
PHYSICAL REVIEW D 1 MAY 1998VOLUME 57, NUMBER 9
Vectorlike gauge theories with almost massless fermions on the lattice

Herbert Neuberger
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

~Received 29 October 1997; published 30 March 1998!

A truncation of the overlap~domain wall fermions! is studied and a criterion for the reliability of the
approximation is obtained by comparison to the exact overlap formula describing massless quarks. We also
present a truncated version of regularized, pure gauge, supersymmetric models. The mechanism for generating
almost masslessness is shown to be a generalized seesaw which can also be viewed as a version of the
Froggatt-Nielsen method for obtaining natural large mass hierarchies. Viewed in this way the mechanism
preserving the mass hierarchy naturally avoids preserving even approximately axial U~1!. The new insights
into the source of the mass hierarchy suggest ways to increase the efficiency of numerical simulations of QCD
employing the truncated overlap.@S0556-2821~98!06409-1#

PACS number~s!: 11.15.Ha
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I. INTRODUCTION

For massless quarks, QCD would have exact chiral s
metries. This simple observation explains a large body
observations. At present we try to solve QCD by numeri
methods using a lattice regularization. In the standard
proach exact chiral symmetries cannot be preserved by
regularization. This is disappointing but not debilitatin
since chiral symmetries can be restored in the continu
limit. Still, there have been many attempts to get exact ch
symmetries on the lattice, even just as a matter of princi
These attempts often led to controversies and the issu
subtle. Recent progress seems to have been achieved,
although controversy still exists on related issues, my
pression is that most workers would agree that there d
exist a well defined, albeit nonstandard, way to preserve
bal chiral symmetries exactly on the lattice. The price
quite high though: The lattice model, although well define
must be interpreted as containing an infinite number of
mions fields. Moreover, the expressions are complicated
usage in practice appeared, only a year or two ago, q
unlikely. However, recent developments raise the hope
this could change.

In a recent publication@1# a substantially simpler formula
for the effective action in lattice vectorlike theories with e
act global chiral symmetries was derived. It is based on
overlap which was developed@2–4# as a method to regulat
chiral gauge theories on the lattice. Obviously, as such,
overlap must contain the vectorlike as a particular case c
where the chiral symmetries are not gauged. Section 9 o@4#
contains a specific discussion of the properties of the ove
in the vectorlike context. What is new in@1#, is that the
expressions in@4# can be simplified.

Let us first briefly review the basic features of the over
relevant to the present context.~Although the focus is on
four dimensions we shall try subsequently to write m
equations in an arbitrary even dimensiond.! Formally, in the
continuum path integral, because the fermions enter only
linearly in the action, one can write any correlation functi
as an average over gauge field configurations of an ob
obtained by integrating first over the fermions. This Gra
mann integration produces a result factorized into two ty
570556-2821/98/57~9!/5417~17!/$15.00
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of terms: A determinant~the exponentiated sum of vacuu
fermion diagrams! and a combination of entries of invers
Dirac operators~propagators!. In the regularized overlap the
information contained in fermion vacuum diagrams is sto
in two ~or one, see later! ground states of two auxiliary quan
tum mechanics problems, parametrically dependent on
gauge fields. The propagators are obtained by matrix
ments of certain fermionic creation and/or annihilation o
erators between the two ground states. The crucial poin
that each chiral component of a physical field is represen
by a separate set of such operators. This implies immedia
exact chiral symmetries, as the factorization is exact and
system acts as if it had a simple bilinear fermionic actio
The ground states also factorize into direct products of
factor for each chiral component. However, when the ga
field background carries nontrivial topology, the grou
states, which for perturbative fields are singlets under
global chiral group, carry nontrivial charges. By this mech
nism global anomalous conservation laws behave as
pected~i.e., the respective charges are not conserved, in s
of the formal decoupling in the action!. This property is
needed in QCD, as is well known.

In any regularization, as long as the fermionic action
bilinear, the chiral components either decouple or not. If
have a lattice model with a finite number of fields per u
Euclidean volume one cannot have exact chiral symmet
without this decoupling and one cannot get the violations
anomalous conservation laws if one has exact decoupl
The overlap’s way out is to be equivalent to a system c
taining aninfinite number of fermions~heavy flavors!.

Recently, a particular truncation of the number of hea
flavors has been applied to numerical QCD@5# in four di-
mensions, to the two-dimensional two flavor Schwing
model @6,7# and compared to the overlap in@7#. The fermi-
ons in this truncation are typically referred to as domain w
fermions. This terminology is a residue of a very influent
paper by Kaplan@8#, who started this whole subset of activ
ity in lattice field theory. The fermions used in@5–7# are also
sometimes referred to as Shamir fermions@9,10#. They are
slightly different from the original ‘‘Kaplan fermions’’ in
that they correspond to a particular limiting case where
certain unimportant free mass parameter is taken to infi
5417 © 1998 The American Physical Society
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5418 57HERBERT NEUBERGER
@11#. This makes one of the two ground states needed for
overlap trivial and independent of the gauge field ba
ground, leaving only the other ground state as the carrie
all the information typically residing in the closed fermio
loop vacuum diagrams.

The main approximating feature of these systems is
one uses only a finite number of fermions and neverthe
expects to get an essentially chirally symmetric theory.
emphasized in@7# it is important then to compare carefull
the truncated version to the overlap. This was done num
cally in @7# for a toy model. On the other hand, recent n
merical work in the truncated model@5# for QCD produced
promising results. The simplicity of the main formula in@1#
indicates that the comparison first undertaken in@7# at the
numerical level can be attempted also at the analytical le
In view of the work in@5# such an analytical comparison
needed, given the difficulty to simulate the overlap direc
in four dimensions. This leads us to the purpose of this
per, namely, to improve our understanding of the nature
the approximation introduced by the truncation and of
limitations.

To get a visual image for what the overlap does and h
the truncations approximate that consider the three schem
phase diagrams in Figs. 1–3. The structure of the phase
grams is basically guessed and the guess is quite incom
by itself. Probably, numerical simulations of QCD wou
benefit from an investigation of the phase diagram a
whole, at least in the regime ofb-gauge couplings that ar
practically relevant.

The continuum limit is obtained asb is taken to infinity.
Whenb is small the link matrices fluctuate strongly, lattic
effects are important and the whole concept of chira
looses its meaning. m is a parameter that controls the do
nating correlation length among the fermions when

FIG. 1. Schematic phase diagram for the overlap. In the tri
gular area we have exact chiral symmetries. The possibility fo
continuing line from the point A is indicated. Along that line one
the mesons could be massless, but exact chiral symmetry is
necessarily restored there. The phase diagram could be much
complicated. In the continuum limit one would approach the in
rior of the segment BC for strictly massless quarks. To describ
continuum theory with a positive massive quark the end-poin
should be approached from the outside. Immediately to the lef
line AB d doublers become massless, while the state assoc
with the origin of momentum space becomes heavy.
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gauge forces are turned off. The light fermion has a mass
decreases with m in that case. When gauge interactions
turned on we choose to preserveCP invariance and keep m
real. In the continuum the physics for positive and negat
m could differ substantially.

In the overlap~Fig. 1! there is a region where one ha
exact chiral symmetry at finite lattice spacing. To simula
numerically QCD one only needs chiral symmetries~ignor-
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FIG. 2. Schematic phase diagram for the truncated overlap, w
a large number of heavy flavors. In the triangular area we h
approximate chiral symmetries, with the approximation improvi
towards the center. This is indicated by the gradual change
shades. To the left of the line AB one also expects approxim
chiral symmetries but they are accompanied by an unwanted
crease in the number of Dirac copies. On the center line one of
‘‘pion’’ states becomes massless, but, exact chiral symmetries e
only at the origin.

