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Analytic perturbation theory: A new approach to the analytic continuation
of the strong coupling constantag into the timelike region
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The renormalization group applied to perturbation theory is ordinarily used to define the running coupling
constant in the spacelike region. However, to describe processes with timelike momenta transfers, it is impor-
tant to have a self-consistent determination of the running coupling constant in the timelike region. The
technique called analytic perturbation the§@APT) allows a consistent determination of this running coupling
constant. The results are found to disagree significantly with those obtained in the standard perturbative
approach. Comparison between the standard approach and APT is carried out to two loops, and threshold
matching in APT is applied in the timelike region.
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I. INTRODUCTION est (see, e.g.[5-7)]). It is obvious that information on the
. . running coupling constant obtained from timelike processes,
A fundamental issue in quantum chromodynanifQ€D) for instance, frome*e™ annihilation into hadrons, corre-

is the behawc;r of the strong interaction running couplingg,,n s to knowledge of the coupling constant extracted from
constantas=gg/4w. The basic research tool is perturbation pacelike processes such as deep inelastic scattering, if the
theory (PT) with its renormalization-group improvemefiitl.  transition from the Euclidean into the physical region is per-
In the QCD case in the limit of large momentum trans®rs  formed in a correct manndsee[3,8]) without violation of

this approach provides a logarithmic decrease of the runningnalytic properties of the hadronic correlaié¢g?) and the
coupling constantas~1/IN(Q¥A?, where A is the QCD  Adler functionD(q2). When the analytic properties are not
scale parameter that determines where the theory becomssspected, the question arises: To what extent does this
asymptotically free. The study of the behavioraf outside  breaking of analyticity influence quantities extracted from
of the asymptotic region is more difficult. It is known that physical processes? It is impossible to answer this question
the direct use of PT improved by the renormalization groupwithin the framework of standard perturbation theory. On the
leads to infrared instability ofrs and unphysical singulari- other hand, the APT method retains the correct analytic
ties, for instance, a ghost pole @2= A2. Unphysical sin- properties of the AdleD-function and, in addition, gives
gularities of a perturbative running coupling constant pre-Simple analytic expressions that can be compared with cor-
clude a self-consistent determination of the effective'®Sponding PT expressions and, therefore, allows quantita-
coupling constant for timelike momentum transfers. Re-V® analysis of the influence that the breaking of
cently, a new method has been propof&idor constructing Q" -analyticity has on the running coupling constant.

the QCD running coupling constant in such a way as to The orgqmzaﬂon.of this paper is as follows: Ir.] the fpl-
retain the correct analytic properties. This method is calledOWIng section, we discuss the procedure of analytic continu-

analytc perubaton eosAPT). The man purpose of s (L0 1O e, spacelkeiCuctienn o e imeke
paper is to analyze the region of timelike momentum trans; gion. X b

. the conventional one-loop PT approach, and demonstrate
fers on the basis of AP2,3], and compare the results of the that it is inconsistent. In Sec. IV we resolve this problem
PT and APT approaches.

. . o . through the APT approach, and in Sec. V we compare the
Itis well known that a theoretical description of important .oq ,its of these two schemes. We move on to two-loops in
timelike processes such ase™ annihilation into hadrons, gec v, and demonstrate the stability of the APT approach.
or of decay widths of the-lepton andZ-boson into hadrons, A matching procedure for timelike momentum transfers is
requires analytic continuation of the running coupling con-given in Sec. VII, where we show how the coupling constant
stant from the spaceliké€Euclidean region of momentum depends on the number of active flavors. A summary of our
transfers ¢>=—Q?<0) into the timelike(physica) region  results is given in the Conclusions.
(g?>0). Although this problem has been studied since the

1970s(see, e.g.}4)), it still remains a subject of great inter- Il EFFECTIVE COUPLING CONSTANTS IN THE

