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First we summarize the quark-level linearmodel compositeness conditions and verify that indeed
=2my whenm_ =0 andN.= 3, rather than in th&l.— limit, as is sometimes suggested. Then we show that
this compositeness picture also predicts a chiral symmetry restoration températi2é,., wheref . is the
pion decay constant. We contrast this self-consisfen compositeness analysis with prior studies of the
compositeness problerfS0556-282(98)00408-1
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Now that the scalarr meson has been reinstated in theis valid, then Eq(2b) requires
1996 Particle Data GroufPDG) tables[1], it is appropriate
to take seriously the various theoretical implications of a N{N.=6 (4)
quark-level linearr model(LoM) field theory. The original
spontaneously brokendM theory[2] was recently dynami- or N.=3 whenN;=2, the latter being an input in the $2)
cally generated3] at the quark level in the spirit of Nambu LoM .
and Jona-Lasini¢4]. In this paper we summarize the color It is well known that form®— 2~ decay, theN¢=2 quark
numberN, and compositeness properties of the abové2pU triangle empirically suggestdl.=3 (also a LoM resulf.
quark-level loM and comment on the recenuiM analysis  Moreover, Eq.(4) also follows from “anomaly matching”
of compositeness given by Lurie and Tuppgl. [8,9]. However, we shall not invoke here the strongeut
First we display the interacting part of the standareM.  consistent constraints due to dynamically generating the
[2] (quark-leve] Lagrangian density shifted around the true (quark-leve) LoM as they follow from comparing quadratic

Vacuum<7;>:<g>:o; and logarithmically divergent integrals usirigompatible
regularization schemd8].
Li=9(o+iysr m)p+q' (o2+ 72 o— (NA) (o2 + 72)2 Thus the condition4) depends on the NJL relatio3)
o being true also in the &M. The latter assertion follows
—f. 9w, (1@  when one dynamically generat¢8] the entire loM La-

. ' ' grangian (1) starting from a simpler chiral quark model
with (spontaneously brokenchiral couplings forf,~93  (CQM) Lagrangian, as well as dynamically generating the
MeV two additional equations

— I — m?2 —
g=mg/f,, g'=m/2f =\f_. (1b) m, =2m, g=2m/\N,. (5)
Once the loM scalar field is shifted t¢o) =0, giving rise to ~3 the | . K ling i .
the interacting but chiral-brokenaM Lagrangian(1), the 7O Ne=3, the latter pion-quark coupling in E@S) is g
Lee null-tadpole conditiod6] depicted in Fig. 1 must be :277/\/§~3'63' near the anticipated value found from the
valid. Following Ref.[3], which exploits the dimensional 7NN couplingg yy~13.4 S0 thag~g.yn/3ga~3.5. Then
regularization[7] characterization of these quadratic diver-the nonstrange constituent quark massmg=f 2/ V3

gent tadpole graphs in Fig. 1 d8i*p(p?2—m?)~1~m?, one  ~326 MeV, nearM\/3 as expected. However, rather than
expresses the Lee condition as repeating Ref[3] in detail, we offer an easier derivation of
m,=2m, following only from the quark loops induced by
0= —4myN{N,gmZ+0+3g'm?, (2a)  the CQM Lagrangian. This naturally leads to the notion of
“‘compositeness.”
where the zero on the right-hand side of E2p) corresponds To this end, we invoke the log-divergent gap equation

to me=O in the chiral limit. Upon using Eqg1b), this Lee  from Fig. 2:
null-tadpole condition2a) becomes

L N{Ng(2mg)*=3m’. (2b) 1=—i4%Nch92f d*p(p?-mj) 2, (6)
Clearly, if the Nambu—Jona-LasinitNJL) relation[4]
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*Permanent address: Physics Department, University of Arizona,
Tucson, AZ 85721. FIG. 1. Quark and meson tadpole loops summing to zero.
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FIG. 2. Quark loops for the axial vector current matrix element

(O[A[ ).

whered*p=(2) “*d*p. Equation(6) is the chiral-limiting
one-loop nonperturbative expression of the pion decay co
stantf ,=m,/g with the quark mass, canceling out. This
LoM log-divergent gap equatiof®) also holds in the context
of the four-quark NJL mod€]10]. Then the one-loop-order
O.-~ Coupling depicted in Fig. 3 is

go"rrrrzzgmq[ - |4%Nch92f d4p(p2_ mé)_z} :ngq .
(7

The one-loopg, ., in EQ. (7) “shrinks” to the tree-order
meson-meson coupling in Edlb), g’=m?/2f ., only if
m,=2m, is valid along with the quark-level Goldberger-
Treiman relationGTR) f ,g=m,. This is aZ=0 compos-
iteness conditiof11], stating that the loosely bound me-
son could be treated either agi@ bound statéas in the NJL
picture or as an elementary particle as in theM frame-
work of Fig. 3. However, in either case,=2m, must hold
and therefore the additionaltM Lee condition(2) requires
N.=3 whenN;=2 in Eq. (4).

