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Photon splitting in strong magnetic fields: S-matrix calculations
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The S-matrix approach to the treatment of photon splitting in a magnetized vacuum, with the electron
propagators expressed in the Landau representation, is discussed critically. Although the analytic results of
Mentzel, Berg and Wunner are confirmed, we propose that their available numerical results may be subject to
two previously unidentified sources of error associated with the sum over principal quantum myrgaeting
to spurious contributions to the amplitude, and the extremely slow convergence of the sum for weak fields. It
is shown how the sums may be rearranged to avoid the spurious contributions. If the Euler-Maclaurin sum-
mation formula is used to evaluate the infinite sums avethe S-matrix approach then reproduces results
derived by the effective Lagrangian and proper-time techniques in the weak-field, low-frequency limit. This
method gives reliable results, f@=0.01 andw=<0.1, that reproduce those obtained by proper-time tech-
niques. TheS-matrix approach simplifies in the strong-field limB>1, where the sum ovem converges
rapidly. Our results show that the branching ratio for the splittings L 1 and L —Illl decreases from its
known value~3.4 for B<1 towards zero foB>1. For weak fields th&-matrix approach is unnecessarily
cumbersome, and future numerical work should be based on the alternative approaches.
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[. INTRODUCTION low field (RxB®) cases. MBW did not discuss these relevant
limiting cases of their analytic results, and their conclusions
The third-order quantum electrodynamical process ofare based on numerical evaluation of the complicated alge-
photon splittingy— y’+" in a strong magnetic field has be- braic formulas. Wunner, Sang and Befy0] (WSB) dis-
come of renewed interest after two decades, following theussed these numerical results further. In particular, these
publication of anS-matrix calculation of its rates by Ment- authors foundy—y'+y" rates just below the pair creation
zel, Berg and Wunnerl] (MBW). The numerical results of threshold comparable to and even exceedingjthee™e”
MBW suggest that the earlier work had seriously underestipair creation rates at low field strengths. The exceptionally
mated the strength of this process. MBW’s analytic derivadarge splitting rates implied by the numerical results of
tion is applicable to the non-dispersive regime below the paiMBW and WSB are surprising given that—y'vy" is a
creation thresholdw=2 where natural unitsh=c=1, are third-order process and pair production is first-order; hence
used and energies are in units of the electron rest energy ghoton splitting is expected to be of the orderadf weaker
511 keV), in which case the momentum vectors of the initial than y—e*e™, wherea; is the fine structure constant. The
and final photons are collinear; the validity of MBW's analy- MBW splitting rates also have a weak dependenceBon
sis extends beyond the weak fi¢Bl<1, whereB is in units  which is uncharacteristic for strong field QED processes. The
of the quantum critical field3.=4.413<x10"G) regime to  claim of greatly enhanced splitting rates was questioned by
arbitrary field strengths. As such, it is the first comprehensiveBaieret al.[11] and Adler and Schubefi2]. This claim has
presentation of the application of tlematrix techniquéus-  since been retracte@Wilke and Wunnef{13]), with a sign
ing the Landau representation for the electron propagatorsrror in their numerical coding cited as the cause of the error
specifically to magnetic photon splitting, although Melrosein the rates of MBW and WSB. While the elimination of one
and Parlg2,3] wrote down theS-matrix forms for spliting  coding error has gone a long way toward repairing their nu-
amplitudes. Prior to these works, splitting calculations usednerics, Wilke and Wunner'§13] S-matrix evaluations still
either effective Lagrangiafd—6] or variations of Schwing- do not coincide with the recent numerical computations
er's proper-time techniquels’—9], which yielded compact based on Stoneham’s proper-time rdte4] (specifically for
analytic forms for the rateR in the low energy Rxw®) or  the polarization mode. —|lll), which appear to be in excel-
lent agreement with the recent alternative proper-time nu-
merics of Baieret al. [11]. Differences by a factor of 2—-3

*Email address: weise@physics.usyd.edu.au emerge between the two data points giverilf] for B<1
"Email address: baring@lheavx.gsfc.nasa.gov and|[14], differences that are important in astrophysical ap-
*Email address: d.melrose@physics.usyd.edu.au plications of photon splitting.
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The astrophysical context in which photon splitting is of effects of dispersion, thereby restricting the splitting to col-
particular interest is pulsar magnetospheres. The standalshear momenta for the incoming and outgoing photons.
model for pulsars has the magnetosphere of a strongly madVithout loss of generality one may then choose an inertial
netized B=0.1) neutron star populated by highly relativistic frame in which the axischosen to be thg axis) defined by
e pairs generated through the processe*e™ in the po- the collinear momenta is orthogonal to the magnetic field
lar cap regiong15-19. According to the rates found in the (the z axig. The polarization modes of the magnetized
1970s[4-8], y—'y" can be neglectetto a first approxi- vacuum are identified asandL depending on the direction
mation) compared toy—e"e . However, the enhanced of the electric vector relative to the magnetostatic field. We
rates fory—y'y" found by MBW and WSB would imply  consider all the splittings permitted by tf@P invariance
that photons split before they could decay to produce pairssymmetry, which are those that involve an even numbeér of
This \_/vould undermine thg _standard model. At the next levelnodes: L — I, L—.1 1, Il—LII. (When dispersive effects
of refinement, photon splitting at the accepted rg@slis  f the magnetized vacuum are taken into account, the latter

influentigl only for sufficiently strongly magnetized Neutron .o of these three allowed decay modes are forbid6&n A
star environmentsB=0.4), and has recently been invoked preliminary step in our rederivation is to simplify the general

[20,2]] to explain the MeV cutoff in the spectrum of the . . : .
gamma-ray pulsar PSR1509-58 and also in magnetar mode%m.amx expressions by summing over the. spin states. that
are incorporated in the electron propagators: cf. Appendix A.

of soft gamma repeatef22—-26¢. Any substantial change in In Sec. Il we discuss the low frequency€1) limits of

the accepted rate fop— y'v” would require a major revi- . . .
sion of these astrophysical theories. these forms. Th&-matrix amplitudes contain only odd pow-