FIG. 3. Schematic phase diagram for the truncated overlap w
a small number of heavy flavors. The triangular area where we h
approximate chiral symmetries has shrunk relatively to Fig. 2. T
mass of the quarks decreases towards the center, but is much h
than the mass in Fig. 2. On the center line one of the ‘‘pion’’ sta
becomes massless, but exact chiral symmetries exist only a
origin. The shrinkage of the triangle indicates the developing n
for more and more accurate mass tuning as the number of h
flavors is decreased and the regular Wilson case is approache
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57 5419VECTORLIKE GAUGE THEORIES WITH ALMOST . . .
ing for the moment the nonzero light quark masses! in the
continuum limit, that is atb5`. The advantage of having
chiral symmetry at finiteb is that the approach to continuum
is faster as the leading lattice scaling violations come, in
case of Wilson fermions, from operators of dimension fi
which also break chiral symmetries. Eliminating chiral sy
metry breaking also eliminates these operators. In contem
rary parlance the overlap provides automatic ‘‘nonpertur
tive O(a) improvement.’’ In practice this has been seen
work in two dimensions~see Fig. 1 of@12#; footnote 3 on
page 110 there notes the importance for QCD!.

When b is decreased, the links behave more or less
rU wherer is a positive real number less than one, decre
ing towards zero, andU is unitary. This induces a reductio
in the range of masslessness, until, it is conjectured,
range shrinks to zero at the point A. For coupling constanb
below bA there are no massless quarks any more. The
sons are likely also all heavy, except the possibility o
Wilson critical line. One manifestation of the regime abo
1/bA is the absence of instantons as detected by the ove
fermions@4#. bA is not known at present, but, for SU~2! in
the quenched approximation, it is apparently smaller th
values ofb of numerical interest@13#. Therefore, usage o
the overlap appears viable in four dimensions~QCD! even
with presently available computing power.

To the left of the line AB one expects different sets
degenerate doublers to become massless. Atk5` there
likely are more transition lines there. Our discussion bel
ignores this region of parameter space as it is quite unc
whether it would be of practical use in simulations.

With the truncation, exact chiral symmetries are lost a
dimension five operators come back in. For large eno
numbers of heavy flavors the quarks get small masses,
the coefficients of the dimension five operators are lik
small numbers. There no longer are sharp demarcation l
connecting A to B and A to C. These lines are replaced
crossovers. However, a new critical line appears connec
A to the origin. This is just the ordinary Wilson critical line
As the number of heavy flavors is further reduced the st
dard Wilson situation is approached.

No claim is made that the above sketches are comple
correct. It is hoped that they do capture some essential
tures that we should keep in mind when reading the res
the paper. In the next section the effective action will
discussed and some new results will be presented. The t
nical device consists of some determinant formulas deri
in the Appendix. The following section presents various e
planations of the mechanism that keeps the regulated th
close to a chiral limit. The final section contains some co
clusions and suggestions for further research.

II. EFFECTIVE ACTION

Using some manipulations on determinants we derive
expression for the effective action induced by integrat
over all fermions in the truncated model. Our objectives
as follows.

Make no direct use of operator formulas. The introduct
of the auxiliary Hilbert space is necessary in the infinite fl
vor case@3#. It has been reused in@10# for the truncated case
e
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where it is not necessary, and obscures the simple fact
all we are doing is studying lattice QCD with several flavo
mixed in a certain way. Once we understand this it sho
come as no surprise that the mechanism for suppressing
of the quark masses is well known in ordinary continuu
field theory and conceptually requires no extra dimension

We wish to make direct contact with the exactly massl
case@1# and see how close we would get to it for typic
gauge backgrounds.

The formulas provide the starting point for finding expre
sions for the fermion correlation functions.

The overlap formulation is related to the path integral o
by a subtraction removing the effects of most of the hea
quarks@2,3#. The expression for the effective action in@1#
includes this subtraction. It is crucial to carry the subtract
out correctly if one wants to reproduce instanton effects. T
subtraction of@2# was mentioned in@9# but was viewed as
unessential. The adaptation of the prescription of@2# to the
truncated case in@10# is not quite right, as first pointed out in
@7#. We show explicitly that the subtraction in@7# is the most
natural one.

The expressions we arrive at will allow the introductio
of two kinds of mass terms, and will establish that a propo
to look at the spectrum of the operator 11V in @1# could
indeed show how spontaneous chiral symmetry breakdo
occurs, separating cleanly this effect from those of nonz
global gauge field topology.

In @2# an infinite mass matrix was introduced which w
shown to be equivalent to Kaplan’s@8# fifth dimension for-
mulation. There were two parameters~a6 in the notation of
@2#! of opposite signs that were needed. While one w
bounded, the other was not, and could be taken to infin
This results in a simplification@11# and is equivalent to so
called ‘‘open boundaries’’ from the fifth dimensional view
point. These open boundaries have appeared in the litera
before, in the present context in@14#, but, according to@15#
also much earlier@16#. As an application to vector like theo
ries open boundaries were first employed in@9# and @10#.

The fermionic actions we shall look at are of the form

S52(
s51

2k

F̄s~DF!s . ~2.1!

The fermionic fieldsFs have the following left-right struc-
ture:

S F1

F2

]

]

F2k21

F2k

D 5S x1
R

x1
L

]

]

xk
R

xk
L

D . ~2.2!

x j
R,L are left or right Weyl fermions in the notation of@3#.

Similarly one definesF̄s . Our convention is that vecto
gauge interaction appear diagonal inD. We suppress all
spacetime, spinorial and gauge indices, displaying explic
only the left-right character and flavor.
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The lattice is taken to haveLd sites. Our basic building
blocks in the matrix will have sizeq3q where, ind dimen-
sions ~depending on context, we shall often implicitly a
k

ite

s

y
t

m

o
-
e

sumed54! q52d/221ncL
d. nc is the dimension of the gaug

group representation~nc53 for QCD!. Following @3# we
write
~2.3!
ire

t in

to
by

he
di-
The matrixD is of size 2k32k where the entries areq3q
blocks.

The matricesB andC are dependent on the gauge bac
ground defined by the collection of link matricesUm(x).
These matrices are of dimensionnc3nc . m labels the posi-
tive d directions on a hypercubic lattice andUm(x) is the
unitary matrix associated with a link that points from the s
x in the m̂ direction:

~C!xa i ,yb j5
1

2 (
m51

d

sm
ab@dy,x1m̂„Um~x!…i j 2dx,y1m̂„Um

† ~y!…i j #

[ (
m51

d

sm
ab~Wm!xi,y j ,

~B0!xa i ,yb j5
1

2
dab (

m51

d

@2dxyd i j 2dy,x1m̂„Um~x!…i j

2dx,y1m̂„Um
† ~y!…i j #,

~B!xa i ,yb j5~B0!xa i ,yb j1M0dxa i ,yb j . ~2.4!

The indicesa, b label spinor indices in the range 1 to 2d/221.
The indicesi , j label color in the range 1 tonc . The Euclid-
ean 2d/232d/2 Dirac matricesgm are taken in the Weyl basi
where their form is

gm5S 0 sm

sm
† 0 D . ~2.5!

Of particular importance is the parameterM0 . As long as
M0.0 the matrixB is positive definite due to the unitarit
of the link variables. To make almost massless quarks on
lattice one also wants@8,2# uM0u,1. ~Note that the nota-
tional conventions adopted here are slightly different fro
@8# and @2#: The parameterM0 often appears as 12m0 and
the parameter m in Figs. 1–3 although meant there m
generically, is justM0 here.! Although several of the ma
nipulations require thatB be nonsingular, and therefore on
-

he

re

would restrictM0 to the interval~0, 1! ~this is probably an
overkill! the final expressions are meaningful for the ent
range (21, 1).

It is convenient to introduce the 2q32q matrix Gd11
representing the regulargd11 matrix on spinorial indices and
unit action on all other indices. In terms ofq3q blocks we
have

Gd115S 1 0

0 21D . ~2.6!