It is also possible to appreciate the one-loop order0
compositeness condition in the context of theNL [3] in a
different manner. Our version of th8=0 compositeness
condition is that the log-divergent gap equati@ can be
expressed in terms of a four-dimensional UV cutoff as

1=In(1+A%md)—(1+mi/A?) 1, (8)
where we have substituted ondy=27/\/N. andN;=2 into
Eq. (6) in order to deduce Ed8). The numerical solution of
Eq. (8) is the dimensionless ratio\/my~2.3, which is
slightly larger than the NJL ratio in Eq(3) or in Eq. (5),
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N.g?

23:1_ 4772 f (9)

Then the dynamically generated-M meson-quark coupling
in Eq. (5) indeed corresponds t@;=0 from Eq. (9), as
anticipated.

However, the renormalization constaitin Ref.[5] then

becomes, using Eq8),

Z4:1+ 3N—

(10

2N.g*] 1
N Jan?

Ignoring for the moment the second term in E40) propor-
tional to 3\, we note that the log-divergent gap equatién
requires therr— 7 quark box(dynamically generated by
the CQM Lagrangian“shrinking” [as in Eq.(7) and in Fig.
3] to a point contact term provided thaf 3]
A=2g% (11
Equation(11) also follows from both krM couplings[2] in
Eq. (1b) combined withg,,,,=2gm, from Eq. (7). Substi-
tuting Eq.(11) into the third(quark loop term in Eq.(10),
one finds
N.g°

Z4:1+0_ >

(12

4

(where the middle zero term corresponds to the neglected
meson loop in contrast to Rdf5]). Equation(12) parallels
theZ5 renormalization constant in E(P). In these two cases
N.g*
412

23:Z4:1_ (13)

and then the resulting compositeness conditidgs Z,=0
both reconfirm thatg=2=/\N,, as earlier dynamical gen-
erated in Eqs(5).

The reason why one must neglect the second meson loop

m,/my=2. Introducing the above dynamically generatedterm proportional to & in Eq. (10) is because, e.97,7s

quark mass of 326 MeV, the UV cutoff inferred from E§)
[i.e., from Eq.(6)] is A~2.3m;=750 MeV. This 750-MeV
cutoff in turn suggestén the LoM) that lighter masses sig-
nal elementary particles, suchms =0, my~325 MeV, and

— a5 Scattering has tree-levébr one-loop graphs that
mustvanishin the strict zero momentum chiral limit. This
fact was emphasized on pp. 324-327 of the text by de Al-
faro, Fubini, Furlan, and RossetDFFR) in Ref.[2]. Spe-

m,=2m,~650 MeV. Heavier meson masses than 750-Me\cifically, the quartic loM contact term—\ is canceled by

signal qg bound states, such ag(770), (783, and
A1(1260). This is the essence of tlZe=0 compositeness
conditions of Ref[11].

Given the above equatior{8)—(8), we are now prepared
to comment in detail on thedM compositeness analysis of
Ref.[5]. Again using the log-divergent cutoff conditidB),
the LoM renormalization constart; computed in Eq(3) of
Ref.[5] can be expressed as

FIG. 3. Chiral quark model loops far— 7.

the cubico pole term @’zlmiﬂ)\ by virtue of the Gell-
Mann—Levy LoM meson chiral couplings in Eq1b). After
the (tree-leve) lead term cancellation between contact term
N ands,t,u,c meson poles in the &M, DFFR obtain the
amplitude

1
T n™ f—z(séaﬁﬁﬁ-f—téay&ﬁ,;-i— Udys505y)- (14

m

Then DFFR in[2] note that Eq(14) above is just the Wein-
berg 7 amplitude[12] whenm?2 =0, found instead via the
model-independent current algebra and partial conservation
of axial vector current rather than from therM). Also note

that Eq.(14) indeed vanishes in the strict zero-momentum
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chiral limit. A similar chiral cancellation of the 3 term in T.=2f,~180 MeV. (16)
Eq. (10) also holds in one-loop order.

When computing the one-loop order renormalization conWhile this predicted temperature scale in Eff) had been
stantZ, as done by Lurie and Tupper in R¢6] leading to  Obtained earlief15,16), Lurie and Tuppef5] also noted Eq.
Eq. (10) above, one must be careful ta) account for DF- (16) above but rejected it because of the meson loop contri-
FR's cancellation due to the soft chiral symmetry relationbutions in Eq.(15). A
2g'2/mZ—\ and (b) reorganize the perturbation theory us- ~ We in turn claim that the first twor and 7 loop terms in
ing the log-divergent gap equatid6) to shrink quark loops EQg.(15) [and the middle term in Eq10) proportional to 3]
to a contact meson termwith A =2g? as found in Eq(11).  are all zero due to chiral cancellations as by DHER Then
Then, even in one-loop order one must recover the Weinbergg. (15) reduces to the nontrivial solutioN.g?T2/6=\f2
form for =7 scattering Eqg.(14) in a model-independent (leading toT.=2f_) or to a quark box loop shrinking to a
fashion. meson-meson quartic poifi8] due to the log-divergent gap

This means that the meson loop graph with quartic couequation(6), itself a version of th& =0 compositeness con-
plings proportional to 2 contributing toxZ, as A2/47%in  dition.

