, n85n21 or
n95n21, n85n11; n95n21, n85n22 or n95n22,
n85n21; and n95n12, n85n11 or n95n11, n85n
12 respectively. The other four areC10 with n95n85n
21; C11 with n95n85n11; C12 with n95n, n85n22 or
n95n22, n85n; and C13 with n95n12, n85n or n9
5n, n85n12. These are as follows:
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2. v9v8v dependent terms of the'š'' splitting mode

There are seven~102! type terms comprisingC1 with n9
5n85n11; C2 with n95n21, n85n or n95n, n85n
21; C3 with n95n11, n85n or n95n, n85n11; C4 with
n95n85n21; C5 with n95n21, n85n11 or n95n11,
n85n21; C6 with n95n12, n85n11 or n95n11, n8
5n12; andC7 with n95n21, n85n22 or n95n22, n8
5n21, which are as follows:
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Similarly, there are seven~120! type terms comprisingC8
with n95n85n11; C9 with n95n21, n85n or n95n,
n85n21; C10 with n95n11, n85n or n95n, n85n11;
C11 with n95n85n21; C12 with n95n12, n85n11 or
n95n11, n85n12; C13 with n95n21, n85n11 or n9
5n11, n85n21; and C14 with n95n21, n85n22 or
n95n22, n85n21, which are as follows:
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Finally, there are 16~300! type terms comprisingC15 with
n95n85n; C16 with n95n11, n85n21 or n95n21, n8
5n11; C17 with n95n21, n85n22 or n95n22, n85n
21; C18 with n95n12, n85n11 or n95n11, n85n
12; C19 with n95n, n85n21 or n95n21, n85n; C20
with n95n85n11; C21 with n95n, n85n11 or n95n
11, n85n; C22 with n95n85n21; C23 with n85n, n9
5n12 or n85n12, n95n; C24 with n95n85n22; C25
with n95n85n12; C26 with n95n22, n85n or n85n
22, n95n; C27 with n85n11, n95n13 or n85n13, n9
5n11; C28 with n95n23, n85n22 or n95n22, n85n
23; C29 with n95n13, n85n12 or n85n13, n95n
12; and C30 with n85n23, n95n21 or n95n23, n8
5n21, which are as follows:
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APPENDIX C

In this appendix, theT(n) values used in the Euler
Maclaurin summation formula for the two splittings,'→ii

and'→'', are presented.

1. The'˜ii splitting

The T(n) term in Eq.~20! for the'→i i mode is
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2. The' '̃' splitting

For the'→' ' splitting, theT(n) term in Eq.~20! is
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