SettingX5Y50 in Eq. ~A15! we obtain

det D5~21!qk~det B!k detF12Gd11

2
2T2k

11Gd11

2 G .
~2.7!

Writing

T[e2H5S 1

B

1

B
C

C†
1

B
C†

1

B
C1B

D , ~2.8!

we obtain

det D5~21!qk~det B!k det@11ekH#

3detF11Gd11 tanh~ 1
2 kH!

2
G . ~2.9!

Comparing to the overlap formula in@1#, we conclude that
we want the subtraction to remove all factors but the las
the above equation. As we shall see below, the largek limit
is then precisely given by the overlap. The factors we wish
cancel out exactly correspond to the determinant induced
integrating over the fermions of a system identical to t
ones we dealt with up to now, only that the boundary con
tions ats51 and ats52k have to be chosen asantiperiodic.
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This should come as no surprise, since the factor det@11ekH]
above clearly corresponds to thetrace of the transfer
matrix T and a trace is implemented by antiperiodic boun
ary conditions when the integration variables are of Gra
mann type.

The subtraction is handled by adding 2k pseudofermions,
ed

o

th
a
e

us
-
s-

i.e., fields that have identical index structure to fermio
only their statistics is assumed to be of Bose type. T
pseudofermions are coupled by a matrixDp f. If the subtrac-
tion is implemented in a Monte Carlo simulation it will b
important that the pseudofermion determinant not cha
sign as a function of the gauge background
~2.10!
if
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SettingX5Y51 in Eq. ~A15! we obtain

det Dp f5~21!qk~det B!k det@11ekH#. ~2.11!

Sign changes would be avoided ifB is a positive matrix.
We now obtain the effective action for the truncat

model:

det D

det Dp f 5detF11Gd11 tanh~ 1
2 kH!

2
G . ~2.12!

To connect to the overlap we letk→` and obtain

det D

det Dp f→detF11Gd11e~H !

2 G . ~2.13!

This formula is identical in structure to the main result of@1#.
There is a difference though: HereH is more complicated
and not strictly local. The difference reflects the usage
discrete flavor here as opposed to continuous flavor in@1#.
With continuous flavorH simplifies significantly. In a simu-
lation however, discrete flavor is more appropriate. On
basis of the above we can also write down the effective
tion for the truncated system in the continuous flavor cas

S det D

det Dp f D 8
5detF11Gd11 tanh~DH8!

2 G . ~2.14!

The parameterD represents the finite range of continuo
flavor. In the overlap,D is taken to infinity. The matrixH8
above is simply related to a Wilson-Dirac lattice operator,X:

Gd11H8[X5S B8 C

2C† B8
D . ~2.15!

The blockB8 is the same asB introduced before, only the
parameterM0 is taken to the range (22,0). Therefore, for
f

e
c-
:

continuous flavor, we deal only withnegativemasses, while,
for discrete flavor, from thed-dimensional point of view, we
can restrict ourselves to positiveM0 only. From the
(d11)-dimensional point of view one sometimes adopts
one thinks in terms of domain walls one would say that o
always has a negative mass term. But, as far as question
positivity go, thed11 terminology is misleading.

Turning back to discrete flavor we arrive at a criterion f
when the truncated expression is a good approximation to
exactly massless system:

k@max
t
U 1

logutuU. ~2.16!

The maximum is taken over all eigenvalues ofT, t, whereT
is given by Eq.~2.8!. As long as the gauge configurations a
smooth in the gauge invariant sense, one expects a gap i
spectrum ofT around 1 and the criterion is not very restri
tive. For large enough gauge couplingb one expects such
configurations to dominate. Thus, if we had a method
generating gauge configurations, each one from scratch
correctly distributed, the criterion might end up to be sat
fied in practice for all configurations with a reasonably sm
k ~in the last section some suggestion for lowering t
neededk even further are made!. But, the real life simulation
methods are based on a walk in the space of gauge con
rations. Thus, gauge configurations evolve at some rate in
space. This evolution has to produce, with the correct pr
ability, configurations that approximate continuous bac
grounds carrying nontrivial topological charge. During t
evolution between two configurations that carry different
pological charge the gauge fields must pass through po
where they are very different from a smooth background
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the sense that they have, at some location, a structure
would be interpreted in the continuum as a singularity. In
vicinity of those configurations the matrixT must have one
eigenvalue at least that is very close to unity. This is
because the number of eigenvalues ofT that is smaller than
unity changes when one goes from a configuration that
ries one topological charge to a configuration that car
another~the geometric mean of the eigenvalues ofT is fixed
by detT51!. This is a problem noted in@7# on the basis of
experimentation with the two flavor Schwinger model. Wh
it is essentially an algorithmic problem, it is an old one, so
immediate clean resolution is not very likely.

For any finitek the partition function never vanishes an
actually, stays positive. In the infinitek limit robust zeros
appear in instanton backgrounds. For this, accurate sub
tion is essential. The interpretation of the finitek system is
that it containsk21 heavy quarks and one light quark~we
ignore the heavy doublers here!. The light quark is almost
massless whenk is large. The mass of the light quark
positiveand vanishes exponentially ask increases.

Although the light fermion has a small mass for any fin
k, one may want to add yet another mass term,m. In par-
ticular, one may wish to study what happens when the m
is allowed to go negative~more precisely, what happen
when, for smallm, the combinationmeiu goes negative—
n
e
di
n

uli
hat
e

o

r-
s

n

c-

ss

hereu is the famous theta parameter!.
The simplest way to add another mass parameter is to

a direct coupling between the left and right components
the would be massless quark. The most natural interpola
fields for the massless quark were defined in@2#: They are
the fields at the ‘‘defect’’ in Kaplan’s picture. The appropr
ate mass term was introduced in@4# and shown to have~as-
suming its sign is positive! the needed properties to ensu
Nussinov-Weingarten-Witten mass inequalities@17# at the
regularized level.

To identify the left and right components of the would b
massless quark in this case is easy: SetB50 in the expres-
sion forD. It is evident then that one has ats51 a massless
right handed fermion and ats52k a massless left hande
fermion. In addition there arek21 massive Dirac fermions
Actually, every one of the Dirac fermions comes in 2d copies
because of lattice doubling.B takes care of the extra mas
less 2d21 copies and makes them heavy.B also couples the
two remaining light Weyl fermions, but the coupling is ind
rect and only a small mass is generated. This mass vani
ask→`. To maintain a mass also in this limit, similarly t
@4# we introducem via the matricesX andY of the Appen-
dix.

The new operator acting on the fermions is thenD(m)
given by
~2.17!
re,

rac-
the
Clearly, the pseudofermion operatorDp f is just D(m51).
Therefore, the subtraction simply removesk massive Dirac
fermions ~not counting doublers!. Note that one removesk
heavy particles although the original system had onlyk21
heavy particles. In this sense, the remaining system ca
thought of as ‘‘doubly’’ regularized: in addition to the lattic
one also has a Pauli-Villars regulator. Here, we draw a
tinction between the ‘‘latticy’’ concept of a pseudofermio
and the continuum concept of a Pauli-Villars one. In@9,10,7#
any fermion with wrong statistics is referred to as a Pa
Villars fermion. These papers also include am-mass term.

Manipulations similar to ones already employed yield
be

s-

-

det D~m!5~21!qk~det B!k det@11ekH#~11m!q

3det
1

2 F11Gd11

12m

11m
tanhS k

2
H D G .

~2.18!

Clearly, we takeumu,1 with 0,m,1 representing positive
masses and21,m,0 representing negative masses, whe
by definition, we takeu50. Note that, just like in@4#, the
subtraction of pseudofermions does not depend onm. This is
important, since the determinant associated with the subt
tion must have a definite sign, while the determinant of
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original fermions must change sign for negative mas
when the gauge fields change topology by one unit. Le
remark that using the general matricesX and Y of the Ap-
pendix one can similarly derive left-right correlation fun
tions for the light quark by differentiation. This bypasses t
need for operators.

To see the relation between topology and mass sign c
out we ought to dispense with the other source of finite ma
namely k. We go to the overlap then, settingk5`, and
obtain

d~m![F D~m!

