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A truncation of the overlagdomain wall fermiony is studied and a criterion for the reliability of the
approximation is obtained by comparison to the exact overlap formula describing massless quarks. We also
present a truncated version of regularized, pure gauge, supersymmetric models. The mechanism for generating
almost masslessness is shown to be a generalized seesaw which can also be viewed as a version of the
Froggatt-Nielsen method for obtaining natural large mass hierarchies. Viewed in this way the mechanism
preserving the mass hierarchy naturally avoids preserving even approximately éKiaTble new insights
into the source of the mass hierarchy suggest ways to increase the efficiency of numerical simulations of QCD
employing the truncated overlaj50556-282198)06409-1

PACS numbds): 11.15.Ha

[. INTRODUCTION of terms: A determinanfthe exponentiated sum of vacuum
fermion diagrampsand a combination of entries of inverse
For massless quarks, QCD would have exact chiral symBirac operatorgpropagators In the regularized overlap the
metries. This simple observation explains a large body ofnformation contained in fermion vacuum diagrams is stored
observations. At present we try to solve QCD by numericain two (or one, see latéiground states of two auxiliary quan-
methods using a lattice regularization. In the standard aprum mechanics problems, parametrically dependent on the
proach exact chiral symmetries cannot be preserved by thigauge fields. The propagators are obtained by matrix ele-
regularization. This is disappointing but not debilitating ments of certain fermionic creation and/or annihilation op-
since chiral symmetries can be restored in the continuunerators between the two ground states. The crucial point is
limit. Still, there have been many attempts to get exact chirathat each chiral component of a physical field is represented
symmetries on the lattice, even just as a matter of principleby a separate set of such operators. This implies immediately
These attempts often led to controversies and the issue exact chiral symmetries, as the factorization is exact and the
subtle. Recent progress seems to have been achieved, asgistem acts as if it had a simple bilinear fermionic action.
although controversy still exists on related issues, my im-The ground states also factorize into direct products of one
pression is that most workers would agree that there doefsctor for each chiral component. However, when the gauge
exist a well defined, albeit nonstandard, way to preserve glofield background carries nontrivial topology, the ground
bal chiral symmetries exactly on the lattice. The price isstates, which for perturbative fields are singlets under the
quite high though: The lattice model, although well defined,global chiral group, carry nontrivial charges. By this mecha-
must be interpreted as containing an infinite number of fernism global anomalous conservation laws behave as ex-
mions fields. Moreover, the expressions are complicated angected(i.e., the respective charges are not conserved, in spite
usage in practice appeared, only a year or two ago, quitef the formal decoupling in the actipnThis property is
unlikely. However, recent developments raise the hope thateeded in QCD, as is well known.
this could change. In any regularization, as long as the fermionic action is
In a recent publicatiofl] a substantially simpler formula bilinear, the chiral components either decouple or not. If we
for the effective action in lattice vectorlike theories with ex- have a lattice model with a finite number of fields per unit
act global chiral symmetries was derived. It is based on th&uclidean volume one cannot have exact chiral symmetries
overlap which was developd@-4] as a method to regulate without this decoupling and one cannot get the violations of
chiral gauge theories on the lattice. Obviously, as such, thanomalous conservation laws if one has exact decoupling.
overlap must contain the vectorlike as a particular case cas&he overlap’s way out is to be equivalent to a system con-
where the chiral symmetries are not gauged. Section[@]of taining aninfinite number of fermiongheavy flavors
contains a specific discussion of the properties of the overlap Recently, a particular truncation of the number of heavy
in the vectorlike context. What is new ifl], is that the flavors has been applied to numerical Q& in four di-
expressions if4] can be simplified. mensions, to the two-dimensional two flavor Schwinger
Let us first briefly review the basic features of the overlapmodel[6,7] and compared to the overlap [id]. The fermi-
relevant to the present contex@lthough the focus is on ons in this truncation are typically referred to as domain wall
four dimensions we shall try subsequently to write mostfermions. This terminology is a residue of a very influential
equations in an arbitrary even dimensihn Formally, in the  paper by Kaplari8], who started this whole subset of activ-
continuum path integral, because the fermions enter only biity in lattice field theory. The fermions used[i6—7] are also
linearly in the action, one can write any correlation functionsometimes referred to as Shamir fermid8sl0]. They are
as an average over gauge field configurations of an objedlightly different from the original “Kaplan fermions” in
obtained by integrating first over the fermions. This Grassthat they correspond to a particular limiting case where a
mann integration produces a result factorized into two typesertain unimportant free mass parameter is taken to infinity
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FIG. 1. Schematic phase diagram for the overlap. In the trian-
gular area we have exact chiral symmetries. The possibility for a FIG. 2. Schematic phase diagram for the truncated overlap, with
continuing line from the point A is indicated. Along that line one of a large number of heavy flavors. In the triangular area we have
the mesons could be massless, but exact chiral symmetry is n@pproximate chiral symmetries, with the approximation improving
necessarily restored there. The phase diagram could be much md@wards the center. This is indicated by the gradual change of
complicated. In the continuum limit one would approach the inte-shades. To the left of the line AB one also expects approximate
rior of the segment BC for strictly massless quarks. To describe &hiral symmetries but they are accompanied by an unwanted in-
continuum theory with a positive massive quark the end-point Ccrease in the number of Dirac copies. On the center line one of the
should be approached from the outside. Immediately to the left of pion” states becomes massless, but, exact chiral symmetries exist
line AB d doublers become massless, while the state associategnly at the origin.
with the origin of momentum space becomes heavy.

. gauge forces are turned off. The light fermion has a mass that

[11]. This makes one of the two ground states needed for thgecreases with m in that case. When gauge interactions are
Ovel’lap tr|V|f%l| and Independent Of the gauge f|e|d b-aCk‘turned on we Choose to preser@@ invariance and keep m
ground, leaving only the other ground state as the carrier ofea). |n the continuum the physics for positive and negative
all the mformayon typically residing in the closed fermion m could differ substantially.
loop vacuum diagrams. _ In the overlap(Fig. 1) there is a region where one has

The main approximating feature of these systems is thagxact chiral symmetry at finite lattice spacing. To simulate

one uses only a finite number of fermions and neverthelesgymerically QCD one only needs chiral symmetriggor-
expects to get an essentially chirally symmetric theory. As

emphasized in7] it is important then to compare carefully 1/B
the truncated version to the overlap. This was done numeri-

cally in [7] for a toy model. On the other hand, recent nu-
merical work in the truncated modgb] for QCD produced
promising results. The simplicity of the main formula[ib]
indicates that the comparison first undertakerihat the
numerical level can be attempted also at the analytical level.
In view of the work in[5] such an analytical comparison is
needed, given the difficulty to simulate the overlap directly
in four dimensions. This leads us to the purpose of this pa-
per, namely, to improve our understanding of the nature of
the approximation introduced by the truncation and of its
limitations.

To get a visual image for what the overlap does and how
the truncations approximate that consider the three schematic
phase diagrams in Figs. 1-3. The structure of the phase dia-
grams is basically guessed and the guess is quite incomplete
by itself. Probably, numerical simulations of QCD would 5 3. schematic phase diagram for the truncated overlap with
benefit from an investigation of the phase diagram as @ small number of heavy flavors. The triangular area where we have
whole, at least in the regime g-gauge couplings that are approximate chiral symmetries has shrunk relatively to Fig. 2. The
practically relevant. mass of the quarks decreases towards the center, but is much higher

The continuum limit is obtained g8 is taken to infinity.  than the mass in Fig. 2. On the center line one of the “pion” states
When g is small the link matrices fluctuate strongly, lattice becomes massless, but exact chiral symmetries exist only at the
effects are important and the whole concept of chiralityorigin. The shrinkage of the triangle indicates the developing need
looses its meaning. m is a parameter that controls the domfer more and more accurate mass tuning as the number of heavy
nating correlation length among the fermions when theflavors is decreased and the regular Wilson case is approached.
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ing for the moment the nonzero light quark magsesthe  where it is not necessary, and obscures the simple fact that
continuum limit, that is a{B=. The advantage of having all we are doing is studying lattice QCD with several flavors
chiral symmetry at finite3 is that the approach to continuum mixed in a certain way. Once we understand this it should
is faster as the leading lattice scaling violations come, in th&ome as no surprise that the mechanism for suppressing one
case of Wilson fermions, from operators of dimension five,of the quark masses is well known in ordinary continuum
which also break chiral symmetries. Eliminating chiral sym-field theory and conceptually requires no extra dimensions.
metry breaking also eliminates these operators. In contempo- We wish to make direct contact with the exactly massless
rary parlance the overlap provides automatic “nonperturbacase[1] and see how close we would get to it for typical
tive O(a) improvement.” In practice this has been seen togauge backgrounds.

work in two dimensiongsee Fig. 1 off12]; footnote 3 on The formulas provide the starting point for finding expres-
page 110 there notes the importance for QCD sions for the fermion correlation functions.

