
ia

PHYSICAL REVIEW D 1 MAY 1998VOLUME 57, NUMBER 9
Analytic perturbation theory: A new approach to the analytic continuation
of the strong coupling constantaS into the timelike region
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The renormalization group applied to perturbation theory is ordinarily used to define the running coupling
constant in the spacelike region. However, to describe processes with timelike momenta transfers, it is impor-
tant to have a self-consistent determination of the running coupling constant in the timelike region. The
technique called analytic perturbation theory~APT! allows a consistent determination of this running coupling
constant. The results are found to disagree significantly with those obtained in the standard perturbative
approach. Comparison between the standard approach and APT is carried out to two loops, and threshold
matching in APT is applied in the timelike region.
@S0556-2821~98!00411-1#
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I. INTRODUCTION

A fundamental issue in quantum chromodynamics~QCD!
is the behavior of the strong interaction running coupli
constantaS5gS

2/4p. The basic research tool is perturbatio
theory~PT! with its renormalization-group improvement@1#.
In the QCD case in the limit of large momentum transfersQ,
this approach provides a logarithmic decrease of the runn
coupling constantaS;1/ln(Q2/L2), where L is the QCD
scale parameter that determines where the theory beco
asymptotically free. The study of the behavior ofaS outside
of the asymptotic region is more difficult. It is known th
the direct use of PT improved by the renormalization gro
leads to infrared instability ofaS and unphysical singulari
ties, for instance, a ghost pole atQ25L2. Unphysical sin-
gularities of a perturbative running coupling constant p
clude a self-consistent determination of the effect
coupling constant for timelike momentum transfers. R
cently, a new method has been proposed@2# for constructing
the QCD running coupling constant in such a way as
retain the correct analytic properties. This method is ca
analytic perturbation theory~APT!. The main purpose of this
paper is to analyze the region of timelike momentum tra
fers on the basis of APT@2,3#, and compare the results of th
PT and APT approaches.

It is well known that a theoretical description of importa
timelike processes such ase1e2 annihilation into hadrons
or of decay widths of thet-lepton andZ-boson into hadrons
requires analytic continuation of the running coupling co
stant from the spacelike~Euclidean! region of momentum
transfers (q252Q2,0) into the timelike~physical! region
(q2.0). Although this problem has been studied since
1970s~see, e.g.,@4#!, it still remains a subject of great inter
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est ~see, e.g.,@5–7#!. It is obvious that information on the
running coupling constant obtained from timelike process
for instance, frome1e2 annihilation into hadrons, corre
sponds to knowledge of the coupling constant extracted fr
spacelike processes such as deep inelastic scattering, i
transition from the Euclidean into the physical region is p
formed in a correct manner~see@3,8#! without violation of
analytic properties of the hadronic correlatorP(q2) and the
Adler functionD(q2). When the analytic properties are n
respected, the question arises: To what extent does
breaking of analyticity influence quantities extracted fro
physical processes? It is impossible to answer this ques
within the framework of standard perturbation theory. On t
other hand, the APT method retains the correct anal
properties of the AdlerD-function and, in addition, gives
simple analytic expressions that can be compared with
responding PT expressions and, therefore, allows quan
tive analysis of the influence that the breaking
Q2-analyticity has on the running coupling constant.

The organization of this paper is as follows: In the fo
lowing section, we discuss the procedure of analytic conti
ation from the spacelike~Euclidean! to the timelike
~s-channel! region. In Sec. III we examine this procedure
the conventional one-loop PT approach, and demonst
that it is inconsistent. In Sec. IV we resolve this proble
through the APT approach, and in Sec. V we compare
results of these two schemes. We move on to two-loops
Sec. VI, and demonstrate the stability of the APT approa
A matching procedure for timelike momentum transfers
given in Sec. VII, where we show how the coupling consta
depends on the number of active flavors. A summary of
results is given in the Conclusions.