D~m51!G
k5`

5det 1
2 @11m1~12m!Gd11e~H !#.

~2.19!

Assuming detHÞ0 we obtain

d~m!5det@Gd11e~H !#d~2m!. ~2.20!

In @3,1# we defined the topological chargentop as half the
difference between the number of positive and negative
genvalues ofH. This implies

d~m!5~2 !ntopd~2m!, ~2.21!

confirming the interpretation of the sign ofm as the sign of
the physical mass. Similarly, one could treat comp
masses, or~in the case of several light flavors! mass matri-
ces. The simplicity of the formula raises the hope of poss
lattice investigations of QCD atu5p.

We immediately learn now how to add a mass term to
continuum flavor case wherem is the single source for a
mass: all we need to do is use ind(m) the simpler matrix in
@1# which plays the role ofH here@we denoted this matrix by
H8 in Eqs.~2.14! and~2.15!#. Also, withV5Gd11e(H8), we
see, by taking derivatives with respect tom at m50, that
spontaneous chiral symmetry breakdown should indeed
found in the spectral properties of 11V, establishing the
validity of a conjecture in@1#.

Indeed, forNf degenerate flavorsf we have

1

Nf
(
f 51

Nf

^~ c̄ fc f !physical&5
Z
Ld K detNfF11V

2 GTr
12V

11VL
A

.

~2.22!

Here^¯&A means an average with respect to the pure ga
action andZ is a renormalization constant. We see ho
single instantons would give a nonzero contribution for o
flavor, but no contribution for more flavors, just as expec
from the more formal continuum expressions.

Note that the factor that appears traced is (12V)/(1
1V) rather than just 2/(11V), but since the interesting re
gime is at eigenvalues ofV close to21 the difference can be
absorbed inZ. Let us look at the difference between (
2V)/(11V) and 2/(11V) in the free case1: Write, for the
free case,

1This is an observation made by Ting-Wai Chiu in a private co
munication to the author.
s
s

e

e
s,

i-

x

le

e

be

e

e
d

V5
igmQm1M

AQ21M2
, ~2.23!

whereQm andM can be function of the momentapn . Then
one obtains

~12V!
1

11V
5~12V!

12V†

V2V† 5
22V2V†

V2V†

5
AQ21M22M

igmQm
. ~2.24!

This expression is close to the continuum in that it antico
mutes withg5 . M is chosen to be nonzero and positive at t
location of all four-momenta which makeQm50 except the
zero four-momentum point whereM is negative. The elimi-
nation of the doublers is of the same type as first proposed
Rebbi@18#. Since 2/(11V)5(12V)/(11V)11 the former
expression has a remnant of chiral symmetry of the fo
discussed some time ago by Ginsparg and Wilson@19#.

To be sure, neither expression appears to be a comp
and unique replacement for the massless continuum ferm
propagator~in the presence of gauge fields!. Actually, it is
not certain that such an object really exists or is at all n
essary. Of course, there does exist a full fermion propaga
including all heavy fields in addition to the physical fiel
This propagator can be obtained directly from theD matrix.
However, if we wish the propagator for, say the chiral co
ponents ats51 and s52k all other fermions need to be
integrated over, just like in@2#. The relevant expression
could be obtained by using the Appendix to couple exter
sources to the desired bilinears, and differentiating sub
quently the exact formulas for the determinants with resp
to the sources. From the expressions we derived until n
we learn that for the purpose of computing the effective
tion we can use 2/(11V) as a propagator of the single phys
cally interesting fermion, while, for thê(c̄c)phys& conden-
sate, the role of the physical propagator factor is played
2/(11V)21, although, the determinant factor is still det@(1
1V)/2#.

Supersymmetric theories with no chiral matter conta
fermions in real representations of the gauge group. The s
plest case is theories with no matter at all. As emphasized
Curci and Veneziano@20# supersymmetry should be restore
in the continuum limit if enough ordinary symmetries a
preserved on the lattice. Thus, as noted in@4#, the overlap
could be used for supersymmetric theories. Here we wis
present simplified formulas of the type in@1# for the effective
actions for the supersymmetric case, both in the trunca
models and in the overlap limit. For other work with Majo
rana fermions see@21#.

In the supersymmetric case of pure gauge we have fe
ons in a real representation so theUm matrices are real. Le
us restrict our attention tod54 for definiteness. What we
need then is a square root of the determinant that isanalytic
in the link variables. The analyticity in the link variable
assures that no unwanted new terms would come into W
identities involving the link matrices: If, for example, we ju
took the square root of the absolute value of the determin
in the vicinity of configuration for which the determinan

-
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vanishes we could generate delta-functions ofUm variables if
we take derivatives with respect toUm a sufficient number of
times. Such terms may spoil a smooth approach to the c
tinuum limit, by refusing to disappear. Following@22# we are
looking for a decoupling of the fermionic functional integr
in the case of Dirac fermions in a real representation of
f

n-

e

gauge group. Such a decoupling is achieved if one find
basis in which the matrix still has entries analytic in theUm
but where it is antisymmetric. The analytic square root
then the Pfaffian.

We first make a simple basis change, reversing the o
of the rows ofq3q blocks in the matrixD(m):
~2.25!
i-
tric
Clearly,

det Dr~m!5~21!kq det D~m!. ~2.26!

Because of the reality of the representation,Um(x)
5Um* (x) for all m andx. TheB block is therefore real, while
the C block obeys

C5 (
m51

d

smWm , ~2.27!

whereWm52Wm
T5Wm* with WT meaning the transpose o
W. In four dimensions we chooses45 i and s1,2,3 as the
standard Pauli matrices. Therefores2sms252sm* . We
learn that

s2CTs252C†

s2Bs25BT. ~2.28!

Define a block diagonal 2k32k matrix S2 with q3q blocks
given bys2 on spinorial indices and unity on all other ind
ces. The matrix we are interested in in the supersymme
case isDSUSY(m)5S2Dr(m):
~2.29!
-

ted
Here,

Cs5s2C, C†5s2CsT, Bs5s2B52BsT.
~2.30!

Since dets2521,
det D~m!5~21!kq det DSUSY~m!. ~2.31!

SinceDSUSY(m) is antisymmetric, we obtain, for the su
persymmetric case, the analytic square rootsp f@DSUSY(m)#.
This implies that the ratio of determinants in the subtrac
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system also admits an analytic square root, and the effec
action in the ‘‘truncated’’ supersymmetric case is

6
p f@DSUSY~m50!#

p f@DSUSY~m51!#
[S detF11Gd11 tanh~ 1

2 kH!

2
G D 1/2

.

~2.32!

There is an overall sign on the left hand side that we have
determined; this is not important since this sign is indep
dent of the gauge field because on the right hand side
have an expression that will not vanish for any set of lin
Um . ~The single way the sign on the left hand side cou
depend on the gauge field would be for the expression
vanish when one gauge field configuration is deformed i
another.! The reason the expression under the square roo
the right hand side cannot vanish is the tanh term, wh

ensures that the operatorGd11tanh(12kH) has norm less than
one for any finitek. This is just another way to see that th
would be gluinos have a finite positive mass whenk is finite.
Thus, we shall not have exact supersymmetry for any finitk
in the continuum limit.

When k is taken to infinity the norm becomes one a
zeros become possible~and actually expected to occur i
instanton backgrounds!. But, since sign changes as a fun
tion of the gauge background were not possible for any fin
k, sign changes are prohibited also in the infinitek limit.
This is in agreement with the expectation from continuu
@23#. Therefore, we expect a supersymmetric theory in
continuum limit, when the gauge couplingb is taken to in-
finity and the mass parameterM0 is kept anywhere within
the finite interval~0, 1!. In practice, one will be working at a
finite b and then the range forM0 is different, as sketched in
the introduction. Also, unless some new simulation trick
discovered, we would be working at a finitek, large enough
that the effects of finite gluino mass are negligible wh
compared to other sources of statistical and systematica
rors.