The claims of MBW and WSB have raised a number of€'s of the fr;:-quengy, and the accepted low-frequency depen-
questions concerning the treatment of photon splitting: Cailénce R= ") requires that the terms linear in(referred to
one show that theS-matrix formalism reproduces the low as lineare terms in the S-matrix amplitudes vanish. In Sec.
energy R=w®) and low field R=B®) limits derived by Il the linearw terms are shown to sum identically zero.
other techniques? How do the rates Chang@ﬁaﬂ_? How is However, for thel — |||l this sum involves a relabeling of the
the remaining discrepancy between the numerical results df values, and we show that if this relabeling is not per-
the S-matrix calculations of13] and the proper-time calcu- formed, then a substantial nonzero component remains even
lations of[14] to be resolved? Which technique is the mostwhen the sum oven is extended to very high values. We
convenient and reliable for numerical calculations? In thissuggest that one feature of the numerical results of MBW is
paper we report on a detailed investigation of all relevanspurious due to failure to make this relabeling. In Sec. IV the
aspects of the analytic treatment of photon splitting using théerms cubic in frequency are analyzed and it is shown that all
S-matrix approach with such questions in mind. We haveterms sum to zero except for the terms of the correct form
rederived the general analytic expressions quoted in MBW« ' ") to reproduce the results obtained by other QED
and confirm them to be correct, specifically E¢85 and  techniques. It is shown that tfmatrix computations con-
(26) in MBW; we also note that they are consistent with theverge very rapidly foB>1 where few terms in the summa-
results of{2,3]. It is important to note that the starting points tjon are required. However fd=1, an alternative numeri-
for the calculations using the effective Lagrangian approach g technique is needed. We use the Euler-Maclaurin
of [4-6], the proper-time approacti7—9,11 and the g mmation formula to perform the sum over We show
S-matrix approach are strictly equivalent; the difference is inynat this technique is particularly convenient for weak fields
the use of d!fferent but e_qualefﬂQ] forms of the electron g 1, that it reproduces the numerical results[b8] (spe-
propagator in a magnetic field. Hence the resulty1of—  cisically for L — |l atw=0.1 andB>10), and we discuss the

9,11 should all be equivalentindeed the equivalence of preakdown of the technique for smak 0.01. Our conclu-
[6,8,11 has been demonstrated[it2]). ThereforeS-matrix  gions are summarized in Sec. V.

computations should yielddentical results to proper-time
numerics. Note that the equivalence of tBematrix and
proper-time methods has been unequivocally demonstrated
in the context of magnetic pair creation—e* e [27,28.

The form of the propagator used in the proper-titaad
effective Lagrangianapproach involves triple integrals over  In deriving the rates for photon splitting within the
relatively simple (hyperbolic and exponentialfunctions,  S-matrix formulation, we adopt the convention of MBW to a
whereas the form of the propagator used in Shenatrix  large extent. Within this formalism, the electron propagators
approach involves an integral over the parallel momentm are expressed in terms of Landau spinors. The ®talatrix
and sums over the spins and principal quantum numbergiementS{? is the sum of the six component elements
(n,n’,n") of the intermediate pair states, including a triple 5(3) _s(2). These six components involve only two indepen-
sum over triple products of generalized Laguerre functionsygnt elements, chosen to B, andsﬁ”)z given by Egs(25)

Inspection of the relevant expressions suggests that th?nd (26) of MBW, with the others obtained from these two

former approach should be more convenient for numericavia the transformations presented in MBW's E#5). These

calculations and this inference is supported both by the dif'elements are simplified as follows:

ficulties already encountered in numerical calculations using . o . .
the S-matrix approach and also by further pitfalls identified (1) The propagation direction of the incomirig) and out-
below. going photons §',v") is chosen to be th&-direction,

In our analysis we follow earlier authors in neglecting the  and thenk,=k,=k’=0 implies p=p.?=p’°.

II. ANALYTIC REDUCTION OF THE S-MATRIX
FORMALISM
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(2) The spatial integrals of Eq23) of MBW may be ex- (2) of the energy denominators are coupled to linear fre-
pressed in terms of th& functions of Melrose and Parle quency terms arising from factors that relate $hiinctions
[29] [see EQq.(47) of their papel, with kf=w2, kf and the generalized Laguerre polynomials; cf. &iL1).
—w'?and k12=w”2. The structure of the triple products of thk functions

(3) The sum over the spin is performed. implies that only odd power combinations of photon energy

are allowed in theD functions present in th&matrix ele-

The resulting expressions f ff’,)l—s§i3’)6 for the L —Illl, L ments of Appendix A. This leads to restrictions on the values

—1 1 and thell—_L | splittings are given in Appendix A. of the Landau quantum numbersn’ andn”. These restric-

By taking the low-frequency limit, th&s-matrix ampli-  tions allow one to writen” andn” in terms ofn, so that only
tudes can be further simplified such that an analytic solutio single sum oven remains.

can be obtained for the integral ovey. In taking this limit,

one expands each of the energy sums in the denominator of ;. ANALYSIS OF THE LINEAR- « COMPONENT

the S-matrix elements as a Taylor series. For example, for

the S{¥), amplitude in Eq(A1), the product of the two energy I the treatment of splitting using the effective Lagrangian
denominator terms is and proper-time techniques it is known that the rates of all
splittings are zero when only the terms of first ordewinw’
1 1 1 or w” are retainedcalled lineareo term9. This is not obvi-

(Eo+ @ )(E;+®) EgE; (1+w'/Eg)(1+ w/E;)’ (D ously the case in th&matrix approach. In this section we
prove that the lineaw terms are indeed zero.
where Eg=¢+¢” and E;=¢&’'+¢&". For w'/Ep<1l and In the lineare terms the restrictions on the valuesrof
w/E <1 this becomes n’ andn” apply to the indicesy, B, vy in the tripleJ product
J33%3%; cf. Appendix A. The allowed values af, g, y are

!