Eq. (10) will be canceled by fermion box graphs that are of  Although we concur with Lurie and Tupper{$] choice
higher loop order. Although our nonperturbative approactof the finite-temperature quark bubble sign in Ef#5) (as
mixes perturbation theory loops of different order, bothopposed to the studies in R¢L5)), there is an easier way to
DFFR’s and our use of the Gell-Mannahechiral symme-  deduceT .= 2f . by studying the single fermion loop propa-
try meson relation Q’zlmi—m have the bonus of our non- gator dynamically generating the quark mg3k Then, with
perturbative approach retaining the consistent chiral symmeio sign ambiguity arising at finite temperature one fifitig
try compositeness conditiat,=2,=0 from Eq.(13).

Keeping instead the middle term in E{.0) proportional
to 3\, Lurie and Tuppef5] conclude that the resulting,
=0 (then different compositeness condition requires that
the NJL limit m,—2m, is recovered only whem — . where the—mi factor in Eq.(17) indicates thec meson
Akama and Zinn Justifi13] reach the same conclusion, al- tadpole propagator generating the quark mass. \Wheit;
though they are not working with SB) chiral mesons the quark mass “melts,(T;)=0, and Eq(17) reduces to
(o,7). In our opinion, however, the chiral $8) LoM (1) m2=g?T2 or T,=2f, (18)
already has\.=3 and notN.— built in via the Lee con-
dition in Egs.(2) but only whenm,=2m, in the chiral limit. ~ provided N=3 andm,=2mq=2f .g.

We obtain these satisfying results only by canceling the We believe it significant that recent numerical simulations
middle 3\ meson term in Eq(10) against higher quark loop of lattice gauge theories find.8] T,=150+30 MeV, which
graphs. Referendé] does not account for the above cancel-is consistent with Eqs(16) and (18). In fact, the zero-
lation of DFFR. temperature quark-leveldM theory in Ref.[3] is likewise

Finally, we extend the above zero-temperatufe=Q) compatible with the reinstated scatain the PDG table$l]
chiral symmetry absence of quartic meson loops in B,  or in Ref. [19], the latter deducing a broad nonstrange
(12), and(14) to finite temperature. Again following Rg5]  scalar asfy (400—900 with mean massn,~650 MeV. This
we write the tadpole equation in the mean-field approximailatter scale is in fact predicted in Ref3] as m,
tion at high temperatures for the quark-level@ULoM as  =2f_(2//3)~650 MeV.

) ) s s o2 Rather than starting af=0, an alternative approach to
v[(3+Nf=1)NT/12+N¢Ng T/ 12+ N (v~ f7)]=0 generating a realistic low-energy chiral field theory begins at
(15 the chiral restoration temperatupeith m,(T.)=0] involv-

for flavor N;=2 andv=v(T) with v(0)=f_~90 MeV in  Ing bosons and o alone[20] and later adds in the funda-

the chiral limit. The first two terms in Eq15) represent Mental meson-quark interaction in EQ,). Only then does
quartic o and 7 loops, while the third term involvind\,. is one deduce the quark-levelgﬂvl field theory [21]. While
the u andd quark bubble loop. The temperature factors ofISSUes OfNc=3 and cqmposneness are then postponed, the
T?/12 in Eq. (15 were originally obtained from finite- resultm_g LoM theory in Ref. [21] _5“'?‘”'”9 atT=T,~200
temperature field theory Feynman rufes]. MeV with )\.~20 appears qwte similar to thE=0 LoM
Now in fact there should bao quartic meson loop con- field theory in Refs[2,3] with A~26 from Eq.(11) and
tributions surviving in Eq(15) due to the above DFFR-type Tc~180 MeV from Eq.(16).
argument or the resulting Weinbergm amplitude in Eq. This research was partially supported by the Australian
(14), even at finite temperatures. So the nontrivial solution ofResearch Council. M. D. S. appreciates hospitality of the
Eqg. (15 at the chiral symmetry restoration temperatlite  University of Western Ontario and the University of Tasma-
[wherev(T.)=0] is for N;=2, N.=3, and\ =2g?, with the  nia. He also is grateful to V. Elias, D. McKeon, R. Mendel,
first two meson loop terms in Eq15) proportional to (3 V. Miransky, and especially R. Delbourgo for insightful
+ N?— 1)\ consequently omitted: comments.

8N.g°m, T?

Mg(T)=mg+ — . o a7
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