When 8 is decreased, the links behave more or less like The overlap formulation is related to the path integral one
rU wherer is a positive real number less than one, decreasby a subtraction removing the effects of most of the heavy
ing towards zero, ant is unitary. This induces a reduction quarks[2,3]. The expression for the effective action (i)
in the range of masslessness, until, it is conjectured, thi#cludes this subtraction. It is crucial to carry the subtraction
range shrinks to zero at the point A. For coupling constgints out correctly if one wants to reproduce instanton effects. The
below B, there are no massless quarks any more. The mesubtraction off2] was mentioned 9] but was viewed as
sons are likely also all heavy, except the possibility of aunessential. The adaptation of the prescription2ifto the
Wilson critical line. One manifestation of the regime abovetruncated case ifiL0] is not quite right, as first pointed out in
1/B, is the absence of instantons as detected by the overldg]. We show explicitly that the subtraction [ii] is the most
fermions[4]. B, is not known at present, but, for $2) in  natural one.
the quenched approximation, it is apparently smaller than The expressions we arrive at will allow the introduction
values of 8 of numerical interesf13]. Therefore, usage of of two kinds of mass terms, and will establish that a proposal
the overlap appears viable in four dimensid@¥CD) even to look at the spectrum of the operator-V¥ in [1] could
with presently available computing power. indeed show how spontaneous chiral symmetry breakdown

To the left of the line AB one expects different sets of occurs, separating cleanly this effect from those of nonzero
degenerate doublers to become masslesskAte there  global gauge field topology.
likely are more transition lines there. Our discussion below In [2] an infinite mass matrix was introduced which was
ignores this region of parameter space as it is quite unclesghown to be equivalent to Kaplan8] fifth dimension for-
whether it would be of practical use in simulations. mulation. There were two parametdes. in the notation of

With the truncation, exact chiral symmetries are lost and2]) of opposite signs that were needed. While one was
dimension five operators come back in. For large enougibounded, the other was not, and could be taken to infinity.
numbers of heavy flavors the quarks get small masses, ankhis results in a simplificatiofl1] and is equivalent to so
the coefficients of the dimension five operators are likelycalled “open boundaries™ from the fifth dimensional view-
small numbers. There no longer are sharp demarcation ling¥int. These open boundaries have appeared in the literature
connecting A to B and A to C. These lines are replaced byefore, in the present context [ii4], but, according tg15]
crossovers. However, a new critical line appears connectinglso much earlief16]. As an application to vector like theo-

A to the origin. This is just the ordinary Wilson critical line. ries open boundaries were first employed9h and[10].
As the number of heavy flavors is further reduced the stan- The fermionic actions we shall look at are of the form
dard Wilson situation is approached.

No claim is made that the above sketches are completely %k
correct. It is hoped that they do capture some essential fea- S=-2, &(DD)s. (2.2
s=1

tures that we should keep in mind when reading the rest of
the paper. In the next section the effective action will be
discussed and some new results will be presented. The tecithe fermionic fieldsd have the following left-right struc-
nical device consists of some determinant formulas derivegre-
in the Appendix. The following section presents various ex-
planations of the mechanism that keeps the regulated theory

R

close to a chiral limit. The final section contains some con- D, X1

clusions and suggestions for further research. o, Xli
=l - |. (2.2

0 : -

Il. EFFECTIVE ACTION 2k—1 Xk

Dok Xk

Using some manipulations on determinants we derive an
expression for the effective action induced by integrating L ) ) ) )
over all fermions in the truncated model. Our objectives arexj  are left or right Weyl fermions in the notation ¢8].
as follows. Similarly one definesds. Our convention is that vector

Make no direct use of operator formulas. The introductiongauge interaction appear diagonal lh We suppress all
of the auxiliary Hilbert space is necessary in the infinite fla-spacetime, spinorial and gauge indices, displaying explicitly
vor casg3]. It has been reused [10] for the truncated case only the left-right character and flavor.
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The lattice is taken to have® sites. Our basic building sumed=4) q=2%?"1n LY. n, is the dimension of the gauge
blocks in the matrix will have sizgx g where, ind dimen-  group representatiofin,=3 for QCD). Following [3] we
sions (depending on context, we shall often implicitly as- write

¢t B 0 0 0 O 0 0
B -C -1 0 0 0 0 0
0 -1 ¢t B 0 0 0 0
0 0 B -C -1 0 0 0
6 0 o0 -1 ¢t B 0 0
D=fo o o0 0 B -C 0 0 2.3
0o 0 0 0 0 0 B —-C

The matrixD is of size X2k where the entries argxq would restrictM to the interval(0, 1) (this is probably an

blocks. overkill) the final expressions are meaningful for the entire
The matriceB andC are dependent on the gauge back-range 1, 1).
ground defined by the collection of link matricés, (x). It is convenient to introduce thegX2q matrix I'y, 4

These matrices are of dimensiapXn.. u labels the posi- representing the regular;, ; matrix on spinorial indices and
tive d directions on a hypercubic lattice andl,(x) is the  unit action on all other indices. In terms g q blocks we
unitary matrix associated with a link that points from the sitehave

x in the u direction:

1 O
1 FM:( _ ) 2.6
(Chuaigsi=g 2 750 iU 00) = by ULy ) 0 -1

§ SettingX=Y=0 in Eq. (A15) we obtain
Eﬂ; TP (Wi yi

1-T 1+T
detD=(—1)%(detB) de{%—T‘k —.
13 2.7
(Bodxaiysi =7 Sas 2, (2008~ 8y iU 00 Writing
=Sy + UL 1, 1 1
B BC
(B)xai,yﬁj:(BO)xai,yﬁj+ M05xai,yﬁj ' (2-4) TEe_HZ 1 1 , (2.8)
t t
The indicesa, B label spinor indices in the range 1 t§/2*. C'g CgC+B

The indiced,] label color in the range 1 to.. The Euclid-
ean 22x 292 Dirac matricesy, are taken in the Weyl basis we obtain
where their form is
detD=(—1)%(detB)¥ def1+ek"]

( 0 O'Iu) 2.9
= 1
Yu UL 0 Xde{lﬂ“dﬂ t2anI*(2kH) 2.9
Of particular importance is the parameMyg. As long as

My>0 the matrixB is positive definite due to the unitarity Comparing to the overlap formula jd], we conclude that

of the link variables. To make almost massless quarks on th&e want the subtraction to remove all factors but the last in
lattice one also want§8,2] [My|<1. (Note that the nota- the above equation. As we shall see below, the l&rgjmit
tional conventions adopted here are slightly different fromis then precisely given by the overlap. The factors we wish to
[8] and[2]: The parameteM often appears as-1my and  cancel out exactly correspond to the determinant induced by
the parameter m in Figs. 1-3 although meant there moritegrating over the fermions of a system identical to the
generically, is justM here) Although several of the ma- ones we dealt with up to now, only that the boundary condi-

nipulations require thaB be nonsingular, and therefore one tions ats=1 and ats= 2k have to be chosen astiperiodic
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This should come as no surprise, since the factqﬂdeng] i.e., fields that have identical index structure to fermions,

above clearly corresponds to thieace of the transfer only their statistics is assumed to be of Bose type. The

matrix T and a trace is implemented by antiperiodic bound-pseudofermions are coupled by a maiR'". If the subtrac-

ary conditions when the integration variables are of Grasstion is implemented in a Monte Carlo simulation it will be

mann type. important that the pseudofermion determinant not change
The subtraction is handled by adding @seudofermions, sign as a function of the gauge background