The left hand side of the above equation tells us that
expression is not only not changing sign but also is anal
~more precisely, for finite lattices and finitek it is a ratio of
polynomials in the link variables!.

In the massless limit (k5`) and going over to continuou
heavy flavor space we obtain the following compact expr
sion for the fermionic determinant on the lattice~the equality
holds up to an irrelevant overall sign!:

S detF11Gd11e~H8!

2 G D 1/2

5p fF S s2 0

0 s2
D 1VSUSY

2
G .

~2.33!

The unitary and antisymmetric matrixVSUSY is given by

VSUSY5Y
1

AY†Y
, Y5S s2B8 s2C

2s2C† s2B8
D 52YT.

~2.34!

The above is a direct generalization of results in@24#.
Lattice approaches to supersymmetry in different conte

have been discussed also in@22,25–27#. Some of these pa
ve

ot
-
e

s

to
o
on
h

e

e

r-

e
ic

-

ts

pers employ ordinary Wilson fermions and there the issue
positivity on the lattice~versus the one in the continuum
@23#! becomes somewhat murky.2

In our equations the link matrices where taken in the
joint representation. In the case of SU(nc) these (nc

2

21)3(nc
221) matrices can be expressed in terms of

nc3nc link matrices in the fundamental representation as
well known from elementary group theory. Such a repres
tation is natural if one keeps the bosonic gauge part in te
of link matrices in the fundamental. There is no reason to
that for supersymmetric theories and it is more natural
take the Wilson plaquette term also in the adjoint. If this
done, lattice gauge field configurations that approxim
nontrivial continuum SU(nc)/Z(nc) bundles on tori can be
dynamically generated. This may be important in the co
tinuum limit @28#, in particular if we view the approach to
wards the continuum limit as taking place on a four-torus
fixed physical size.

III. MASS MATRIX

In this section we deal with the mass matrix in the a
sence of the parameterm. Our main objective is to see tha
indeed one gets one light quark andk21 heavy ones. Actu-
ally, what we are really interested in, is to identify th
mechanism that is capable of preserving the large hierar
between the heavy fermions and the light one. Phrasin
this way, we see that our problem is very similar to w
known problems faced in particle physics. It should come
no surprise then, that we shall conclude that so called dom
wall fermions in the truncated context are nothing new.
the other hand, by identifying the mechanism that preser
the hierarchyat finite k, we shall gain confidence in this wa
of regularizing almost massless quarks on the lattice. Mo
over, usage of standard particle physics concepts is usu
advantageous in lattice work.

Some workers@5# seem to believe that the overlap
somehow exclusively restricted to chiral gauge theori
Logically this is almost impossible, and, indeed, a significa
part of Sec. 9 in@4# was devoted to vectorlike theories. It wa
shown there that forNf massless flavors an SU(Nf)R
3SU(Nf)L3U(1)R1L is preserved exactly at finite lattic
spacings, thus, not only exhibiting exact chiral symmetr
~evidence for exact masslessness of the quarks!, but also the
explicit breaking of U(1)R2L induced by gauge topology.

The heart of the mechanism that preserves the zero m
of the quarks on the lattice was identified in@2#: In the infi-
nite internal space the mass matrix has a nontrivial ind
~associated with a quantum mechanical supersymmetr
heavy flavor space! which must be stable under small b
finite radiative corrections~there is a finite ultraviolet cutoff!.
Essentially, there exist well localized states in the inter
space which represent unremovable zero modes and c
the left and right components of the massless quark. W
flavor space is truncated the index is lost and the mass
quark acquires a small mass. The question is what keep
small once gauge interactions are turned on, and the inde
absent.

2I thank Istvan Montvay for an e-mail discussion of this point.
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Clearly, when the internal space is very large, but
infinite, one would expect the mechanisms that do the job
the untruncated situation to be still at work and prevent
mass of the light quark from becoming too heavy. Otherw
an unlikely discontinuity in the mass spectrum would occ
as internal space expanded to infinity. It was shown in@2#
that fermion propagators in internal space were exponent
decaying in the infinite directions and therefore perturbat
theory could not generate such a discontinuity. Going fr
infinite internal space to finite internal space changes
propagator somewhat@9# but nothing much can happe
given the exponential decays mentioned above. To obtain
effects of the truncation on the infinite flavor space propa
tor of @2# one could use the method of images.

So, it looks plausible that a large hierarchy can be p
served in the truncated case. But, once we have discrete
vor and truncated flavor space, it seems absurd to think a
flavor as a space approximating something infinite. In t
context one often finds statements about the truncated m
describing it as a domain wall fermion model with exa
chiral symmetries in the limit of an infinite distance betwe
the walls. This creates an illusion that the number of flav
is just a parameter like a mass, and we can take it at
wherever we want. Clearly, the number of fields in a
model is not a usual parameter and taking it to infinity is n
a simple procedure. So, then, what would be a better wa
think about the truncated model? The answer is simple:
a model with a special mass matrix designed to preserv
large mass hierarchy. It should be possible to underst
how it works without referring to infinite flavor limits. Onc
we gain this understanding we can trust the mechanism
work on the lattice.

We shall look at the mass hierarchy from three new po
of view: The first employs the theory of orthogonal polyn
mials and is somewhat mathematical. The second show
connection to the well known seesaw mechanism@29#. The
third establishes a link to the Froggatt-Nielsen@30# mecha-
nism.

The mass matrixM is made up of all terms coupling lef
to right handed fermions inD. By permuting indices, one
bringsD into the more convenient form below:

D5S C† M

M† 2CD . ~3.1!

Here C,C† are of sizekq3kq with trivial action in flavor
space.M is a truncation of the infinite mass matrix of@2#:

M5S B 0 0 ... 0 0

21 B 0 ... 0 0

0 21 B ... 0 0

] ] � � ] ]

] ] ] � � ]

0 0 0 ... 21 B

D . ~3.2!

Let us consider diagonalB matrices~free fields in momen-
tum basis! and compute the bare masses. We introduce n
notation, replacing the blocks by numbers. This is perm
sible since the blocks are diagonal now:
t
r
e
,
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M5S b 0 0 ... 0 0

a b 0 ... 0 0

0 a b ... 0 0

] ] � � ] ]

] ] ] � � ]

0 0 0 ... a b

D . ~3.3!

The mass eigenvalues are extracted fromM†M :

M†M5~a21b2!112abS J2
a

b
NkD . ~3.4!

J is a truncated Jacobi matrix. The full Jacobi matrix is trid
agonal and generates a sequence of orthogonal polynom
In this case the orthogonal polynomials are the Chebys
polynomials of second kind. The matrixNk contains infor-
mation about the truncation.Nk has all entries vanishing ex
cept the (k,k) entry which is equal to12 . Similarly, we define
a matrixN1 whose single nonzero entry is at~1, 1! where it
is again equal to1

2 . MM† obeys a similar formula as above
only Nk is replaced byN1 . J is defined by

2J5S 0 1 0 ...

1 0 1 ...

0 1 0 ...

] � � �

D . ~3.5!

M is not diagonalizable:

@M†,M #52a2~N12Nk!. ~3.6!

Whenk is taken to infinity and one requires square su
mability over flavors, the termNk in the above equation get
replaced by zero. From the point of view of the light degre
of freedom this amounts to keeping only one of the chi
components. By relabeling backwards one sees that it is
sible to keep only the other chiral component. The infinitek
limits we took on the determinants before keepbothcompo-
nents.

Suppose only one chiral component is kept: For exam
assume thatM† has a zero modeu0&, while M has no zero
mode. There is a nontrivial index and we ha
u^0u@M†,M #u0&u.0. We conclude that in order to keep on
one chiral component, it is necessary~but not sufficient!, that
tr@M†,M #562a2Þ0 in the limit. Since for any finitek,
tr@M†,M #50, these limits are not smooth and require t
apparatus of operator transfer matrices to give them a pro
interpretation. Here, we are satisfied keeping tr@M†,M #50
even at infinitek and there are no subtleties in taking th
limit.