TIMELIKE AND SPACELIKE REGIONS

*E-mail address: milton@mail.nhn.ou.edu First, we note that in the standard approach, the running
"E-mail address: olsol@thsun1.jinr.dubna.su coupling constant in QCD as a function ©f is determined
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by the renormalization-group analysis in the region of space-
like momentum transfers. However, to parametrize many
physical processes, one needs to know the coupling constant
in the timelike region. To be specific, many experimentally
measured ratioR,,, where, e.g.o=e*e”, 7, Z,..., can be
written in the formR,=R{®(1+A_). HereA, is a QCD
correction and?f,o) represents the parton level of description
of a given process with electroweak correctioAs. can be
expressed through the imaginary part of the hadronic cor-
relator R(s)=Im II(s)/w. To parametrizer(s) in terms of
QCD parameters, a special procedure of analytic continua-
tion is required. With that end in view, one usually employs
a dispersion relation

dii(z) foc R(S)

z| ds——,
o (s—2)°

z-plane

1Zl=5

S+ig

Cl S-1¢&

D

5 . . FIG. 1. Integration contours in the complesplane.
wherez=q*, and the inverse relation

) Ill. PT ANALYSIS
s+ie D(Z)
Z—5 Consider the above procedure of analytic continuation

@) within PT. In the one-loop approximation, the running cou-

pling constant is of the form
where the contour joins pointsrie and lies in the region of 1 1 1 1
analyticity of the functionD(z), going around the cut Re aPl(z)= — = — ,
>0. Bo IN(Q/A%) By In(—2)

We define the effective coupling constartd’ and at",

1 Js+ied dii(z) 1
RO=55 .9 7dz =" 2m

s—ie

z=—Q?/A?
(7

respectively, in the spacelikét-chgme] and timelike

(s-channel regions, using the notatiom= a/47 and dimen-
sionless(in units of the scaling parametex) momentum
variables, by

D(z)x1+d,a(z)+d,a%(z)+---=1+d;a%(z), (3
R(S)x1l+ rlgs(s)+r25§(s)+~--= 1+ r1§§“(s).
4

Relations(1) and (2) and the equalityd;=r result in the
connection between these effective coupling constants

1 st+ie dz

af(s)=— 2 ) Z a*"(2), ©)
_ e d _
a®f(z)= —zJ’O ﬁ a(s). (6)

Therefore, the QCD corrections, for the class of physical

where B8o=11—2n;/3 is the one-loop coefficient of thg-
function corresponding tos active quarks. Inserting Eq7)
into Eq. (5) we obtain the following expression for the run-
ning coupling constant is-channel:

EPT(S):_ 1 js+ied_z 1

s 2miBy Js—ie z In(—2)
3 7r+ . Ins g
= ’77_,80 E arc an7 . ( )

This expression is physically meaningless, because it is
negative for any and does not have the correct asymptotics,
that is, going as 1/l ass—oe; the reason will be explained
below.

There is another way of calculatings, based on the
Shankar metho@9]. Using analyticity of theD-function in
the complexz-plane with the cut along the positive real axis,
we may pass from the integral along the cut, given by ex-
pression5), that is, around the conto@; (see Fig. ], to an

processes considered with timelike momentum transfers adgtegral around a circle of radiuz|=s in the complex

to be parametrized, according to E@), by the effective
coupling constanag‘“(s), which is explicitly related t@®"(2)
by Egs.(5) and(6).

In any finite order of PT, the analytic properties of the
running couplinga(z) should be the same as for the effective
coupling constan&®™(z). Therefore, the connection between

t- ands-channel running coupling constanaz) andgs(s)
is defined by equations likés) and(6). In the one-loop ap-

z-plane, contourC,, parametrized by= —s exp(ip), —
<<, to arrive at the expression

s 1 dz — 1 w de
a7 (s)= = 7 a"l(z)= f .
i Jc, 278y J-nInstip
1 T
= 77_,80 arctar]n—s, 9

proximation the effective coupling constants coincide withthis is positive whers>1 and possesses the correct ultravio-
the running coupling constants and in higher loops, the conlet asymptotics. It is just this expression that is used as a
nection depends on the physical process. one-loop PT result for all timelike momensz0:
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coupling constanf13), both methods of calculatings con-

