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In light of recent lattice results for the light quark massesms andmu1md , we reexamine the use of sum
rules in the extraction of these quantities, and discuss a number of potential problems with existing analyses.
The most important issue is that of the overall normalization of the hadronic spectral functions relevant to the
sum rule analyses. We explain why previous treatments, which fix this normalization by assuming complete
resonance dominance of the continuum threshold region, can potentially overestimate the resonance contribu-
tions to spectral integrals by factors as large as;5. We propose an alternate method of normalization based on
an understanding of the role of resonances in chiral perturbation theory which avoids this problem. The second
important uncertainty we consider relates to the physical content of the assumed locations0 of the onset of
duality with perturbative QCD. We find that the extracted quark masses depend very sensitively on this
parameter. We show that the assumption of duality imposes very severe constraints on the shape of the relevant
spectral function in the dual region and present rigorous lower bounds formu1md as a function ofs0 based on
a combination of these constraints and the requirement of positivity ofr5(s). In the extractions ofms , we find
that the conventional choice of the value ofs0 is not physical. For a more reasonable choice ofs0 , we are not
able to find a solution that is stable with respect to variations of the Borel transform parameter. This problem
can, unfortunately, be overcome only if the hadronic spectral function is determined up to significantly larger
values ofs than is currently possible. Finally, we also estimate the error associated with the convergence of
perturbative QCD expressions used in the sum rule analyses. Our conclusion is that, taking all of these issues
into account, the resulting sum rule estimates for bothmu1md andms could easily have uncertainties as large
as a factor of 2, which would make them compatible with the low estimates obtained from lattice QCD.
@S0556-2821~98!00209-4#
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I. INTRODUCTION

The recent lattice results for the light quark masses@1#
mu1md56.860.860.6 MeV and ms5100621610 MeV
in the quenched approximation and the even smaller va
mu1md55.460.660.6 MeV andms56861267 MeV, for
the nf52 flavor theory@all evaluated in the modified mini
mal subtraction (MS) scheme atm52 GeV#, appear to be
significantly smaller than results obtained from sum r
analyses. The most recent and complete sum rules ana
are ~i! that of Bijnens, Prades, and deRafael~BPR!, which
yields mu1md(m52 GeV)59.461.76 MeV @3#, and ~ii !
that of Chetyrkin, Pirjol, and Schilcher~CPS!, which gives
ms5143614 MeV @4#. We have translated the original va
uesmu1md51262.5 MeV andms5203620 MeV, quoted
at m51 GeV, tom52 GeV using the renormalization grou
running and the preferred valueLQCD

(3) 5300, 380 MeV used,
respectively, in the two calculations.„The analysis by CPS is
an update of that by Jamin and Mu¨nz ~JM! @5#; however,

*Email address: tanmoy@qcd.lanl.gov
†Email address: rajan@qcd.lanl.gov
‡Email address: fs300175@sol.yorku.ca
570556-2821/98/57~9!/5455~13!/$15.00
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since the approach and techniques are the same, we will
to their work jointly by the abbreviation JM-CPS.… The sum
rule results, thus, lie roughly~1–2!s above the quenched
results. The difference between the sum rule and thenf52
lattice estimates, however, is large and, we feel, signific
enough to warrant scrutiny. Both the lattice and sum ru
approaches have their share of systematic errors. A re
review of the lattice results is given in@2#. Here we present a
reevaluation of the sum rules analyses.

The issues in the sum rule analyses that we shall con
trate on are the convergence of perturbative QCD~PQCD!
expressions, the choice ofs0—the scale beyond which
quark-hadron duality is assumed to be valid—and the n
malization of resonance contributions in theAnsatzfor the
hadronic spectral function fors<s0 .

The first issue is important because bothas andas
2 cor-

rections to the two-point correlation functions used in su
rule analyses are large. This issue has been analyzed in d
by CPS for the extraction ofms ; therefore, we shall only
comment on it briefly for the case ofmu1md .

The second point is important because, as we will sh
below, it turns out that the extraction of the quark masses
particular that ofmu1md , is very sensitive to the choice o
s0 . This is illustrated by deriving lower bounds onmu1md
5455 © 1998 The American Physical Society
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5456 57TANMOY BHATTACHARYA, RAJAN GUPTA, AND KIM MALTMAN
associated with the positivity ofr5(t) and by investigating
trial spectral functions. Ideally, one would like to picks0

large enough so that PQCD, to the order considered, ca
shown to be reliable. Unfortunately, for largers0 , the had-
ronic spectral function receives contributions from an
creasing number of intermediate states and, hence, bec
increasingly hard to model. We discuss the uncertainties
troduced by a compromise choice ofs0 . In the extraction of
ms by JM-CPS, we argue that an artificially large value ofs0
has been used. For a more reasonable value ofs0 , we are not
able to find an estimate forms that is stable under variation
of the Borel transform scaleu.

The third issue arises because the continuum part of
hadronic spectral function is typically represented as a s
of-resonances modulation of a continuum form, the ove
normalization of which is fixed by assuming complete re
nance dominance of the spectral function near continu
threshold. This turns out to be potentially the most import
issue. We in fact show in the case of the vector two-po
function, for which experimental information on the spect
function is available in the resonance region, that an an
gous extrapolation from threshold to ther meson peak would
lead to an overestimate of the spectral function in the re
nance region by a factor of;5. We then explain the origin
of this problem from the point of view of the existing ph
nomenological understanding of how resonance contr
tions enter the expressions for low-energy observables
computed in chiral perturbation theory~xPT!. Based on this
understanding, we propose an alternate method for norm
izing the spectral function in the resonance region wh
requires as input only the expression obtained fromxPT to
one-loop order, in the near-threshold region. We then e
ploy this method in a reanalysis of the only sum rule tre
ment for which the relevantxPT expression is known
namely, that of the correlator of the product of two dive
gences of the strangeness-changing vector current~as used
by JM-CPS to obtain the estimate quoted above forms! and
show that the traditional method of normalization leads t
significant overestimate ofms .

We find that the size of the corrections suggested by
consideration of the above issues can easily lower the
rule estimates for bothmu1md andms by a factor at least as
large as 2. In particular, using the corrected normalization
the hadronic spectral function in the JM-CPS analysis al
would lower the extracted value ofms by almost exactly a
factor of 2. Such a change would make the lattice and s
rule estimates consistent. Lowering both estimates
roughly the same factor would, moreover, preserve ag
ment of the ratio,r 52ms /(mu1md), with that predicted by
xPT.

The paper is organized as follows. In order to make
self-sufficient and to introduce the notation, we reprodu
the necessary details from Refs.@3# and @5# in Secs. II and
VII. The convergence of PQCD is discussed in Sec. III.
Sec. IV we derive lower bounds onmu1md , as a function of
s0 , using the positivity of the relevant spectral functionr5 .
In Sec. V we illustrate the potential sensitivity of the e
tracted value ofmu1md to the choice ofs0 by considering a
number of plausible trial spectral functions. The importa
issue of the overall normalization of the hadronic spec
function is investigated in Sec. VI using the vector curre
be
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case as an illustrative example. Based on the lessons lea
from the vector channel, a reanalysis of the JM-CPS estim
of ms is presented in Sec. VII. Finally, we end with som
conclusions in Sec. VIII.