¢t B 0 0 0 0 0 1
B -C -1 0 0 0 0 0
0 -1 ¢t B 0 0 0 0
0 0 B -C -1 0 0 0
0 0 0 -1 C' B 0 0
DY’=19 0o o0 0 B -C 0 0 (2.10
1 0 0 0 0 0 B -C
|
SettingX=Y=1 in Eq.(A15) we obtain continuous flavor, we deal only withegativemasses, while,

for discrete flavor, from thé-dimensional point of vieywe
can restrict ourselves to positivM, only. From the

Sign changes would be avoidedBfis a positive matrix. (d+1)-dimensional point of view one sometimes adopts if

We now obtain the effective action for the truncated®"€ thinks in terms of domain walls one would say that one
model: always has a negative mass term. But, as far as questions of

positivity go, thed+ 1 terminology is misleading.
Turning back to discrete flavor we arrive at a criterion for
(2.12  when the truncated expression is a good approximation to the
exactly massless system:

detDPf=(—1)%(detB)* def1+e"].  (2.12)

detD 14T 4, tani(3kH)
detppf € 2

To connect to the overlap we l&t— and obtain

detD 14T gy 1e(H) % 1
— _— k> a0l .
detD"' e{ 2 213 M loglt] (210

This formula is identical in structure to the main resulf bf.

There is a difference though: Hek is more complicated . . .
and not strictly local. The difference reflects the usage ofThe maximum is taken over all eigenvaluesToft, whereT

discrete flavor here as opposed to continuous flavdrn Is given _by Eq(2.8). A_S Iong as the gauge configurations are
With continuous flavoH simplifies significantly. In a simu- smooth in the gauge invariant SENnseE, one expects a gap In the
lation however, discrete flavor is more appropriate. On thépectrum off around 1 and the crlterlon IS not very restric-
basis of the above we can also write down the effective active- For large enough gauge coupligone expects such
tion for the truncated system in the continuous flavor case:configurations to dominate. Thus, if we had a method of
generating gauge configurations, each one from scratch and

detD \’ 1+T4,q tanAH") correctly distributed, the criterion might end up to be satis-
detDPf] ~ 2 (2.1 fied in practice for all configurations with a reasonably small

k (in the last section some suggestion for lowering the
The parameter\ represents the finite range of continuousneededk even further are madeBut, the real life simulation
flavor. In the overlapA is taken to infinity. The matrid’ methods are based on a walk in the space of gauge configu-
above is simply related to a Wilson-Dirac lattice operakar, rations. Thus, gauge configurations evolve at some rate in the
, space. This evolution has to produce, with the correct prob-
B C ability, configurations that approximate continuous back-
-ct B'/)" grounds carrying nontrivial topological charge. During the
evolution between two configurations that carry different to-
The blockB' is the same a8 introduced before, only the pological charge the gauge fields must pass through points
parameteM is taken to the range—<2,0). Therefore, for where they are very different from a smooth background in

(2.195

Fd+1H,EX:(
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the sense that they have, at some location, a structure thaére 6 is the famous theta parameter
would be interpreted in the continuum as a singularity. In the The simplest way to add another mass parameter is to add
vicinity of those configurations the matrik must have one a direct coupling between the left and right components of
eigenvalue at least that is very close to unity. This is sahe would be massless quark. The most natural interpolating
because the number of eigenvaluesTahat is smaller than fields for the massless quark were defined2h They are
unity changes when one goes from a configuration that carthe fields at the “defect” in Kaplan’s picture. The appropri-
ries one topological charge to a configuration that carriesite mass term was introduced[#] and shown to havéas-
another(the geometric mean of the eigenvaluesTas fixed  suming its sign is positiyethe needed properties to ensure
by detT=1). This is a problem noted ifi7] on the basis of Nussinov-Weingarten-Witten mass inequalitidy] at the
experimentation with the two flavor Schwinger model. While regularized level.
it is essentially an algorithmic problem, it is an old one, so an  To identify the left and right components of the would be
immediate clean resolution is not very likely. massless quark in this case is easy: Bet0 in the expres-
For any finitek the partition function never vanishes and, sion forD. It is evident then that one hasst 1 a massless
actually, stays positive. In the infinite limit robust zeros right handed fermion and a&=2k a massless left handed
appear in instanton backgrounds. For this, accurate subtratermion. In addition there ark—1 massive Dirac fermions.
tion is essential. The interpretation of the finkesystem is  Actually, every one of the Dirac fermions comes fh@pies
that it containsk—1 heavy quarks and one light quailkke  because of lattice doubling takes care of the extra mass-
ignore the heavy doublers hérdhe light quark is almost less 2—1 copies and makes them hea®yalso couples the
massless whek is large. The mass of the light quark is two remaining light Weyl fermions, but the coupling is indi-
positiveand vanishes exponentially &sncreases. rect and only a small mass is generated. This mass vanishes
Although the light fermion has a small mass for any finiteask—o. To maintain a mass also in this limit, similarly to
k, one may want to add yet another mass teunjn par-  [4] we introduceu via the matrices andY of the Appen-
ticular, one may wish to study what happens when the masdix.
is allowed to go negativédmore precisely, what happens  The new operator acting on the fermions is tH2(w)
when, for smallu, the combinationue'’ goes negative— given by

¢t B 0 0 0 0 0 u

B -C -1 0 0 0 0 0

0 -1 ¢t B 0 0 0 0

0 0 B -C -1 0 0 0

0 0 0 -1 ct B 0 0

Dwy=fo o o o B -C 0 0 (2.17
L 0 0 0 0 o ... ... B -C
|

Clearly, the pseudofermion operatBrpf is justD(u=1). detD(u)=(—1)%(detB)* def1+eH](1+ )9
Therefore, the subtraction simply removesnassive Dirac
fermions (not counting doubleys Note that one removes xdetl 1+T 1-p tank(E H”
heavy particles although the original system had dayl 2 1+ u 2 '
heavy particles. In this sense, the remaining system can be (2.18

thought of as “doubly” regularized: in addition to the lattice

one also has a Pauli-Villars regulator. Here, we draw a disClearly, we takdu|<1 with 0<u<1 representing positive

tinction between the “latticy” concept of a pseudofermion masses and 1< <0 representing negative masses, where,

and the continuum concept of a Pauli-Villars one[910,7 by definition, we taked=0. Note that, just like inf4], the

any fermion with wrong statistics is referred to as a Pauli-subtraction of pseudofermions does not depeng.onhis is

Villars fermion. These papers also include.anass term. important, since the determinant associated with the subtrac-
Manipulations similar to ones already employed yield tion must have a definite sign, while the determinant of the
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original fermions must change sign for negative masses iy,Q,+M
when the gauge fields change topology by one unit. Let us = % (2.23
remark that using the general matricésand Y of the Ap- VQ°+M

pendix one can similarly derive left-right correlation func- )
tions for the light quark by differentiation. This bypasses thewhereQ, andM can be function of the moments,. Then

need for operators. one obtains
To see the relation between topology and mass sign come : :
out we ought to dispense with the other source of finite mass, (1-V) 1 (1-V) 1-Vi _2-V-V
namely k. We go to the overlap then, setting=%~, and 1+V v-vi v-VvT
obtain
JQ?+M?—M
D(u) T Q. (229
d(M)E{m} =detz[1+pu+(1—u)lgs1e(H)]. e
k== (2.19 This expression is close to the continuum in that it anticom-
mutes withys. M is chosen to be nonzero and positive at the
Assuming deti#0 we obtain location of all four-momenta which mak@,=0 except the
zero four-momentum point wheid is negative. The elimi-
d(p)=deflg; 1e(H)]d(— w). (2.20  nation of the doublers is of the same type as first proposed by