—pT - o
as” (S)= Bo arctan _—. (10 sidered above produce the same result: i.e.,
) . . - dz — 1 dz —
IL‘ Plf obvious that Eq.(10) provides the restriction EQPT(S):___ AP = —— f —Za*T(z)
as”" (s)=2mlB, for anys (see[10]). 2mi Jc, 2 2mi Jc, 2
Thus, a formal conversion of the PT one-loop running
: . . i X 1 (# Ins
coupling constant in the spacelike regi@h into expressions =— | = —arctan—|. (14)
for the coupling constant in the timelike region leads to con- mBo | 2 ™

tradictory resultg8) and (9). The reason can easily be un- , . .
derstood if one applies the Cauchy theoré&see Fig. 1 to We note that APT and PT give distinct values for the running

establish the connection between the integrals in Byand ~ COUPling constant in the timelike region: for example,
), 1
alPT=aPT+ — (15)

if dz</;(z)=—i.f dzy(z)+reg ¥(z),— 1],
2 C, 2i (o T . i .
wherea; ' is given by Eq.(8). Consistency of the APT ap-

proach also follows from the fact that we can reconstruct the

(1) initial expression(13) when the timelike coupling14) is
substituted into Eq(6). It is of interest to note that this

which is consistent with Eq¢8) and (9) because the residue consistency is due to the second term in E) that com-

of the functiony(z) at the poinz=—1 is 1. Therefore, the pensates the pole, whose contribution t'o the integral around

discrepancy between E@8) and Eq.(9) is due to an un- the cc_)ntourCZ equals zero whes>1: i.e., we have the

physical ghost pole in Eq(7) at z=—1 that violates the €quality

required analytic properties of the running coupling constant.

The inclusion of multiloop corrections does not solve this f d_ZgAPT(Z):J' d_zva(z) s>1 (16)

problem but rather produces new unphysical singularities, as c, Z c, Z ’ ’

we will see in Sec. VI. Therefore, keeping to standard PT .

approximations that violate the necessary analytic propertiefhere the functiora™'(z) is defined by Eq(7). Therefore

of the running coupling constant makes it impossible to passhe PT expressiof7) gives the same result as the APT ap-

into the timelike region in a self-consistent way. This can,proach in the timelike region fas>1 if the contourC, is

for instance, be demonstrated by making an inverse transissed. However, there is no inverse correspondence for PT

tion from the timelike into the spacelike region with the help[see formula(12)]. Moreover, note that an equality analo-

the dispersion relatiofil). Substituting the running coupling gous to Eq/(16) does not arise if the integrand contains the

constantag(s) given by Eq.(9) into integral (6) following  running coupling constant multiplied by a function ofFor

from Eg. (1) and taking account of the expression theR,-ratio, for instancea is multiplied by a polynomial in

arctanr/In s)=sgn(Ins)#/2— arctan(Ins/7), we arrive atthe  z and, as is shown ifiL1], the contour integral oveE, in PT

W(2)=

zIn(—-2z2)’

formula turns out to be different from that in the APT approdch.
SOPT” _ i 1 1 _ V. NUMERICAL COMPARISON OF RUNNING
a " (2) + . (12
Bo In(-z) 1+z 1-z COUPLING CONSTANTS
which is different from the starting point, E€7). The results obtained are illustrated in a series of figures.

(In these figures we take the number of quark flavors to be
3.) First, we consider the region of small momentum trans-
fers. Figure 2 shows the behavior of the running coupling
The problem of how to make the correct transition be-constant computed by different methods in the regioh0
tween the space- and timelike regions can be solved in the=s=g?/A?<10. The solid line represents the APT coupling
framework of the APT methofR,3] that ensures the correct constant calculated by formuld?3) in the spacelike region
analytic properties of the coupling constant without introduc-(numberl in the figure and by formula14) in the time-like
ing extra parameters. The resulting one-loop expression fdiegion (curve 1*). Dots denote the “PT” coupling constant
the analytic coupling constant in the Euclidean region is agletermined by Eq10) (curve2*) and by Eq(12) (curve2).
follows: The dash-dotted lin@ represents the PT coupling constant
computed by formuld?) in the spacelike region, and curve
3* by formula(8) in the timelike region(Incidentally, note
: (13)  that curve and2* vanish at the origin, which is beyond the
resolution of this figure, while curvésand1* approach the

IV. APT ANALYSIS

1 N 1
In(—z) 1+z

— 1
a*PT(z)= —

Bo

The first term in square brackets determines the asymptotic

behavior at large momenta and is of the form given in PT.

The second term, of a nonperturbative nature, compensatesa detailed comparison of inclusivedecay can be found in Ref.
the ghost pole az=—1. When one employs the analytic [12].
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N FIG. 3. Behavior of the running coupling constant as a function
FIG. 2. The behavior of the running coupling constant calcu-of the dimensionless variabk=|qg?/A2. Notation is the same as
lated by different methods as a function of the dimensionless variin Fig. 2; a dashed horizontal line correspondsate 0.34. The
ables=g?/A%. graph on the right top shows the behavior of the same curves for
large values o6.
universal value 4/B,=1.40 at the origin).