II. FINITE ENERGY SUM RULES

The standard starting point for the extraction of the lig
quark mass combinationmu1md is the Ward identity relat-
ing the divergence of the axial vector current to the pseu
scalar density,

]mAm
~6 !~x!5~md1mu!q̄~x!ig5

l16 il2

2
q~x!, ~1!

whereq̄[(ū,d̄,s̄) and the projections6[(l16 il2)/2 pick
out states with the quantum numbers of thep6. This relation
implies, for the two-point function of the product of two suc
divergences, that

C5~q2![ i E d4x eiq•x^0uT$]mAm
~2 !~x!,]nAn

~1 !~0!%u0&,

5~md1mu!2i E d4x eiq•x

3^0uT$P~2 !~x!,P~1 !~0!%u0&. ~2!

The idea of the standard analysis@3,6,7,8# is then to consider
the finite energy sum rules~FESR’s! generated by integrat
ing products of the formtnC5(t) over the contour shown in
Fig. 1. Forn negative the result involvesC5 or its deriva-
tives at t50, while for n greater than or equal to zero, th
result is zero. For sufficiently large radiis of the circular
portion of the contour, the pseudoscalar two-point functi
and hence also its line integral over the circle, can be ev
ated using perturbative QCD. Taking the resulting expr
sions to the right-hand sides~RHS’s!, one obtains FESR’s
for the moments of the spectral functionr5(t)
[(1/p)Im C5(t), on the interval (0,s), for example@3#,

FIG. 1. The contour integral for the FESR’s of the text. T
‘‘hadronic’’ integral from 0 tos, which includes contributions from
the poles and cuts, is obtained using a model for the continu
portion of the spectral function, while the integral over the circle
sufficiently larges (s.s0) is done using the three-loop perturbativ
result.



-
re
n

io

n
te

e
m
o

ac

a
ve
ou
e
te

a

oo
t

th

e

s

rall
e

ith

c-

fig-
h

ase
ality

, in
iate

of
but

e
ec-
l

57 5457EXTRACTION OF LIGHT QUARK MASSES FROM SUM . . .
E
0

s

dt r5~ t !5
Nc

8p2 @mu~s!1md~s!#2
s2

2

3H 11R1~s!12
C4^O4&

s2 J ; ~3!

E
0

s

dt tr5~ t !5
Nc

8p2 @mu~s!1md~s!#2
s3

3

3H 11R2~s!2
3

2

C6^O6&
s3 J , ~4!

where m(s) is the running mass evaluated at the scales,
R1(s) and R2(s) contain the~higher order inas! perturba-
tive corrections, andC4^O4& andC6^O6& represent the lead
ing nonperturbative corrections, of dimensions 4 and 6,
spectively @9#. They are dominated by the gluo
condensate, C4^O4&.(p/Nc)^asG

2&, and the four-quark
condensate, which, in the vacuum saturation approximat
is given by C6^O6&.(1792/27Nc)p

3as^q̄q&2. Since the
contribution of the condensates is negligible and we have
new information to add, we simply accept the values quo
by BPR and JM-CPS in the remainder of this paper.

To extract mu(s)1md(s), one then needs to input th
scales5s0 , at which one assumes PQCD to have beco
valid and, second, experimental and/or model information
the hadronic spectral function~and hence its moments! be-
low s0 . Having done so, one may then use either Eq.~3! or
~4! to extractmu(s)1md(s) and, from that, theMS combi-
nation of the masses at any desired scalem using the renor-
malization group running. Most sum rule analyses extr
their estimates atAs>1.7 GeV and then run down tom
51 GeV. We believe that it is unnecessary to introduce
extra uncertainty in the estimates by relying on PQCD o
this interval where the running is large. For this reason
final comparisons are atm52 GeV. However, to preserv
continuity with existing sum rule analyses, masses quo
without any argument will always refer to theMS values at 1
GeV.

The most up-to-date version of the above analysis w
performed by BPR@3#, whose treatment we will follow
closely below. In this analysis, BPR have used the three-l
PQCD result of Refs.@10,11# for the pseudoscalar two-poin
function, employing three active quark flavors withLMS

(3)

53006150 MeV @12# and the values

C4^O4&5~0.0860.04! GeV4, ~5!

C6^O6&5~0.0460.03! GeV6 ~6!

for the nonperturbative, condensate contributions. For
hadronic spectral function on the interval (0,s), they include
the pion pole, whose residue is known exactly in terms off p

andmp , and a 3p continuum contribution modulated by th
p8 andp9 resonances. The BPRAnsatzis

rhadronic~s!5rpole1F~s!rxPT
3p Q~s29mp

2 !, ~7!
-

n,

o
d

e
n

t

n
r
r

d

s

p

e

where the ‘‘3p continuum spectral function’’rxPT
3p (t) is ob-

tained from the leading-order, tree-levelxPT result for
^0u]mAmu3p& and F is a modulating factor which account
for the presence of thep8 andp9 resonances. The form ofF
is taken to be a superposition of Breit-Wigner terms:

F~s!5A
u( ij i /@s2Mi

21 iM iG i #u2

u( ij i /@9mp
2 2Mi

21 iM iG i #u2 , ~8!

with j151.
There remain three unknowns at this point, the ove

normalization parameterA, the relative strength and phas
j2 of the two resonances, and the value ofs0 . BPR find
that, if they assumes0;2 – 3 GeV2, duality can be satisfied
for a number of values of@A,j2#. Their best solution uses
the normalizationA51 at threshold and then fixesj2 by
demanding duality between the hadronic ratio

Rhad~s![
3

2s

*0
sdt tr5~ t !

*0
sdt r5~ t !

~9!

and its PQCD counterpart

RQCD~s![

11R2~s!2
3

2

C6^O6&
s3

11R1~s!12
C4^O4&

s2

~10!

over the interval between the two resonances, i.e., 2.2<s
<3.2 GeV2. We have reproduced the results of BPR w
their choice of resonance parameters~which differ slightly
from those listed in their published version@13#! based on
the 1994 Particle Data Group~PDG! book @12#:

M151300 MeV, G15325 MeV,

M251770 MeV, G25310 MeV. ~11!

Their preferred solution~solution 2! is shown in Fig. 2. For
s.s053 GeV2, we also plot the perturbative spectral fun
tion ~duality constraint! for mu1md512 MeV, their ex-
tracted value of the quark mass. As is evident from the
ure, the rise due to thep9(1800) is roughly consistent, bot
in magnitude and slope, with the perturbativeAnsatz. This is
a consequence of tuning the normalization and relative ph
of the second resonance, and leads to approximate du
over the range 2.2 GeV2,s,3.5 GeV2. However, the falloff
of the spectral function on the far side of thep9(1800) reso-
nance, in contrast to the rising PQCD solution, shows that
order to preserve duality, further resonances and intermed
states are required to bolster the BPRAnsatzbeyond the
p9(1800) peak.

Note that, in the BPR analysis, the threshold behavior
the spectral function is not determined experimentally,
rather obtained from leading-orderxPT. To the extent that
SU~2!3SU~2! xPT converges well at leading order, th
choiceA51 then ensures correct normalization of the sp
tral function near the 3p threshold. However, in the spectra



t
n
o-

i
co
y

ts
io
re
n-
he
o
th

r-
i

a

ee
s
ve

th
a

at
ili

CD
ult
,
pre-
the

der
ute
el

be

on
ful
the
t by

CD
1

d a

er

se

con-
e

,

-
as a

on-
f

u
r-
h

tu

5458 57TANMOY BHATTACHARYA, RAJAN GUPTA, AND KIM MALTMAN
integral appearing in Eq.~3!, which determines the ligh
quark mass, the contribution of the near-threshold regio
negligible compared to that from the vicinity of the res
nance peaks. Correctly normalizing the spectral function
the resonance region is thus much more important than
rectly normalizing it near threshold. We will show later, b
considering an analogous example~the correlator of two vec-
tor currents!, that the conventional threshold constraintA51
almost certainly leads to a significantoverestimateof the
spectral function in the resonance region.