II. EFFECTIVE COUPLING CONSTANTS IN THE
TIMELIKE AND SPACELIKE REGIONS

First, we note that in the standard approach, the runn
coupling constant in QCD as a function ofQ2 is determined
5402 © 1998 The American Physical Society
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by the renormalization-group analysis in the region of spa
like momentum transfers. However, to parametrize ma
physical processes, one needs to know the coupling con
in the timelike region. To be specific, many experimenta
measured ratiosRs , where, e.g.,s5e1e2, t, Z,..., can be
written in the formRs5Rs

(0)(11Ds). Here Ds is a QCD
correction andRs

(0) represents the parton level of descripti
of a given process with electroweak corrections.Ds can be
expressed through the imaginary part of the hadronic c
relatorR(s)5Im P(s)/p. To parametrizeR(s) in terms of
QCD parameters, a special procedure of analytic contin
tion is required. With that end in view, one usually emplo
a dispersion relation

D~z!52z
dP~z!

dz
52zE

0

`

ds
R~s!

~s2z!2 , ~1!

wherez5q2, and the inverse relation

R~s!5
1

2p i Es2 ie

s1 ie

dz
dP~z!

dz
52

1

2p i Es2 ie

s1 ie

dz
D~z!

z
,

~2!

where the contour joins pointss7 ie and lies in the region of
analyticity of the functionD(z), going around the cut Rez
.0.

We define the effective coupling constantsāeff and ās
eff ,

respectively, in the spacelike~t-channel! and timelike
~s-channel! regions, using the notationā5ā/4p and dimen-
sionless~in units of the scaling parameterL! momentum
variables, by

D~z!}11d1ā~z!1d2ā2~z!1¯511d1āeff~z!, ~3!

R~s!}11r 1ās~s!1r 2ās
2~s!1¯511r 1ās

eff~s!.
~4!

Relations~1! and ~2! and the equalityd15r 1 result in the
connection between these effective coupling constants

ās
eff~s!52

1

2p i Es2 ie

s1 ie dz

z
āeff~z!, ~5!

āeff~z!52zE
0

` ds

~s2z!2 ās
eff~s!. ~6!

Therefore, the QCD correctionsDs for the class of physica
processes considered with timelike momentum transfers
to be parametrized, according to Eq.~4!, by the effective
coupling constantās

eff(s), which is explicitly related toāeff(z)
by Eqs.~5! and ~6!.

In any finite order of PT, the analytic properties of th
running couplingā(z) should be the same as for the effecti
coupling constantāeff(z). Therefore, the connection betwee
t- ands-channel running coupling constants,ā(z) andās(s)
is defined by equations like~5! and ~6!. In the one-loop ap-
proximation the effective coupling constants coincide w
the running coupling constants and in higher loops, the c
nection depends on the physical process.
-
y
ant

r-

a-

re

n-

III. PT ANALYSIS

Consider the above procedure of analytic continuat
within PT. In the one-loop approximation, the running co
pling constant is of the form

āPT~z!5
1

b0

1

ln~Q2/L2!
5

1

b0

1

ln~2z!
, z[2Q2/L2,

~7!

whereb051122nf /3 is the one-loop coefficient of theb-
function corresponding tonf active quarks. Inserting Eq.~7!
into Eq. ~5! we obtain the following expression for the run
ning coupling constant ins-channel:

ās
PT~s!52

1

2p ib0
E

s2 ie

s1 ie dz

z

1

ln~2z!

52
1

pb0
S p

2
1arctan

ln s

p D . ~8!

This expression is physically meaningless, because i
negative for anys and does not have the correct asymptoti
that is, going as 1/lns ass→`; the reason will be explained
below.

