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We analyze the decay amplitudes of the proag4320)— 7+ 7" 7~ using the tensor analysis technique
and show how to obtain three-body amplitudes. The amplitudes can describe both the resonance and the
background contribution of the proce$$0556-282(98)00605-5
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I. INTRODUCTION p“e,,(p,2\)=0. (20

Analytic structures of differential cross sections of colli- Let us analyze the Lorentz indices of the vertex function
sion processes are needed to fit data in high energy expedi**”. HereI'*#" can be constructed from
mental physics. Usually, a technique called tensor analysis
[1-7] is used. Comparing with the early methods of helicity P4, py, pY, g, etrep, 3
or partial wave amplitude analys[8—12|, tensor analysis
can give more details of the amplitudes’ dependence on erhere, g*” is the space-time metric, which is taken as
ergies. diag{l,—1,—1,—1} and&*"*# is the antisymmetric tensor.
In the previous references, reactions with three-body finabince e, ,(p,2\) is traceless, one can safely excluge’,
states are looked upon as sequential two-body decays. Wand the antisymmetric tensor should appear as
analyze the amplitude of the procesg1320)— 7" 7t 7~
in this paper. From this example one can see how to con- def
struct general three-body amplitudes without the assumption Q*=pipspgeFr. (4)
of sequential two-body decays. The derived amplitudes are ) ) o
general for this process. They can describe both the resddfter consideration of the symmetry of indicgs », all pos-

nance and background terms. sible constructions are, for tensors,

In Sec. Il, we will consider the covariance and boson Bv e B e ey v
symmetry of the amplitude. The general amplitudes for P1P2+P1P2, P1P3tP1P5, P2P3+ P2P3,
a,(1320)— 7"+ 7w~ are obtained. Section Il will be de-
voted to the constraint of parity conservation on the ampli- PYP1, P5P2. P5P3, Q*QY (5a)
tudes. The resonance structure and background terms of the
process are discussed in Sec. IV. and for pseudotensors,

mpt 4 VM’ mpt 4 Vﬂ' rnt 4+ VM. 5b
Il. CONSTRUCTION OF THREE-BODY AMPLITUDES Q¥pr+QPL, QP2+ Q%% Q"p3t Q5. (5D

Letp, py, po, andps be the four-momenta af,(1320), From condition(2c) and conservation of energy and mo-
7+, @+, andm . The helicity amplitude of this process can MeNtUMP,+p,+pz=p, one knows that those terms in Eq.
be formally written as (5) that containp4 can be expressed in linear combinations

of the others. Now the independent terms are, for tensors,
Fr=e,.(p. 2V, o S
PIP2tP1PS, PIP1, P3Pz, Q*Q%, (6a)

A=0, £1, £2, 1
@ and for pseudotensors,

where\ is the helicity ofa,(1320). Heree,,(p,2\) is the P VL At
polarization tensor of,(1320), andI'*” f; the effective QP+ QPY, QP+ Q7P5. (6)
four-leg vertex witha,(1320), 7%, #*, and#~ as its outer
legs.

e,.,(p,2\) satisfies Rarita-Schwinger conditiofik3]

Following the usual assumption of maximal analyticity

[14-17, the vertex functions got by linear combination of

covariants in Eqs(6) are free of kinematic singularities.
According to Eqs(6), we write the vertex function as

& (P.2)=8,,(p,2\), (23
g""e,,(p.2\) =0, (2b) [#7=cy[prpa+ P1ps ]+ Col PIPT+ P5 P2l +c3Q#Q”
+C4(PYPI—P5P2) +Cs[Q¥(Py—P2) + Q¥ (PI —P5)]
*Electronic address: tnruan@Ix04.mphy.ustc.edu.cn +C(Q*p3+Q"Pj). 7
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The coefficients in Eq(7) are analytic functions of the
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Cs: The even orders off;—p,) - ps in their Taylor series

dot products of four-momenta. Because of conservation ofanish. To get a vertex function free of kinematic zeros, we
energy and momentum and mass shell conditions, there areust factor out p;—p,)-ps in ¢, andcg:

only two independent dot productp,;-p; and p,-ps3, SO
that

i=12,...,6,
(®)

and can be expanded as a Taylor seriespef{p,) - p3 and
(p1—p2) - p3, becausec;’s are analytic functions of these
two dot products.

