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Three-body amplitude analysis of the processa2„1320…˜p1p1p2
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We analyze the decay amplitudes of the processa2(1320)→p1p1p2 using the tensor analysis technique
and show how to obtain three-body amplitudes. The amplitudes can describe both the resonance and the
background contribution of the process.@S0556-2821~98!00605-5#

PACS number~s!: 11.80.Cr, 13.25.Jx
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I. INTRODUCTION

Analytic structures of differential cross sections of col
sion processes are needed to fit data in high energy ex
mental physics. Usually, a technique called tensor anal
@1–7# is used. Comparing with the early methods of helic
or partial wave amplitude analysis@8–12#, tensor analysis
can give more details of the amplitudes’ dependence on
ergies.

In the previous references, reactions with three-body fi
states are looked upon as sequential two-body decays.
analyze the amplitude of the processa2(1320)→p1p1p2

in this paper. From this example one can see how to c
struct general three-body amplitudes without the assump
of sequential two-body decays. The derived amplitudes
general for this process. They can describe both the r
nance and background terms.

In Sec. II, we will consider the covariance and bos
symmetry of the amplitude. The general amplitudes
a2(1320)→p1p1p2 are obtained. Section III will be de
voted to the constraint of parity conservation on the am
tudes. The resonance structure and background terms o
process are discussed in Sec. IV.

II. CONSTRUCTION OF THREE-BODY AMPLITUDES

Let p, p1 , p2 , andp3 be the four-momenta ofa2(1320),
p1, p1, andp2. The helicity amplitude of this process ca
be formally written as

Fl5emn~p,2l!Gmn,

l50, 61, 62, ~1!

wherel is the helicity ofa2(1320). Hereemn(p,2l) is the
polarization tensor ofa2(1320), andGmn is the effective
four-leg vertex witha2(1320),p1, p1, andp2 as its outer
legs.

emn(p,2l) satisfies Rarita-Schwinger conditions@13#

emn~p,2l!5enm~p,2l!, ~2a!

gmnemn~p,2l!50, ~2b!
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pmemn~p,2l!50. ~2c!

Let us analyze the Lorentz indices of the vertex functi
Gmn. HereGmn can be constructed from

p1
m , p2

m , p3
m , gmn, «mnab; ~3!

here, gmn is the space-time metric, which is taken
diag$1,21,21,21% and «mnab is the antisymmetric tensor
Since emn(p,2l) is traceless, one can safely excludegmn,
and the antisymmetric tensor should appear as

Qm5
def

p1
ap2

bp3
g«abgm. ~4!

After consideration of the symmetry of indicesm, n, all pos-
sible constructions are, for tensors,

p1
mp2

n1p1
np2

m , p1
mp3

n1p1
np3

m , p2
mp3

n1p2
np3

m ,

p1
mp1

n , p2
mp2

n , p3
mp3

n , QmQn, ~5a!

and for pseudotensors,

Qmp1
n1Qnp1

m , Qmp2
n1Qnp2

m , Qmp3
n1Qnp3

m . ~5b!

From condition~2c! and conservation of energy and m
mentump11p21p35p, one knows that those terms in E
~5! that containp3

m can be expressed in linear combinatio
of the others. Now the independent terms are, for tensor

p1
mp2

n1p1
np2

m , p1
mp1

n , p2
mp2

n , QmQn, ~6a!

and for pseudotensors,

Qmp1
n1Qnp1

m , Qmp2
n1Qnp2

m . ~6b!

Following the usual assumption of maximal analytici
@14–17#, the vertex functions got by linear combination
covariants in Eqs.~6! are free of kinematic singularities.