1 - 1 1 L. n—n’, n”"=n, n"=n"%=1 for L —|ll; n=n’, n"—n=1,n’
(Egt o' )(E1+w) EgE; Eo E; —n” for |[—LI; andn—n"*1,n"—n*1, n'"—n"*1 for
2 2 , 1L —11. Only the combinations that satisfy
s (w_ ey e ]_}
Bo/ \B1/  EoBs ' |laf+]Bl+[y]=1 @

@ are allowed and we collect them into what we call arrange-
The frequency also appears in the arguments of the ments which are treated separately. Eor |||l and||— L]l
functions, with each term in th®matrix involving a product there are only three possible arrangeméntith a linearew
of such functions; cf. Appendix A. Within theskefunctions  dependencdedenotedA;, A, andAz: A; hasn’=n"=n; A,
are the generalized Laguerre polynomials expressible aslasn’=n+1, n"=n or n’=n, n”"=n+1; andA; hasn’
power series inw2. Each term in this series expansion differs =n—1, n”=n or n’=n, n"=n—1. We show below how
from its adjacent term by a factor of ordew?/2B. Hence these arrangements combine to give zero forlthellll split-
provided one has ting. The corresponding demonstration fer Ll is closely
analogous, due to these two splittings being related by a
3) qrossing symmetry. We comment more briefly on the split-
ting L —1.1.

<1,

the expansion of the generalized Laguerre polynomial con-
verges rapidly and can be terminated at the desired order o
photon energy. For example, in the linearapproximation There are 16 terms to sum in each of the three arrange-
to the S-matrix, the zero-order frequency terms in both thements forL —|lll splitting. These give, for th&-matrix ele-
generalized Laguerre polynomials and the expansion in Egnents,

1A. Analysis of the linear-w component of the L — | splitting

- ® 3e2 —2g2
A=Fio> n| dp,—"s—", ®)
n=0 — €q
S n[2e2 (2e,+eps1)—e2(3en+en.1)]+62 (20t €ns1)— &0
A2=—F1w2 dpz on n n+1 n 3n n+1 , on n n+1 n, (6)
n=0 J - 8n+18n(8n+8n+1)
T (e (n—1)[22,.(2ep+&,_1)—€2(Beyten_1)]— (26 +e,_1)(2—€2.)
A3=—F1w2 dpz on n n—1 n3 n n—1 - n n—1 n on ’ (7)
n=1J - Sn—lsn(snfl*’sn)

wheree,= \/p22+ sozym, gom=V1+2mB, and each term has the common factor
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8m?(4map)¥B L 1
1=——— (K T k=K 80"+ 0" — ) =3, (8)
o' w (2v)

whereV is the volume associated with the interaction. The integral in(&ggivesA;= 0 identically(cf. Sec. 3.24130]) and
hence the only possible contributions to the lineacomponent are fromh, andA;.

The sum in Eq(7) corresponds to=1. If the Landau levels are relabeled by making the transformatiem+ 1, then the
sum in Eq.(7) is replaced by one over=0 and Eq.(7) becomes

2

A§=—F1w§, e dp, n[zsg,n+1(28n+l+Sn)_8n+1(§’8n+1+Sn)]_228n+1+8n)(8ﬁ+1_3%,n+1). ©)
n=0 J-= engns1(Enteni)
Summing theA, and A; contributions, one obtains
- * 1 8Sn(28n+8n+1) 83n+1(28n+1+8n)
A,+AL=—F,o 22n+lf d : + — —2(epte .
2 3 ! nZO ( ) 0 P 8n+18n(8n+8n+1)2 Sﬁ 8§+1 (en n+1)
(10
|
If one makes the substitution It is likely that this spurious term arises in the numerical
work of MBW, who did not make the foregoing relabeling
€n+1 Petegniy and who chos@,,=30. Consider Fig. 3 of MBW and the
= - N pZreZ (1) 1 — splitting mode forw=0.01. The ratio of the mean
" 2" =on free paths aB=0.1 andB=1 is approximately 1.6. From
so that one has our analysis, foB=0.01, 0.1 and 1.0, one obtairs (30)
=28.F,0w, 6.59-,0 and 0.74,w, respectively. Hence, we
- (cons1/e0n) 1 |32 1 estimate that the spurious term alone fgf,,=30 would
f dpz—>f e dsZsB( 5 1) > — give for this ratio[specifically, forB?A3(B=1) to B?A%(B
0 1 S \/80,n+1_80,n3 =0.1)] a value of 1.5, which is remarkably close to the 1.6

(12 value obtained from Fig. 3 of MBW. Moreover, asis in-
creased, the absolute valuefof approaches a constant non-
zero value. For example, increasing,,, to 60 for B=0.1

and B=1 changesA,(nna) by only 6% and 1% respec-
tively. Such a small change from a doubling rof,,,, could
easily mislead one into believing that the expansion is con-
F\7erging to the correct result, and that the choigg,=30

. . . ives good convergence. However, the result is entirely spu-
If the relabeling of the sum is not made, then the linear- ?ious. g\]Ne suggestqchat such spurious contributions ma);/ b?e a

contribution to the amplitude for these splittings does nOthitherto unidentified source of error in the numerical work of

vanish when the sum overis cut off at any finite value. To ;g\ Fyrther, as this spurious linear contribution to the
see this, note that if one integratds and A; separately, splitting rate vanishes as-B~ 2 its effect is more pro-
using the substitution in Eq11), then provided that the o nced at the lower fields.

relabeling indicated above is performed one obtains, at each

n,

the integral in Eq.(10) is also zero(cf. [30], Secs. 2.26—
2.28. This establishes that the linearcontribution to the
amplitude forL —|lll splitting is zero, as required. The proof
that the linearw contribution to the amplitude folf—IlL
splitting vanishes is analogous, with the same integrals a
pearing withw’ in place ofw.

B. Analysis of the linear-w component of thel —1 1 splitting

A,=—Aj. (13 ForL —1 1 splitting, the lineare contribution to the am-
plitude contains 12 arrangements’=n'=n+1; n"=n’
However, if the relabeling is not performed, then when one=n—1; n"=n—1, n’=n; n"=n, n"=n—1; n"=n+1,
integratesA, and A; (in its original form, one obtains, at n'=n; n”=n, n’=n+1; n"=n—-1,n"=n+1; n"=n+1,
eachn, n"=n-1; n"=n+2,n"=n+1; n"=n+1,n'=n+2; n"
=n—1,n"=n—-2; andn”"=n—-2,n’=n—-1. If the sums are
As(n)=—Az(n+1). (14 relabeled in the same manner as for the-|lll splitting,
thesel — 1 1 arrangements cancel to give a zero linear-
It follows that the sum to any maximum,,,, gives dependence. In the low frequency regime of Fig. 3 in MBW,
the L —1 1 splitting has no apparent linear-dependence
As+Az=A(Nmay - (15 but rather the correct cubic dependence. It is a little puzzling
that there are no spurious linearterms in theL — L | split-
We conclude that whenever a finite sum is performed withiing results of MBW. This may, however, be due to the in-
out making the relabeling from Ed7) to (9), a spurious tegrands, after appropriately relabeling the sums, canceling
matrix element proportional te arises. for the L —1 1 splitting case rather than the integrations
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TABLE |. Ty, at various fieldB for the splittingsL — |l || and L —1 L. The attenuation coefficients
R (cm™Y can be obtained from these via H39).