In the process,(1320)— 7+ 77, the twox*’s, par-
ticles 1 and 2, are identical particlds*” should satisfy bo-
son symmetry. Imposing boson symmetry on &(.leads to

Ci=Ci((pP1tP2) P3, (P1—P2)-P3),

Ci((P1+P2) Pz, —(P1—P2)-P3)
=¢i((P1+P2)-P3. (P1=P2)-Pa), (9a)
fori=1,2,3,5, and
Ci((P1+P2)-P3, —(P1—P2)-P3)
=—Ci((P1FP2)-Ps, (P1—P2)-P3), (9b)

for i=4,6. We see that there are kinematic zerogjrand

def

[#Y=cq[pi'pat+ P1p5 ]+ Col PYPL+ P5P2]+c3Q*Q”
+C[(P1—P2) - P3(PYP1I—P5P2) 1+ Cs[Q¥(PI—P2)

+Q”(pY—p5) 1+ Cel(P1—P2) - P3(Q*p3+Q"p%)].
(10

€1,Cy,...,Cg are analytic functions of g;+p,)-ps and
[(pl—pz)-pg]z.. _ ' .

There are still kinematic zeros caused by parity conserva-
tion. This will be discussed in the next section.

. SYMMETRY OF SPACE REFLECTION

We denote the intrinsic parities @f,(1320), =+, ¥,
andw~ asw, 1,1, 1o, andns; their spins ard, J,, J,, and
J3, and the corresponding helicities atgh;, A,, andAs.
Write the initial state aslf),J,)\), the final state as
|51,J1,)\1;52,J2,7\2;53,J3,>\3). Herep is the parity opera-
tor.

Using the notation of Ref5], one obtains

pIp.IN)= 7" ™ =P, —\),

PIB1,J1.M1:P2,32,M2:P3,d3, N3y =y mpmae” "2 — 5, 3y — Ny =Py, d, — Ny — P, d3— Na).

Spin-1 polarization vectors are given by

Iol

w

E i 0
V—Vsm CoS ¢

©(PO)=| & ,

V—Vsm 6 sin ¢

E

V—V0050

0
Fcos# cosg+i sin ¢
Fcosé sing—icose |’
*sin ¢

(e*(p,*1))= 12

where

(P*)=(E.p),

(11)
|
p=(|p|sin & cos ¢,|p|sin & sin ¢,|p|cos ),
W=\p*p,. (13

We define the polarization tensor of arbitrary order recur-
rently by

def
e1#2 ki, )= > (Lhg;]—1lj,\)esi(p,hy)
Aq,A

172

Xe#l#z---ﬂjfl(p,j — 1,)\2). (14)
The space reflection matrix is defined as
(P*,)=diag{1,1,1,1, (15)

and one has

p#=P*p"=(E,~p),
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P=P*,p’'=(E;,— b)), As a consequence of the definition of E¢t2), we have

Gk = pmylpuzvzpﬂj yjeVle"'Vj_ (16)

i=1,2,3,

er1r2 k(P ), \) = @142 Hi(p,j, — ). (18
From Egs.(12) one can see that

Parity-conserving helicity amplitudes hold the following re-

e*(PN)=€*(p,—\). 17 lation:

|
(B, J.A[M|P1,31,01;P2,d2,82:P3,d3.A3)
=(P,J.\|p"™™P|P1,1.N1;P2,32,X2;P3,d3.\3)

= 0" pimynze TIN5 3 — NM| = B1,d1, — N1 —P2,d2, — N2; —P3,d3, — N3, (19
with
(B, JNM[B1,d1.N13P2.32.02;P3.3,. 3)=€*(p,J, )T (P,p1,P2.P3.9*",e A7) e(py,J1, N 1)e(P2,d2. 2)€(Ps,Jd3,\3).
(20