According to Eqs.~6!, we write the vertex function as

Gmn5c1@p1
mp2

n1p1
np2

m#1c2@p1
mp1

n1p2
mp2

n#1c3QmQn

1c4~p1
mp1

n2p2
mp2

n!1c5@Qm~p1
n2p2

n!1Qn~p1
m2p2

m!#

1c6~Qmp3
n1Qnp3

m!. ~7!
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The coefficients in Eq.~7! are analytic functions of the
dot products of four-momenta. Because of conservation
energy and momentum and mass shell conditions, there
only two independent dot products,p1•p3 and p2•p3 , so
that

ci5ci„~p11p2!•p3 , ~p12p2!•p3…, i 51,2, . . . ,6,
~8!

and can be expanded as a Taylor series of (p11p2)•p3 and
(p12p2)•p3 , becauseci ’s are analytic functions of thes
two dot products.

In the processa2(1320)→p1p1p2, the twop1’s, par-
ticles 1 and 2, are identical particles.Gmn should satisfy bo-
son symmetry. Imposing boson symmetry on Eq.~7! leads to

ci„~p11p2!•p3 , 2~p12p2!•p3…

5ci„~p11p2!•p3 , ~p12p2!•p3…, ~9a!

for i 51,2,3,5, and

ci„~p11p2!•p3 , 2~p12p2!•p3…

52ci„~p11p2!•p3 , ~p12p2!•p3…, ~9b!

for i 54,6. We see that there are kinematic zeros inc4 and
of
re

c6 : The even orders of (p12p2)•p3 in their Taylor series
vanish. To get a vertex function free of kinematic zeros,
must factor out (p12p2)•p3 in c4 andc6 :

Gmn5c1@p1
mp2

n1p1
np2

m#1c2@p1
mp1

n1p2
mp2

n#1c3QmQn

1c4@~p12p2!•p3~p1
mp1

n2p2
mp2

n!#1c5@Qm~p1
n2p2

n!

1Qn~p1
m2p2

m!#1c6@~p12p2!•p3~Qmp3
n1Qnp3

m!#.

~10!

c1 ,c2 ,...,c6 are analytic functions of (p11p2)•p3 and
@(p12p2)•p3#2.

There are still kinematic zeros caused by parity conser
tion. This will be discussed in the next section.

III. SYMMETRY OF SPACE REFLECTION

We denote the intrinsic parities ofa2(1320), p1, p1,
andp2 ash, h1 , h2 , andh3 ; their spins areJ, J1 , J2 , and
J3 , and the corresponding helicities arel, l1 , l2 , andl3 .

Write the initial state asupW ,J,l&, the final state as

upW 1 ,J1 ,l1 ;pW 2 ,J2 ,l2 ;pW 3 ,J3 ,l3&. Herep is the parity opera-
tor.

Using the notation of Ref.@5#, one obtains
pupW ,J,l&5
def

he2 ipJu2pW ,J,2l&,

pupW 1 ,J1 ,l1 ;pW 2 ,J2 ,l2 ;pW 3 ,J3 ,l3&[h1h2h3e2 ip~J11J21J3!u2pW 1 ,J1 ,2l1 ;2pW 2 ,J2 ,2l2 ;2pW 3 ,J32l3&. ~11!
ur-
Spin-1 polarization vectors are given by

„em~p,0!…5S upW u
W

E

W
sin u cosf

E

W
sin u sin f

E

W
cosu

D ,

„em~p,61!…5S 0
7cosu cosf1 i sin f
7cosu sin f2 i cosf

6sin f
D , ~12!

where

~pm!5~E,pW !,
pW 5~ upW usin u cosf,upW usin u sin f,upW ucosu!,

W5Apmpm. ~13!

We define the polarization tensor of arbitrary order rec
rently by

em1m2•••m j~p, j ,l!5
def

(
l1 ,l2

~1,l1 ; j 21,l2u j ,l!em j~p,l1!

3em1m2•••m j 21~p, j 21,l2!. ~14!

The space reflection matrix is defined as

~Pm
n!5diag$1,1,1,1%, ~15!

and one has

p̄m[Pm
npn5~E,2pW !,
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p̄i
m[Pm

npi
n5~Ei ,2pW i !, i 51,2,3,

ēm1m2•••m j[Pm1
n1

Pm2
n2

Pm j
n j

en1n2•••n j . ~16!