Rebbi[18]. Since 2/(xV)=(1-V)/(1+V)+1 the former
In [3,1] we defined the topological chargg,, as half the expression has a remnant of (_:hiral symmetry of the form
difference between the number of positive and negative eidiscussed some time ago by Ginsparg and Wilsi#j.

genvalues oH. This implies To be sure, neither expression appears to be a complete
and unique replacement for the massless continuum fermion
d(w)=(—)™ord(— ), (2.22) propagator(in the presence of gauge fiejd#\ctually, it is

not certain that such an object really exists or is at all nec-

confirming the interpretation of the sign pf as the sign of ~essary. Of course, there does exist a full fermion propagator,
the physical mass. Similarly, one could treat complexincluding all heavy fields in addition to the physical field.
masses, ofin the case of several light flavormass matri- This propagator can be obtained directly from Mienatrix.
ces. The simplicity of the formula raises the hope of possibldiowever, if we wish the propagator for, say the chiral com-
lattice investigations of QCD &= . ponents ats=1 ands=2k all other fermions need to be

We immediately learn now how to add a mass term to thdntegrated over, just like irf2]. The relevant expression
continuum flavor case wherg is the single source for a could be obtained by using the Appendix to couple external
mass: all we need to do is used(iu) the simpler matrix in ~ sources to the desired bilinears, and differentiating subse-
[1] which plays the role oH here[we denoted this matrix by quently the exact formulas for the determinants with respect
H’ in Egs.(2.14 and(2.15)]. Also, withV=T4,;e(H’), we 1O the sources. From the expressions we derived until now
see, by taking derivatives with respect goat =0, that We learn that for the purpose of computing the effective ac-
spontaneous chiral symmetry breakdown should indeed béon we can use 2/(V) as a propagator of the single physi-
found in the spectral properties oft+lV, establishing the cally interesting fermion, while, for thé&(4)ny9 conden-

validity of a conjecture if1]. sate, the role of the physical propagator factor is played by
Indeed, forN; degenerate flavork we have 2/(1+V)—1, although, the determinant factor is still &t
+V)/2].
1 N z 1+Vv] 1-V Supersymmetric theories with no chiral matter contain
N. E ((Pes) physicad = K <def“f > Tr m> fermions in real representations of the gauge group. The sim-
it A plest case is theories with no matter at all. As emphasized by

(2.22 Curci and Venezianf20] supersymmetry should be restored
in the continuum limit if enough ordinary symmetries are

. . o= o freserved on the lattice. Thus, as noted4f the overlap
a_ctlon .andZ IS a renormallzatlon constant. .We. see hOWcould be used for supersymmetric theories. Here we wish to
single instantons would give a nonzero contribution for Or‘%resent simplified formulas of the typelit] for the effective
flavor, but no contribution for more flavor§, Just as expected, -ions for the supersymmetric case, both in the truncated
from the more formal continuum expressions. . models and in the overlap limit. For other work with Majo-

Note that the factor that appears traced is—{)/(1 rana fermions seg21].

+.V) rather_than just 2/(%V), but since th_e interesting re- In the supersymmetric case of pure gauge we have fermi-
gime is at eigenvalues f close to—1 the difference can be ¢ i, 5 real representation so tde matrices are real. Let

absorbed inz. Let us look at the diffe;eence_ between (1 s estrict our attention td=4 for definiteness. What we
—V)/(1+V) and 2/(1+V) in the free case Write, for the a0 then is a square root of the determinant thahytic

free case, in the link variables. The analyticity in the link variables
assures that no unwanted new terms would come into Ward
identities involving the link matrices: If, for example, we just
This is an observation made by Ting-Wai Chiu in a private com-took the square root of the absolute value of the determinant,
munication to the author. in the vicinity of configuration for which the determinant
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vanishes we could generate delta-functiontlgfvariables if ~ gauge group. Such a decoupling is achieved if one finds a
we take derivatives with respect tb, a sufficient number of  basis in which the matrix still has entries analytic in the
times. Such terms may spoil a smooth approach to the corbut where it is antisymmetric. The analytic square root is
tinuum limit, by refusing to disappear. Followifg2] we are  then the Pfaffian.

looking for a decoupling of the fermionic functional integral ~ We first make a simple basis change, reversing the order
in the case of Dirac fermions in a real representation of thef the rows ofgXx q blocks in the matrixD (w):

g 0 O 0 O O .. .. B -C
Diw)=]10 o o0 o0 'B -C 0 0 (2.29
0 0 0 -1 ¢t B 0 0
0 0 B -C -1 0 0 0
6 -1 ¢ B 0 0 0 0
B —-C -1 0 0 0 0 0
¢t B 0 0 0 0 0 pu
|
Clearly, W. In four dimensions we choose,=i and o, 3 as the
kq standard Pauli matrices. Thereforg,o,0,= —a; . We
detD,(u)=(—21)“9detD(u). (229  |earn that
Because of the reality of the representatidd, (x) o,CTo,=—Ct
= UZ(x) for all w andx. TheB block is therefore real, while
the C block obeys o,Ba,=BT. (2.29
d . . . .
X
c— 2 oW, (2.2 D_eflne a block dla_gon_all_Q><2k matr|x22_W|th gXxq bIocI_<s _
=1 given by o, on spinorial indices and unity on all other indi-

ces. The matrix we are interested in in the supersymmetric
whereW, = —WIL:V\/Z with W™ meaning the transpose of case isDgysy(u) =2,D,(u):

Hos 0 0 0 0 0 eese ... B —C*°
Dsusy(u) =1 o 0 0 0 B -C° 0 0 (2.29
0 0 0 —g, C°T B° 0 0
0 0 B —C° —o0y 0 0 0
0 -0, C°T B 0 0 0 0
B -C° -0y 0 0 0 0 0
c°T B° 0 0 0 0 0 Loz
|
Here, detD(u)=(—1)*9 detDgysy( ). (2.31
C°=0,C, C'=0,C°T, B’=0,B=—B"". . . . . .
72 72 72 (2.30 SinceDgysy() is antisymmetric, we obtain, for the su-

persymmetric case, the analytic square rgoffD gy ) -
Since detr,=—1, This implies that the ratio of determinants in the subtracted
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system also admits an analytic square root, and the effectivgers employ ordinary Wilson fermions and there the issue of
action in the “truncated” supersymmetric case is positivity on the lattice(versus the one in the continuum
[23]) becomes somewhat murRy.

In our equations the link matrices where taken in the ad-
joint representation. In the case of SiJf these (ﬁ
(2.32 —1)x(n2—1) matrices can be expressed in terms of the

n.Xn; link matrices in the fundamental representation as is
There is an overall sign on the left hand side that we have nowell known from elementary group theory. Such a represen-
determined; this is not important since this sign is indepentation is natural if one keeps the bosonic gauge part in terms
dent of the gauge field because on the right hand side wef link matrices in the fundamental. There is no reason to do
have an expression that will not vanish for any set of linksthat for supersymmetric theories and it is more natural to
U, . (The single way the sign on the left hand side couldtake the Wilson plaquette term also in the adjoint. If this is
depend on the gauge field would be for the expression tdone, lattice gauge field configurations that approximate
vanish when one gauge field configuration is deformed intaontrivial continuum SUf.)/Z(n.) bundles on tori can be
another The reason the expression under the square root oflynamically generated. This may be important in the con-
the right hand side cannot vanish is the tanh term, whichinuum limit [28], in particular if we view the approach to-

ensures that the operatbBy,, ;tanh@kH) has norm less than Wards the continuum limit as taking place on a four-torus of
one for any finitek. This is just another way to see that the fix€d physical size.

would be gluinos have a finite positive mass wieis finite.