B A% T () 0T yi(n) A% (n) Sh-oTi—1 i(n)
1000 —0.33207 —0.33207 —6.587x 1074 —-6.570x10°*
500 —0.33083 —0.33083 —1.302x10°3 —1.299x 1073
100 —0.32129 —0.32130 —6.062x 1073 —6.046x1073
50 —0.31022 —0.31024 —0.01129 —0.01126
10 —0.24155 —0.24163 —0.03756 —0.03740
5 —0.18415 —0.18432 —0.05126 —0.05092
1 —0.03828 —0.03912 —0.03621 —0.03454
0.5 —9.208x 1073 —0.01088 —0.01709 —0.01374
0.1 8.101x 1073 —1.581x10°4 —0.01698 —2.826x10°4
0.05 0.01629 —2.041x10°° —0.03333 —3.735¢10°°
0.01 0.07349 —1.648<10°”7 —0.15742 —3.063x10°
over p, which is the case for thé — ||l splitting. As these Nmax
integrations in MBW are evaluated numerically, the sums Tiota= Z T(n) (18
that require relabeling for the — |/l splitting may not be so n=0

obvious.

V. CUBIC- @ TERMS appears in the expression f_or the a.ttenuatlon coefficient, or
inverse mean free path, as in MBW:
The S-matrix elements that are of third-order in photon

energy are referred to as the cubiderms.(The terms qua-

dratic in photon energy are zeydn this section we describe _ af3 w® - 1) 5 ) 1
the form of these terms, and then discuss the sums myver R= 812X, %Htotad =4.24 0.511 MeV | Tiotal* cM™™
and specifically the use of the Euler-Maclaurin summation (19

formula in evaluating these sums. For—|lll and L —1 1

splittings, the cubiaw terms include termsxw® and

xww'w”. After appropriate relabeling of the sums over theWe perform the sums to evaluate E49) explicitly for L
Landau quantum numbers, the former sum to zero, consistent ||| andL —_1 1 and for various values d8, and our re-
with the dependence on photon energy found by Stonehamults are summarized in Table |.

[8]. The sum ovem converges increasingly rapidly with in-
The integrations ovep, in each of the possiblew’w”  creasingB. For example, for the higB- limit for L —|ll
dependent arrangements are carried out using(Ek}.and  splitting, the leading termT(0)— —1/3 for B>1, suffices.

similar substitutions. For each of the two splittings, the re-For v=0.1, this gives an attenuation coefficient &
sults of the integrations are summed together at each Landau4.72x 1076 cm™%, which reproduces the high field, low
guantum numben to give T(n). The totalS-matrix element  frequency limits obtained by Adl€i6], Stonehan(8] and
is of the form very recently by Baieet al.[11], and is in excellent agree-
ment with Fig. 1 of Baring and Hardingl4] and with the
o high field portion of Fig. 1 of Wilke and Wunn¢i.3]. As B
S<fi3>: |:32 T(n), (16) is decreased)a N€eds to be increased. In columns 2 and 4
n=0 of Table I, T,y is evaluated fon,,,,=200 and a range d
values forL — ||l and L —1 1 splittings respectively. How-

ver, thisn ., is in for the smaller val fan
Am(Aman)? ever, thisn,a is inadequate for the smaller valueskf and

Fa= S(KI 4k, — k) 80"+ o' —w) various computational difficulties aris@.g., due to rapid
Voo'o" . variations in the logarithmic termsn performing the sum
1 directly.
x ! II.
W&)w w (17)
A. Euler-Maclaurin summation formula
The different arrangements that make up Ttfe@) term, and To circumvent these computational difficulties, we use the

which are given explicitly in Appendix B, have no photon Euler-Maclaurin summation formula to extemgl,,, to .
energy dependence. Photon energy dependence appears ohhis procedure involves terminating the sum after a finite
in the factorF5;. On the other hand, there is no magnetic (usually small number of terms and estimating the residual
field dependence in the factét;; this appears only in the in terms of an integral and odd derivatives of the function
T(n) component. The sum T(n): namely,
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o 1 TABLE Il. R/w® at various fieldsB for the splittingsL — | |
Toota= E T(N)=TO0)+:--+T(i—1)+ =T(i) and L —1 1 calculated from the Euler-Maclaurin summation re-
n=0 2 sults of Table I.
+ fwdnT(n)— iT'(i)-i— iT”’(i)— LT”(i) B Rlo®(L—1 1) Rlo®(L—1 1)
i 12 720 30240
1000 468x10°! 1.832¢<10°°

Vit 500 4.646¢10° 1 7.163x10°°
+ 200600 (Dt (20 100 4.38%10° ! 1.552x10*

50 4.086<10° 1 5.382x10 4
whereT’, T”, T" and T*!! denote the first, third, fifth and 10 247810 5.938<10°
seventh derivatives of (i) and all the derivatives at the in- S 1.442¢10°* 1.101x10°2
finity limit are zero. 1 6.496<10°° 5.064x10"°