To summarize, we will investigate the following aspec
of the BPR solution: the uncertainty in the mass extract
produced by uncertainties in the three-loop PQCD exp
sion, the reliability of the overall normalization of the co
tinuum contribution, and the sensitivity of the results to t
value chosen fors0 , the scale characterizing the onset
duality with PQCD. The same issues are also relevant to
extraction ofms using the Ward identity for the vector cu
rent. Our contention is that plausible systematic errors
each are such as to lower the estimates for light qu
masses.

III. CONVERGENCE OF TWO-POINT FUNCTIONS
IN PQCD

The pseudoscalar two-point function is known to thr
loops in PQCD@10,11#. The main issue, in applying thi
expression to the problem at hand, is the question of con
gence. If, for example, we write 11Ri , with Ri as defined in
Eqs.~3! and~4!, in the form 11xas /p1y(as /p)2, then the
coefficientsx,y show a geometrical growth; i.e., the grow
for R1 andR2 is roughly the same and the average values
x'6.5 and y'46. As a result, theO(as ,as

2) correction
terms are 0.61 and 0.41, respectively, ats53 GeV2 where
as /p'0.1. Since these are large, it is important to estim
the sum of the perturbation series. One plausible possib

FIG. 2. The hadronic spectral function assuming that the d
region begins at thep9 resonance. The location, widths, and no
malization are the same as in the solution found by BPR. T
dashed line is the continuation of the BPR solution fors.s0 . For
s.s0 we also show the spectral function required to satisfy per
bative duality formu1md512 MeV. The twoAnsätze are joined
smoothly by choosings053.0 GeV2. Heres0 is in GeV2 andr5 in
GeV4.
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is to represent the series by the Pade´ 1/(120.63), in which
case the neglected terms would further increase the PQ
estimate by;35% and consequently lower the BPR res
for mu1md by A1.35, i.e., from 12 to 10.4 MeV. In fact
historically sum rule estimates have decreased over time
cisely because of the increase in the PQCD result. Part of
change has been due to the increase in the value ofLQCD

(3) and
part due to the large positive three-loop contribution@3#. If
this trend were to continue and the unknown higher-or
terms were to continue to grow geometrically and contrib
with the same sign~as is the case for the scalar chann
discussed below!, then the extracted quark mass would
significantly lowered.

The situation in the case of the scalar two-point functi
analyzed by JM-CPS is somewhat better. A very care
analysis of the stability of the PQCD expressions and of
choice of the expansion parameter has been carried ou
CPS@4# who include terms up toas

3 in the two-point func-
tion and in the running of the coupling and mass. The PQ
result, after Borel transformation, has the expansion
14.8as /p122(as /p)2153(as /p)3 @5#. Taking as /p
'0.1, as appropriate foru54 GeV2 with LQCD

(3) 5380 MeV,
we find that the difference between the PQCD series an
possible Pade´ representation 1/(120.48) is only about 9%.
This correction would lower the estimate ofms by ;5%,
consistent with the estimate by JM@5#.

IV. CONSTRAINTS ON mu1md FROM THE POSITIVITY
OF r5„s…

The fact that the spectral functionr5(s) is positive defi-
nite above threshold allows us to place rigorous low
bounds onmu1md as a function ofs0 @14#. A weak version
of this bound~labeled ‘‘pole’’! is obtained by ignoring all
parts of the spectral function except for the pion pole, who
contribution to the integral in Eq.~3! is 2 f p

2 mp
4 @Eq. ~4!

produces a much less stringent bound and hence is not
sidered further#. One then finds, assuming the validity of th
input three-loop PQCD result,

@mu~s!1md~s!#2>
2 f p

2 mp
4

Nc

8p2

s2

2 H 11R1~s!12
C4^O4&

s2 J ,

~12!

wheres is the upper limit of integration in Eq.~3!. A stron-
ger constraint~labeled ‘‘ratio’’! is obtained by noting that
for r5(t)>0,

*sth

s dttr5~ t !

*sth

s dtr5~ t !
<s, ~13!

wheresth denotes the 3p threshold value. The bound is satu
rated when the entire spectral strength is concentrated
delta function ats. If s in Eq. ~13! is assumed to be in the
dual region, this turns out to place considerably stronger c
straints onmu(s)1md(s). To see this, note that the LHS o
the inequality in Eq.~13! is, using Eqs.~3! and ~4!,

al

e

r-



Nc

8p2 @mu~s!1md~s!#2
s3

3 H 11R2~s!2
3

2

C6^O6&
s3 J 22 f p

2 mp
6

2 . ~14!
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Nc

8p2 @mu~s!1md~s!#2
s

2 H 11R1~s!12
C4^O4&

s2 J 22 f p
2 mp
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From expression~14! we see that, if we start with a larg
value of mu(s)1md(s) and begin to lower it, keepings
fixed, the inequality~13! will be violated before we reach th
value ofmu(s)1md(s) corresponding to the pion pole sat
ration of the spectral function at which point the denomina
in Eq. ~14! vanishes. Thus the inequality~13! provides a
more stringent~larger! lower bound on the extracted qua
mass. This is illustrated in Fig. 3 where the dependence
(mu1md)min on s for both of the above constraints is show

The ‘‘ratio’’ curve shows that if one assumess0
.2.5 GeV2, as in the BPR analysis, thenmu1md
>10 MeV. The fact that the BPR result for the mass extr
tion, mu1md.12 MeV, is close to this lower bound is
reflection of the fact that the spectral strength is concentra
in the region close to the assumed onset of duality. Suc
feature is, in fact, rather natural sinces0 is chosen to coin-
cide with thep9(1800) peak. However, ifs0 is considerably
larger than 3 GeV2 @to alleviate the problem of large
O(as ,as

2) corrections toRi at s;3 GeV2 discussed above#,
then considerably smaller masses are allowed by the ‘‘rat
constraint, as is evident from the figure. Furthermore, o
would, in fact, expect masses not much greater than the
tio’’ bound to be favored in all cases where spectral fun
tions are characterized by resonance modulation of a ri
continuum phase space background and have their spe
strength concentrated in the region nears0 .

These bounds make it clear that the value of the qu
mass extracted from FESR’s will tend to be very stron
correlated with assumptions about the appropriate value
s0 . In addition, it will, of course, depend on the details of t
hadronic spectral function from the 3p threshold up tos0 ,
which are, at present, not experimentally determined. Si

FIG. 3. The lower bounds onmu1md as a function ofs. These
are obtained by saturating the spectral function with the pion p
contribution and from the ‘‘ratio’’ method described in the tex
Heres is in GeV2 andmu1md in GeV.
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the perturbativer5(t) is known up to the overall normaliza
tion, which is given by the quark mass, one test of the va
ity of the phenomenologicalAnsatzfor the hadronic spectra
function would be to show that the results for the quark m
remained stable under variations of the upper limit of in
grations in Eqs.~3! and~4!. This test, however, is meaning
ful only if one already knows that the values ofs being
employed are greater thans0 . Unfortunately, the lack of ex-
perimental information on the hadronicr5(s) precludes the
possibility of making such a test. In the next section w
construct plausible spectral functions, all satisfying dual
corresponding to a range of possible values fors0 lying be-
tween 3 and 10 GeV2, by including higher resonances in th
3p channel. These models illustrate how, in the absence
experimental information, the uncertainty inmu1md might
be as large as a factor of 2 if considerably higher values os0
are chosen.

