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Universal massive spectral correlators and three-dimensional QCD
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Based on random matrix theory in the unitary ensemble, we derive the double-microscopic massive spectral
correlators corresponding to the Dirac operator of Q@Mh an even number of fermiors; . We prove that
these spectral correlators are universal, and demonstrate that they satisfy exact massive spectral sum rules of
QCD; in a phase where flavor symmetries are spontaneously broken accorditNg— U(N;/2)
X U(N¢/2). [S0556-282098)01610-3
PACS numbgs): 11.15.Pg, 11.10.Kk, 12.38.Aw

It has long been suspected that three-dimensional QCBity [9]. An essential ingredient in understanding how ran-
(QCDy), and even QER with an evennumber of flavors dom matrix theory can provide exact statements about full-
N;=2a may undergo spontaneous flavor symmetry breakindledged quantum field theories is the proven universality,
according to the pattertd (N;)—U(N{/2)XU(N¢/2) [1].  within random matrix theory, of the pertinent microscopic
This phenomenon can most easily be understood when orspectral densitieg10].
notices that for an even number of flavors the original two- Very recently the microscopic spectral densities of
spinors of (2+1)-dimensional fermions may be grouped SU(N.=3) gauge theories witiN; massive flavors in 3
pairwise into half as many four-spinof&]. The resulting +1 dimensions have been computed from random matrix
formalism has an uncanny resemblance to Q@Ih N2  theory[11] (see alsd12]). Such an extension is essential for
flavors andtwo chiral symmetries, those associated wjth  future comparisons with lattice gauge theory beyond the
and ys rotations[1]. The global symmetry is, however, quenched approximation. Remarkably, also these double-
slightly unusualU (Ny), as follows directly from the original microscopic spectral densiti¢salled so because both eigen-
formulation in terms of two-spinors. The suggested flavorvalues and masses need to be rescaled with voMinare
symmetry breaking can be directly understood in terms ofiniversal. Moreover, the double-microscopic massive spec-
the pseudo-chiral symmetry described above. Moreover, dsal densities satisfy exact massive spectral sum rules of
has been remarked recenfl§], the Coleman-Witten argu- QCD[11,13.
ment [4] applied to QCR in the limit of many colorsN, In this Brief Report we shall extend the computation of
leads to precisely this prediction. double-microscopic massive spectral densities to the case of

An order parameter for the above symmetry breaking patthe random unitary invariant matrix ensemble, which, in
tern is the absolute value of the chiral condensde, View of the work of Verbaarschot and Zahi], can provide

=S(i¢;)IN;. By an analogue of the Banks-Casher rela-€Xact information about the Dirac operator spectrum in
tion [5], this condensate is related to the spectral density oRCDs- We shall prove that these double-microscopic spec-
the Dirac operator, evaluated at the origif0)=3/m. A tral densities(and spectral correlatorsire universal within
most remarkable and testable prediction of Verbaarschot arf§#€ framework of random matrix theory, and show that they
Zahed[3] is that the massless QGBpectral density(\) satisfy exact massive spectral sum rules of QCI doing

near the origin ah =0, the microscopic spectral density thi;, we shall als_o_ provide_an exact re_presentation of the
finite-volume partition function for QCPin the so-called

X & mesoscopic range of volumés].
V)’ Our starting point is the random matrix ensemble of the
partition function

1

pS(X)EJiLnx vs P
may be computedexactly in a unitarily invariant random
matrix ensemblg3]. HereV denotes the three-volume, and
the microscopic spectral density is therefore to be considered )
as a finite-volume scaling function. In this particular case the z=| dM]] de(M+impe NrVMY), 2
volumeV translates directly into the siZ¢ of random ma- =1
trices in the unitary ensemble.

The only required input for the above conjecture is theThe integration is over HermitialN X N matricesM with the
existence of a chiral condensate, and hence a non-vanishi@gsociated Haar measure, and we parametrize the potential in
p(0). There is now substantial evidence that the analogoua general way byW(M?)==,_,[g,/(2k)]M?*. Masses are
statements for (3 1)-dimensional theorief6] are correct, grouped pairwise with opposite signg3]: {m}
ranging from agreement with exact massless spectral sum{m;,—m;,m,,—m,,...}. Introducing the eigenvalues,
rules of QCD and generalizatiof,8] to an explicit lattice  of the Hermitian matrixM we have, discarding an irrelevant
gauge theory computation of the microscopic spectral deneverall factor,

N¢
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w N Nt/2 , _ Hereu(t) is determined by
z=f IT [ dNIT (N2 +mde V0D | dega 712 (3)

—owj=1 f=1
We thus seek polynomial®l®!(\;m,,...,m,) orthogonal ut :Jt dt’ =3 9k (Zk)r(t)k ©®)
with respect to the weight functions 0 2yr(t’)’ ¥ 21k '

andu(1)= mp(0) [wherep(0) is the largeN spectral density
at the origin.