There is freedom to choose the valuesiofnd of the 0.5 5.025¢10°* 8.014x10*
number of derivatives off(i) to be retained, and these 0.1 1.061x10°’ 3.390<10’
should be chosen such that the result is not sensitive to this 0.05 1.76810° 5.922x10°°
choice. There is an added complication in the present appli- 0.01 1.15%10 3 3.983<10 13

cation in that the sums in the arrangements may stant at
=0, 1 2 or 3, and one _needs to decide whether to Stk columns 3 and 5 of Table | for the — Il and L —1 1
counting an=0 or at the first term in each of the sums. The splittings respectively and a range Bfvalues.
latter option must be chosen to avoid spurious terms, of the
same kind that appear in the lineareomponent discussed B. Value of N gy
above. This is equivalent to relabeling the sums as for the
linear-w component. In this way, any spurious terms, such a%
the arrangement€,, and C,5 for the L —|lll splitting (see e
Appendix B, cancel. Once this relabeling is performed, the
different arrangements are summed together to giye)
(see Appendix €

The minimum value of, at whichT(n) is well-behaved,
is unity. However, the contributions from the higher order

derivatives can be made smaller by choosing a higher valuif'® frequency for which the sum is valid. F&=1, an
of i. For B=0.1, derivatives of order greater than 5 are'max~1000 is suitablécorresponding to a frequency limit of

insignificant fori=2 or 3. ForB=0.01, contributions from @=0-01), but forB<1, ny, should increase as 1/B. Spe-

derivatives of order greater than 5 are negligible at the minicifically, for B=1, B=0.1 andB=0.01, this meansiy
mum i=1 value and hencé=1 was chosen for thig.  Should be~1C°, ~10* and ~1G° which, conservatively
Numerical instabilities occurred in the evaluationTofy at oM EQ. (3), requires»=<0.01, ©=<0.001 andw=0.0001

the lowest field considered, that is 0.01, due to the naturdieSPectively. FoB=1, this results in a difference of about
logarithm terms in Eq(20). When these logarithmic terms 1% PetweerTy, as evaluated via the sum from O 0.z,
have arguments close to unity, as is the case for low fields2Nd Trota @S €valuated from the Euler-Maclaurin summation
they produce terms that are only accurate-tb0% of Ty - approach. Hence the Euler-Maclaurin results are accurate to

The arguments of these logarithmic terms are ratios of reit léast 1% for the range & values presented and the cor-
mass energies, for example, responding frequency limits. These frequency limits Bor

=<1 can be increasddut not beyondv<0.1 as required by

In the present analysis for low photon energigg,, must
finite. As already noted, f&>1, a high accuracy can be
obtained by retaining only the first few; for example, for
B=10 we estimate thath.,=20 suffices. By Eq(3), for
B=10, such am,,,, validates the results fap<0.1. How-
ever, with decreasin@ one needs to choose largef,.y-
Moreover, the requirement of E(B) then imposes a limit on

2 oB Eqg. (2)], if one accepts a corresponding increased error in
0,2m+1 =1+ ——, (22 Tiotal-
€om €om MBW chose n,,,=30 for the two fieldsB=1 and B

=0.1, and clearly these are not large enough. In the retrac-
the natural logarithm of which can be expanded as a powetion paper13], Wilke and Wunner stated that,,, had been

series using increased in their new evaluations. According to the forego-
ing estimates one needs,,~10°-10* for the smallest
x2 x® x4 value,B=0.5, for which results are presented[\g], and it
IN(1+x)=x=Z+7z— 7+, —1<x<L (22 s unlikely that they chosgy large enough for their resuits

to be accurate.

wherex=ZB/s§m. If one uses expansions such as this in
place of the natural logarithm terms in EqO) for B
=0.01, the numerical instabilities can be overcome and an In Table Il,R/w°® is evaluated via Eq19) from the Euler-
accurate value of ., is obtained for smali. Maclaurin sums presented in Table I. The results are plotted
Such numerical instabilities, generated for very smallin Fig. 1 for magnetic fields strengtlig=0.1. Consider first
fields B or very largen, limit the use of the Euler-Maclaurin the L —|lll splitting. The graph is similar in shape to that
summation approach t8=0.01 andi not too large. The found by Wilke and Wunnef13], and it asymptotes to the
results of the Euler-Maclaurin summation approach are givehigh-B limit of Baier et al.[11]. ForB=10 andw=0.1, our

C. Decay rate
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1 g . . ; : V. CONCLUSIONS
x1071E 1 Our investigation of theS-matrix treatment of photon
1021 splitting co_nfirms the anglytic results of MB\[\l] in detail,
and establishes the equivalence of Seatrix approach to
x1073[ 1 the alternative treatments based on the effective Lagrangian
;8 9 and proper time techniques. Several new results emerge from
x10° 7 3 our investigation in the low frequency regime:
10750 The expansion of th&-matrix elements leads to elements

that involve sums over spin states and principal quantum
x1078 3 number states; we perform the sums over the spin states ex-
plicitly. For <1, we show how the sums of principal quan-
tum numbers reduce to a set of what we call arrangements,
each of which involves a sum over a single principal quan-
B tum numbem.

This expansion of thé&-matrix elements includes terms
that are linear in the frequenci¢inearw termg, but such
terms are known not to contribute to the transition rates
evaluated using the effective Lagrangian or proper time tech-
results are in close agreement with those in Fig. 118.  niques. We show that these contributions either integrate to
We are unable to make comparisons f&=1 where we zero for eachn or cancel due to the terms in one arrangement
expect the results df13] to be overestimates due to their at n canceling with the terms in another arrangemenn at
Nmax NOt being sufficiently large. Our results are however in+ 1,
excellent agreement with those of Baring and Hardiw at We point out that if the relevant sums are not relabeled
the two weakest field8=1 andB=0.1, that they consider. appropriately, truncating the sum at any giver N,
These authors also found significant discrepandastors of  leaves a spurious residual termw. We estimate the magni-
2-3) between their proper-time computations and the resultfude of this term for the valueng,,,=30) chosen by MBW,
of Wilke and Wunner wheB< 1. Furthermore, ouB-matrix and note that it appears that some of their numerical results
results and the proper-time results [a4#] converge on the €xhibit (an incorreck frequency dependence that is expected
B<1 limit of Adler [6]. from such a spurious contribution.