V. PLAUSIBLE SPECTRAL FUNCTIONS r5„s…
IN THE DUAL REGION

The assumption of duality places constraints on the fo
of the spectral functionr5(s). Below s5s0 , these con-
straints amount only to the determination of certain mome
of the spectral function on the interval (sth ,s0) and, hence,
are not particularly strong. In fact, as we illustrate below, t
constraints of Eqs.~3! and~4! allow considerable freedom in
the choice ofr5(s) for s,s0 . Fors.s0 , in contrast, duality
determines the ‘‘average’’r5(s), i.e., averaged over som
suitable region ofs. This average value is given by the pe
turbativer5(s), which can be obtained straightforwardly b
differentiating the RHS of either Eq.~3! or ~4!. We evaluate
these derivatives numerically using either of the two form
which of course give consistent results. Even if one elim
nates the running masses by matching the ratios of Eqs~9!
and~10! for s.s0 , it is easy to show that the resulting equ
tion completely determines the perturbativer5(s), up to an
overall multiplicative factor, for alls.s0 . The result of the
duality constraints, in either form, is thatr5(s) must be a
monotonically increasing function ofs, for s in the duality
region. Numerically we find that this function is approx
mately linear as illustrated in Fig. 2.

The hadronic spectral function in this channel is n
known experimentally. It receives contributions not on
from the pion and its resonances, but also from the reson
and nonresonant portions of the 3p,5p,7p,
KK̄p, . . . ,NN̄, . . . intermediate states. Experimentall
only the p8(1300) andp9(1800) have been observed a
distinct resonances@15#. Even so, their decay constants a
not known experimentally, and hence the normalization
their contributions to the spectral function have to be trea
as free parameters. The number of multiparticle intermed

le
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states one has to consider, moreover, grows withs0 , as does
the problem of separating their resonant and nonreso
portions. From dimensional arguments, the contribution
these various intermediate states will grow linearly at su
ciently larges. In the region of resonances, the resonan
will modulate the cut contribution and the hadronic spec
function is expected to match the PQCD behavior only a
an average over some interval ofs. This averaging is crucia
if the resonances are narrow and isolated. Alternately, if
widths of subsequent resonances, for example,p- andp99,
become much greater than the resonance separation, the
overlap of resonances can provide the monotonically ris
behavior required by duality and averaging is not crucial

We illustrate these points by constructingAnsätze for the
hadronic spectral function which are of the form used
BPR, i.e., involving resonance modulation of the continu
3p background. To explore values ofs0 as large as 10 GeV2

with the Ansatzabove, we include pseudoscalar resonan
with masses as large as;A10 GeV. For the first two such
resonances, thep8(1300) andp9(1800), we use the 1996
Particle Data Group values for the masses and widths.
the remaining two resonances, thep- andp99, expected in
this range, we are guided by model predictions. Thep-
resonance is typically expected to lie around 2400 MeV
models constrained by the lower part of the meson spect
@16#. In addition, the3P0 model@17#, which has proved to be
reasonably successful in estimating decay widths@18#, pre-
dicts a width for thep-(2400) between 700 and 1900 Me
@16,19# depending on how the relativistic effects are treat
The approach leading to 700 MeV gives 300 MeV for t
width of thep9(1800), which is larger than the experiment
value of 212~37! MeV. We therefore assume the lower lim
700 MeV for the width in this study, even though this m
be an overestimate. Similarly, we assume thatp99 lies at
3150 MeV with a width of 900 MeV. In short, we choose

M151300 MeV, G15325 MeV,

M251800 MeV, G25212 MeV,

M352400 MeV, G35700 MeV,

M453150 MeV, G45900 MeV. ~15!

The decay constants of all of these resonances are unkn
and will therefore be treated as free parameters. The lim
tions of such a truncated spectral function are obvious; h
ever, it should be noted that, because we have allowed
selves some phenomenological freedom in treating
strengths and widths of the last two resonances, ourAnsätze
for the spectral function can also be thought of as provid
an approximate means of representing a combination of r
nant and nonresonant effects. Our aim is, in any case
simply demonstrate how the piling up of resonances can g
the PQCD behavior, and the nature of plausible spec
functions for which the ‘‘extracted’’ quark mass is, as for t
BPR case, rather close to the value given by the ‘‘rati
bound.

For the resonance-modulated spectral function we ad
following BPR, theAnsatz
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r5~s!5F~s!rxPT
3p ~s!, ~16!

whererxPT
3p (s) is the spectral function corresponding to th

leading-order, tree-levelxPT result for^0u]mAmu3p&, and

F~s!5A
( iciM iG i /@~s2Mi

2!21Mi
2G i

2#

( iciM iG i /@~sth2Mi
2!21Mi

2G i
2#

. ~17!

The sum in Eq.~17! runs over the appropriate number
resonances, depending ons0 as described below, with rela
tive strengthsci . The parameterA is the overall normaliza-
tion of the resonance contribution to the continuum part
the spectral function at the 3p threshold. We have taken th
ci to be real, in order to simplify the task of searching f
suitable spectral functions, whereas BPR, who use a slig
different form for F, as given in Eq.~8!, with just the first
two resonances, allow the relative strength of the two re
nances to be complex.

We display a series of spectral functions in Fig. 4,
satisfying duality and constructed by employing up to fo
resonances in theAnsatzabove. The values forA, $ci%, s0 ,
andmu1md used in the construction are given in Table I. A
one can see from the figure, there exist perfectly plaus
spectral functions corresponding tomu1md512, 9, 8, and 6

FIG. 4. Four examples of the hadronic spectral function, ass
ing different resonance structure and point of matching to the p
turbative solution. Units are as in Fig. 2. The locations and wid
of the resonances used are given in the text. The normalizatioA
and the relative strengthsci for the four cases are given in Table
along with the values ofs0 andmu1md used to derive the pertur
bative solution.

TABLE I. The parameters used to generate the spectral fu
tions shown in Fig. 4. The normalization at thresholdA and the
relative weightsci assigned to the resonances are defined in
~17!.

sd

(GeV2)
mu1md

~MeV! c1 c2 c3 c4 A

Case 1 3.0 12.0 1 20.2310.65i 1.0
Case 2 5.7 9.0 1 1.0 2.3 1.0
Case 3 8.0 8.0 1 1.2 5.0 6.5 0.
Case 4 10.0 6.0 1 0.8 2.0 3.68 0.
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MeV. The first case~s053 GeV2, mu1md512 MeV! is the
BPR solution discussed before. The second case~s0

55.7 GeV2, mu1md59 MeV! corresponds to including
three resonances and matching to the duality solution at
top of the third resonance. The assumption here is that
third and higher resonances merge to produce the dual s
tion above this point. The matching in the third case~s0
58 GeV2, mu1md58 MeV! is at the beginning of the rise
of the fourth resonance, while in the fourth case~s0
510 GeV2, mu1md56 MeV! we match at the top of the
fourth resonance. In cases where we match at the peak
resonance, the dual region actually appears to begin so
what below the input value ofs0 . This is because the slop
of the rising side of the last resonance tends to match
sonably well the slope of the PQCD version ofr5(s).