The overall scale ofM does not matter, so the singl
parameter we have isw[a/b. Let e( j ) be thej th eigenvector
of M†M :

e~ j !5S u1

u2

]

uk

D ~ j !

, ~J2wNk!e
~ j !5l je

~ j !. ~3.7!
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The equations satisfied by the componentsui , with u0[0
anduk11[2wuk ,

u252lu1

u11u352lu2

]

uj 211uj 1152luj

]

uk211uk1152luk ~3.8!

are the recursion relations for the Chebyshev polynomi
and the initial condition selects the Chebyshev polynom
of second kind:

ui}Ui~cosu!„}Ui~coshu!…[
sin~ iu!

sin~u! S 5
sinh~ iu!

sinh~u! D .

~3.9!

The argumentu is determined by thekth equation which is
equivalent to

Uk11~l!1wUk~l!50. ~3.10!

Let l j be one of the roots of the above equation. Then,
eigenvalue of (J2wNk) associated with the (j ) eigenvector
is cos(u)5lj@cosh(u)5lj#.

As l varies between21 and 1 the ratioUk11(l)/Uk(l)
goes throughk zeros andk21 poles. This implies at leas
k21 solutions for anyw. The single question remain
whether akth solutions fits into the interval. This depends
the value ofw and the values of the ratio at the end points
is important to realize that, as long as the Jacobi matrix g
erates orthogonal polynomials with a positive measure
structure will be the same. Our case is particularly simple
we can be more explicit, but the structure would hold
much more general mass matrices. Explicitly, we have
cases:~i! uwu<111/k: all roots are in@21,1#; ~ii ! uwu.1
11/k: there arek21 roots in (21,1) and one root outside
this interval. The outside root has the opposite sign ofw. For
largek, due to the rapid growth of theUk polynomials out-
side the@21,1# interval we have, up to exponential corre
tions ~in k!,

lk52 1
2 ~w1w21!. ~3.11!

These eigenvalues determine directly the eigenvalue
M†M , mRL

2 . Thus, forua/bu.111/k we havek21 masses
obeying (a6b)2<mRL

2 <(a7b)2, i.e., typically, they are all
bounded away from zero. There is one mass outside the
terval, which, up to relative corrections exponentially sm
in k is given by

mRL
2 5

ubu2k

uau2k12 ~a22b2!2. ~3.12!

If ua/bu<111/k all k masses are bounded away from ze
by the smaller among (a6b)2. The above equation formRL

2

is derived by settinguwu5eu(11d) (u.0) and computing
s,
ls

e

t
n-
e
o
r
o

of

in-
l

d to leading order inuwu2k. In the free case, at zero mome
tum, b5M0 anda521, so that

mRL
2 5uM0u2k~12uM0u2!2@11O~ uM0u2k!#. ~3.13!

The above formula was first derived in@7#. To be precise, we
really only computed at strictly zero momentum, so E
~3.13! also contains a wave function renormalization co
stant. But, from Eq.~2.22! we can infer that the latter has
finite largek limit.

The theory of orthogonal polynomials indicates a cert
robustness in the above structure. Let us focus onM†M .
Assume it is a moderate deformation of the above v
simple structure. As a first step apply Lanczos tridiagon
ization starting from the eigenvector corresponding to
almost massless state in the unperturbed case. As long a
deformation is small, the positivity of the measure associa
with the tridiagonal matrix~viewed as a Jacobi matrix! will
be maintained. It is important to understand that we think
the time being about a tridiagonal matrix for anyk, in effect
and infinite one, with well defined sequences determining
entries. The truncation only enters through the matrixNk .
Therefore, the robustness of the matrixJ is on the same
footing as the robustness of the exactly massless eigenv
in the infinite flavor case, where the index~sometimes called
the ‘‘deficit’’ in older orthogonal polynomials literature! is
active. But, given this robustness, the effects of the trun
tion follow simply from the most basic properties of any s
of orthogonal polynomials.

We conclude therefore that using the theory of orthogo
polynomials we can convince ourselves that for perturbati
under which the infinite flavor problem is stable there will
two regimes depending on a parameterw: One will havek
21 massive fermions and one very light fermion~for finite
but largek!. The complementary regime will havek heavy
fermions. In short, the robustness of the infinite flavor lim
implies robustness of the hierarchy for large but finite nu
bers of flavors.

It should be mentioned here that the entrance of ortho
nal polynomials can be understood also as follows: Atk
5` there is an infiniteM†M and the~positive! mass square
spectrum has a disjoint support in two components. The
component is ad function at the origin and the second is
segment supporting a continuum with typical square r
spectral singularities at both ends of the segment. If he
flavor space is continuous in addition to being infinite t
upper bound on the spectrum disappears@2# and the segmen
gets replaced by a semi-infinite line. With discrete flavor
can truncate to finite integerk and the above spectral weigh
gets approximated by a discrete set of abscissas and as
ated weights. Thed function is replaced by one abscissa a
shifts away from the origin by a small amount. The trunc
tion amounts just to the well known Gaussian quadrature
are familiar with from numerical analysis, where the form
las are indeed derived using the theory of orthogonal po
nomials.

The above discussion about the mass matrix is somew
more general than the one in@9# and makes no reference t
specific properties of the propagator. Nevertheless, it is
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more illuminating because it is a bit mathematical and d
not tell us much about not too largek’s, which is, after all,
what matters in practice.

To really understand what goes on for moderatek con-
sider the light mass formula fork52 and a2@b2. Every
particle physicist would be immediately reminded of the s
saw mass formula@29#. Therefore, there should exist a mo
familiar way to understand the hierarchy and its robustne
For this we need one more basis change.

Let us rotate the right handed fermions alone with
intention to makeM Hermitian. Then we can diagonalizeM
itself, not onlyM†M or MM†. A simple relabeling of fields
yields

M5S 0 0 ... 0 0 b

0 0 ... 0 b a

0 0 ... b a 0

] ] ] ] ] ]

b a ... 0 0 0

D . ~3.14!

Assume now thatubu!uau. We work to leading order in
the ratio. First setb50. M2 is then diagonal and hask21
eigenvalues equal touau2 and one eigenvalue equal to zer
The nonzero eigenvalues will not be affected much by tu
ing onb. We know their leading behavior already. It remai
to find out what happens to the lightest mode. Note that

udet M u5ubuk. ~3.15!

Therefore,

mRL
2 5

ubu2k

uau2~k21! ~3.16!

to leading order inubu/uau. The expression is consistent wit
the previous computation at largek and moderateubu/uau.
So, if the ratio of the entries is small, for any finitek we get
an amplification of this ratio resulting in a large hierarch
This is the seesaw mechanism. It is obvious now that
above considerations would hold if we replaced the cons
entriesb by varying entriesbi , and similarly the entriesa by
ai , as long as the orders of magnitude stay the same.
shall still obtain the same rough hierarchy.

However, if we add a nonzero entry in the~1, 1! corner of
our HermitianM , there is a dramatic change, the determ
nant of M going from being very small to being of orde
ak21. The light state is completely lost. What promises
that any such entry ofM , when generated radiatively, will b
so small that it will preserve the hierarchy? Clearly, the
must be some way to understand the orders of magnitud
all entries ofM that can be radiatively generated. Some a
proximate conservation law must protect these entries f
growing too much as they move away from the main o
diagonal. The mechanism that does that has been inven
long time ago by Froggatt and Nielsen~FN! @30#.3

The FN mechanism can be made to work as follows
our context: In the original expression forD replace eachB

3I thank Y. Kikukawa for reminding me of this mechanism.
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entry above the diagonal by (yf)B and eachB entry below
the diagonal by (yf)* B. f is a unit charged scalar Higg
field. The unit charge is with respect to a new Abelian gro
which is spontaneously broken. The fermions are a
charged under this group; we denote this new charge byFN .
We pick an assignment of charges for the fermions as
fined in Fig. 4 fork55.