Thus, we shall not have exact supersymmetry for any flite . MASS MATRIX

in the contl_nuum limit. o In this section we deal with the mass matrix in the ab-
Whenk is taken to infinity the norm becomes one andgence of the parameter. Our main objective is to see that
zeros become possibi@nd actually expected to occur in i qeed one gets one light quark aket 1 heavy ones. Actu-
i_nstanton backgroungisBut, since sign chan_ges as a f“.”C_' ally, what we are really interested in, is to identify the
tion of the gauge background were not possible for any finitg,achanism that is capable of preserving the large hierarchy
k, sign changes are prohibited also in the infirtdimit.  poyveen the heavy fermions and the light one. Phrasing it
This is in agreement with the expectation from continuumypic way, we see that our problem is very similar to well
[23]. Therefore, we expect a supersymmetric theory in th§,wn problems faced in particle physics. It should come as
continuum limit, when the gauge couplingis taken to in- 4 grprise then, that we shall conclude that so called domain
f|n|ty a_md. the mass parametdt, is kept lanywhere_ Within 4|l fermions in the truncated context are nothing new. On
the finite interval(0, 1). In practice, one will be working ata he other hand, by identifying the mechanism that preserves
finite 8 and then the range o, is different, as sketched in e hierarchyat finite k, we shall gain confidence in this way
the introduction. Also, unless some new simulation trick isy regularizing almost massless quarks on the lattice. More-

discovered, we would be working at a finke large enough ey “usage of standard particle physics concepts is usually
that the effects of finite gluino mass are negligible Whe”advantageous in lattice work.

compared to other sources of statistical and systematical er- ggme workerg5] seem to believe that the overlap is
rors. , , somehow exclusively restricted to chiral gauge theories.

The left hand side of the above equation tells us that thg ogically this is almost impossible, and, indeed, a significant
expression is not only not changing sign but also is analyticart of Sec. 9 if4] was devoted to vectorlike theories. It was
(more precisely, for finite lattices and finiteit is a ratio of  ghown there that forN, massless flavors an SN{)g
polynomials in the link variables _ X SU(Nf)_ X U(1)r4, is preserved exactly at finite lattice

In the massless limit(=c) and going over to continuous  gpacings, thus, not only exhibiting exact chiral symmetries
heavy flavor space we obtain the following compact expresieyidence for exact masslessness of the quatks also the
sion for the fermionic determinant on the lattigke equality explicit breaking of U(1}_, induced by gauge topology.
holds up to an irrelevant overall sign The heart of the mechanism that preserves the zero mass
of the quarks on the lattice was identified[®: In the infi-

172
N Pf[Dsusu=0)]

" pf[Dsysvin=1)]

14T 44, tan(3kH)
© 2

(‘72 0 TV nite internal space the mass matrix has a nontrivial index
1+T g, 1e(H)]| 2 0 2 susY (associated with a quantum mechanical supersymmetry in

det—————|| =pf 2 : heavy flavor spagewhich must be stable under small but

(2.33 finite radiative correctionéthere is a finite ultraviolet cutoff

Essentially, there exist well localized states in the internal
The unitary and antisymmetric matriXggy is given by space which represent unremovable zero modes and create
the left and right components of the massless quark. When

1 o,B"  0,C flavor space is truncated the index is lost and the massless

Vsusy=Y ——=, YZ( At ,) ==Y' quark acquires a small mass. The question is what keeps it

\/W O'2C (TzB

small once gauge interactions are turned on, and the index is
(234 absent.

The above is a direct generalization of result$24].
Lattice approaches to supersymmetry in different contexts
have been discussed also[R2,25—-27. Some of these pa- 2 thank Istvan Montvay for an e-mail discussion of this point.
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Clearly, when the internal space is very large, but not b 0 O 0
infinite, one would expect the mechanisms that do the job for a b 0 0
the untruncated situation to be still at work and prevent the
mass of the light quark from becoming too heavy. Otherwise, 0 a b 0

an unlikely discontinuity in the mass spectrum would occur M=f. . . . A 3.3
as internal space expanded to infinity. It was showh2h o

that fermion propagators in internal space were exponentially : : :

decaying in the infinite directions and therefore perturbation 0 00 .. a b

theory could not generate such a discontinuity. Going from

infinite internal space to finite internal space changes th&@he mass eigenvalues are extracted fidrivi:
propagator somewhaf9] but nothing much can happen
given the exponential decays mentioned above. To obtain the
effects of the truncation on the infinite flavor space propaga-
tor of [2] one could use the method of images.

So, it looks plausible that a large hierarchy can be pred is a truncated Jacobi matrix. The full Jacobi matrix is tridi-
served in the truncated case. But, once we have discrete flagonal and generates a sequence of orthogonal polynomials.
vor and truncated flavor space, it seems absurd to think aboln this case the orthogonal polynomials are the Chebyshev
flavor as a space approximating something infinite. In thigpolynomials of second kind. The matr¥, contains infor-
context one often finds statements about the truncated modeiation about the truncatioiN, has all entries vanishing ex-
describing it as a domain wall fermion model with exactcept the k,k) entry which is equal tg. Similarly, we define
chiral symmetries in the limit of an infinite distance betweena matrixN; whose single nonzero entry is @t, 1) where it
the walls. This creates an illusion that the number of flavorgs again equal tg. MM ™ obeys a similar formula as above,
is just a parameter like a mass, and we can take it at wilbnly N, is replaced byN;. J is defined by
wherever we want. Clearly, the number of fields in any

MM =(a?+b?)1+2ab

a
-4 Nk). (3.9

model is not a usual parameter and taking it to infinity is not 0 1 0
a simple procedure. So, then, what would be a better way to 1 0 1
think about the truncated model? The answer is simple: it is 2)= 0 1 0 (3.5

a model with a special mass matrix designed to preserve a
large mass hierarchy. It should be possible to understand
how it works without referring to infinite flavor limits. Once
we gain this understanding we can trust the mechanism t¥ is not diagonalizable:
work on the lattice.
We shall look at the mass hierarchy from three new points [MT,M]=2a%(N;—N). (3.9
of view: The first employs the theory of orthogonal polyno- ) o )
mials and is somewhat mathematical. The second shows a Whenk is taken to infinity and one requires square sum-
connection to the well known seesaw mechanj@®i. The  Mmability over flavors, the terr in the above equation gets
third establishes a link to the Froggatt-Niels@®] mecha- replaced by zero. From the point of view of the light degrees
nism. of freedom this amounts to keeping only one of the chiral
The mass matri is made up of all terms coupling left components. By relabeling backwards one sees that it is pos-
to right handed fermions iD. By permuting indices, one sible to keep only the other chiral component. The infikite

bringsD into the more convenient form below: limits we took on the determinants before keggih compo-
nents.
ct ™ Suppose only one chiral component is kept: For example,
D=( + ) (3.1)  assume thaM™ has a zero mod®), while M has no zero
Mb -C mode. There is a nontrivial index and we have

|(0[[MT,M]|0)|>0. We conclude that in order to keep only

HereC,C_T are of siz_ekq>< kq With Frivial action ir_1 flavor one chiral component, it is necessabyt not sufficieny, that
spaceM is a truncation of the infinite mass matrix [&]: tr[MT,M]==2a2#0 in the limit. Since for any finitek

tfMT,M]=0, these limits are not smooth and require the

B c o0 .. 00 apparatus of operator transfer matrices to give them a proper
-1 B 0 .. 0 O interpretation. Here, we are satisfied keepirjvitt, M]=0

0 -1 B .. 0 0 even at infinitek and there are no subtleties in taking the

M=| . . .. (3.2  limit.
: : e : The overall scale oM does not matter, so the single
: L parameter we have is=a/b. Lete!!) be thejth eigenvector
of MTM:
0 0O 0 .. -1 8B

(1)

. . . i . u

Let us consider diagon®8 matrices(free fields in momen- ul

tum basi and compute the bare masses. We introduce new e=| 2| | (I—wN el =xel, (3.7
notation, replacing the blocks by numbers. This is permis- :

sible since the blocks are diagonal now: Uk
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The equations satisfied by the componemts with ug=0 s to leading order ifw| X, In the free case, at zero momen-
andu,, 1= — WUy, tum,b=Mg, anda=—1, so that