These spectral functions are, by construction, perfe
dual for s.s0 . Duality also requires the low-energy (s
,s0) part of r5(s) to have the correct moments to satis
Eqs.~3! and~4!. However, the constraint of duality does n
lead to a unique solution. Experimental data~decay con-
stants! are needed to fix the overall normalizationA and the
relative weightsci . We illustrate this point in Fig. 5 by
constructing three spectral functions that differ fors,s0 . In
all three cases,s0 and the inputmu1md in the PQCD ex-
pression are fixed to be the same, while the values of par
etersA andci are as defined in Table II. The correspondi
output values formu1md are shown in Fig. 6. As expected
they converge to the input value in the dual region.

There are three features of theseAnsätze that should be
noted. First, the value ofmu1md decreases withs0 in a
manner very similar to the ‘‘ratio’’ bound. This is because
each case the spectral function is stacked up towardss0 .
Second, we find that, to produce spectral functions co
sponding to values ofmu1md only a few MeV above the
‘‘ratio’’ bound, the threshold normalization parameterA has
to be decreased with increasings0 . In the next section we

FIG. 5. The hadronic spectral function assuming four re
nances with the quantum numbers of the pion. Units are as in Fi
The locations and widths of the resonances are given in the
The normalizationA and relative strengthsci for the three cases ar
given in Table II. These have been adjusted to make the hadr
form join smoothly to the dualityAnsatzat s0510 GeV2. The solid
line corresponds to case 1, the dotted line to case 2, and the da
line to case 3.
he
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will show that values ofA significantly smaller than 1 are, in
fact, to be expected, based on a consideration of the an
gous vector current correlator, for which the normalization
the resonance region is known experimentally. Third, theci
are large. It is not clear,a priori, if this should be considered
unreasonable or not. For example, in the narrow width
proximation theci would scale as;( f i

2Mi
4)/( f p

2 Mp
4 ) and

thus have an explicit dependence onMi
4. @The BPR model

spectral functions, being even larger than ours, of cou
correspond to even largerp8(1300) andp9(1800) decay
constants.# Moreover, by leaving the normalizations as fre
parameters, we are potentially incorporating other nonre
nant background effects. Ultimately, this issue can only
resolved by appeal to experimental data which, unfor
nately, is not available at present.

The bottom line of the above discussion is that since b
the correct value for the location of the onset of duality w
PQCD and the correct form of the hadronic spectral funct
are at present unknown, the value ofmu1md extracted using
FESR’s can easily vary by a factor of 2. As we have poin
out, usings0;3 GeV2 leads to a perturbation series in whic
theas andas

2 terms are large. As soon as one allows sign
cantly larger values ofs0 , in order to alleviate this problem
however, considerably smaller values of the extracted qu
mass are possible. We will now, furthermore, argue that
conventional method of normalizing the continuum part
the spectral function tends to produce significant overe
mates of the resonance contributions and, hence, also sig
cant overestimates of the extracted quark masses.

-
2.
xt.

ic

hed

TABLE II. The parameters used generate the plots shown
Fig. 5. The values ofs0 and mu1md have been fixed tos0

510 GeV2 andmu1md56 MeV, respectively, in each of the thre
cases.

c1 c2 c3 c4 A

Case 1 1 0.8 2.0 3.680 0.5
Case 2 1 0.6 2.0 5.160 0.4
Case 3 1 1.0 4.0 11.75 0.3

FIG. 6. The output values ofmu1md ~run tom51 GeV! for the
three cases of the spectral function shown in Fig. 5. Heres is in
GeV2 andmu1md in GeV.
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VI. NORMALIZATION
OF THE RESONANCE-MODULATED

SPECTRAL FUNCTION

The assumption that a given spectral function may
written as a Breit-Wigner resonance modulation of a c
tinuum phase space factor, as exemplified in Eqs.~7! and~8!,
is valid in the vicinity of a narrow resonance. We will a
sume that thisAnsatz, used by both BPR and JM-CPS~see
Sec. VII! in the pseudoscalar and scalar channels, res
tively, is a good approximation. This fixes the general fo
of the spectral function, but, of course, does not fix the m
nitude in the resonance region, since the relevant pse
scalar and scalar decay constants~with the exception off p!
are not known experimentally. Both BPR and JM-CPS d
with this problem by assuming that resonance dominanc
the relevant spectral function continues to hold all the w
down to continuum threshold. Thus, for example, the ove
scale of the BPR and JM-CPSAnsätze for the continuum
part of the spectral function is obtained by choosingA51,
i.e., by assuming that the tails of the resonances reprod
the full threshold spectral function. BPR, in the absence
experimental data, use the tree-levelxPT expression for the
spectral function in the threshold region. The JM-CPS tre
ment differs only in that they normalize the sum-o
resonancesAnsatzat the Kp threshold using experimenta
data ~the scalar form factor at threshold is computed us
the Omnes representation with experimentalKp phase shifts
as input!.

The second key point in the JM-CPSAnsatzfor the spec-
tral function is the assumption that one can take the ‘‘st
dard’’ s-wave s-dependent widths for the resonance con
butions. This assumes that the effective coupling of
strange scalar resonances toKp is momentum independen
over the whole kinematic range relevant to the spectral in
gral. We will now show that the combination of this assum
tion and of resonance saturation threshold can fail badly
studying its exact analogue in the isovector vector chan
In fact, in the vector channel, the analogous set of assu
tions produces a significant overestimate of the spec
strength in the region of the resonance peak.

Consider, therefore, the vector correlator

P33
mn~q2![~qmqn2q2gmn!P33~q2!

5 i E d4x eiq•x^0uT$V3
m~x!V3

n~0!%u0&, ~18!

where V3
m is the I 51 vector current. In the narrow width

approximation, ther contributions to the spectral function o
P33 andr33, at ther peak, is known in terms of ther decay
constantFr5154 MeV,

@r33~mr
2!#r5

Fr
2

pGrmr
50.0654. ~19!

Let us now apply the analogue of the BPR and JM-C
Ansätze to the vector channel, by assuming the~trial! spec-
tral function to be given by
e
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r33
trial~s!5F 1

48p2 S 12
4mp

2

s D 3/2

u~s24mp
2 !GF cr

BW~s!

cr
BW~4mp

2 !G ,
~20!

where the quantity in the first set of square brackets is
leading-orderxPT expression for the spectral function@20#
and

cr
BW~s!5

smrGr /@mr
224mp

2 #3/2

@~mr
22s!21Gr~s!2mr

2#
, ~21!

which follows from employing thep-wave s-dependent
width

Gr~s!5
mrGr

~mr
224mp

2 !3/2 F12
4mp

2

s G3/2

s. ~22!

We have chosen this form of the width in analogy to t
‘‘standard’’ s-waves-dependent width of JM-CPS. ThisAn-
satzassumes that the effective coupling of ther to pp has
the minimal formgrpprm(p1]mp22p2]p1) with grpp

independent of momentum over the relevant kinema
range. The threshold factor@124mp

2 /s#3/2 in the numerator
of Eq. ~22! has been separated out explicitly in writing E
~20!. TheAnsatz, Eq. ~20!, then implies

r33
trial~mr

2!5
1

192p2

~mr
224mp

2 !7/2

mr
3Gr

2mp
2 50.27, ~23!

a factor of 4.1 too large. Had we instead used the normal
tion given by the full next-to-leading-orderxPT expression
@20# ~which matches well to experimental data near thre
old!

r33
xPT~s!5

1

48p2 S 12
4mp

2

s D 3/2

u~s24mp
2 !