There is another way of calculatingās , based on the
Shankar method@9#. Using analyticity of theD-function in
the complexz-plane with the cut along the positive real axi
we may pass from the integral along the cut, given by
pression~5!, that is, around the contourC1 ~see Fig. 1!, to an
integral around a circle of radiusuzu5s in the complex
z-plane, contourC2 , parametrized byz52s exp(iw), 2p
,w,p, to arrive at the expression

ās
‘ ‘PT’’ ~s!5

1

2p i EC2

dz

z
āPT~z!5

1

2pb0
E

2p

p dw

ln s1 iw

5
1

pb0
arctan

p

ln s
; ~9!

this is positive whens.1 and possesses the correct ultrav
let asymptotics. It is just this expression that is used a
one-loop PT result for all timelike momentas.0:

FIG. 1. Integration contours in the complexz-plane.
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ās
‘ ‘PT’’ ~s!5

4

b0
arctan

p

ln s
. ~10!

It is obvious that Eq. ~10! provides the restriction
ās

‘ ‘PT’’ (s)<2p/b0 for any s ~see@10#!.
Thus, a formal conversion of the PT one-loop runni

coupling constant in the spacelike region~7! into expressions
for the coupling constant in the timelike region leads to co
tradictory results~8! and ~9!. The reason can easily be un
derstood if one applies the Cauchy theorem~see Fig. 1! to
establish the connection between the integrals in Eqs.~8! and
~9!,

1

2p i EC2

dzc~z!52
1

2p i EC1

dzc~z!1res@c~z!,21#,

c~z![
1

z ln~2z!
, ~11!

which is consistent with Eqs.~8! and~9! because the residu
of the functionc(z) at the pointz521 is 1. Therefore, the
discrepancy between Eq.~8! and Eq.~9! is due to an un-
physical ghost pole in Eq.~7! at z521 that violates the
required analytic properties of the running coupling consta
The inclusion of multiloop corrections does not solve th
problem but rather produces new unphysical singularities
we will see in Sec. VI. Therefore, keeping to standard
approximations that violate the necessary analytic prope
of the running coupling constant makes it impossible to p
into the timelike region in a self-consistent way. This ca
for instance, be demonstrated by making an inverse tra
tion from the timelike into the spacelike region with the he
the dispersion relation~1!. Substituting the running coupling
constantās(s) given by Eq.~9! into integral ~6! following
from Eq. ~1! and taking account of the expressio
arctan(p/ln s)5sgn(lns)p/22arctan(lns/p), we arrive at the
formula

ā‘ ‘PT’’ ~z!5
1

b0
F 1

ln~2z!
1

1

11z
2

1

12zG , ~12!

which is different from the starting point, Eq.~7!.

IV. APT ANALYSIS

The problem of how to make the correct transition b
tween the space- and timelike regions can be solved in
framework of the APT method@2,3# that ensures the correc
analytic properties of the coupling constant without introdu
ing extra parameters. The resulting one-loop expression
the analytic coupling constant in the Euclidean region is
follows:

āAPT~z!5
1

b0
F 1

ln~2z!
1

1

11zG . ~13!

The first term in square brackets determines the asymp
behavior at large momenta and is of the form given in P
The second term, of a nonperturbative nature, compens
the ghost pole atz521. When one employs the analyt
-

t.
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,
si-

-
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-
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.
tes

coupling constant~13!, both methods of calculatingās con-
sidered above produce the same result: i.e.,

ās
APT~s!52

1

2p i EC1

dz

z
āAPT~z!5

1

2p i EC2

dz

z
āAPT~z!

5
1

pb0
S p

2
2arctan

ln s

p D . ~14!