We are now in a position to generalize this result to the
Since the weight functions are evenirdue to the pairwise case of massive fermions, following the method developed in
assignment of masses, the polynomials split into even an&ef. [11]. We use the following lemma to construct the re-
odd sectors. We treat these two sectors separately, until waguired polynomials:
combine them to construct the kernel. In REEQ] it was Lemma 1 (Christoffel)if {P;(\)}n=0.1,...is a set of poly-
proved that when allm;=0 the orthogonal polynomials nomials orthogonal with respect to awvenweight function
have, for fixedx=N\ and t=2n/N, a universal limiting W(\),
behavior. Normalized according #521(0)=PL, .’ (0)=1
the limit is

wn =1 (32+ mdje v, ()

Pa(M)Phia(N) =Py a(M)Pr(N")
)\2_)\/2

Pa(\)= @)

X
Plel(t;x)= lim P%(N)

N— o =
NNz are polynomials orthogonal with respect to the weight (
_r 1) Jg- 12(u(t)X) . —\'2) w()\) [14].
—Hlets (u(t)x/2)e= 172 (58 By replacingh’—im, we can use this procedure to incorpo-

rate the factom?+m? due to a pair of fermions of masses
*m into the weight function. By iterating this procedure, we
can construct polynomials orthogonal with respect to the

. a X
P(t;x)= lim N P[anﬂ(—)

N—oo N/ =Nz weight(4). In the largen, N limit, the difference inn in the
numerator of Eq(7) is replaced by the differential in Then
— F(a+ §) Ja+ 120U()X) (50) the next lemma allows us to express the polynomials in a
2/ (u(t)x/2)** 72 closed form:

Lemma 2Let P[9(t;\g,Nq,....\,), @=0,1,2,.., be a set ofunctions generated by the iteration

Pl (N g A s A PE (N s N 1o A ) = PRI N g 1 A ) PE (A 1 A A )

PlrtiNg N1, N gr1) = N
0 a+1l

®

Then they are given by _ X '

P(l)(t;ﬁ>—>;0 di  (OXY2 3, Ju(t)x]. (10
Pld(t:Ng N 10 o N e 10h )

det; PO(t;\))

Once it is substituted inside the determinant®&{\,), only
a (9) ]
Hi — l()\o_ )\i )

the top term proportional t&' "2 J, ;[ u(t)x] contributes.
Thus the determinant in Eq9) is replaced by

=C(t;Nq,---,\y)

wherePO(t:\)= (d'/at") PON(t;)\), andc(t;N1,...,\,) is a
function int and in{\y,... .\ ,}.

d(t) det x"Y23-Ju(t)x]. (11)
We refer the reader to Refl11] for the proof of these lem- o<ij<a !
mas. Now we replacg;—x; /N andP°I(t;\) by its micro-
scopic limit (5), PP(t;x/N)—u(t)= ¥ 23 fu(t)x].
Here the upper and lower signs stand for polynomials in thé’erforming the analytical continuation ofZ4,...,{,) to
even and odd sectors, respectively. Then we can prove hiynaginary (uwq,...,iun,), We thus obtain the microscopic
induction that itst-derivatives are expressed as limit of the orthogonal polynomials:
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P (t;x,{us})= lim P[f](t; %i%])

N— o

X1/2J11/2(U(t)x) X3/2J11 1/2(u(t)X) NN xet 1/2\]a11/2(u(t)x)
pAsu®p)  — U)o (5T Ut py)
12 t —u3 @, atlz t
—C(t,{/.l,f} Mo +1/2(u( )Iu’a) Iu’a 1+11/_i(fu(l()xzc—z:1u%) ( ) Mo a+1/2(u( ),ua) . (12)

The microscopic kernel and spectral density are constructed dB&_f’l(ft= 1) as

° P (Lix { e PR L)) — PR L D PR (L5x! L))
K“”(x,x';{m}>=c:<{m})\/fH1 O+ u2)(X' 2+ pd) — v~ i ,
(13)
P (% {mee})
mp(0) wp(0) " wp(0) | mp(0)
Xl/zJ—llz(X) e Xa+l/2‘]a—l/2(x) Xl/zJ—l/z(X) e Xa+l/2‘]a—1/2(X)
C({us}) M%llelz(Ml) (_)aﬂﬁl/z'afl/z(#l) Milzlllz(ﬂl) (_)aMerl/z'aH/z(Ml)
= N YN . . .
Hail(xz—‘rlu’?) :
YAl pre) ()2 )| | S A ) (=) )
X Y23 () + X2 (%) e xR ()XY an(x) | | XM yA(X) X Y23 L (X)
75 BT 0799 (=)t Ml ) w12 gl 1) (=) YA sl 1)
Byl ) (=) Y 1l ) 2 ) (=) pe™ v ) »
14