As_is seen from Fig. 2, the b*eh_avior of the APT rur_ming here is to use the spacelike valuewto determineQ?/ A2,
coupling constant&urvesl and1*) is almost, but not quite, and then, with the same numerical valuesofdeterminezs

mlrrc.)r—symmelltrlc, and ta$:to the spﬁlce' an:j ttm;ﬁ"ke APT from Eg.(14) and Eq.(10), respectivelyl With the accuracy
running coupling constants are both equal 10 the UNIVEIS&) . ineq g present for experimental data on the hadronic de-

value 4/ B, (see[3]). The pairs of curves of the standard . s : . .
PT approach3 and2*, or 3 and3*, do not show analogous g%):ﬂ%t::;]?— [14], this quantitative discrepancy is becoming

behavior of the running coupling constants. In the spacelike Let us finally observe the evolution of the running cou-

region the functiona”" grows without limit (curve 3),  pling constant in the region of momentum transfers of order
whereas in the timelike regiofturve 2¥) it is limited to the  of the Z-boson mas$1,=91.2 GeV. The running coupling
value 2m/f3,. Curve2 calculated with the coupling given by constantx, corresponding to the dimensionless variabie

curve 2* in the dispersion integral does not reproduce thedrawn in Fig. 4.(At this point, we neglect the change in the

'n't;\?l curve 3d th . here th . i number of active quarks with growing energy since this ef-
ow consider Ihe region where the running coupling Cong .t goes not change the overall picture. We will consider the

stanta~0.3, which approximately corresponds to the massghange in the number of active flavors at the two-loop level

scale of ther-lepton, M,=1.78 GeV, a(M,)=0.34£0.04 iy Sec. VII) The curve denoted by represents all three
[13]), defined in the spacelike region. It is known that thecyrves 1, 2 and 3 that are drawn in Figs. 2 and 3 and describe
decayr— hadrons is important for testing QCD, as it allows the behavior of the running coupling constant in the space-
the most accurate determination of the running COUpling CONK{ke region, which merge into one curve with h|gh accuracy
stant at comparatively low energi¢see the review14)). for these large values af The curve denoted by corre-

Figure 3 shows the behavior of the running coupling con-, . . . ;
: . ) . sponds to the coupling constant in the timelike region and to
stant versus the dimensionless variabte 2|/ A2. Notation P ping g

is the same as in Fig. 2; a dashed horizontal line corresponds

to «=0.34. As it is seen from the Fig. 3, curvis2, 3 that 0122
describe the spacelike region noticeably differ from each
other. With increasing, they begin, as they should, to ap- 0.120
proach each other, which is demonstrated on the top right o

Fig. 3. Values of the parametdrcalculated with the running 0118
coupling constants described by cunde® and3 are differ-

ent. For example, the value of APT-functi¢gcurvel), equal

to 0.34 is achieved at,=41.5, which corresponds t*PT  0.116
=276 MeV. For PT-curve s,=60.5 andAP"=228 MeV.

Note that for curve2 the valuea=0.34 cannot be achieved 0.114
at any value ofs. For timelike momentum transfers, recall . .
that curvesl* and2* as functions of the dimensionless vari- 100000 150000 2,2 200000
ables coincide whers>1. However, they are characterized s=1q71/A

by different values of\, which results in different values of FIG. 4. Behavior of the running coupling constant in the vicinity

the running coupling constant in the timelike region, of the 7-hoson mass. Curvek 2, 3 and1*, 2* represent the same
E@PT(M,)=0.31 and aSPT (M,)=0.29. [The procedure coupling constants as in Fig. 2 and Fig. 3.