From Eqs.~12! one can see that

em~ p̄,l!5ēm~p,2l!. ~17!
m

As a consequence of the definition of Eqs.~12!, we have

em1m2•••m j~ p̄, j ,l!5ēm1m2•••m j~p, j ,2l!. ~18!

Parity-conserving helicity amplitudes hold the following r
lation:
^pW ,J,luM upW 1 ,J1 ,l1 ;pW 2 ,J2 ,l2 ;pW 3 ,J3 ,l3&

5^pW ,J,lup†Mp upW 1 ,J1 ,l1 ;pW 2 ,J2 ,l2 ;pW 3 ,J3 ,l3&

5h* h1h2h3eip~J2J12J22J3!^2pW ,J,2luM u2pW 1 ,J1 ,2l1 ;2pW 2 ,J2 ,2l2 ;2pW 3 ,J3 ,2l3&, ~19!

with

^pW ,J,luM upW 1 ,J1 ,l1 ;pW 2 ,J2 ,l2 ;pW 3 ,J3 ,l3&[e* ~p,J,l!G~p,p1 ,p2 ,p3 ,gmn,«abgd!e~p1 ,J1 ,l1!e~p2 ,J2 ,l2!e~p3 ,J3 ,l3!.

~20!

Some indices are abbreviated in the above expression.G is a tensor contracted from the products ofpm, p1
m , p2

m , p3
m , gmn, and

«abgd. The requirement of parity conservation is equivalent to

e* ~ p̄,J,2l!G~ p̄,p̄1 ,p̄2 ,p̄3 ,gmn,«abgd!e~ p̄1 ,J1 ,2l1!e~ p̄2 ,J2 ,2l2!e~ p̄3 ,J3 ,2l3!

5hh1* h2* h3* ~21!J2J12J22J3e* ~p,J,l!G~p,p1 ,p2 ,p3 ,gmn,«abgd!e~p1 ,J1 ,l1!e~p2 ,J2 ,l2!e~p3 ,J3 ,l3!. ~21!
ay

cess

dy
The unitary conditionsh* h51 and h i* h i51 (i 51,2,3)
have been used.

We should setJ52, h511, Ji50, h i521 (i 51,2,3)
@18#. The polarization tensors for final state particles beco

e~p1 ,J1 ,l1!5e~p2 ,J2 ,l2!5e~p3 ,J3 ,l3!51. ~22!

Substituting these into Eq.~21!, one finds

emn* ~p,J,l!Gmn~p,p1 ,p2 ,p3 ,gst,«abgd!

52emn* ~ p̄,J,2l!Gmn~ p̄, p̄1 , p̄2 , p̄3 ,gst,«abgd!,

~23!

whereGmn is symmetric and traceless. From Eqs.~18!, ~23!,
and

ḡmn5
def

Pm
aPn

bgab[gmn,

«̄abgd5
def

Pa
a8P

b
b8P

g
g8P

d
d8«

a8b8g8d8[2«abgd, ~24!

one finds

emn* ~p,J,l!Gmn~p,p1 ,p2 ,p3 ,gst,«abgd!

52emn* ~p,J,l!Gmn~p,p1 ,p2 ,p3 ,gst,2«abgd!

or

Gmn~p,p1 ,p2 ,p3 ,gst,«abgd!

52Gmn~p,p1 ,p2 ,p3 ,gst,2«abgd!. ~25!
e

That is, to preserve parity conservation in the dec
a2(1320)→p1p1p2, the antisymmetric tensor«abgd

should appear only an odd number of times inGmn. Apply-
ing this to Eq.~10! gives

Gmn5c@Qm~p1
n2p2

n!1Qn~p1
m2p2

m!#

1d~p12p2!•p3~Qmp3
n1Qnp3

m!. ~26!

The vertex function given in Eq.~26! is free of kinematic
singularities and zeros.