3F11
4L9

r ~m!s

f p
2 1¯G , ~24!

the peak height would be further increased by a factor
1.28, the correction being dominated, form;mr , by the
term in the square brackets in Eq.~24! involving theO(q4)
renormalized low-energy constant~LEC! L9

r ,

4L9
r ~mr!~4mp

2 !

f p
2 50.24, ~25!

where we have usedL9
r (mr)50.0069(2)@21# and 1¯ re-

fers to loop contributions whose form is not important
what follows. Note that, since it is the next-to-leading-ord
expression, Eq.~24!, which matches experimental data, it
this latter normalization which corresponds to the JM-C
treatment of the scalar channel. The analogue of the JM-C
Ansatz, in the case of the vector correlator, thus overe
mates the spectral function at ther peak by a factor of 5.1.

The source of this problem is not difficult to identify an
in fact, turns out to be that the crucial assumption that
spectral function can be taken to be completely resona
dominated, even near threshold, is incorrect. This is m
easily seen from the perspective ofxPT. Indeed, it is known
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that, when one eliminates resonance degrees of free
from a general, extended effective Lagrangian, producing
the process the usual effective chiral LagrangianLeff

xPT rel-
evant to the low-lying Goldstone boson degrees of freed
alone, the effect of the resonances present in the orig
theory is to produce contributions to the LEC’s appearing
Leff

xPT @22,23#. There are two important observations about
nature of these contributions which are of relevance to
present discussion. The first is that the resonances do
contribute to the lowest-order@O(q2)# LEC’s of Leff

xPT; in-
stead, the leading~in the chiral expansion! contributions are
to theO(q4) LEC’s Lk

r (m) ~wherem is the xPT renormal-
ization scale and we adhere throughout to the notation
Gasser and Leutwyler@24#!. The second is the phenomen
logical observation that, if one takesm;mr , the resonance
contributions essentially saturate theLk

r (m) @22,23# ~see, for
example, Table 2.1 of Ref.@21#, for a comparison with re-
cent experimental determinations of the LEC’s!. An imme-
diate consequence of the first observation is that the cor
normalization for the resonance contributions to quanti
like r33 or ^0u]mAmu3p&, near threshold, cannot be th
coming from the tree-level@O(q2)# xPT contributions, since
such contributions are associated with the Goldstone bo
degrees of freedom alone and contain no resonance co
butions whatsoever. Similarly, normalizing to the full thres
old value, as obtained, for example, from experiment, wo
also be incorrect, since this full value necessarily conta
both tree-level and leading nonanalytic contributions, neit
of which can be associated with the resonance degree
freedom, in addition to theO(q4) LEC contributions which
do contain resonance contributions. Fortunately, the sec
observation provides us with an obvious alternative for n
malizing resonance contributions near threshold. We p
pose, therefore, to accept the phenomenological observa
above as a general one and identify resonance effects in n
threshold observables with those contributions to the o
loop expressions for these observables involving the ap
priateO(q4) LEC’s $Lk

r %, evaluated at a scalem;mr . Such
an identification, however, requires that the LEC be do
nated by the appropriate resonance, as is the case fo
vector (L9) and scalar (L5) channels, but not for the pseu
doscalar channel. This prescription, like that of BPR a
JM-CPS, represents a means of using information so
from the near-threshold region~in this case, obtainable from
a knowledge of the chiral expansion of the spectral functi!
to normalize the spectral function in the resonance reg
However, we will show below that, in contrast to the an
logue of the BPR and JM-CPSAnsätze, which was in error
by a factor of;5 at ther peak, the new prescription nor
malizes the peak accurate to within a few percent. Based
the success of the prescription in this channel, we will th
apply it to a reanalysis of the JM-CPS extraction ofms in-
volving the correlator of the divergences of the vector c
rent.

Let us return, then, to the spectral functionr33. Accord-
ing to the discussion above, ther meson contributions to
r33, near threshold, can be obtained by taking just that te
in Eq. ~24! proportional to L9

r , evaluated at a scalem
;mr . The only change in the above analysis is then a
scaling ofr33

trial in Eq. ~23! by a factor of 0.24, the value o
m
in

m
al
n
e
e
ot

of

ct
s

on
tri-
-
d
s
r
of

d
-
-

ion
ar-
e-
o-

i-
the

d
ly

n.
-

on
n

-

m

-

the O(q4) LEC contribution in Eq.~24! at m5mr . This
leads to a prediction for the spectral function at ther peak of

r33
LEC~mr

2!50.067, ~26!

in good agreement with the experimental value given in E
~19!.

Let us stress that the precise numerical aspects of
prescription above, namely, the supposition that the norm
ization at resonance peak of resonance contributions to
hadronic spectral function can be obtained by evaluating
relevant O(q4) LEC contributions appearing in nea
thresholdxPT expressions,at a scalem;mr , is one that is
purely phenomenologically motivated@22,23#. While highly
successful in the case of the vector channel, it has not b
tested outside this channel. The fact that resonance cont
tions begin only atO(q4) in the chiral expansion and, henc
that resonances do not contribute to either lowest-order t
level or leading nonanalytic terms in thexPT expansions of
the relevant spectral functions, however, clearly indicat
independent of the numerical reliability of this prescriptio
the unsuitability of normalizing the resonance peaks by
sociating the fullxPT or experimental values near thresho
with resonance effects. Moreover, as long as the spec
functions of interest have even reasonably normal chiral
pansions, with the dominant contributions near thresh
coming from the lowest-order tree-level contributions, w
can conclude that the standard method of normalization
produce values for these spectral functions in the resona
region that are overestimated by a significant numerical f
tor.

At this stage we should also mention that Stern and c
laborators have suggested that the normalization at thres
could actually be much larger than that given by leadin
orderxPT, as is expected in ‘‘generalizedxPT’’ @25#. They
then argue that, in that case, the quark masses would be
larger. Our observations are also relevant in this case:
again stress that, since the sum rules we consider are d
nated by the resonance region, threshold normalization
only provide useful input if one can disentangle the con
butions to threshold amplitudes associated with resonan
from those associated with the Goldstone boson degree
freedom.

VII. REANALYSIS OF THE JM-CPS EXTRACTION OF ms

In this section we will employ the prescription propos
above to a reanalysis of the JM-CPS extractions ofms @4,5#.
Such a reanalysis is possible in this case because the
loop xPT expression for the relevant scalar form factor
known @26#. To introduce the notation, we briefly review th
analysis of Ref.@5# ~that of Refs.@4,27# is similar and need
not be discussed separately!. These analyses involve a sta
dard QCD sum rule treatment of the correlation function

C~q2!5 i E d4xeiq•x^0uT$]mVm~x!]nVn
†~0!%u0&

5~ms2mu!2i E d4xeiq•x^0uT$S~x!S†~0!%u0&,

~27!
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whereVm(x) is the strangeness-changing vector current
S(x) the corresponding strangeness-changing scalar cur
The correlator of scalar currents is evaluated using the
erator product expansion~OPE!. All terms on this side of the
sum rule are proportional to (ms2mu)2, and the full as

3

PQCD result is known for the predominant contributionC09
@4#. The hadronic spectral function in the phenomenologi
side is again taken to be a sum-of-resonances modulatio
the spectral function relevant to theKp intermediate state
near threshold.

