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Universal massive spectral correlators and three-dimensional QCD
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Based on random matrix theory in the unitary ensemble, we derive the double-microscopic massive spectral
correlators corresponding to the Dirac operator of QCD3 with an even number of fermionsNf . We prove that
these spectral correlators are universal, and demonstrate that they satisfy exact massive spectral sum rules of
QCD3 in a phase where flavor symmetries are spontaneously broken according toU(Nf)→U(Nf /2)
3U(Nf /2). @S0556-2821~98!01610-5#
PACS number~s!: 11.15.Pg, 11.10.Kk, 12.38.Aw
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It has long been suspected that three-dimensional Q
(QCD3), and even QED3, with an evennumber of flavors
Nf[2a may undergo spontaneous flavor symmetry break
according to the patternU(Nf)→U(Nf /2)3U(Nf /2) @1#.
This phenomenon can most easily be understood when
notices that for an even number of flavors the original tw
spinors of (211)-dimensional fermions may be groupe
pairwise into half as many four-spinors@2#. The resulting
formalism has an uncanny resemblance to QCD4 with Nf /2
flavors andtwo chiral symmetries, those associated withg4
and g5 rotations @1#. The global symmetry is, howeve
slightly unusual:U(Nf), as follows directly from the origina
formulation in terms of two-spinors. The suggested flav
symmetry breaking can be directly understood in terms
the pseudo-chiral symmetry described above. Moreover
has been remarked recently@3#, the Coleman-Witten argu
ment @4# applied to QCD3 in the limit of many colorsNc
leads to precisely this prediction.

An order parameter for the above symmetry breaking p
tern is the absolute value of the chiral condensate,S

[( i^c̄ ic i&/Nf . By an analogue of the Banks-Casher re
tion @5#, this condensate is related to the spectral density
the Dirac operator, evaluated at the origin,r(0)5S/p. A
most remarkable and testable prediction of Verbaarschot
Zahed@3# is that the massless QCD3 spectral densityr~l!
near the origin atl50, the microscopic spectral density

rS~x![ lim
V→`

1

VS
rS x

VS D , ~1!

may be computedexactly in a unitarily invariant random
matrix ensemble@3#. HereV denotes the three-volume, an
the microscopic spectral density is therefore to be conside
as a finite-volume scaling function. In this particular case
volumeV translates directly into the sizeN of random ma-
trices in the unitary ensemble.

The only required input for the above conjecture is t
existence of a chiral condensate, and hence a non-vanis
r~0!. There is now substantial evidence that the analog
statements for (311)-dimensional theories@6# are correct,
ranging from agreement with exact massless spectral
rules of QCD and generalizations@7,8# to an explicit lattice
gauge theory computation of the microscopic spectral d
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sity @9#. An essential ingredient in understanding how ra
dom matrix theory can provide exact statements about f
fledged quantum field theories is the proven universal
within random matrix theory, of the pertinent microscop
spectral densities@10#.

Very recently the microscopic spectral densities
SU(Nc>3) gauge theories withNf massive flavors in 3
11 dimensions have been computed from random ma
theory@11# ~see also@12#!. Such an extension is essential f
future comparisons with lattice gauge theory beyond
quenched approximation. Remarkably, also these dou
microscopic spectral densities~called so because both eige
values and masses need to be rescaled with volumeV! are
universal. Moreover, the double-microscopic massive sp
tral densities satisfy exact massive spectral sum rules
QCD @11,13#.

In this Brief Report we shall extend the computation
double-microscopic massive spectral densities to the cas
the random unitary invariant matrix ensemble, which,
view of the work of Verbaarschot and Zahed@3#, can provide
exact information about the Dirac operator spectrum
QCD3. We shall prove that these double-microscopic sp
tral densities~and spectral correlators! are universal within
the framework of random matrix theory, and show that th
satisfy exact massive spectral sum rules of QCD3. In doing
this, we shall also provide an exact representation of
finite-volume partition function for QCD3 in the so-called
mesoscopic range of volumes@6#.

Our starting point is the random matrix ensemble of t
partition function

Z5E dM)
f 51

Nf

det~M1 imf !e
2N tr V~M2!. ~2!