1% 2*
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curves1* and2* plotted in Figs. 2 and 3. In the region of compensate for the contributions of the unphysical singulari-
sufficiently large values o§, the well-known approximate ties, a pole and a cut:
formula with the so-calledr?-term (see, e.g.[7,15])

- a*l(2)=a"(2)+Aapd D) +Aae(2). (18
— T
045# 1- 3 W_s) 17 For the two-loop perturbative running coupling constant, we
use[2,12]

works well (with an accuracy-0.1%) both for PT and APT. )
This approximation gives a difference betweepand a of aPl(z)= i L , L=In(-2)=In Q_z
about 2%. Substituting the value of the parametdixed at Bo L+BaIn(1+L/By) A
g=M ., we obtain the corresponding values of the running (19

coupling constant alg=M;: a""'=0.120, a""=0.117  \yhereB,=B,/8,2, and B,=102—38n,/3 is the two-loop
(spacelike region a2"7=0.118, at7=0.114 (timelike re-  coefficient of thes-function. Obviously, at large L Eq19)

gion). Thus, even at such large values ©f the effect of gives the standard PT expression as an expansion in inverse
analyticity on the running coupling constant amounts topowers of L,

~2%, i.e., it is comparable with the contribution from the

m?-term and from higher PT loop corrections. ~—pT 4m ( l'” L

X asympt™ BoL

L—i—O

1
3 (20
VI. TWO-LOOP RESULTS . o .
According to Eq.(19), the contribution coming from the
We now extend the above considerations to the two-loounphysical pole is cancelled by

level. The distinction between the APT and the PT running
coupling constants in the Euclidean region has to do with the — 1 1

i i iti I i Aa I&Z) =55 _!
unphysical singularities of the PT running coupling constant. po 2By 1+z
Following the results of Ref[2], we can write down the
analytic running coupling constant in the form of a sum ofwhile the unphysical cut is removed by the following com-
the standard perturbative part and additional terms whiclpensation term:

(21)

1 feXP(*Bl) do 7B,

Aag(z)= — . 22
3cuf2) 6 otz [In o1 Byn(—1-In o/B;) ]2+ 7282 22

7B

To calculate the analytic running coupling constant in thein Fig. 3. The solid line represents the APT coupling con-
timelike region, we use the expression in terms of the specstant in the spacelike region, which can be computed from

tral densityp(o) [3]: (18); this is like 1 in Figs. 2 and 3. The dotted line denotes
the APT coupling constant in the timelike region, computed
—ApT 1 (=do from (23); this is like 1* in one-loop. The dashed line rep-
ag (s9)=— | —el(o), (23)
s @ Ay .
— . . 035 —— APT
whereg (o) =Im a""(— o—ie€). The spectral densitg plays YO APT(timelike)
a central role iﬂthe APT method; the spacelike running cou- A PT
pling constanta””", is also expressed throughas follows: 030 - PT(timelike, n2-term)

(=L f 2o, (24)

mJo o—zZ—ie€

0,25 +

As outlined above, independently of the order of approxi-
mation, the APT running coupling constants defined in the
space- and timelike regions &°=0 ands=0 are both 020 L
equal to the universal infrared limiting valuemdB, [3], _
which is important to establish the stability in the region of L i L . L . ! . )

the small momentum transfer§This result is proved in 0 50 100 150 - 200
[12].) Consider the region in which the value of running loZ/A
coupling constanta~0.35 (the 7 lepton scalg Figure 5 FIG. 5. Behavior of the two-loop running coupling constant in

shows the behavior of the two-loop running coupling con-the PT and APT schemes, both in terms of spacelike and timelike
stant for the same interval of the dimensionless variakde  definitions.
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VII. s-CHANNEL MATCHING

Let us now discuss the issue of how the parameéter
changes with energy as the number of active quark changes:
A—>Anf (see[16] for further detail$. The relationship be-

tweenAnf andAnf+1 may be fixed by the matching condi-

tions for coupling constant at “quark threshold¢see, e.g.,
[17]) which is usually applied to the running coupling con-
stant in the Euclidean region. The APT method opens the

1,02 new possibility of performing the threshold matching in the
- q2)/A2 physical region, where the number of active quarks can be
1,00 T E ! ! associated with the energy threshold of quark pair produc-
0 200 400 600 800 1000

tion. It is important to note that any matching procedure of
FIG. 6. The ratio of spacelike and timelike values of the runningthe coupling cqnstant in the EUCI'deanzreg'on’ for which one

coupling constant in the APT scheme, at one, two, and three loop&/S€S the condition of the type RE>¢ Mq_(Usua”y I=¢

<?2), leads to a violation of analyticity ofi(z). Although

resents the spacelike PT coupling constant defined by fogchannel matching demands only continuity of the function
mula (19), which is like 3. The dash-dotted curve corre- a¢(s) at the threshold, and not of its derivatives, the space-
sponds to timelike PT coupling constant constructed takindike running coupling constaret(z) will be an analytic func-
into accountm?-terms, like Eq.(17), and analogous to*2  tion of z, and due to the representatit) a(z) “knows,” in