The constan€({u+}) =C({u:})/[ 7p(0)]* *+1js determined Microscopic densitynormalized as in E¢14)] and the mac-
roscopic density ak=0:

to be
L (a) .
C{uh)™t=2 det [(=)'u i—apy)] P (x—{ud) = L. (16
1=hi=e For convenience we exhibit the first two exampIeSpé‘f)
% det [(_)iM}—1/2|i_1/2(Mj)] (15  (with degenerate masses:
1<i,jsa
1 M COS X—cosh
by requiring the matching between the-o limit of the mps (X p) =1+ X2+ u? sinh2u (73

2. . m#f4u(x®— u?)(1—cos X cosh ) +2[(x*+ u?)(cos X—cosh u) +4xu? sin ]sinh Z/u}
mpg (X, p)=1— 2+ 1D 2 ApuZ—sint? 2)

(17b

It follows directly from the above construction and the universality proof of R that we have simultaneously proved
that the orthogonal polynomiald2), the kernel(13) (as well as all higher spectral correlatgrand the microscopic spectral

density itself(14) areuniversal i.e. insensitive to the potenti®(M?) in this limit.
By using the minor expansion of the determinants and Hankel's asymptotic formula for the Bessel functions, we can easily

check that the microscopic kerndlk3) and densitie$14) for arbitrary « satisfy a sequence of decoupling relations for heavy
fermions[11]:
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p(Sa)(X;Iu’ll"' ’lu'a—lnua) e{A({M,}) A({—lu,l})
a® A= i) A(Qmil)
M—} p(Sa_l)(X;lul"” ,,L,La,l) Z(M): A(M) (21)
Hq—1l—x

(18) where A(M) is the Vandermonde determinant of the mass
matrix M. The (N¢/2) X (N¢/2) matrixA({u;}) is defined by

— =1 ui .
We similarly verify that when all masses vanish, Aij=#i ~€“. An analogous procedure applies to the mass

pg”‘)(X;O,--- ,0) agrees with the result obtained directly fromMatrix if one insists on getting the result with some or all of
the massless ca$8] theN;/2 mass eigenvalues being equal. Massive spectral sum

rules can now be derived by taking derivatives with respect
to one or more of the mass eigenvaly&s]. For example,
for 2 and 4 fermion species of degeneréip to a sign, see
the discussion aboyanassesn, this gives, for the simplest

-2 .
——— PSPy B2

Wix:0 in J X)2+J X)2
ps (%0,..., 4[ at12AX) a—1A

e 1AX) Ja-32(X) sum rules(summing ovelpositiveeigenvalues only
—Jg-12X) g s 32(X) ] (19 1 S 2N2 1
N¢=2: < ' >= (cochu——), (223
It finally remains to compare these universal matrix model 2 ?\ﬁ+ m? 2u 2u

results with exact massive spectral sum rules of @@Dhe Ne—4-
phase of broken flavor symmetry. In R¢R] it was argued =
that the relevant finite-volume partition function for QgD < 1 >

can be written

A2+m?

Z(M)zf dU exd N2 tr(MUTsUN], (20 32N2 sint? 2u— p sinh 2u cosh 2u— 22
where the integration has been extended from the coset - 2uf 4u?—sintf 2u
U(Np)/U(N¢/2) X U(N¢/2) to SU(N;). The mass matrix (22b)
M takes the form diagf;, . .. .My 2, =My, ..., = My,2).

We note that in the limifu—0 these sum rules reduce cor-

The other matrix isl's=diag(, — 1), wherel is an (/) rectly to those of the massless c§8¢ where the right hand

X (N¢/2) unit matrix. As could have been guessed by com-
parison with the case of QCO15], the partition function sides above are replaced EﬁNszI[Z(Nf—l)].

(20) is an example of the Harish-Chandra—lItzykson-Zuber W& €an now check these massive spectral sum rules by
integral [16], now for Hermitian matrices. The only slight Mmeans of the identity

complication arises from the fact th&t; has two sets of 1 1 . p(N,/z)
N;/2-fold degenerate eigenvalues, which makes the standard___ <2' _> :f dx —
expression for the integral indeterminate. One can take cal’2? ?\§+ m? 0

of this by regularizing thé's matrix in any way that removes
the degeneracy, performing the integral, and subsequent
taking the degenerate limit. We defipg=NXm; . Using the
prescription above, the integré20) can be performed ex-
plicitly, and one gets, up to an irrelevant normalization fac- S.M.N. was supported in part by the Nishina Memorial

(X5 oy eept)
X2-i-,u,2

(23

d the general expressi@h4). The integrals are elemen-
ry, and we find that the massive spectral sum rules are
exactly satisfied.
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