U2:2)\U1

2 2k 2\2 2k
u1+u3_—2)\ 2 RL | 0| ( | 0| ) [ (| O| )] ( 39

The above formula was first derived[ifi]. To be precise, we
Uj 1 U =2\, really only comp_uted at strictly zero momentum, so Eq.
(3.13 also contains a wave function renormalization con-
stant. But, from Eq(2.22 we can infer that the latter has a
finite largek limit.
Ug— 1+ Upr 1= 2\ Uy (3.9 The theory of orthogonal polynomials indicates a certain
robustness in the above structure. Let us focusMbiM .
are the recursion relations for the Chebyshev polynomialspssume it is a moderate deformation of the above very
and the initial condition selects the Chebyshev polynomialssimple structure. As a first step apply Lanczos tridiagonal-

of second kind: ization starting from the eigenvector corresponding to the
sin(i 6) sinti 9) almost massless state in the unperturbed case. As long as the
I I I I . . . . .
U U, (cos ) (x U, (cosh )= — ( =2 ) _ d(_eformathn_|s small, the.po.smwty of the measure a_ssqmated
sin( 6) sinh( 6) with the tridiagonal matriXviewed as a Jacobi matjixvill

(3.9  be maintained. It is important to understand that we think for

the time being about a tridiagonal matrix for akyin effect

and infinite one, with well defined sequences determining its

entries. The truncation only enters through the mahjx

Ups1(N) +WU,(\)=0. (3.19  Therefore, the robustness of the matdxis on the same
footing as the robustness of the exactly massless eigenvalue

Let \; be one of the roots of the above equation. Then, thén the infinite flavor case, where the indésometimes called

eigenvalue of §—wN,) associated with thej} eigenvector the “deficit” in older orthogonal polynomials literatuyas

is cos@)=\[cosh@)=\]. active. But, given this robustness, the effects of the trunca-
As \ varies between-1 and 1 the ratidJ,, ;(A\)/Uy(\) tion follow simply from the most basic properties of any set

goes throughk zeros anck—1 poles. This implies at least ©Of orthogonal polynomials.

k—1 solutions for anyw. The Sing|e question remains We conclude therefore that USing the theory of Orthogonal

whether &th solutions fits into the interval. This depends on Polynomials we can convince ourselves that for perturbations

the value ofw and the values of the ratio at the end points. [tunder which the infinite flavor problem is stable there will be

is important to realize that, as long as the Jacobi matrix gentWo regimes depending on a parameterOne will havek

erates orthogonal polynomials with a positive measure the” 1 massive fermions and one very light fermitor finite

structure will be the same. Our case is particularly simple, s®ut largek). The complementary regime will haveheavy

we can be more explicit, but the structure would hold forfermions. In short, the robustness of the infinite flavor limit

much more general mass matrices. Explicitly, we have twdmplies robustness of the hierarchy for large but finite num-

cases{(i) |w|<1+1/k: all roots are in[ —1,1]; (i) [w|>1  bers of flavors.

+1/k: there arek—1 roots in (—1,1) and one root outside It should be mentioned here that the entrance of orthogo-

this interval. The outside root has the opposite sigwofor ~ nal polynomials can be understood also as follows: kAt

The argumen® is determined by th&th equation which is
equivalent to

largek, due to the rapid growth of thel, polynomials out- = there is an infiniteM ™M and the(positive mass square
side the[ —1,1] interval we have, up to exponential correc- SPectrum has a disjoint support in two components. The first
tions (in k), component is & function at the origin and the second is a
segment supporting a continuum with typical square root
A= — S(wH+w 1), (3.11 spectral singularities at both ends of the segment. If heavy

flavor space is continuous in addition to being infinite the
These eigenvalues determine directly the eigenvalues afpper bound on the spectrum disappéaisand the segment
MM, m3,. Thus, for|a/b|>1+ 1k we havek—1 masses gets replaced by a semi-infinite line. With discrete flavor we
obeying @+ b)?< méLs(ai b)?, i.e., typically, they are all can truncate to finite integdrand the above spectral weight
bounded away from zero. There is one mass outside the irgets approximated by a discrete set of abscissas and associ-
terval, which, up to relative corrections exponentially smallated weights. Thé function is replaced by one abscissa and
in k is given by shifts away from the origin by a small amount. The trunca-
tion amounts just to the well known Gaussian quadrature we

2 |b|2k are familiar with from numerical analysis, where the formu-
Ma, =z (a°—b?)? (3.12 : : ,
RL|a|2*+2 ' ' las are indeed derived using the theory of orthogonal poly-

nomials.
If |a/b|<1+ 1k all k masses are bounded away from zero The above discussion about the mass matrix is somewhat
by the smaller amonga(*b)2. The above equation fcm?QL more general than the one [ii] and makes no reference to
is derived by settingw|=e’ 1+ 8) (6>0) and computing specific properties of the propagator. Nevertheless, it is not
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more illuminating because it is a bit mathematical and does

not tell us much about not too lardes, which is, after all, F-N charge assignments for k=5
what matters in practice.

To really understand what goes on for moderateon- 3 »
sider the light mass formula fak=2 anda?>b?. Every /
particle physicist would be immediately reminded of the see- oL P
saw mass formul§29]. Therefore, there should exist a more /
familiar way to understand the hierarchy and its robustness. /

For this we need one more basis change. ' /kq

Let us rotate the right handed fermions alone with the % /
intention to makeM Hermitian. Then we can diagonaliié 5 0 —
itself, not onlyM™™ or MMT. A simple relabeling of fields I /
yields 1t —

0 0 0
-2 F 1
0 b
M={0 0 .. b a0 (314 B T R R S S T
Lo : Right-Left / Heavy Flavor
b a .. 0 00

FIG. 4. Fy charge assignments of thég fields for s
Assume now thatb|<|a|. We work to leading order in  =1,2,...,%. Connecting lines guide the eye.

the ratio. First seb=0. M? is then diagonal and has— 1
eigenvalues equal tta|? and one eigenvalue equal to zero. entry above the diagonal by ¢)B and eactB entry below
The nonzero eigenvalues will not be affected much by turnthe diagonal by Y¥¢)*B. ¢ is a unit charged scalar Higgs
ing onb. We know their leading behavior already. It remainsfield. The unit charge is with respect to a new Abelian group
to find out what happens to the lightest mode. Note that which is spontaneously broken. The fermions are also

charged under this group; we denote this new chargeby

|detM|=]bl*. (3.19  We pick an assignment of charges for the fermions as de-
fined in Fig. 4 fork=5.
Therefore, The intuitive picture is best described by first simplifying
|b|2 and ignoring all doublers: For some reasonably wgdhot

2

mRL:WTl) (3.16 fine tuned, but smallin the presence of spontaneobs

symmetry breakdown, the lattice fermion spectrum can be
viewed, in continuum language, as follows: There larel
massive Dirac fermions, all having masses of the same order
(the condensate is of the order of the lattice cytdifl these
Dirac fermions realize thé- U(1) symmetry vectorially.
There also is one light Dirac fermion whose left and right
omponents carry very differefity charges, thus realizing

to leading order inb|/|a|. The expression is consistent with
the previous computation at lardeand moderateb|/|a|.
So, if the ratio of the entries is small, for any finkeve get
an amplification of this ratio resulting in a large hierarchy.
This is the seesaw mechanism. It is obvious now that th

above considerations would hold if we replaced the constan[ e (1) symmetry chirally. These two components can only
entriesb by varying entried; , and sir_nilarly the entriea by Wcommunicate for perturbétivy via k “exchanges” with
3;, as long as the orders of magnitude stay the same. fhe condensate. All intermediate fermions in the diagram are