This figure demonstrates that, as in the one-loop case, thepginciple, about all quark thresholds. Therefore, the APT
is a difference in behavior of all these constants. Moreovermethod gives a more consistent definition of the running
the region in which the value of running coupling constant iscoupling constant and a natural way to perform the matching
about 0.34, is shifted to smallef the value of 0.34 for the procedure. Within the APT approach, we will require that the
APT running coupling constant is achievedsgt8.6 which  timelike functionEﬁPT(s) should be a continuous function at
corresponds to\*PT=607 MeV and the value of the time- the threshold points:

like running coupling constar#’"T=0.32. For the PT run-
ning coupl?ng c:nst%mso:lS andAPT=419 MeV. Thus, EQPT[(Q“ﬁl/Anf)z’nf]:gépT[(anﬂ/Anfﬂ)Z,nfﬂL 1],
while in the one-loop case APT parameteris 20% larger (26)
than PT value, in the two-loop case this discrepancy inwherean is defined by the pole mass#, of quark pair.

creases to 45%. 3 ~ Taking into account Eqg16) and the results of the previous
In Fig. 6 we show the stability of APT result for the ratio section that the unphysical singularities do not contribute at

of the space- and timelike APT running coupling constantss> 1 to the contour integral we can rewrite E6) in the

The solid line corresponds to three-loop case, the dashed lifgllowing form:

is two-loop, and the dot-dash is one-logphe one-loop re-

sult was already given if3].) f d_z a*T(z,n,)
Let us now demonstrate that in the two-loop approxima- |21=(Qn +1/An)? Z .

tion, as in the one-loop case, the equalify) is valid as

well. By using Eq.(18), we get

dz
= —aN(z,n;+1). (27
‘Z|:(an+1//\nf+1)2 z

dz — dz —
ZWngPTZ f ? aAPT( Z) — f ? aPT( Z)
C2 C2 Therefore, the conventional matching condition
dz — dz — _ _
+f 7Aapo|e<z>+f 7 Aaad2). (29 a"[(Qn+1/An) %0 ]=a"T(Qn 1/ A+ 1)%Ne+ 1],
CZ C2 f f f f

(28)

which one usually uses in perturbation theory, is modified
As follows from(21), the pole term has the same structure asand written down as the relation of the contour integrals, Eq.
in the one-loop approximation, and its contribution to con-(27).
tour integral equals zero whes»1. One can also find that As an example, consider a change of the two-loop scale
the contribution of the cut terrf®2) in Eq. (25) equals zero parameter\ when passing through a quark pair threshold in
whens>exp(—B,).% As a result, the equality16) holds for ~ PT and APT by using:(M,) =0.34 and the following values
s>1 as well, but it should be stresséke above discussion of pole c-, b- and t-quark massesM.=1.6 GeV, M,
in Sec. \J that this does not mean that the APT and PT=4.5 GeV, andM;=174 GeV andQ,=2M., Qs=2My,
timelike coupling constants coincide with each other. Qs=2M,. In the perturbative case, we find\5'
=419 MeV, A§'=338 MeV, AL"=230 MeV, and ALT
=92.6 MeV, the ratios of which obey the well-known rela-
2In Fig. 5 we do not plot the three-loop res@ee[2)), because it tions from Ref.[17]. In the APT case, we obtaih5" "'
practically coincides with the two-loop one. =607 MeV, AL" =471 MeV, AFT=316 MeV, andA§""
3For 0<n;<6 we have 0.4 exp(—B,;)<0.6. =129 MeV. The ratios of these quantities are close to the



5408

01F o
1 10

100

Q (GeV)
FIG. 7. QCD evolution of the running coupling constafdg-
fined in the spacelike regiprtompared to experimental data.
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consistent. For instance, in the case of the semileptonic de-
cay of ther-lepton, to parametrize the process in the term of
the QCD scale parameteY one usually uses the analytic
properties of the running coupling, which are obviously bro-
ken by the perturbative approximation due to the unphysical
singularities. Within the APT approach it is possible to main-
tain the required analytic properties and give a self-
consistent description of the procdd®]. That, in principle,
changes the value of the QCD running coupling extracted
from the experimental data. Thus, the experimental points,
plotted in Fig. 7 should be considered as illustrative only.
Nevertheless, it is clear that if we use a normalization point
with a large value of momentum, the curve of the running
coupling constant corresponding to the APT method lies be-
low than the corresponding PT line, which, from the point of
view of the perturbative description, corresponds to a smaller
value of A at low energy. The fact that low energy data
prefer small values of the scale parameteand that at the
same time the high energy data prefer larger values béas

perturbative relations; however, the PT and the APT valuebeen emphasized in Rgf19]. Thus, this apparent discrep-
of A with the same number of active quarks differ by aboutancy may be understood in the framework of the APT