The integration is over HermitianN3N matricesM with the
associated Haar measure, and we parametrize the potent
a general way byV(M2)5(k>1@gk /(2k)#M2k. Masses are
grouped pairwise with opposite signs@3#: $mf%
5$m1 ,2m1 ,m2 ,2m2 ,...%. Introducing the eigenvaluesl i
of the Hermitian matrixM we have, discarding an irrelevan
overall factor,
5299 © 1998 The American Physical Society
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Z5E
2`

`

)
i 51

N S dl i )
f 51

Nf /2

~l i
21mf

2!e2NV~l i
2
!D udeti j l j

i 21u2. ~3!

We thus seek polynomialsPn
[a] (l;m1 ,...,ma) orthogonal

with respect to the weight functions

w~l!5)
f 51

a

~l21mf
2!e2NV~l2!. ~4!

Since the weight functions are even inl due to the pairwise
assignment of masses, the polynomials split into even
odd sectors. We treat these two sectors separately, unti
combine them to construct the kernel. In Ref.@10# it was
proved that when allmf50 the orthogonal polynomials
have, for fixedx5Nl and t52n/N, a universal limiting
behavior. Normalized according toP2n

[a] (0)5P2n11
[a] 8(0)51

the limit is

P1
[a]~ t;x![ lim

N→`

P2n
[a] S x

ND U
n5Nt/2

5GS a1
1

2D Ja2 1/2„u~ t !x…

„u~ t !x/2…

a2 1/2, ~5a!

P2
[a]~ t;x![ lim

N→`

N P2n11
[a] S x

ND U
n5Nt/2

5x GS a1
3

2D Ja1 1/2„u~ t !x…

„u~ t !x/2…

a1 1/2. ~5b!
th
d
e

Hereu(t) is determined by

u~ t !5E
0

t dt8

2Ar ~ t8!
, t5(

k

gk

2 S 2k
k D r ~ t !k, ~6!

andu(1)5pr(0) @wherer~0! is the large-N spectral density
at the origin#.

We are now in a position to generalize this result to t
case of massive fermions, following the method develope
Ref. @11#. We use the following lemma to construct the r
quired polynomials:

Lemma 1 (Christoffel).If $Pn(l)%n50,1,... is a set of poly-
nomials orthogonal with respect to anevenweight function
w(l),

P̃n~l!5
Pn~l!Pn12~l8!2Pn12~l!Pn~l8!

l22l82 ~7!

are polynomials orthogonal with respect to the weight (l2

2l82) w(l) @14#.
By replacingl8→ im, we can use this procedure to incorp
rate the factorl21m2 due to a pair of fermions of masse
6m into the weight function. By iterating this procedure, w
can construct polynomials orthogonal with respect to
weight ~4!. In the large-n, N limit, the difference inn in the
numerator of Eq.~7! is replaced by the differential int. Then
the next lemma allows us to express the polynomials i
closed form:
Lemma 2.Let P[a] (t;l0 ,l1 ,...,la), a50,1,2,..., be a set offunctions generated by the iteration

P[a11]~ t;l0 ,l1 ,...,la11!5
P[a]~ t;l0 ,l1 ,...,la!Pt

[a]~ t;la11 ,l1 ...,la!2Pt
[a]~ t;l0 ,l1 ,...,la!P[a]~ t;la11 ,l1 ...,la!

l0
22la11

2 .

~8!
c

Then they are given by

P[a]~ t;l0 ,l1 ,...,la21 ,la!

5c~ t;l1 ,...,la!
deti , j P~ i !~ t;l j !

P i 51
a ~l0

22l i
2!

~9!

whereP( i )(t;l)5 (] i /]t i) P[0] (t;l), andc(t;l1 ,...,la) is a
function in t and in$l1 ,...,la%.

We refer the reader to Ref.@11# for the proof of these lem-
mas. Now we replacel i→xi /N andP[0] (t;l) by its micro-
scopic limit ~5!, P6

[0] (t;x/N)→u(t)61/2x1/2J71/2@u(t)x#.
Here the upper and lower signs stand for polynomials in
even and odd sectors, respectively. Then we can prove
induction that itst-derivatives are expressed as
e
by

P6
~ i !S t;

x

ND→(
k50

i

di ,k~ t !xk11/2 Jk71/2@u~ t !x#. ~10!