As is apparent from Table Il and Fig. 1, the channel We evaluate thes-matrix elements that are cubic in the
11 is favored compared to the channel- |l for B<1, frequenciegcubic-w termg for the two spllttlngs_L—>Hll and
but there is a changeover such that> L | becomes negli- + -1, and note thatonly termswae’ " contribute to the
gible for B>1. The weakB and highB results are embodied transnmq rates eva}luated using the effective Lagrang_lan or
in the low frequency asymptotic limits obtained by Ad[ét proper time technlqugs. We show that the terms in the
and Stonehan8], the branching ratios for which are given S-matrix treatment whlch.are not of this form :ntsgrate or

o ) . .. sum to zero. The integrations ovgy for the xww' " con-
explicitly in [21]. The highB results are also consistent with _ . . )
; . tributions are evaluated analytically.
t.hOS‘? of Baieret al. [11] who found that o_nlyl—>|||| split- We estimate the value afi,,, needed to give reliable
ting is allowed forB>1. The exact behavior of the branch-

; . AR results; forB>1 ann,,, of a few suffices, but foB<1 we
ing ratios for the two channels between these Bvlimits is suggest as a conservative rule of thumb ihag —10%/B is
X

fully described in this analysis. In the next section we COM-eaded. This casts doubt on all existing numerical estimates

ment briefly on the possible astrophysical significance of thigs e splitting rates foB<1 based on theS-matrix ap-

result. proach. TheS-matrix approach, however, is useful for calcu-
A comparison of our results with those of StonehE8h  |ating photon splitting rates for strong fields where the sum

provides a useful check on the range of validity of the Euler-overn converges rapidly.

Maclaurin summation approach fBr<1. Stoneham’s results ~ We show that the use of the Euler-Maclaurin summation

imply R/® values of 1.1&10 ’ and 1.16<10 '3 for B formula allows one to estimate the sum & 1; our results

=0.1 and B=0.01 respectively forL —Illl splitting and based on this technique reproduce those evaluated using the

3.94x10 " and 3.94 10 *3for L —1 1 splitting. These are effective Lagrangian or proper time techniques fBr

comparable with the correspondiRfw® values presented in =0.01. However, the technique develops numerical fluctua-

Table Il obtained using the Euler-Maclaurin summation ap-tions that limit its use t@=0.01.

proach. ForlL — 1 | compared withl —|lll splitting, Stone- One result that we find comfirms the weBkand highB

ham[8] calculated a branching ratio of 1853.42[Eq. (43 branching ratios for the splittings —_L 1 and L —lll: this

of [8]] for B<1, w<1, and our results give a branching ratio ratio decreases from its value3.4 forB<1 with increasing

increasing with decreasing and equal to 1.86=3.46 for B, and approaches zero fBe>1; cf. Fig. 1. The behavior of

the lowest valud=0.01 for which we found that the Euler- the branching ratio between these two extremes is fully de-

Maclaurin summation approach did not encounter noticeablscribed herein.

numerical difficulties. We conclude that the Euler-Maclaurin ~ We comment briefly on the possible astrophysical signifi-

summation approach gives reliable results at least for fieldsance of this final result. As discussed in Sec. |, Br

as weak aB=0.01. =0.4, photon splitting is important in the context of the

x107 7k

0.1 1 10 100 1000

FIG. 1. R/ »® versus fieldB for the splittingsL. — I/l (denoted by
solid circles andL —1 1 (denoted by open circlgs
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population of pulsar magnetospheres by pairs. In stronghapproaches. It should be emphasized that the different ap-
magnetized neutron stard8%£0.1), photons form bound proaches are formally equivalent, as may be shown by start-
pairs (positronium rather than free pairg31,32. One pos- ing from the propagator used in tf®matrix approach, and
sible implication of the change in branching ratio is on theperforming the sums and the integral oygrto reconstruct
state in positronium that is formed. Oriypolarized photons the propagator used in the other approaches33f.Future
decay to form the ground state of positronium wheréas numerical calculations for photon splitting are better based
polarized photons can decay into positronium with either theon the simpler alternative approach, rather thanStmatrix
electron or the positron in its first Landau ley8B,34l. (The  approach for field8=<1.
latter decay to the ground state with emission of a cyclotron
photon which may give an observable signatufiéhus the
variation of the branching ratio with field affects the popu- ACKNOWLEDGMENTS
lation of the Landau levels of the resulting positronium. For
0.4<B=1, the branching ratio for the splittings—_ 1 and
L —lll'is of the order of unity, and foB=1, this ratio de-
creases rapidly with increasir) («<B~? for B=10). Hence
as the fieldB increases, the photons produced in the photo
splitting process are increasingly mdrpolarized, favoring
the formation of positronium in the ground state.

A general conclusion is that th&-matrix approach is APPENDIX A
much more cumbersome than the approaches based on the
effective Lagrangian or proper time techniques, especially In this appendix, the simplified forms for th®-matrix
for numerical purposes. We have simplified Benatrix ap- amplitudesSﬁ’J for j=1—6 are presented for the three split-
proach by summing over the spin states, and by introducingngs permitted byCP invariance. These amplitudésith
the Euler-Maclaurin summation technique to sum omer (1)—(3) of Sec. Il implementefare expressed, using the
However, these difficulties simply do not arise in the otherscaling factors,, as

The authors express thanks to Lewis Ball and Stephen
Hardy for useful comments. M.G.B. thanks Alice Harding,
Joe Daugherty and George Pavlov for numerous discussions,
and the SRCfTA, University of Sydney, for hospitality dur-
r?ng part of the period when this work was completed.
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where e=(p?+¢e3)'? and e3=(1+2nB)*?,

e'=(pi+e?)? and e5°=(1+2n'B)"2,

(47Taf)3/28 1 ” ’ "_ "2
Sp=2m" — — oKtk e"=(p;+eg

The Dy, D, and D; components differ for each of the
Xé(ow"+ow' —w), (A2)  splittings and are defined as follows:

)¥2 and eg’=(1+2n"B)Y2 (A3
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(1) L—I
D;=+/8nn'n"B3A;+ 2n"B[ss’ +pZ—1]A,