40%.

method; however, we should mention again that one needs to

In Fig. 7, we plot results for the QCD evolution of perform a reanalysis of the low energy experimental data by
ag(Q), comparing the APT running coupling constant asusing the APT parametrization, as in the caseradecay
discussed above which useghannel matching according to [12], in order to extract the QCD running coupling constant.

Eq. (26) with the standard PT running coupling constgsge

Eq. (20)] which uses the matching procedure given by Eq.

(28), starting fromMz down toQ=M .. Also shown on the

VIIl. CONCLUSIONS

graph is the experimental data measured by L3 Collaboration | et us briefly summarize our considerations. To deter-
[18]. As experimental input we use the average valuemine the running coupling constant in the timelike region,

ag(Mz)=0.1207-0.0016 from Ref[18]. (In order to not

we took advantage of APT because it provides a consistent

encumber the figure we do not plot the corridor of erfors. procedure necessary for analytic continuation. It is to be
We should give a little explanation of how the spacelikenoted that the APT method ensures not only correct analytic

APT running coupling was calculated. First, we calculate
from the measured value @f*""(M,)=0.1207. Then, we
use this value of\ 5 to determinea"" for all s, and hence

through the matching procedure, determing A 4,,A5. The
spectral density that we used abovenat 3 is determined

for arbitrary n; by ai"T through (1) e(s,An,.ny)
= —sdgs(s,Anf,nf)/ds. An explicit formula forg as a func-
tion of s, A, andn; is given in Eq.(24) of Ref.[12]. Then,
from the spectral representatid®4), we find the spacelike
running coupling constant from

a1(Q)=4

w2 ds
fO ¢ S+QZQ(S’A3’3)

a2 ds
+ f4|\/|2b S+Q2 Q(SIA414)

amz ds
1, —QzQ(S,A5.5)

amg St

o ds
+f4Mt2 S+—QZQ(S,A6,6) . (29)

properties of the running coupling constant but also stability
with respect to higher loop corrections, which is essential for
the stability of our procedure of analytic continuation. This
stability is provided, in part, by the universal infrared limit
value of the running coupling constant gt=—Q?— —0
that is invariant with respect to higher loop corrections. The
proposed method of constructing the running coupling con-
stant in the timelike region results in a function with the
same universal infrared limit value wheg— + 0.
Quantitatively, our analysis shows that the effect of ana-
lytic continuation can be associated wit#f-terms only at
very large momentum transfers of the order of #¥oson
mass where the contribution of the?-terms is small. At
intermediate and, especially, at low momentum transfers it is
important to take account of the correct analytic properties of
ag, which permits a consistent transition into the timelike
region. TheQ2-dependence ofrg is essentially different
from the dependence afg in PT. Our analysis shows that
the popular PT expressions fotrg as expansions in
1/In(Q%A?), containing nonphysical singularities, do not al-
low a self-consistent interpretation of information obtained
from different experiments on the evolution @§ outside of
the asymptotic region. From our numerical estimates it fol-
lows that analyticity of the running coupling constant has
great influence on the value of the parameteyp extracted

It should be stressed that in Fig. 7 we have plotted the valu&om experimental data and on tig-evolution ofas. Note
of the QCD running coupling constant extracted by using thehat these considerations are also important for the investiga-
perturbative parametrization. However, this is not really selftion of power corrections, which are now under intensive
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study (see, e.g.[20]). The importance of power corrections including the estimation of the contributions from higher or-
in the APT scheme relative to perturbative terms naturallyder processes, mass corrections, and so on. These will be
will be different than in the conventional approach. As in PT,considered in our subsequent papers.

the influence of quark thresholds results in a reduction of the

scale parameteA as the number of active flavors; in-

creases. However, the importance of maintaining the correct ACKNOWLEDGMENTS
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