Sh?_:i)ﬁ'env(;?tﬁ'cvéhz dsda;nre]orr?zugrg Zﬁrr?/rﬁ]h{@ 1) corner of massive. If the r.atio b_et_ween the condgnsate s@ajeand

o . . . the heavy mass is sufficiently small relative to uriiyit not
our Hermltlan_M, there is a dramatic change,_the determl—necessarily unnaturally seve get our hierarchy.
nant of M going from being very small to being of order But, we should not ignore the doublers. They cannot be

k—1 ; ; ;
a“ *. The light state is completely lost. What_ promises usignored because thEy U(1) is anexact symmetrpn the
that any such entry d¥l, when generated radiatively, will be lattice, and therefore, in a continuum limit thalso main-

so small that it will preserve the hierarchy? Clearly,.theret ins the Higgs fieldit must be realized in a vectorial way to
must b? some way to understa_nd_ the orders of magnitude %\void anomalies. On the other hand, as long as we do not
all entries ofM that can be radiatively generated. SOme apyqqn the Higgs field in the continuum limit and are in the
proximate conserr\]/atlonhlaw must protec; thesi entries frfc;r@pontaneously broken phase, the intuitive picture would lead
growing too much as they move away from the main off-y, 5 seff_consistent perturbation theory. All we really want
diagonal. The mechanism that does that has been inventeded . s picture is an intuitive reason for why, when we
. . 3 ’
Ion_lg_]htlmFeNago bz Fr_oggatt ar:ad NlelgélﬁN) [3O]k. foll . calculate, we expect to get a mass hierarchy, and why radia-
c mechanism can be made to work as follows ;e corrections should not be suspected to immediately de-
our context: In the original expression fbr replace eaclB stroy it
More formally, we can eliminate the Higgs field and re-
place it by a constant and just observe that makind-gn
3 thank Y. Kikukawa for reminding me of this mechanism. global gauge transformation on all the fermions with param-
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eter y and, simultaneously, changing by the phasee'’X  order 1 in lattice units, one gets a very light fermion. Thus,
leaves the theory invariant. Therefore, the two point functiorwhat Yukawa models were unable to do, even with fine tun-
involving the left and right components of the quark at smalling, namely generate some large mass hierarchies between
momenta which would become masslessyifvere set to chargedunder the group that is gaugeférmions and other
zero, must have a dependence on of the form fermions, is no longer needed. Only some “start” in the
ykfk(|y|2;A)_ A represents the gauge background. By a fi-right direction is needed and then FN’s mechanism can am-
nite rescaling ofy we can arrange fof,(0;.4) to be of order  plify the mass hierarchy as much as one wants. If one wishes
unity. If the rescaled is only reasonably smafkay of order ~ strictly massless quarks one would need infinite amplifica-
0.5), an exponential mass hierarchy gets generated for largéon, so we are back in the overlap case. Therefore, if we
K’s. wish to regulate a chiral gauge theory we cannot avoid an
There is one problem we have not directly addressed yethfinite number of fermions. But, in the vector like case,
but we must. The above arguments indicate that the lightvhere very small quark masses are sufficient, the combina-
quark will stay light when gauge interactions are turned ontion of the Smit-Swift and FN mechanisms seems useful. So,
They also might be taken, in particular in the domain walldespite some failures for chiral gauge theor8g] (even
picture[10], to indicate that the left and right components of when combined with truncated fifth dimension mogieks
the light quark completely decouple. If this is true they canre-examination of Yukawa models, this time with the inten-
be rotated independently, and then we have an inescapaldién to provide a cleaner numerical approach to almost mass-
U(1), _g problem. Since we know that this global symmetry less QCD, might produce something new and useful. One
is explicitly broken, the arguments cannot be completely cormay also speculate that integrating out the heavy FN Higgs
rect, and if they are not, how can we trust them to correct|)fie|d8, which would leave behind some multilinear fermion
indicate approximate masslessness? interactions, could provide a connection to the approach
The answer is known at the mathematical level: In thetaken recently irf33], also with the purpose to get closer to
overlap the W1) problem is solved in exactly the way dis- the chiral limit at finite lattice spacings. It would be nice to
covered by 't Hooft. The independent rotations on the decoutinify the different tricks people have come up with while
pled components of the massless quark are not really rigo@ttempting to get global chiral symmetries respected by the
ously defined in the path integral sinkes strictly infinite.  lattice.
This creates a loophole just where needed in order to make 't Very recently[34] perturbative calculations in the gauge
Hooft's solution to the axial (1) problem work on the lat- coupling constant have been undertaken to show robustness.
tice. Since the truncated model approaches the overlap, tHeull details are not available at the moment, but the conclu-
mechanism preserving masslessness has to all@yddeak- sion is that the hierarchy is maintained. This is expected,
ing just as needed. Moreover, from our exact expression forlthough the explicit check is definitely reassuring. But, we
the fermion determinant in the presence of jhenass term  should keep in mind that perturbative checks of this kind will
we see explicitly that gauge configurations carrying non-not be able to address the(1) problem mentioned above,
trivial topology make large contributions. For example, for aand therefore, an intuitive picture should be welcome.
single flavor, an instanton makes an unsuppressed contribu-
tion to ((44) pys -
In the intuﬁtiyve picture based on the FN mechanism, the V. SUMMARY AND OUTLOOK
role of nontrivial topology of the gauge background can be In this paper we derived some exact expressions for the
understood as follows: Suppose we have several copies @itegrals over lattice fermions in systems that regularize vec-
the whole setup, with an exact vectorial $f symmetry. tor like continuum theories containing very light fermions of
In the intuitive picture we described before thg, U(1),  Dirac or Majorana type. These expressions make explicit the
being chiral, is also explicitly broken by instantons and theeffect of the truncation involved in going from the overlap
Fn charge is not fully conserved. This lack of conservationwhere the fermions are strictly massless to actions that can
makes it possible for a correlation function containing:2 be simulated numerically with relative ease. In addition to
chiral components of the light quarks to become unprotectedhe Dirac case we also dealt with the Majorana fermions
and not necessarily small. Of course, on the lattice this picheeded to simulate pure gauge supersymmetric theories. A
ture is not really correct since thlg, symmetry is not chiral. criterion for the goodness of the truncation approximation
The single correct statement we can make is that we expeetas given in terms of certain extremal eigenvalues of the
those functiond(0;.4) (or their appropriate generalizations transfer matrix. Potential difficulties related to topology
for expectation values of products of more than two fermionchanges were noted.
fields) that get instanton contributions to be enhanced and We also presented several different views that explain the
avoid the suppression that generates the hierarchy. stability of the large mass hierarchy between the lattice cut-
In some loose sense, it seems that the Smit-Spgifi off and the fermion mass. We found that two well known
approach to use Yukawa couplings for obtaining chiral sym-mechanisms, the seesaw and the Froggatt-Nielsen mecha-
metries in the continuum might work for almost masslessnism are alternatives to the extra dimension view. This un-
vectorlike theories once it is combined with the FN mecha-derstanding should contribute to our ability to trust and cor-
nism. The Yukawa couplings indeed can remove the dourectly interpret numerical results obtained using the truncated
blers while keeping the “desired” fermion relatively light. overlap.
The contribution of the FN mechanism is to take a mass ratio Considering the application of renormalization group
between the doubler and the light fermion of order 2 say anddeas to the truncated overlap, we suggest that the blocking
amplify it to 2¥. Since the heavy fermions have a mass oftransformation should also integrate out some ofkfeavy
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fermions? Indeed, the pure glue correlation length increasesnass ak=10. In other words, the finite small pion mass is
exponentially with the gauge coupling while the free fer- proportional to the sum of the truncation-induced quark mass
mion correlation length increases exponentially within ~ and the explicit quark mass term. A test at a few smaller
other words the thinning of degrees of freedom seems to béalues ofk might have provided numerical evidence for the
naturally applicable to both real and flavor spaces simultaexponential dependence da On the other hand it was
neously. A flow in thek— 3 space could determine the found, at the highesB value, that the system behaved as if
anomalous dimension of the quark mass. It would be interthe truncation induced quark mass was negative. This was
esting to investigate this further. asg:nbed toa numenca! detectgble r_ngher orde_r term in the
One way to translate our insights into the structure of theshiral effective Lagrangiatpossibly with quenching effects
mass matrix into something practical is to devise ways tdncluded. A simpler possibility is that the truncation induced

accelerate further the speed of hierarchy generation as %l:)?lr(lg Qase?r;;:erlgresegorr‘ree%atg;edir:Netoet);peei(ﬁtet?ig[r g\;htig ?r?—e
function of k. In four dimensions it appears that one can P P 9