Once it is substituted inside the determinant detP(i)(lj), only
the top term proportional toxi 11/2 Ji 71/2@u(t)x# contributes.
Thus the determinant in Eq.~9! is replaced by

d~ t ! det
0< i , j <a

xj
i 11/2 Ji 71/2@u~ t !xj #. ~11!

Performing the analytical continuation of (z1 ,...,za) to
imaginary (im1 ,...,ima), we thus obtain the microscopi
limit of the orthogonal polynomials:



57 5301BRIEF REPORTS
P6
[a]~ t;x,$m f%![ lim

N→`

P6
[a] S t;

x

N
,H m f

N J D

5c~ t,$m f%!

U x1/2J71/2„u~ t !x… x3/2J171/2„u~ t !x… ¯ xa11/2Ja71/2„u~ t !x…

m1
1/2I 71/2„u~ t !m1… 2m1

3/2I 171/2„u~ t !m1… ¯ ~2 !am1
a11/2I a71/2„u~ t !m1…

A A ¯ A

ma
1/2I 71/2„u~ t !ma… 2ma

3/2I 171/2„u~ t !ma… ¯ ~2 !ama
a11/2I a71/2„u~ t !ma…

U
P f 51

a ~x21m f
2!

. ~12!

The microscopic kernel and spectral density are constructed out ofP6
[a] (t51) as

K ~a!~x,x8;$m f%!5C~$m f%!A)
f 51

a

~x21m f
2!~x821m f

2!
P1

[a]~1;x,$m f%!P2
[a]~1;x8,$m f%!2P2

[a]~1;x,$m f%!P1
[a]~1;x8,$m f%!

x2x8
,

~13!

rS
~a!~x;$m f%!

5
1

pr~0!
K ~a!S x

pr~0!
,

x

pr~0!
;H m f

pr~0!J D

5
C~$m f%!

Pa51
f ~x21m f

2! S U x1/2J21/2~x! ¯ xa11/2Ja21/2~x!

m1
1/2I 21/2~m1! ¯ ~2 !am1

a11/2I a21/2~m1!

A ¯ A

ma
1/2I 21/2~ma! ¯ ~2 !ama

a11/2I a21/2~ma!

UU x1/2J21/2~x! ¯ xa11/2Ja21/2~x!

m1
1/2I 1/2~m1! ¯ ~2 !am1

a11/2I a11/2~m1!

A ¯ A

ma
1/2I 1/2~ma! ¯ ~2 !ama

a11/2I a11/2~ma!

U
2Ux21/2J21/2~x!1x1/2J23/2~x! ¯ xa21/2Ja21/2~x!1xa11/2Ja23/2~x!

m1
1/2I 21/2~m1! ¯ ~2 !am1

a11/2I a21/2~m1!

A ¯ A

ma
1/2I 21/2~ma! ¯ ~2 !ama

a11/2I a21/2~ma!

UU x1/2J1/2~x! ¯ xa11/2Ja11/2~x!

m1
1/2I 1/2~m1! ¯ ~2 !am1

a11/2I a11/2~m1!

A ¯ A

ma
1/2I 1/2~ma! ¯ ~2 !ama

a11/2I a11/2~ma!

U D .

~14!
The constantC($m f%)5C($m f%)/@pr(0)#a211 is determined
to be

C~$m f%!2152 det
1< i , j <a

@~2 ! im j
i 21/2I i 23/2~m j !#

3 det
1< i , j <a

@~2 ! im j
i 21/2I i 21/2~m j !# ~15!

by requiring the matching between thex→` limit of the
microscopic density@normalized as in Eq.~14!# and the mac-
roscopic density atl50:

rS
~a!~x→`;$m f%!→ 1/p . ~16!

For convenience we exhibit the first two examples ofrS
(a)

~with degenerate massesm!:

prS
~1!~x;m!511

m

x21m2

cos 2x2cosh 2m

sinh 2m
, ~17a!
d
l

n easily
vy
prS
~2!~x;m,m!512

m$4m~x22m2!~12cos 2x cosh 2m!12@~x21m2!~cos 2x2cosh 2m!14xm2 sin 2x#sinh 2m%

~x21m2!2~4m22sinh2 2m!
.