IV. RESONANCE STRUCTURE AND BACKGROUND
TERMS

The predominant resonance decay mode of the pro
a2(1320)→p1p1p2 is a2(1320)→p1r0, r0→p1p2.
The result of a tensor analysis of this sequential two-bo
decay@5# is

Fl
~res!5cremn~p,2l!Fmn,

Fmn5~D23Q
mp1

n2D13Q
mp2

n!. ~27!

Herecr is a Lorentz scalar, andD13, D23 are Breit-Wigner
factors:

D235
1

~p21p3!22M r
21 iGrM r

,

D135
1

~p11p3!22M r
21 iGrM r

. ~28!
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M r , Gr are the mass and the width ofr0 . Note that the
expression~25! satisfies the boson symmetry of particles
and 2.

According to the results of Sec. III, the general helic
amplitude of the processa2(1320)→p1p1p2 is

Fl5emn~p,2l!Gmn

5cemn~p,2l!@Qm~p1
n2p2

n!1Qn~p1
m2p2

m!#

1demn~p,2l!~p12p2!•p3~Qmp3
n1Qnp3

m!. ~29!

This can be formally written as

Fl5S c
dD ; ~30!

i.e., the part proportional toc and the part proportional tod
in Fl are regarded as two vectors orthogonal to each ot
The helicity amplitude for the processa2(1320)→p1p1p2

satisfying parity conservation and boson symmetry is a v
tor in the two-dimensional space spanned by these two
tors. Now the resonance term becomes

Fl
~res!5crS 1

4 ~D131D23!

D132D23

4~p12p2!•p3

D 5crS 1
4 ~D131D23!

2 1
2 D13D23

D . ~31!

Fl can be expanded as the sum of a term that is paralle
Fl

(res) and another term perpendicular to it:1

Fl5ciS 1
4 ~D131D23!

2 1
2 D13D23

D 1c'S 1
2 D13D23

1
4 ~D131D23!

D
5crS 1

4 ~D131D23!

2 1
2 D13D23

D
1S ~ci2cr !

D131D23

4
1c'

D13D23

2

~ci2cr !
2D13D23

2
1c'

D131D23

4

D
[Fl

~res!1Fl
~b! . ~32!

Fl
(b) stands for background terms. In the region close tor0

resonance points in the phase space,Fl
(res) is the leading term

1In order to be consistent on dimensions, we should substitutpi

by pi /mp in Eqs. ~29!–~33!. The constant factormp could be ab-
sorbed into the coefficients in the result of Eq.~34!.
r.

c-
c-

to

of Fl , and the dependence of the background terms on
ergies is weak. The background terms can be treated as
stants:

Fl
~b!5S b1

b2
D ,

Fl5Fl
~res!1Fl

~b!5S cr

4
~D131D23!1b1

2cr

2
D13D231b2

D . ~33!

The helicity amplitude after consideration of ther0 reso-
nance reads

Fl5Fcr

4
~D131D23!1b1Gemn~p,2l!

3@Qm~p1
n2p2

n!1Qn~p1
m2p2

m!#1F2cr

2
D13D231b2G

3~p12p2!•p3emn~p,2l!~Qmp3
n1Qnp3

m!, ~34!

wherecr , b1 , andb2 can be dealt with as constants whe
fitting data.

V. CONCLUSIONS

We derive the general form of the decay amplitude for
processa2(1320)→p1p1p2 through the covariance an
symmetry analysis of the four-leg vertex. The derived amp
tude is more general compared with the sequential two-b
decay amplitudes. It contains both the background terms
the resonance term of the process.

Consider the example in this paper. The amplitude giv
by two-body sequential decays properly describes the p
cess in ther0 resonance region, but without backgroun
terms it might be unreasonable in the region not so clos
resonance points. Background terms might contribute a n
negligible portion to the amplitude. General three-body d
cay amplitudes given in this paper are needed to include
background contribution.

A similar analysis can be applied to the case in which
particles of the initial and final states are of arbitrary spi
but the problem may be much harder depending on sym
try relations and the number of Lorentz indices involved.
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