. . L angle of Fig. 2 to the right of the axis one induces a
obtain useful numbers witk~ 10— 15(Ref.[5]) while in two o .
dimensions somewhat lowiis might be adequate, although positive quark mass, but what happens more to the left is not

o _ completely understood. It is possible thatgat « the values
this is not completely cledi6,7]. The small effective mass pletely P pat

) K X —1<My<O0 induce, at finite odd, finite negative quark
goes essentially a8¢(B))" where O<«(B)<1 is SOMe UN-  55qe4in the sense that includes the Q@parametex

known function. Any trick that reduces(8) would allow a The last conjecture may be a bit mystifying given the
reduction ofk without changing the effective mass. &  gyert positivity of the regularized fermion determinant in Eq.
=ok(p) is governed by the ratio of tH@ L—Rterm to the (2,12, for example. So, let us clarify the issue: The basic
—1 L—Rterm in the matrixD. We can make the ratio as question is whether the matr& can also have negative ei-
small as we want at zero momentum, but there is an increasgenvalues for some gauge backgrounds. As lorig) sosi-
as we move away from the origin. A simple generalization oftive definite we are sure that the fermion determinant is al-
the action that could ameliorate the effect, and thus, hopeways positive, including for backgrounds containing a single
fully, end up decreasing the requiréd s as follows. instanton. Therefore, the quark mass must be positivB. If
Find two polynomialsp(X) andq(N) which have the fol-  has a negative eigenvalue the basic formi#ae ™", osten-
lowing properties:(1) for A e[0,2d], p(\), d(A)>0; (2)  sibly defining a HermitiarH, breaks down. Indeed the ex-
there exists a real number@ <2 such that, fon e (0r),  pression forT, which (unlike in the transfer matrix deriva-
0<p(M)/g(r)<1 while, forh e (2,2d), 0<p(N\)/q(N)=1.  tion of [3] where B was used at intermediary st¢fis now

Then replace the entriés in D by p(Bo) and the entries  valid as long as d&#0 shows thaf is positive definite i3
—1 by —qg(Bg). The truncated model we analyzed in this js sych:

paper hadp(A)=A+M, andq(\)=1. In addition to being
small we would also like the ratioOp(\)/q(\) to be rela-

tively constant in (@;) while it undergoes a rapid increase in 0 1 B 0 0 —1
[r,2] to some value slightly higher than unity and stays Tz( T) 1 ( ) 4.1
above unity(but not necessarily with small variabiljtyn the -1 C 0 B 1 cC

entire interval[ 2,2d]. Increasing the degrees of the polyno-
mials carries with it some computational cost, but, it seems
that this cost could be compensated by needing a smialler All formulas containingH can be written in terms of and
value. We hope to return to this issue in future work. are valid as long as d&0. With aT that can have negative
Another way to put the viewpoints of this paper to some€igenvalues the fermionic determinants do not have to be
use is to reinterpret some of the data obtained by Blum an@lways positive any more. On the other hand, the structure of
Soni [5] in the quenched approximation. They obtained atheé mass matrix still indicates the presence of very light
few values for the pion mass square at differgist various  quarks. Therefore, we conjecture that to the left ofthexis
k’s, with values ofM, chosen so that one works in the tri- We are dealing with light quarks but with a negative mass. It
angular area of Fig. 2. For their larggstvalue, they found is hoped that this point would be clarified in future work.
that they needed to increasefrom 10 to 14 in order to Before closing, let us mention that the insights of this
obtain apparent massless quarks in the limit0 (massless- Ppaper are hopeths mentioned ifil]) to be of some help also
ness was determined by extrapolation from finitealueg. o attempts to regularize chiral gauge theories.
Since we view the system at finikeas having a quark mass
coming from two sources, one the finitenesskofind the
other u, the data ak=10 extrapolated taw=0 can be taken ACKNOWLEDGMENTS
as an indirect measurement of the “FN suppressed” quark This research was supported in part by the U.S. DOE
under Grant No. DE-FGO05-96ER40559. | am grateful to
Yoshio Kikukawa for his comments in the context of the
4specifically, we already know frorf35] that usings-function ~ Froggatt-Nielsen mechanism, his detection of several errors
constraints in the fermion path integral to implement the thinning ofin &n earlier draft and many discussions on the topics of this
degrees of freedom is a bad idea, but if one uses smooth kernels feaper. | also wish to acknowledge comments by T.-W. Chiu,

the same purpose no undesired nonlocalities get generated. We ndw Montvay, and S. Zenkin. | am also indebted to Y.
imagine a kernel that not only implements the usual thinning butKikukawa and P. Vranas for comments on a very recent draft

simultaneously reduces the flavor numker of this paper.
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APPENDIX Moving the leftmost column of blocks into the place of the

The purpose of this Appendix is to derive a general for—rIghtmOSt column we obtain the matrix”:

mula for the determinant of a block tridiagonal matrix with gl [f 8 8 8 CO" gl
nonvanishing corner blocks. This formula is analogous to C2 32 A 0 0 0 01
one employed by Gibbs and followers in the numerical study 02 C3 B3 0 0 o o
of finite density effects in QCIP36]. Let the matrixD have =l ‘3 * ) . _
even dimensiom= 2k where each entry is @x q block: I o
By A 0 0 0 0 C, Lo
Ci By 4, O 0 0 0 SRR ) ) . :
0 C, Bs A4 0 0 0 : : : o .o
0 0 6'3 B4 0 O 0 0 O 0 0 Cn—l Bn An.
D= : : Lo : : (A2)
: ) . a Counting minus signs we obtain, using the evenness. of
Lo e detD=(~1)% detD’. (A3)
A4, 0 0 0 0 Ca-1 Ba We now viewD’ as akx k matrix with 2qx 2q blocks,
(A1) defined below:
|
A, O A; O A1 O ) A1 O
a= B, A, , = B, A, o Q= sz A2j N B, A, ,
3 _(Cz Bs By= Cs Bs 8= Cy By 8= o Bl) (Ad)
Plo ¢ PPlo ce) Tl oyt Lo cy)
In terms of thea and B8 blocks we have
a; O Brk
B1 az 0
0 B2 a3
D'= . (AB)
0 0 O Bk-1
We now consider the following linear equations for the unknowrx2q matricesv;, j=1,2,...k:
a; 0 O 0 0 1 0 0 0 -u,
Bl oo 0 O 0 0 1 O 0 —U2
0 By « 0 0 0 0 1 0 -v
= T ? (A6)
0O 0 O Br-1 ay 0 0 O 0 L-uy
|
More explicitly, the equations for the; are k-1
detD'=| [] deta;|det ay— ). (A8)
v+ B=0, j=1
azvat B1v1=0, The single unknown ig, and the solution is given below:
awi=(— D Be 1 b1 B2 ... Baa; * Bray By
vt Br-1vK-1=0. (A7) (A9)

With v; solving the above equations, we obtain

We obtain, finally,
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k=1

deD=(—)q( 11;[1 det aj)de(ak+(—ﬂk—1a[—11)(_ﬂk—zal:—lz)---(—ﬁzaz_l)(_ﬁlal_l)ﬁk]-

We chose a form well suited to our applications. The above form can be used to derive propagators by varying with respect

to various entries oD.
Our main applications have
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(A10)

B 0 . B O
aJ _C _1 =, J—l, y _11 ag= _C X ’
—1 ¢t Yy C'
|
We shall also need 0 1 L 0 1
1 =(1 0) (1 0)’
— 0
1= ® Al2
t C ! -1 | e ! ! C
7B B B
T= . (A14)
In this case we obtain ct= ct 1 C+B
B
detD=(—1)%detB)* }(—1)3k" Y defay—a
X(—a BB 1B (A13)  Finally, we can write
The product— a1 is related to the transfer matrik:
-X 0
1 1 . detD=(—1)4k"1(detB)¥ de
= -=C 0 1
0 B B
. Lo le e (A15)
~Cg CgC B o -v/|
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