JM-CPS write theKp contribution to the physical spec
tral function as

rKp~s!5
3

32p2s
u~s2s1!A~s2s1!~s2s2!ud~s!u2,

~28!

wheres65(mK6mp)2 andd(s) is the strangeness-changin
scalar form factor, measured inKl3 for ml

2<s<s2 ,

d~s![~mK
2 2mp

2 ! f 0~s!5~mK
2 2mp

2 ! f 1~s!1s f2~s!,
~29!

with f 6(s) the usual form factors defined by

^p0~p8!us̄gmuuK1~p!&5
1

&
@~p81p!uf 1~s!

1~p2p8!m f 2~s!#. ~30!

In their analysis, JM-CPS employ the following resonan
modulationAnsatzfor the spectral function:

rhadronic~s!5
3

32p2s
A~s2s1!~s2s2!ud~s1!u2F~s!,

~31!

where

F~s!5
(ncn

BW~s!

(ncn
BW~s1!

, ~32!

with

cn
BW~s!5

f n
2mn

5Gn

~mn2s!21mn
2Gn

2~s!
. ~33!

In Eqs. ~31!–~33!, s1 is the continuumKp threshold, and
f n , mn , andGn are the decay constant, mass, and width
the nth scalar resonance,Gn(s) being the usuals-dependent
width given in @5#. The s dependence of the width facto
occurring in the numerator of the Breit-Wigner resonan
forms has already been factored out explicitly in writing E
~31!. The sum in Eq.~32! is taken to run over two resonance
@the K0* (1430) andK0* (1950)#, and the duality points0 of
QCD sum rules~describing the point beyond which th
physical spectral function is to be modeled by its pertur
tive expression! is fixed by a stability analysis. Note that th
normalization procedure above assumes that the phy
spectral function is completely saturated by resonance c
tributions near threshold. The threshold value of the sc
form factor,d(s1)50.3360.02 GeV2, is obtained using the
d
nt.
p-

l
of

-

f

e
.

-

al
n-
ar

Omnes representation with experimentalKp phase shifts as
input. This result is, moreover, shown to be consistent w
that of xPT to one loop, which can be obtained from th
expression forf 0(s) given by Gasser and Leutwyler@26#
@d0

xPT(s1)50.35 GeV2#. Last, the master equation used f
extractingms is @5#

u3ĈOPE9 5E
0

s0
e2s/urhadronicds1E

s0

`

e2s/urPQCDds, ~34!

where both ĈOPE9 and rPQCD are proportional to (ms

2mu)2.
The first of the three issues raised by us, namely,

reliability of PQCD, has already been discussed in Sec.
We agree with JM-CPS that in this channel the effect of
neglectedas

4 and higher contributions could, at best, low
estimates ofms by ;5%. The remaining two issues, th
value of s0 and the normalization of the hadronic spect
function, are far more serious, as we now explain.

To elucidate the role ofs0 in the JM-CPS analysis we
plot, in Fig. 7, both the model JM hadronic spectral functi
~for s,s0! and the PQCD version of the spectral functio
~for s.s0!. We have used the JM values corresponding
the preferred solution, i.e., s056.0 GeV2, LQCD

(3)

5380 MeV, andms5189 MeV. The plot shows very clearly
that the Ansatz for rhadronic is, at best, valid only fors
<4.0 GeV2. Furthermore, as evident from Eqs.~31!–~33!,
rhadronicgoes to a constant at larges, whereasrPQCD grows
linearly ~with logarithmic corrections!. For this reason there
is a large discontinuity betweenrhadronicandrPQCD even for
s as low as 4 GeV2. The only way thatrhadronicconstructed
from theKp channel can satisfy duality is if there is a pilin
up of higher resonances, and these have to have large am
tudes~as we illustrated in Sec. V for the pseudoscalar ch
nel!. We contend thats0 should only be chosen in the rang

FIG. 7. Plots of the spectral functionsrPQCD and rhadronic used
by JM-CPS@5,4#. The scale of matching between the PQCD a
hadronic solution iss056.0 GeV2. To highlight the fact that the
rhadronic is dominated by the resonance contribution, we also sh
rKp , i.e., rhadronicwithout the Breit-Wigner modulation factor. Fo
convenience, we plotr3105/(ms2mu)2, and so the units along the
y axis are GeV2. The valuesms5189 MeV andmu55 MeV have
been taken from Ref.@5#.
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whererhadronicis known reliably. However, fors0<4.0 GeV2

and using the JM-CPSAnsatzfor rhadronic, we have not been
able to find a result forms that is stable under variations o
the Borel parameteru. It was precisely this lack of stability
that forced JM-CPS to choose a largers0 . Such a choice, we
contend, is not reasonable asrhadronic!rPQCD over the range
3,s,6 GeV2; i.e., duality is badly violated over this whol
range.

Last, we turn to the quantityd(s1), which sets the overal
normalization of the resonance contributions in Eq.~31!.
This quantity is crucial in the JM-CPS analysis since,
noted by JM, the extracted value ofms scales directly with
d(s1). The problem is that, just as for the light quark ca
the spectral integral appearing on the phenomenological
of the sum rule is dominated, not by the near-threshold
gion, but by resonance contributions. TheAnsatz~31!–~33!
for the spectral function, however, is designed only to p
duce the correct overall normalization at theKp threshold.
From our discussion above of the analogous treatment o
vector current correlator, it is clear that such anAnsatzwill
overestimate the resonance contributions near threshold
hence, almost certainly significantly overestimate the sp
tral function in the resonance region. To correct this probl
we need to properly rescale the JM-CPSAnsatzat threshold.
We do so on the basis of the proposal above; i.e., we ass
that in the scalar channel, just as in the vector channel,
O(q4) LEC’s, evaluated at a scalem;mr , give the correct
normalization of the scalar resonance contributions at thre
old. It is easy to implement this revised normalization
rhadronicbecause, not only is the one-loopxPT expression for
d(s) known @26#, but, in addition, Jamin and Mu¨nz have
demonstrated explicitly the accuracy of this expression
d(s1) @5#.

Let us write the one-loopxPT expression ford(s1) in the
form

dxPT~s1!5dtree~s1!1dres~s1 ,m!1dloop~s1 ,m!, ~35!

wheredtree(s1) is the leading,O(q2) tree-level contribution,
dres(s1 ,m) contains theO(q4) LEC contributions, and
dloop(s1 ,m) contains the contributions associated with on
loop graphs generated from theO(q2) part of the effective
chiral Lagrangian. The latter two terms are separately s
dependent. According to the prescription introduced abo
resonance contributions tod(s1) are to be identified with
dres(s1 ,mr). Resonance contributions toud(s1)u2, consis-
tent to one-loop order, are thus given by

ud~s1!ures
2 .2dtree~s1!dres~s1 ,mr!. ~36!