We note that APT and PT give distinct values for the runn
coupling constant in the timelike region: for example,

ās
APT5ās

PT1
1

b0
, ~15!

whereās
PT is given by Eq.~8!. Consistency of the APT ap

proach also follows from the fact that we can reconstruct
initial expression~13! when the timelike coupling~14! is
substituted into Eq.~6!. It is of interest to note that this
consistency is due to the second term in Eq.~13! that com-
pensates the pole, whose contribution to the integral aro
the contourC2 equals zero whens.1: i.e., we have the
equality

E
C2

dz

z
āAPT~z!5E

C2

dz

z
āPT~z!, s.1, ~16!

where the functionāPT(z) is defined by Eq.~7!. Therefore
the PT expression~7! gives the same result as the APT a
proach in the timelike region fors.1 if the contourC2 is
used. However, there is no inverse correspondence for
@see formula~12!#. Moreover, note that an equality analo
gous to Eq.~16! does not arise if the integrand contains t
running coupling constant multiplied by a function ofz. For
the Rt-ratio, for instance,ā is multiplied by a polynomial in
z and, as is shown in@11#, the contour integral overC2 in PT
turns out to be different from that in the APT approach.1

V. NUMERICAL COMPARISON OF RUNNING
COUPLING CONSTANTS

The results obtained are illustrated in a series of figur
~In these figures we take the number of quark flavors to
3.! First, we consider the region of small momentum tran
fers. Figure 2 shows the behavior of the running coupl
constant computed by different methods in the region210
<s5q2/L2<10. The solid line represents the APT couplin
constant calculated by formula~13! in the spacelike region
~number1 in the figure! and by formula~14! in the time-like
region ~curve1* !. Dots denote the ‘‘PT’’ coupling constan
determined by Eq.~10! ~curve2* ! and by Eq.~12! ~curve2!.
The dash-dotted line3 represents the PT coupling consta
computed by formula~7! in the spacelike region, and curv
3* by formula ~8! in the timelike region.~Incidentally, note
that curves2 and2* vanish at the origin, which is beyond th
resolution of this figure, while curves1 and1* approach the

1A detailed comparison of inclusivet decay can be found in Ref
@12#.
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57 5405ANALYTIC PERTURBATION THEORY: A NEW . . .
universal value 4p/b051.40 at the origin.!
As is seen from Fig. 2, the behavior of the APT runni

coupling constants~curves1 and1* ! is almost, but not quite
mirror-symmetric, and ats50 the space- and timelike APT
running coupling constants are both equal to the unive
value 4p/b0 ~see@3#!. The pairs of curves of the standa
PT approach,3 and2* , or 3 and3* , do not show analogou
behavior of the running coupling constants. In the space
region the functionāPT grows without limit ~curve 3!,
whereas in the timelike region~curve2* ! it is limited to the
value 2p/b0 . Curve2 calculated with the coupling given b
curve 2* in the dispersion integral does not reproduce
initial curve 3.

Now consider the region where the running coupling co
stantā;0.3, which approximately corresponds to the ma
scale of thet-lepton, M t51.78 GeV, ā(M t)50.3460.04
@13#!, defined in the spacelike region. It is known that t
decayt→hadrons is important for testing QCD, as it allow
the most accurate determination of the running coupling c
stant at comparatively low energies~see the review@14#!.

Figure 3 shows the behavior of the running coupling co
stant versus the dimensionless variables5uq2u/L2. Notation
is the same as in Fig. 2; a dashed horizontal line correspo
to ā50.34. As it is seen from the Fig. 3, curves1, 2, 3 that
describe the spacelike region noticeably differ from ea
other. With increasings, they begin, as they should, to ap
proach each other, which is demonstrated on the top righ
Fig. 3. Values of the parameterL calculated with the running
coupling constants described by curves1, 2 and3 are differ-
ent. For example, the value of APT-function~curve1!, equal
to 0.34 is achieved ats0541.5, which corresponds toLAPT

5276 MeV. For PT-curve3 s0560.5 andLPT5228 MeV.
Note that for curve2 the valueā50.34 cannot be achieve
at any value ofs. For timelike momentum transfers, reca
that curves1* and2* as functions of the dimensionless va
ables coincide whens.1. However, they are characterize
by different values ofL, which results in different values o
the running coupling constant in the timelike regio
ās

APT(M t)50.31 and ās
‘ ‘PT’’ (M t)50.29. @The procedure

FIG. 2. The behavior of the running coupling constant cal
lated by different methods as a function of the dimensionless v
ables5q2/L2.
al

e

e

-
s

-

-

ds

h

of

,

here is to use the spacelike value ofā to determineQ2/L2,
and then, with the same numerical value ofs, determineās
from Eq. ~14! and Eq.~10!, respectively.# With the accuracy
attained at present for experimental data on the hadronic
cay of thet @14#, this quantitative discrepancy is becomin
significant.