The intuitive picture is best described by first simplifyin
and ignoring all doublers: For some reasonably weaky ~not
fine tuned, but small! in the presence of spontaneousFN
symmetry breakdown, the lattice fermion spectrum can
viewed, in continuum language, as follows: There arek21
massive Dirac fermions, all having masses of the same o
~the condensate is of the order of the lattice cutoff!. All these
Dirac fermions realize theFN U~1! symmetry vectorially.
There also is one light Dirac fermion whose left and rig
components carry very differentFN charges, thus realizing
the U~1! symmetry chirally. These two components can on
communicate, for perturbativey, via k ‘‘exchanges’’ with
the condensate. All intermediate fermions in the diagram
massive. If the ratio between the condensate scale^f& and
the heavy mass is sufficiently small relative to unity~but not
necessarily unnaturally so! we get our hierarchy.

But, we should not ignore the doublers. They cannot
ignored because theFN U~1! is an exact symmetryon the
lattice, and therefore, in a continuum limit thatalso main-
tains the Higgs field, it must be realized in a vectorial way t
avoid anomalies. On the other hand, as long as we do
keep the Higgs field in the continuum limit and are in t
spontaneously broken phase, the intuitive picture would l
to a self-consistent perturbation theory. All we really wa
from this picture is an intuitive reason for why, when w
calculate, we expect to get a mass hierarchy, and why ra
tive corrections should not be suspected to immediately
stroy it.

More formally, we can eliminate the Higgs field and r
place it by a constant and just observe that making anFN
global gauge transformation on all the fermions with para

FIG. 4. FN charge assignments of theFs fields for s
51,2, . . . ,2k. Connecting lines guide the eye.
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eter x and, simultaneously, changingy by the phaseeix

leaves the theory invariant. Therefore, the two point funct
involving the left and right components of the quark at sm
momenta which would become massless ify were set to
zero, must have a dependence ony of the form
ykf k(uyu2;A). A represents the gauge background. By a
nite rescaling ofy we can arrange forf k(0;A) to be of order
unity. If the rescaledy is only reasonably small~say of order
0.5!, an exponential mass hierarchy gets generated for la
k’s.

There is one problem we have not directly addressed
but we must. The above arguments indicate that the l
quark will stay light when gauge interactions are turned
They also might be taken, in particular in the domain w
picture@10#, to indicate that the left and right components
the light quark completely decouple. If this is true they c
be rotated independently, and then we have an inescap
U(1)L2R problem. Since we know that this global symmet
is explicitly broken, the arguments cannot be completely c
rect, and if they are not, how can we trust them to correc
indicate approximate masslessness?

The answer is known at the mathematical level: In
overlap the U~1! problem is solved in exactly the way dis
covered by ’t Hooft. The independent rotations on the dec
pled components of the massless quark are not really ri
ously defined in the path integral sincek is strictly infinite.
This creates a loophole just where needed in order to ma
Hooft’s solution to the axial U~1! problem work on the lat-
tice. Since the truncated model approaches the overlap
mechanism preserving masslessness has to allow U~1! break-
ing just as needed. Moreover, from our exact expression
the fermion determinant in the presence of them-mass term
we see explicitly that gauge configurations carrying no
trivial topology make large contributions. For example, fo
single flavor, an instanton makes an unsuppressed cont
tion to ^(c̄c)phys&.

In the intuitive picture based on the FN mechanism,
role of nontrivial topology of the gauge background can
understood as follows: Suppose we have several copie
the whole setup, with an exact vectorial SU(Nf) symmetry.
In the intuitive picture we described before theFN U~1!,
being chiral, is also explicitly broken by instantons and t
FN charge is not fully conserved. This lack of conservati
makes it possible for a correlation function containing 2Nf
chiral components of the light quarks to become unprotec
and not necessarily small. Of course, on the lattice this
ture is not really correct since theFN symmetry is not chiral.
The single correct statement we can make is that we ex
those functionsf k(0;A) ~or their appropriate generalization
for expectation values of products of more than two ferm
fields! that get instanton contributions to be enhanced
avoid the suppression that generates the hierarchy.

In some loose sense, it seems that the Smit-Swift@31#
approach to use Yukawa couplings for obtaining chiral sy
metries in the continuum might work for almost massle
vectorlike theories once it is combined with the FN mech
nism. The Yukawa couplings indeed can remove the d
blers while keeping the ‘‘desired’’ fermion relatively ligh
The contribution of the FN mechanism is to take a mass r
between the doubler and the light fermion of order 2 say
amplify it to 2k. Since the heavy fermions have a mass
n
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order 1 in lattice units, one gets a very light fermion. Thu
what Yukawa models were unable to do, even with fine tu
ing, namely generate some large mass hierarchies betw
charged~under the group that is gauged! fermions and other
fermions, is no longer needed. Only some ‘‘start’’ in th
right direction is needed and then FN’s mechanism can
plify the mass hierarchy as much as one wants. If one wis
strictly massless quarks one would need infinite amplifi
tion, so we are back in the overlap case. Therefore, if
wish to regulate a chiral gauge theory we cannot avoid
infinite number of fermions. But, in the vector like cas
where very small quark masses are sufficient, the comb
tion of the Smit-Swift and FN mechanisms seems useful.
despite some failures for chiral gauge theories@32# ~even
when combined with truncated fifth dimension models!, a
re-examination of Yukawa models, this time with the inte
tion to provide a cleaner numerical approach to almost ma
less QCD, might produce something new and useful. O
may also speculate that integrating out the heavy FN Hi
fields, which would leave behind some multilinear fermio
interactions, could provide a connection to the approa
taken recently in@33#, also with the purpose to get closer
the chiral limit at finite lattice spacings. It would be nice
unify the different tricks people have come up with whi
attempting to get global chiral symmetries respected by
lattice.

Very recently@34# perturbative calculations in the gaug
coupling constant have been undertaken to show robustn
Full details are not available at the moment, but the conc
sion is that the hierarchy is maintained. This is expect
although the explicit check is definitely reassuring. But,
should keep in mind that perturbative checks of this kind w
not be able to address the U~1! problem mentioned above
and therefore, an intuitive picture should be welcome.

IV. SUMMARY AND OUTLOOK

In this paper we derived some exact expressions for
integrals over lattice fermions in systems that regularize v
tor like continuum theories containing very light fermions
Dirac or Majorana type. These expressions make explicit
effect of the truncation involved in going from the overla
where the fermions are strictly massless to actions that
be simulated numerically with relative ease. In addition
the Dirac case we also dealt with the Majorana fermio
needed to simulate pure gauge supersymmetric theorie
criterion for the goodness of the truncation approximat
was given in terms of certain extremal eigenvalues of
transfer matrix. Potential difficulties related to topolog
changes were noted.

We also presented several different views that explain
stability of the large mass hierarchy between the lattice c
off and the fermion mass. We found that two well know
mechanisms, the seesaw and the Froggatt-Nielsen me
nism are alternatives to the extra dimension view. This
derstanding should contribute to our ability to trust and c
rectly interpret numerical results obtained using the trunca
overlap.

Considering the application of renormalization gro
ideas to the truncated overlap, we suggest that the bloc
transformation should also integrate out some of thek heavy
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fermions.4 Indeed, the pure glue correlation length increa
exponentially with the gauge couplingb while the free fer-
mion correlation length increases exponentially withk. In
other words the thinning of degrees of freedom seems to
naturally applicable to both real and flavor spaces simu
neously. A flow in thek2b space could determine th
anomalous dimension of the quark mass. It would be in
esting to investigate this further.