Some indices are abbreviated in the above expresEita tensor contracted from the productdf py, ps, ps, g*”, and
e*7%_ The requirement of parity conservation is equivalent to

e* (E‘]!_)\)F(Em!p_Z!p_f.%’gMV!SaB’y{s)e(Eli‘]la_)\l)e(HZ!‘]Zl_)\Z)e(p_3!‘)31_)\3)
=991 75 73 (—1)717%27%e* (p,J, ML (p,P1.,P2,P3.G*" e #7°)e(p1,J1. N 1)€(P2.d2 N 2)€(P3. 3 ha).  (2D)

The unitary conditionsp* »=1 and % ;=1 (i=1,2,3)

have been used.

We should setil=2, »=+1, J;=0, ,=—-1 (i=1,2,3)

That is, to preserve parity conservation in the decay
a,(1320)— 77w 7w, the antisymmetric tensore®f?°
should appear only an odd number of timediy. Apply-

[18]. The polarization tensors for final state particles becomdng this to Eq.(10) gives

e(p1,J1. M) =e(p2.Jz,N2)=e(ps3,Jdz,\3)=1. (22
Substituting these into E¢21), one finds
etw(pv‘]:)\)rﬁy(p!plipZvp3!gUT!8a'8yﬁ)

== etw(a‘]! - )\)FMV(EE !32 133 ,grrflsaﬁ"y&)’
(23

wherel'*” is symmetric and traceless. From E(E3), (23),
and

_ def
gLV: PMQPVﬂga'BEgMV,

def
e FrO=pa PPy PY PO g BV O =—gabro (24

one finds
er,(p,J. )T (p,py,p2,P3,977,8*F7%)
= _e:iv(pv‘]a)\)rﬂv(plplip21p3aglﬂ-a _saﬁ'yﬁ)

or

I'#"(p,p1,P2,P3,977,8%F79)
:_F#V(piplvp21p3igo'fi_Saﬁ}/(s)' (25)

F#'=c[Q*(py—pz) +Q"(PL—p5)]
+d(p1—p2)-Ps(Q*p3+Q"ps). (26)

The vertex function given in Eq.26) is free of kinematic
singularities and zeros.

IV. RESONANCE STRUCTURE AND BACKGROUND
TERMS

The predominant resonance decay mode of the process
a,(1320) 7w w ™ is ay(1320)—~7tpy, po—m W .
The result of a tensor analysis of this sequential two-body
decay[5] is

F{®9=c,e,,(p,20) D",

DH'=(DogQ"p;—D13Q*p3). (27)

Herec, is a Lorentz scalar, anD,5, D3 are Breit-Wigner
factors:

1
Djs= _ ,
2 (Pt pa)® = M2+il M,
1
Dq3= (28

(py+ p3)2—M§+inMp'
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M,, I', are the mass and the width pf. Note that the of F,, and the dependence of the background terms on en-
expression(25) satisfies the boson symmetry of particles 1ergies is weak. The background terms can be treated as con-
and 2. stants:
According to the results of Sec. lll, the general helicity
amplitude of the process,(1320) =+ 7w 7~ is
F(b): bl
A b,/
F)\:e,uv(piz)\)r'uv

c
=ce,(P.2V)[Q (P p3) + Q" (Pt —p5)] 7 (DigtDag)+by
vy AP FA=F{®9+F{= . (33
+de,,(p,.2\)(p1—P2) - P3(Q*p3+Q7p%). (29)

Cr
T D13Dost b,

This can be formally written as The helicity amplitude after consideration of thg reso-
nance reads

C
sz(d); (30

r

F)\: 4

(D13t Dgg)+by|e,,(p,2N)

i.e., the part proportional to and the part proportional td

in F, are regarded as two vectors orthogonal to each other. X[Q¥(p1—py) + Q¥ (py—p5) ]+
The helicity amplitude for the process(1320)— =" 7" 7~

satisfying parity conservation and boson symmetry is a vec-

tor in the two-dimensional space spanned by these two vec- X(P1—P2) - P3€.(P,2N) (Q¥pz+Q"p%), (39
tors. Now the resonance term becomes