+2n'Blee"—p2+1]A,

+2nB[e's"+p2+1]A,,
D,=+/8nn'n"B3A;— 2n"B[ss’ —p2+1]A,

—\2n'B[ee"+p2—1]A4

++v2nB[e'e"+ p§+ 11A,,
Dy=+/8nn'n"B3A;—\2n"B[es’ —p2+1]A,

+V2n'Blee"—p2+1]A,
—\2nB[e'e"—p2—1]A,, (Ad)

where, using thd-notation of Melrose and Par[@9],
A= : }()K’)Jnu_n(x I MNGY
NS CON (% )Jnr_n" 10,
II:]]:]’(X’)‘]n” n(X )‘]n/ n’— (X)
! ! ’ _l
—JE wOOI (X )Jﬁr_n,fﬂ(x),
n n’(%’)"]:" 1n(X )Jn’ i”«{»]_(X)
_Jgfn'()(,)‘]:’/fn(xr)Jz’fn/'fl(x)l
A4=J:_}}(/\/,)J:”_n(x’)‘]g,_n,,_ (X)

n n’ A/)‘Jn” n(X )Jn, n”+1(X) (A5)

2)L—11
D;=+/8nn"n"B3A;+2n"B[ss’ —p2—1]A,

+V2n'Blee"+p2+1]A,

+V2nB[e'e"+p2+1]A,,
D,=+/8nn'n"B3A;— \2n"B[ss’ + p2+1]A,

—\2n'Blee"—p2—1]A,

+2nB[e's"+p2+1]A,,
Dy=+/8nn'n"B3A;— \2n"B[ss’ +p2+1]A,

+2n'B[ss"+p3+1]A,
—\2nB[e's"—p2—1]A,, (A6)

where

Al:‘JE:n:’LJrl()( QPR CON W $%
n n — )()‘]n” n— 1(X )\]nr n— 1(X)
r_q1 ,

AZ 2 n!+1(/\/ )\]nn_n 1(X )\]n,_n,, 1(X)

n n— /\/)‘Jn” n+1(X )‘]n' n”+1(X)
Ag= Eailwnn_n LI b 100

—-n'— 1(A/,)‘Jn”—n+1(X )‘]n’—n” 1(X)

A n n’+1 /\/)‘Jn” n+1(X )‘]n' n’— l(X)

W OO a0 (AT)

(3 =Ll
D;=+/8nn"n"B3A;+y2n"B[ee’ +p2—1]A,

+2n'Blee”"+p3+1]A,

+\2nB[e'e"—p2+1]A,,
D,=+/8nn'n"B3A;—\2n"B[ee’ —p3+1]A,

—\2n'Blee”—p2—1]A;

+\2nB[e'e"—p2+1]Ay,
Dy=+/8nn'n"B3A;—\2n"B[ee’ —p3+1]A,

+2n'Blee”"+p2+1]A,
—\/2nB[8's"+p§—1]A4, (A8)

where
A1_ n—n’ ){)‘]n”—n 1(X )Jn,_n,,()()

J n,(A/’)Jnn Y )Jnr 200,

n— n'—1

n n’ ){’ n”—n+1(X )‘]n’—n”(X)

- 2 I"I’(A/,)J:”—n 1(X,)‘]:!_nu(X),

2;1’ )()‘]n” n+1(X )‘]n' nH(X)

_‘]2 n/()(,)‘]:" n— 1(X,)J2/7i//()(),
A n n’ /\/)‘Jn” n— 1(X )‘]2'7;'()()

UG ON VR $ 7 N % (A9)
The arguments of th@ functions are defined via
0)2 w/2 wl/Z
X=55 X' =355 X'=3g" (A10)
where the] functions are
n!
(n+w)!

J(x) =

1/2
] e*X/ZXV/ZL:;(X):(_l)VJI‘l‘:V
(A11)

and L;(x) are the generalized Laguerre functions. These
functions are related to thg, ,/(x) functions defined by
Sokolov and Ternoy35] by

Lo (=30 (X). (A12)

APPENDIX B

The third order photon energy terms can be obtained in
only three possible ways:

(1) by coupling the linear photon energy dependent terms to
the quadratic terms in the low energy expansion of the
product of the energy denominatqdenoted by(102)]
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(2) by coupling the linear photon energy dependent terms to C,=0, (B6)
the quadratic component of the Laguerre polynomial for
eachJ in turn out of the three in the triplé product and 12 28 1 [ne?
the zero-order energy component of the low energy ex- Ce=—== > nln+——= [ On (n—1)]
pansion of the product of the energy denominafoies- 2B =0 eon 2 B
noted by(120] 2

(3) by selecting those tripléd products,.J";‘kJZJC , Which give |n<ﬁg+_1) , (B7)

€on

|a|+]8]+|1=3 (B1)
and
(for example, combinations such as=+2, B==*1, y .
=0), where the coupling is to the zero-order components 1 2
of both the Laguerre polynomial and the low energy ex- __B -
pansion of the product of the energy denominafoies-
noted(300)].

2_
(n°=4n+2)+ — B

2Bn 1+(n2—4n+2)g§]n
€on 2

o2
—n(n—3))ln( 20,n H (B8)
€on-1

Finally, there are sevef800 type terms, three of which,

In the low frequency regime, the tot&matrix is given
by Eq. (16), where

o Kmax C,, Cg andCy, belong to the seh”"=n+1,n"=n—-1 or
> T(n)=>, Cy (B2) n"=n-1, n'=n+1; n"=n—-1, n'=n—2 or n"=n-2,
n=0 =1 n"=n—1; andn"=n+2, n'=n+1 or n”=n+1, n'=n

i i +2 respectively. The other four ar@lo with n”"=n"=n
and K.y is 13 and 30 respectively for thé =] I and 1 Cllwith N"=n’=n+1; Cp,with n"=n, n’=n—2 or

1L=1 1 splittings. For these two splitting modes, tkg nu_n 2. n'=n: and C Wlth n"=n+2, n'=n or n’
components at each of the allowable arrangements are pre-, \/— 31+ 2 These arésas follows:
sented below in their entirety. n