Let us finally observe the evolution of the running co
pling constant in the region of momentum transfers of or
of the Z-boson massMZ591.2 GeV. The running coupling
constantā, corresponding to the dimensionless variables is
drawn in Fig. 4.~At this point, we neglect the change in th
number of active quarks with growing energy since this
fect does not change the overall picture. We will consider
change in the number of active flavors at the two-loop le
in Sec. VII.! The curve denoted byā represents all three
curves 1, 2 and 3 that are drawn in Figs. 2 and 3 and desc
the behavior of the running coupling constant in the spa
like region, which merge into one curve with high accura
for these large values ofs. The curve denoted byās corre-
sponds to the coupling constant in the timelike region and

-
i-

FIG. 3. Behavior of the running coupling constant as a funct
of the dimensionless variables5uq2u/L2. Notation is the same as

in Fig. 2; a dashed horizontal line corresponds toā50.34. The
graph on the right top shows the behavior of the same curves
large values ofs.

FIG. 4. Behavior of the running coupling constant in the vicin
of the Z-boson mass. Curves1, 2, 3 and1* , 2* represent the same
coupling constants as in Fig. 2 and Fig. 3.
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curves1* and 2* plotted in Figs. 2 and 3. In the region o
sufficiently large values ofs, the well-known approximate
formula with the so-calledp2-term ~see, e.g.,@7,15#!

ās5āS 12
p2

3

1

ln2 sD ~17!

works well ~with an accuracy;0.1%! both for PT and APT.
This approximation gives a difference betweenās and ā of
about 2%. Substituting the value of the parameterL fixed at
q5M t , we obtain the corresponding values of the runn
coupling constant atq5MZ : āAPT50.120, āPT50.117
~spacelike region!; ās

APT50.118, ās
PT50.114 ~timelike re-

gion!. Thus, even at such large values ofs, the effect of
analyticity on the running coupling constant amounts
;2%, i.e., it is comparable with the contribution from th
p2-term and from higher PT loop corrections.

VI. TWO-LOOP RESULTS

We now extend the above considerations to the two-lo
level. The distinction between the APT and the PT runn
coupling constants in the Euclidean region has to do with
unphysical singularities of the PT running coupling consta
Following the results of Ref.@2#, we can write down the
analytic running coupling constant in the form of a sum
the standard perturbative part and additional terms wh
th
e

ou

xi
th

o

g

n

g

p
g
e
t.

f
h

compensate for the contributions of the unphysical singul
ties, a pole and a cut:

āAPT~z!5āPT~z!1Dāpole~z!1Dācut~z!. ~18!

For the two-loop perturbative running coupling constant,
use@2,12#

āPT~z!5
1

b0

1

L1B1ln~11L/B1!
, L5 ln~2z!5 ln

Q2

L2 ,

~19!

where B15b1 /b0
2, and b15102238nf /3 is the two-loop

coefficient of theb-function. Obviously, at large L Eq.~19!
gives the standard PT expression as an expansion in inv
powers of L,

āasympt
PT 5

4p

b0L S 12B1

ln L

L D1OS 1

L3D . ~20!