E D13D o3t b,

wherec,, by, andb, can be dealt with as constants when

%(D13+ D,a) %(D13+ D29 fitting data.
F(FES — Cr Dl3_ D23 = Cr . (31)
A TS TS —ip..D V. CONCLUSIONS
4(p1=P)-Ps e |

We derive the general form of the decay amplitude for the
processa,(1320)— 7"+ 7w~ through the covariance and
F\ can be expanded as the sum of a term that is parallel teymmetry analysis of the four-leg vertex. The derived ampli-
F{") and another term perpendicular td it: tude is more general compared with the sequential two-body
decay amplitudes. It contains both the background terms and
the resonance term of the process.

1 1 Consider the example in this paper. The amplitude given
FA:C”< 4(Dll3+D23)) +c, |, 2D15D2s by two-body sequential decays properly describes the pro-
—3D13D23 3(D13+Dya) cess in thep, resonance region, but without background
L terms it might be unreasonable in the region not so close to
[ 7(D13t+ Doy resonance points. Background terms might contribute a non-
o —1DDys negligible portion to the amplitude. General three-body de-
cay amplitudes given in this paper are needed to include the
D3t Dog D13Do3 background contribution.
(¢=¢) — L5 A similar analysis can be applied to the case in which the
+ — DDy Dyat Dys particles of the initial and final states are of arbitrary spins,
(¢y—¢y) > +c, 7 but the problem may be much harder depending on symme-
try relations and the number of Lorentz indices involved.
=F{*+FP. (32

ACKNOWLEDGMENTS

Fg\b) stands fo.r bapkground terms. Ins;[he region ,CIOS@&O The authors have had fruitful discussions with Professor
resonance points in the phase spa¢é;” s the leading term Zhipeng Zheng and Professor Yucan Zhu of the Institute of
High Energy Physics. This work is partly supported by the
National Natural Science FoundatiNNSF of China, the
N order to be consistent on dimensions, we should subsgiute Grant LWTZ-1298 of the Chinese Academy of Sciences, the
by p;/m,, in Egs.(29)—(33). The constant factom_, could be ab- Doctoral Program Foundation of the State Education Com-
sorbed into the coefficients in the result of Eg4). mission, and a grant for the— ¢ Factory Feasibility Study.



5472 JIE-JIE ZHU AND TU-NAN RUAN 57

[1] P. R. Auvil, and J. J. Brehm, Phys. ReM5 1152(1966. [11] H. P. Stapp, Phys. Rel03 425 (1956.
[2] C. Zemach, Phys. Ret40, B97 (1965. [12] Chou Kuang-Chao, and M. I. Shirokov, J. Exp. Theor. Phys.
[3] C. Fronsdal, Nuovo Cimento Supf, 416 (1958. 34, 1230(1958.

[4] R. E. Behrends, and C. Fronsdal, Phys. RE6, 345(1957. [13] W. Rarita, and J. Schwinger, Phys. R€0Q, 61 (1941).
[5] S. U. Chung, Spin Formalisms, CERN Yellow Report No. [14] H. P. Stapp, Phys. Rew25 2139(1962.

CERN 71-8, 1971. [15] H. P. Stapp, Phys. Re60 1251(1967).
[6] S. U. Chung, Phys. Rev. B8, 1225(1993. [16] W. A. Bardeen, and Wu-Ki Tung, Phys. Re%73 1423
[7] S. U. Chung, BNL Report No. BNL-QGS94-21, 1994. (1968.

[8] M. Jacob, and G. C. Wick, Ann. Phy8\.Y.) 7, 404 (1959. [17] R. W. Brown, and I. J. Muzinich, Phys. Rev.4)1496(1971).
[9] S. M. Berman, and M. Jacob, Phys. R&39 B1023(1965. [18] Particle Data Group, L. Montanet al, Phys. Rev. 50, 1173
[10] G. C. Wick, Ann. Phys(N.Y.) 18, 65 (1962. (1994, p. S3.