~17b!

It follows directly from the above construction and the universality proof of Ref.@10# that we have simultaneously prove
that the orthogonal polynomials~12!, the kernel~13! ~as well as all higher spectral correlators!, and the microscopic spectra
density itself~14! areuniversal, i.e. insensitive to the potentialV(M2) in this limit.

By using the minor expansion of the determinants and Hankel’s asymptotic formula for the Bessel functions, we ca
check that the microscopic kernels~13! and densities~14! for arbitrarya satisfy a sequence of decoupling relations for hea
fermions@11#:
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rS
~a!~x;m1 ,... ,ma21 ,ma!

——→
ma→`

rS
~a21!~x;m1 ,¯ ,ma21!

——→
ma21→`

rS
~a22!~x;m1 ,¯ ,ma22!→¯ . ~18!

We similarly verify that when all masses vanis
rS

(a)(x;0,... ,0) agrees with the result obtained directly fro
the massless case@3#,

rS
~a!~x;0,...,0!5

x

4
@Ja11/2~x!21Ja21/2~x!2

2Ja11/2~x!Ja23/2~x!

2Ja21/2~x!Ja13/2~x!#. ~19!

It finally remains to compare these universal matrix mo
results with exact massive spectral sum rules of QCD3 in the
phase of broken flavor symmetry. In Ref.@3# it was argued
that the relevant finite-volume partition function for QCD3
can be written

Z~M!5E dU exp@NS tr~MUG5U†!#, ~20!

where the integration has been extended from the c
U(Nf)/U(Nf /2)3U(Nf /2) to SU(Nf). The mass matrix
M takes the form diag(m1, . . . ,mNf /2

,2m1 , . . . ,2mNf /2
).

The other matrix isG55diag(1,21), where1 is an (Nf /2)
3(Nf /2) unit matrix. As could have been guessed by co
parison with the case of QCD4 @15#, the partition function
~20! is an example of the Harish-Chandra–Itzykson-Zu
integral @16#, now for Hermitian matrices. The only sligh
complication arises from the fact thatG5 has two sets of
Nf /2-fold degenerate eigenvalues, which makes the stan
expression for the integral indeterminate. One can take
of this by regularizing theG5 matrix in any way that remove
the degeneracy, performing the integral, and subseque
taking the degenerate limit. We definem i[NSmi . Using the
prescription above, the integral~20! can be performed ex
plicitly, and one gets, up to an irrelevant normalization fa
tor,
ev
tt.
l

et

-

r

rd
re

tly

-

Z~M!5

detS A~$m i%! A~$2m i%!

A~$2m i%! A~$m i%!
D

D~M!
~21!

whereD~M! is the Vandermonde determinant of the ma
matrixM. The (Nf /2)3(Nf /2) matrixA($m i%) is defined by
A i j [m i

j 21em i. An analogous procedure applies to the ma
matrix if one insists on getting the result with some or all
theNf /2 mass eigenvalues being equal. Massive spectral
rules can now be derived by taking derivatives with resp
to one or more of the mass eigenvalues@13#. For example,
for 2 and 4 fermion species of degenerate~up to a sign, see
the discussion above! massesm, this gives, for the simples
sum rules~summing overpositiveeigenvalues only!,

Nf52: K ( 8
n

1

ln
21m2 L 5

S2N2

2m S coth 2m2
1

2m D , ~22a!

Nf54:

K ( 8
n

1

ln
21m2 L

5
S2N2

2m2

sinh2 2m2m sinh 2m cosh 2m22m2

4m22sinh2 2m
.

~22b!

We note that in the limitm→0 these sum rules reduce co
rectly to those of the massless case@3#, where the right hand
sides above are replaced byS2N2Nf /@2(Nf

221)#.
We can now check these massive spectral sum rules

means of the identity

1

N2S2 K ( 8
n

1

ln
21m2L 5E

0

`

dx
rS

~Nf /2!
~x;m,...,m!

x21m2 ~23!

and the general expression~14!. The integrals are elemen
tary, and we find that the massive spectral sum rules
exactly satisfied.
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