According to Eq.~19!, the contribution coming from the
unphysical pole is cancelled by

Dāpole~z!5
1

2b0

1

11z
, ~21!

while the unphysical cut is removed by the following com
pensation term:
Dācut~z!5
1

pb0
E

0

exp~2B1! ds

s1z

pB1

@ ln s1B1ln~212 ln s/B1!#21p2B1
2 . ~22!
n-
om
s

ed
-

in
like
To calculate the analytic running coupling constant in
timelike region, we use the expression in terms of the sp
tral density%~s! @3#:

ās
APT~s!5

1

p E
s

` ds

s
%~s!, ~23!

where%(s)5Im āPT(2s2 ie). The spectral density% plays
a central role in the APT method; the spacelike running c
pling constant,āAPT, is also expressed through% as follows:

āAPT~z!5
1

p E
0

` ds

s2z2 ie
%~s!. ~24!

As outlined above, independently of the order of appro
mation, the APT running coupling constants defined in
space- and timelike regions atQ250 and s50 are both
equal to the universal infrared limiting value 4p/b0 @3#,
which is important to establish the stability in the region
the small momentum transfers.~This result is proved in
@12#.! Consider the region in which the value of runnin
coupling constantā;0.35 ~the t lepton scale!. Figure 5
shows the behavior of the two-loop running coupling co
stant for the same interval of the dimensionless variables as
e
c-

-

-
e

f

-

in Fig. 3. The solid line represents the APT coupling co
stant in the spacelike region, which can be computed fr
~18!; this is like 1 in Figs. 2 and 3. The dotted line denote
the APT coupling constant in the timelike region, comput
from ~23!; this is like 1* in one-loop. The dashed line rep

FIG. 5. Behavior of the two-loop running coupling constant
the PT and APT schemes, both in terms of spacelike and time
definitions.
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resents the spacelike PT coupling constant defined by
mula ~19!, which is like 3. The dash-dotted curve corre
sponds to timelike PT coupling constant constructed tak
into accountp2-terms, like Eq.~17!, and analogous to 2* .
This figure demonstrates that, as in the one-loop case, t
is a difference in behavior of all these constants. Moreov
the region in which the value of running coupling constan
about 0.34, is shifted to smallers; the value of 0.34 for the
APT running coupling constant is achieved ats058.6 which
corresponds toLAPT5607 MeV and the value of the time

like running coupling constantās
APT50.32. For the PT run-

ning coupling constant,s0518 andLPT5419 MeV. Thus,
while in the one-loop case APT parameterL, is 20% larger
than PT value, in the two-loop case this discrepancy
creases to 45%.2

In Fig. 6 we show the stability of APT result for the rat
of the space- and timelike APT running coupling constan
The solid line corresponds to three-loop case, the dashed
is two-loop, and the dot-dash is one-loop.~The one-loop re-
sult was already given in@3#.!

Let us now demonstrate that in the two-loop approxim
tion, as in the one-loop case, the equality~16! is valid as
well. By using Eq.~18!, we get

2piās
APT5E

C2

dz

z
āAPT~z!5E

C2

dz

z
āPT~z!

1E
C2

dz

z
Dāpole~z!1E

C2

dz

z
Dācut~z!. ~25!

As follows from~21!, the pole term has the same structure
in the one-loop approximation, and its contribution to co
tour integral equals zero whens.1. One can also find tha
the contribution of the cut term~22! in Eq. ~25! equals zero
whens.exp(2B1).

3 As a result, the equality~16! holds for
s.1 as well, but it should be stressed~see above discussio
in Sec. V! that this does not mean that the APT and
timelike coupling constants coincide with each other.

2In Fig. 5 we do not plot the three-loop result~see@2#!, because it
practically coincides with the two-loop one.

3For 0<nf<6 we have 0.4,exp(2B1),0.6.