One way to translate our insights into the structure of
mass matrix into something practical is to devise ways
accelerate further the speed of hierarchy generation a
function of k. In four dimensions it appears that one c
obtain useful numbers withk;10– 15~Ref. @5#! while in two
dimensions somewhat lowerk’s might be adequate, althoug
this is not completely clear@6,7#. The small effective mass
goes essentially as„k(b)…k where 0,k(b),1 is some un-
known function. Any trick that reducesk~b! would allow a
reduction ofk without changing the effective mass. Atb
5`k(b) is governed by the ratio of theB L2R term to the
21 L2R term in the matrixD. We can make the ratio a
small as we want at zero momentum, but there is an incre
as we move away from the origin. A simple generalization
the action that could ameliorate the effect, and thus, ho
fully, end up decreasing the requiredk, is as follows.

Find two polynomialsp(l) andq(l) which have the fol-
lowing properties:~1! for lP@0,2d#, p(l), q(l).0; ~2!
there exists a real number 0,r ,2 such that, forlP(0,r ),
0,p(l)/q(l)!1 while, for lP(2,2d), 0,p(l)/q(l)>1.

Then replace the entriesB in D by p(B0) and the entries
21 by 2q(B0). The truncated model we analyzed in th
paper hadp(l)5l1M0 andq(l)51. In addition to being
small we would also like the ratio 0,p(l)/q(l) to be rela-
tively constant in (0,r ) while it undergoes a rapid increase
@r ,2# to some value slightly higher than unity and sta
above unity~but not necessarily with small variability! in the
entire interval@2,2d#. Increasing the degrees of the polyn
mials carries with it some computational cost, but, it see
that this cost could be compensated by needing a smallk
value. We hope to return to this issue in future work.

Another way to put the viewpoints of this paper to som
use is to reinterpret some of the data obtained by Blum
Soni @5# in the quenched approximation. They obtained
few values for the pion mass square at differentb’s, various
k’s, with values ofM0 chosen so that one works in the tr
angular area of Fig. 2. For their largestb value, they found
that they needed to increasek from 10 to 14 in order to
obtain apparent massless quarks in the limitm50 ~massless-
ness was determined by extrapolation from finitem values!.
Since we view the system at finitek as having a quark mas
coming from two sources, one the finiteness ofk and the
otherm, the data atk510 extrapolated tom50 can be taken
as an indirect measurement of the ‘‘FN suppressed’’ qu

4Specifically, we already know from@35# that usingd-function
constraints in the fermion path integral to implement the thinning
degrees of freedom is a bad idea, but if one uses smooth kerne
the same purpose no undesired nonlocalities get generated. We
imagine a kernel that not only implements the usual thinning
simultaneously reduces the flavor numberk.
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mass atk510. In other words, the finite small pion mass
proportional to the sum of the truncation-induced quark m
and the explicit quark mass term. A test at a few sma
values ofk might have provided numerical evidence for th
exponential dependence onk. On the other hand it was
found, at the highestb value, that the system behaved as
the truncation induced quark mass was negative. This
ascribed to a numerical detectable higher order term in
chiral effective Lagrangian~possibly with quenching effects
included!. A simpler possibility is that the truncation induce
quark mass is indeed negative. We expect that when
works at parameters corresponding to the interior of the
angle of Fig. 2 to the right of they axis one induces a
positive quark mass, but what happens more to the left is
completely understood. It is possible that, atb5` the values
21,M0,0 induce, at finite oddk, finite negative quark
masses~in the sense that includes the QCDu parameter!.

The last conjecture may be a bit mystifying given t
overt positivity of the regularized fermion determinant in E
~2.12!, for example. So, let us clarify the issue: The ba
question is whether the matrixB can also have negative e
genvalues for some gauge backgrounds. As long asB is posi-
tive definite we are sure that the fermion determinant is
ways positive, including for backgrounds containing a sin
instanton. Therefore, the quark mass must be positive. IB
has a negative eigenvalue the basic formulaT5e2H, osten-
sibly defining a HermitianH, breaks down. Indeed the ex
pression forT, which ~unlike in the transfer matrix deriva
tion of @3# whereAB was used at intermediary steps! is now
valid as long as detBÞ0 shows thatT is positive definite ifB
is such:

T5S 0 1

21 C†D S B 0

0
1

B
D S 0 21

1 C D . ~4.1!

All formulas containingH can be written in terms ofT and
are valid as long as detBÞ0. With aT that can have negative
eigenvalues the fermionic determinants do not have to
always positive any more. On the other hand, the structur
the mass matrix still indicates the presence of very lig
quarks. Therefore, we conjecture that to the left of they axis
we are dealing with light quarks but with a negative mass
is hoped that this point would be clarified in future work.

Before closing, let us mention that the insights of th
paper are hoped~as mentioned in@1#! to be of some help also
to attempts to regularize chiral gauge theories.
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APPENDIX

The purpose of this Appendix is to derive a general f
mula for the determinant of a block tridiagonal matrix wi
nonvanishing corner blocks. This formula is analogous
one employed by Gibbs and followers in the numerical stu
of finite density effects in QCD@36#. Let the matrixD have
even dimensionn52k where each entry is aq3q block:

~A1!
-

o
y

Moving the leftmost column of blocks into the place of th
rightmost column we obtain the matrixD8:

~A2!

Counting minus signs we obtain, using the evenness ofn:

det D5~21!q det D8. ~A3!

We now viewD8 as ak3k matrix with 2q32q blocks,
defined below:
a15S A1 0

B2 A2
D , a25S A3 0

B4 A4
D , ... ,a j5S A2 j 21 0

B2 j A2 j
D , ... ,ak5S An21 0

Bn An
D ,

b15S C2 B3

0 C3
D , b25S C4 B5

0 C5
D , ... ,b j5S C2 j B2 j 21

0 C2 j 21
D , ... ,bk5S Cn B1

0 C1
D . ~A4!

In terms of thea andb blocks we have

D85S a1 0 0 ... 0 bk

b1 a2 0 ... 0 0

0 b2 a3 ... 0 0

A A � � A A

A A A � � A

0 0 0 ... bk21 ak

D . ~A5!

We now consider the following linear equations for the unknown 2q32q matricesv j , j 51,2, . . . ,k:

D85S a1 0 0 ... 0 0

b1 a2 0 ... 0 0

0 b2 a3 ... 0 0

A A � � A A

A A A � � A

0 0 0 ... bk21 ak

D S 1 0 0 ... 0 2v1

0 1 0 ... 0 2v2

0 0 1 ... 0 2v3

A A � � A A

A A A � � A

0 0 0 ... 0 12vk

D . ~A6!
:

More explicitly, the equations for thev j are

a1v11bk50,

a2v21b1v150,

...

akvk1bk21vk2150. ~A7!

With v j solving the above equations, we obtain
det D85S )
j 51

k21

det a j D det~ak2akvk!. ~A8!

The single unknown isvk , and the solution is given below

akvk5~21!kbk21ak21
21 bk22ak22

21 ...b2a2
21b1a1

21bk .
~A9!

We obtain, finally,
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detD5~2 !qS )
j 51

k21

det a j D det@ak1~2bk21ak21
21 !~2bk22ak22

21 !...~2b2a2
21!~2b1a1

21!bk#. ~A10!

We chose a form well suited to our applications. The above form can be used to derive propagators by varying with
to various entries ofD.

Our main applications have

a j5S B 0

2C 21D[a, j 51, . . . ,k21, ak5S B 0

2C XD ,

b j5S 21 C†

0 B D[b, j 51, . . . ,k21, bk5S Y C†

0 B D . ~A11!
We shall also need

a215S 1

B
0

2C
1

B
21
D . ~A12!

In this case we obtain

det D5~21!q~det B!k21~21!q~k21! det@ak2a

3~2a21b!kb21bk#. ~A13!

The product2a21b is related to the transfer matrixT:

2a21b5S 1

B
2

1

B
C†

2C
1

B
C

1

B
C†1B

D

. B
[S 0 1

1 0DT21S 0 1

1 0D ,

T5S 1

B

1

B
C

C†
1

B
C†

1

B
C1B

D . ~A14!

Finally, we can write

det D5~21!q~k21!~det B!k detF S 2X 0

0 1D
2T2kS 1 0

0 2YD G . ~A15!
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