Using @26#

dtree~s1!5~mK
2 2mp

2 !50.22 GeV2,

dres~s1 ,mr!54s1~mK
2 2mp

2 !L5
r ~mr!/ f p

2 ,
~37!

with L5
r (mr)50.001460.0005, we find that ud(s1)ures

2

;0.23ud(s1)u2. With no changes to the JM-CPS analys
other than the corresponding rescaling of the continu
spectral function, the value ofms would thus be lowered by
almost exactly a factor of 2. However, as discussed abo
s
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there are problems of consistency with using the JM-C
Ansatzfor the spectral function with values ofs0 as large as
6 GeV2.

In light of the above corrections, the question before us
whether it is possible to get a stable estimate ofms by re-
peating the JM-CPS analysis withs0'4 GeV2 and an overall
normalization ofrhadronic of A'0.25. To answer this ques
tion we have variedLQCD

(3) in the range 200–450 MeV, the
relative strengthf 2 / f 1 of the two Breit-Wigner resonances i
the modulating factor over 0.2–1, andA over the range
0.2–1. Despite this, we have failed to find a solution tha
stable under variations in the Borel scaleu. The cause of this
failure is theAnsatzfor rhadronicand the small range ofs over
which it can be evaluated. It is our contention that reliab
results for ms using sum rules can only be obtained
rhadronic is determined to high precision over a sufficient
large range of scales, say, fromsth to 8 GeV2. If s0 is
‘‘small,’’ then limitations of the operator product expansio
convergence of perturbation theory at smalls, and details of
resonances contributions make it difficult to test the reliab
ity of the results.

For completeness, we should also mention the altern
JM determination ofms via an analysis of the analogou
strangeness-changing axial correlator. Their result in
case isms~MS, 2 GeV!591 MeV, significantly smaller than
that obtained from the scalar channel via the treatment of
vector current correlator. They, however, consider this ana
sis incomplete because it employs, for the normalization
the continuum spectral function at threshold, the leadi
order, tree-levelxPT result. They contend, based on the e
pectation that the full normalization will, as in the scal
channel, significantly exceed that given by tree-levelxPT
@d(s1)51.5dtree(s1) for the scalar channel#, that the true
normalization will likely be significantly larger. If true, this
would mean thatms would be correspondingly increase
They thus expect their two analyses to become consis
once they employ a normalization at threshold correspond
to the one-loop expression for the continuum spectral fu
tion in the pseudoscalar channel. Our contention is that
fact, the ‘‘correct’’ normalization is given, not by the fu
threshold spectral function, but rather by the appropri
O(q4) LEC contributions to the one-loop result and that
should hence be significantlysmallerthan that corresponding
to the tree-level result. Further progress on this issue,
that of the consistency of the two different extractions
ms , will be possible only once the one-loop expression
^0u]mAmuKpp& is known @28#. A reanalysis of the BPR
FESR treatment ofmu1md is similarly stymied by the ab-
sence of one-loop expressions for the matrix eleme
^0u]mAm

(6)u3p& and by the lack of association of theLi in-
volved with just the pseudoscalar resonances.

In the past, of course, the agreement of the ratior
;2(180)/12530 obtained from the different sum rule anal
ses with that (24.461.5) obtained fromxPT @29# has been
taken to providea posteriori support for the validity of the
sum rule treatments. Our contention is that a self-consis
sum rule analysis would yield estimates of bothms andmu
1md that are lower by a factor of;2, thus maintaining the
consistency with thexPT value ofr .
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VIII. CONCLUSIONS

We have shown that the ability to make reliable extra
tions of ms and mu1md using sum rule analyses rests o
three key features of these analyses: the degree of reli
ity of PQCD, a knowledge of the scales0 at which quark-
hadron duality becomes valid, and an ability to constr
hadronic spectral functions which are correctly normalized
the resonance region, even in channels where experime
data on the relevant decay constants is not available.

We find that, in the relevant PQCD expressions,
as ,as

2, . . . corrections are large both in the scalar and ps
doscalar channels. Including reasonable estimates for the
known higher-order terms lowers the sum rule estimates
quark masses. The largest effect is in the extraction ofmu
1md , which we estimate would be lowered by'20% com-
pared to the value quoted by BPR@3#. The correction in the
case ofms extracted from the scalar channel is roughly 5
and this has been accounted for by JM-CPS.

Second, the estimates obtained for the quark masses
potentially very sensitive to the choice ofs0 . We have illus-
trated this through an analysis of rigorous lower bounds
the use of a variety of plausible spectral functions in the c
of mu1md . Current sum rule analyses are forced to cho
low values ofs0 due to lack of experimental information
The FESR extraction ofmu1md , for example, is based o
rather low values ofs0<3 GeV2, and so no tests of the sta
bility of the estimates under variations ofs0 can be made. In
the case of the JM-CPS analysis ofms , the value chosen
s056.0 GeV2, is artificially large. This choice arises from a
attempt to achieve stability of the Borel-transformed s
rule with respect to the Borel parameteru. Since, however,
the phenomenologicalAnsatzfor the spectral function break
down for s*4.0 GeV2, it is clear that such a choice ofs0 is
not physical. For reasonable choices ofs0 we are also not
able to find a solution that is stable with respect to variatio
in u. We therefore conclude that no reliable estimates ofms
can be made unlessrhadronic is known accurately over a sig
nificantly larger range ofs.

Third, we have shown that the method employed in p
vious analyses for fixing the overall normalization of t
resonance-modulated model spectral functions leads to
nificant overestimates of the continuum contributions to
relevant spectral integrals and hence to significant overe
mates of the quark masses. The source of this problem is
fact that normalizing the resonance-modulatedAnsatz@see
Eqs. ~31!–~33!# to either the experimental value or to th
xPT value for the spectral function in the near-threshold
gion results in the inclusion of near-threshold contributio
of the Goldstone-boson degrees of freedom in addition to
desired resonance contributions. Overestimating the siz
the resonance tail in this manner, of course, leads to a
responding overestimate of the resonance contribution
resonance peak. Since it is the resonance peak region
-
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not the threshold region, which dominates the phenome
logical side of the sum rules, the conventional proced
produces significant overestimates of the quark masses
the case of the vector current correlator, where the norm
ization of the spectral function at ther peak is known ex-
perimentally, we have shown that the magnitude of this ov
estimate is large: The conventional method
normalization produces a spectral function which, at ther
peak, is a factor 4.1–5.1 larger than that given by exp
ment. We have explained, based on an understanding o
manner in which resonance effects manifest themselve
xPT, why the conventional method of normalization cann
be correct and have proposed an alternate phenomenolo
prescription for normalizing the spectral function, design
to provide estimates which are reliable, not so much in
threshold region, but in the resonance region relevant to
sum rule quark mass extractions. We verify that this p
scription reproduces the experimental result for the vector~r!
channel. This method is straightforward to apply to the sca
channel as the one-loop@O(q4)# xPT corrections are known
and the revised estimate for the normalization could red
the estimate ofms by as much as a factor of;2 over the
values found in previous analyses. We argue that a sim
overestimate of the normalization will exist in the pseud
scalar channels, though we are unable to estimate its ma
tude at present.

The bottom line is that unless the hadronic spectral fu
tion is known accurately over a large range of scales, say
to s58 GeV2, reliable extraction of quark masses from su
rules considered is not possible. Even though the lat
QCD estimates have their share of statistical and system
errors @2#, we claim that at present they represent the m
reliable means of estimating the quark masses. Our estim
of the systematic errors in sum rule analysis suggest
revised sum rule estimates could easily be smaller by a fa
of 2, in which case these would be consistent with the sm
values obtained from lattice QCD.
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