FIG. 6. The ratio of spacelike and timelike values of the runn
coupling constant in the APT scheme, at one, two, and three lo
r-

g

re
r,
s

-

.
ne

-

s
-

VII. s-CHANNEL MATCHING

Let us now discuss the issue of how the parameteL
changes with energy as the number of active quark chan
L→Lnf

~see@16# for further details!. The relationship be-
tweenLnf

andLnf11 may be fixed by the matching cond
tions for coupling constant at ‘‘quark thresholds’’~see, e.g.,
@17#! which is usually applied to the running coupling co
stant in the Euclidean region. The APT method opens
new possibility of performing the threshold matching in t
physical region, where the number of active quarks can
associated with the energy threshold of quark pair prod
tion. It is important to note that any matching procedure
the coupling constant in the Euclidean region, for which o
uses the condition of the type ReQ2.j2Mq

2 ~usually 1<j

<2!, leads to a violation of analyticity ofā(z). Although
s-channel matching demands only continuity of the functi
ās(s) at the threshold, and not of its derivatives, the spa
like running coupling constantā(z) will be an analytic func-
tion of z, and due to the representation~6! ā(z) ‘‘knows,’’ in
principle, about all quark thresholds. Therefore, the A
method gives a more consistent definition of the runn
coupling constant and a natural way to perform the match
procedure. Within the APT approach, we will require that t
timelike functionās

APT(s) should be a continuous function a
the threshold points:

ās
APT@~Qnf11 /Lnf

!2,nf #5ās
APT@~Qnf11 /Lnf11!2,nf11#,

~26!

whereQnf
is defined by the pole massesMq of quark pair.

Taking into account Eqs.~16! and the results of the previou
section that the unphysical singularities do not contribute
s.1 to the contour integral we can rewrite Eq.~26! in the
following form:

E
uzu5~Qnf11 /Lnf

!2

dz

z
āPT~z,nf !

5E
uzu5~Qnf11 /Lnf11!2

dz

z
āPT~z,nf11!. ~27!

Therefore, the conventional matching condition

āPT@~Qnf11 /Lnf
!2,nf #5āPT@~Qnf11 /Lnf11!2,nf11#,

~28!

which one usually uses in perturbation theory, is modifi
and written down as the relation of the contour integrals,
~27!.

As an example, consider a change of the two-loop sc
parameterL when passing through a quark pair threshold
PT and APT by usinga(M t)50.34 and the following values
of pole c-, b- and t-quark massesMc51.6 GeV, Mb
54.5 GeV, andMt5174 GeV andQ452Mc , Q552Mb ,
Q652Mt . In the perturbative case, we findL3

PT

5419 MeV, L4
PT5338 MeV, L5

PT5230 MeV, and L6
PT

592.6 MeV, the ratios of which obey the well-known rel
tions from Ref. @17#. In the APT case, we obtainL3

APT

5607 MeV, L4
APT5471 MeV, L5

APT5316 MeV, andL6
APT

5129 MeV. The ratios of these quantities are close to

s.
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perturbative relations; however, the PT and the APT val
of L with the same number of active quarks differ by abo
40%.

In Fig. 7, we plot results for the QCD evolution o
aS(Q), comparing the APT running coupling constant
discussed above which usess-channel matching according t
Eq. ~26! with the standard PT running coupling constant@see
Eq. ~20!# which uses the matching procedure given by E
~28!, starting fromMZ down toQ5M t . Also shown on the
graph is the experimental data measured by L3 Collabora
@18#. As experimental input we use the average va
aS(MZ)50.120760.0016 from Ref.@18#. ~In order to not
encumber the figure we do not plot the corridor of errors!

We should give a little explanation of how the spaceli
APT running coupling was calculated. First, we calculateL5

from the measured value ofāAPT(MZ)50.1207. Then, we
use this value ofL5 to determineās

APT for all s, and hence
through the matching procedure, determineL6 ,L4 ,L3 . The
spectral density that we used above atnf53 is determined
for arbitrary nf by ās

APT through (1/p)%(s,Lnf
,nf)

52sdās(s,Lnf
,nf)/ds. An explicit formula for% as a func-

tion of s, L, andnf is given in Eq.~24! of Ref. @12#. Then,
from the spectral representation~24!, we find the spacelike
running coupling constant from

āAPT~Q!54F E
0

4Mc
2 ds

s1Q2 %~s,L3,3!