2
1. o"»' @ dependent terms of thel =l || splitting mode 072_% E nl 2 Bon—l)ln( 20” )
There are thre€102) type terms corresponding to the =t fon-1
three arrangements; with n”=n’=n; C, with n’=n+1, ne3 . &2 1
n"=norn’=n, n”=n+1; andC; withn’=n—1,n"=n or iy +(n—=1)/In 82’ , (B9)
n’=n, n”=n-1, where on-1
4B (n—1)&} g2
- , B3 _ no_ on-1
Ci=—— nZO (B3) P E (n—1) ( )In<_2_80,n :
2 2
12 2B 52 (n—Degy, ( €0n ”
_ ) - n , (B10)
Co=>5g Z( (6n+1)+ én(4n 1)+ g (2n+1) B o
c2)+1 2 ? * ( ) 2
—In ( 2 ) 5(2n+1) ) 1 €on ) €on+1
=— +
80n Co=7g 2 (N+1)|—5 | =2
- ]
2
(B4) (n+1)egy, )I (%,mz”
n , (B11)
28
% 2
LE ( (6n—1)— (4n+1)— (2n—1) 1
“TEE 355 Cio=g E (n- 1>[7— 2n
2 2 \2
€on €on
+In : )[S(Zn—l)(—') €2 (2n—1) gl
E6n-1 2B +on S5 220, (B12)
2 €on-1
€on
55 5N ] (B5)
Cll— 2 (n+1) +2n
Similarly, there are thre€l20) type terms corresponding 80n+1

to the three arrangemen®, with n"=n’=n; Cg with n’ e
=n+1, n"=n or n’"=n, n"=n+1; and Cg with n’=n — n( 0”“”, (B13)
—1,n"=norn’=n, n"=n—-1, where 2B
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c 1 2 -1l n-n+ 2 (n—1)sd, e & 2 @t [ ehai) (Soneo
2=~ 3 &, 2 2B T 2B & 4 B E6n+1
2 2 2 2
€on (n—S)( 80n) €on+2| O 80n)
XIn ’ , B14 + 1+ 5 |Inf——|+ | 1+ —-
8gyn_2” (819 4 2B eon | 4 B
2
gon+1|  3n 1
w X1 : +—=+z= B21
S (n+1)e2, o2, ) 22 (B2Y)
C13—E ~= (n+1) (n+1)_§ H+T
2 1 < (4n—1) on-2| [86n-1
Eon+2 Co=— — -1 (1 diy n
XIn _8(2)n_ (815) 7 2B n§=:2 ( )[ 4 B 8S,n72
n+5 z 2 5 g2,
_( ) 1 on-2 In 2On +o01+ on-1
. 4 2B €on_a) 4
2. "o’ o dependent terms of theL=1 | splitting mode '
2
There are sevefil02) type terms comprisin@€,; with n” <1 €on | 3_” 1
' . : ” ’ " ’ n 2 + . (822)
=n"=n+1; C, with n"=n—1, n"=n or n"=n, n'=n Eon-1 2 2

—1;Cswithn”=n+1,n"=norn”"=n,n"=n+1; C, with
n"=n'=n-1; Cs with n”=n—-1,n"=n+1 orn”"=n+1,
n'=n-1; Cg with n"=n+2, n"=n+1 orn”"=n+1, n’
=n+2; andC,; withn”=n—-1,n"=n-2 orn"=n-2,n’
=n—1, which are as follows:

+8g‘n(3n+1) n €1
2B 2

€on

2 oo
c1=—go (n+1)

B(n+1)
+———-(3n+1)|,

80,n+1

(B16)

1 o]
Co=28 2, "

(12n—7)e3,_ 2
{2(n 1)+ 2880' 1]In( >0 )

€on-1
4B°n B(8n-—23)
—(A2n—7)+ ——+ 5 ,

8O,n 8O,n

(B17)

o

1
CSIE EO n

n=

(12n+7)ed, | £dni1
2B N 52

€on

—[5(2n+ 1)+

4B°n B(8n+3)

+(12n+7)— ——+ > , (B19)
€on €on
Cu= BE (n— 1)[ B(n _l)+(3n—1)—[(2n—1)

(B19)

1« (n+1) edn €0n+1
Co=—g 2, M 2t 5 |1+ |nl 2
(n—1)

Similarly, there are seve{i20) type terms comprisin@g
with n"=n"=n+1; Cq with n"=n—1, n'=n or n"=n,
n'=n—1; Ciowithn”=n+1,n"=norn”"=n, n'=n+1;
C4q with n"=n’=n-1; Cy, with n"=n+2, n"=n+1 or
n"=n+1,n'=n+2; Cy3with n"=n—-1,n"=n+1 orn”
=n+1, n'=n-1; andCy, with n"=n—-1, n'=n—-2 or
n"=n-2,n'=n-1, which are as follows:

©

Cg= 2 an(n+1)
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——1In
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2
€on
2

80,n—2

(B29

n|
Zn

L
Ci=—3g 2, (N-1)(n=4)

_(n— 1) (80n 1)
In| — .

2 80,n—2

Finally, there are 16300 type terms comprisin@ 5 with
n"=n’=n; Cigwithn”=n+1,n"=n-1 orn"=n-1,n’
=n+1; Cy;withn"=n-1,n"=n—-2 orn"=n—-2,n"=n
—1; Cyg With n”"=n+2, n’=n+1 or n"=n+1, n'=n
+2; Cigwith n"=n, n"=n—1 orn”=n-1,n"=n; Cy
with n"=n"=n+1; C,; with n”"=n, n'=n+1 orn"=n
+1, n"=n; C,, with n"=n"=n-1; Cy3 with n’=n, n”
=n+2 orn’'=n+2,n"=n; Cy with n"=n"=n—-2; Cyg
with n”=n"=n+2; Cy with N"=n—2, n"=n or n'=n
—2,n"=n; Cyywithn'=n+1,n"=n+3 orn’=n+3,n"
=n+1; Cygwith n"=n—-3,n"=n—-2 orn"=n—-2,n"=n
—3; Cyo With N”"=n+3, n'=n+2 or n'=n+3, n"=n
+2; andC3, with n'=n—-3, n”=n—1 or n"=n-3, n’
=n—1, which are as follows:
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APPENDIX C

In this appendix, theT(n) values used in the Euler-
Maclaurin summation formula for the two splittings,— |l||
andL —1 1, are presented.

1. The L —llll splitting
The T(n) term in Eq.(20) for the L — |l || mode is
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2. The L—1 1 splitting

For thel —1 1 splitting, theT(n) term in Eq.(20) is

68(n+1)(n+2)2+482(n+1)2+B(n+1)(12n2+24n+9) 4Bn2(B+2)+Bn(—6n2+2n+3) on
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