1E
4Mc

2

4Mb
2 ds

s1Q2 %~s,L4,4!

1E
4Mb

2

4Mt
2 ds

s1Q2 %~s,L5,5!

1E
4Mt

2

` ds

s1Q2 %~s,L6,6!G . ~29!

It should be stressed that in Fig. 7 we have plotted the va
of the QCD running coupling constant extracted by using
perturbative parametrization. However, this is not really s

FIG. 7. QCD evolution of the running coupling constants~de-
fined in the spacelike region! compared to experimental data.
s
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consistent. For instance, in the case of the semileptonic
cay of thet-lepton, to parametrize the process in the term
the QCD scale parameterL one usually uses the analyti
properties of the running coupling, which are obviously br
ken by the perturbative approximation due to the unphys
singularities. Within the APT approach it is possible to ma
tain the required analytic properties and give a se
consistent description of the process@12#. That, in principle,
changes the value of the QCD running coupling extrac
from the experimental data. Thus, the experimental poi
plotted in Fig. 7 should be considered as illustrative on
Nevertheless, it is clear that if we use a normalization po
with a large value of momentum, the curve of the runni
coupling constant corresponding to the APT method lies
low than the corresponding PT line, which, from the point
view of the perturbative description, corresponds to a sma
value of L at low energy. The fact that low energy da
prefer small values of the scale parameterL and that at the
same time the high energy data prefer larger values ofL has
been emphasized in Ref.@19#. Thus, this apparent discrep
ancy may be understood in the framework of the AP
method; however, we should mention again that one need
perform a reanalysis of the low energy experimental data
using the APT parametrization, as in the case oft decay
@12#, in order to extract the QCD running coupling consta

VIII. CONCLUSIONS

Let us briefly summarize our considerations. To det
mine the running coupling constant in the timelike regio
we took advantage of APT because it provides a consis
procedure necessary for analytic continuation. It is to
noted that the APT method ensures not only correct anal
properties of the running coupling constant but also stabi
with respect to higher loop corrections, which is essential
the stability of our procedure of analytic continuation. Th
stability is provided, in part, by the universal infrared lim
value of the running coupling constant atq252Q2→20
that is invariant with respect to higher loop corrections. T
proposed method of constructing the running coupling c
stant in the timelike region results in a function with th
same universal infrared limit value whenq2→10.

Quantitatively, our analysis shows that the effect of an
lytic continuation can be associated withp2-terms only at
very large momentum transfers of the order of theZ-boson
mass where the contribution of thep2-terms is small. At
intermediate and, especially, at low momentum transfers
important to take account of the correct analytic properties
aS , which permits a consistent transition into the timeli
region. TheQ2-dependence ofaS is essentially different
from the dependence ofaS in PT. Our analysis shows tha
the popular PT expressions foraS as expansions in
1/ln(Q2/L2), containing nonphysical singularities, do not a
low a self-consistent interpretation of information obtain
from different experiments on the evolution ofaS outside of
the asymptotic region. From our numerical estimates it f
lows that analyticity of the running coupling constant h
great influence on the value of the parameterLQCD extracted
from experimental data and on theQ2-evolution ofaS . Note
that these considerations are also important for the invest
tion of power corrections, which are now under intensi
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study ~see, e.g.,@20#!. The importance of power correction
in the APT scheme relative to perturbative terms natura
will be different than in the conventional approach. As in P
the influence of quark thresholds results in a reduction of
scale parameterL as the number of active flavorsnf in-
creases. However, the importance of maintaining the cor
analytic structure suggests that the required matching
made in the physical region.

The APT method appears to be fruitful for studying t
problem of analytic continuation ofaS into the timelike re-
gion. There is no doubt that extracting more detailed inf
mation from experimental data on timelike processes
quires a more thorough theoretical analysis within A
6.
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-

including the estimation of the contributions from higher o
der processes, mass corrections, and so on. These wi
considered in our subsequent papers.
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