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Solvable model of two-dimensional dilaton gravity coupled to a massless scalar field

Marco Cavaglia
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We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We
locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice
of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional
effective theory of 21 cylindrical gravity minimally coupled to a massless scalar field.
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[. INTRODUCTION whereR is the Ricci scalarg is the dilaton field, ang is the
massless scalar field: is a coupling constant and we have
The investigation of lower-dimensional gravity is receiv- set 16rG=1. Despite the non-trivial coupling between the
ing a lot of attention because of its connection with stringdilaton and the scalar field the model is completely solvable
theory, dimensionally reduced modéfminisuperspaces and for a large class of function¥(¢). Even though in this
midisuperspacéesand black hole physickl]. Lower dimen- simple model one cannot obtain any black hole solution, the
sional models may further provide some insight into the dif-discussion of the general solution of the model based upon
ficult challenge of quantizing gravity theories in timore  Eq. (1.3 is important at least for two reasons: first thigtis
physica) four-dimensional case. Hence, many-Q, 1+1 our knowledge the only known example of a solvable
and 2+1 integrable models have been analyzed and solvedilaton-gravity-matter model with a non-trivial coupling be-
in the literature, both from the classical and quantum pointdween the dilaton and the scalar field; second, wkiém)
of view [2]. = ¢ the model can be interpreted as the two-dimensional
In this context many papers have been devoted to theffective theory of 2- 1Rx St cylindrical gravity minimally
discussion of integrable and non-integrable two-dimensionatoupled to a massless scalar fighd. In this case the dilaton
models[2]. It is well known that two-dimensional dilaton- plays the role of the scale factor 6t.
gravity with an arbitrary potential ikclassically completely

integrable[3]. A remarkable feature of this model is that any || FIELD EQUATIONS AND GENERAL SOLUTIONS
solution possesses a Killing vectef]; i.e. the metric tensor

and the dilatong can be cast in the fori8] From the action, Eq(1.3), it is straightforward to obtain
the field equations. They can be cast in a useful and simple
ds’=4p(u,v)dudv, (1.2 form writing the two-dimensional line element in the “con-

formal gauge”(1.1). The result is
p(u,v)=h(p)add, ¢, =d(4h), (1.2)

340, =0, (2.9
where ¢ is a harmonic function, i.ed,d,y=0. (With a )
somewhat improper terminology we will call these solutions dyd,(In p)=yV'(h)dyxd, x, 2.2
“static,” even though the Killing vector is not timelike and
hypersurface orthogonalThis is the content of the general- Il V(B)dux]1+ 3, [V(¢)dux]=0, 23
ized Birkhoff theoren3,4]. When a scalar field is added to o0
the model, the Birkhoff theorem is no longer valid and non- u?| _ 2
static solutions appear. It is then worthwhile to investigate pa“( p )_yv((ﬁ)(&”)() ' @4
how the presence of a scalar field is related to issues like
integrability and absence of Killing vectors. This perhaps can d, ¢ )
help shed light on some unsolved problems in classical and Py e YWI($)(d,x)%, 2.9
quantum gravity such as, for instance, the origin of the black
hole entropy. where the prime represents the derivative with respeet. to

Having this in mind, the purpose of this Brief Report is It is surprising that the field equations can be locally inte-
the discussion of the general solution of the model describedrated. The equation for the fielglis the key for solving the
by the action system. From Eq(2.1), it follows that ¢ is indeed a har-
monic function. Therefore, the general solution of E2}1)
is ¢(u,v)=a(u)+b(v), wherea(u) andb(v) are arbitrary
functions. The general solution can be classified in three dis-
tinct classes: (i) &(u,v)=d¢q, ie. ¢ constant; (ii)
dyp(u,v)=0 ord,¢(u,v)=0, i.e. ¢ depending on a single
*Electronic address: cavaglia@aei-potsdam.mpg.de variable; (i) ¢ depending on botlu andv variables. The

s- [ e =dleRsVHT0T, (3
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first two cases identify degenerate solutions of the modelwhere we have defined the new coordinatas in the pre-

Let us now discuss separately the above cases. vious section and e[0,1] is the S variable. The geometry
of the spacetime i&2x S!, and the scale factap is a func-
A. Constant ¢ tion of the light cone variable orthogonal to For instance,

choosing y= xo+arctan@/k), Eq. (2.11) reads (x=v+
This is the simplestdegeneratecase. Whem, ¢(u,v)=0 andtzug—X¢)X0 ¢k, Ea. (21D x=v+¢

and d,¢(u,v)=0, Egs.(2.2—(2.5 reduce to[we assume

V(o) #0] /2 x—1)?
d32=f0 ex;{m)(—dt%dxzwr %d@z .

dudy(In p)=0, a,x=0, ,x=0. (2.6 (x=1) (212

The general solution of Eq$2.6) is obvious,
C. Complete case
X=xo, In(p)=c(u)+d(v), (2.7 In this case, setting

wherey, is a constant and(u) andd(v) are two arbitrary da(u) db(v)
functions. Recalling Eq(1.1) and using the reparametriza- pu,v)=f(Uv) =30~ —go (213

tion invariance of the metric in tha andv variables, the

three-dimensional line element can be ca(ljst in the fdsh  gng using the new coordinatea,b) (note that the coordi-
=4d{dv, where{=[due¢”™) and v=[dve®®). The solu- nate transformation is never degenerate, the degenerate cases

tion is then static and the spacetime is flat, as expected singseing included in the previous sectign€gs. (2.2—(2.5)
this case corresponds to a pure dilaton-gravity model withheduce to

vanishing potential. Sinceé is constant, the above solution

represents a flatR?x S') spacetime with constar@' scale d0p(In f)=yV'(a+b)dxdpx, (2.19
factor when interpreted as a+2l reduced mode[V(¢)

=d¢]. V'(a+b)(dax+dpx)+2V(a+b)d,dpx=0, (2.195

B. ¢ depending on a single coordinate da(In f)=—9yV(a+b)(dax)?, (2.19

Let us suppose, without loss of generality, ti@ath=0, ap(In f )= —yV(a+b)(dpx)2 217
i.e. b(v)=0. (Alternatively, d,¢=0.) From Eg. (2.5 we

haved,x=0, and Eqs(2.2—(2.4) reduce to the form Now the system of second order partial differential equations
(2.14—(2.17 can be integrated, solving first E.15, and
dudy(In p)=0, (28 then using the solutiol in Egs.(2.16),(2.17). This program

can be easily completed using the new varialdesa+b
and w=a—bh. Since Eg. (2.15 and the constraints

d?¢ do dy\?
quz " duln(p) gu=()| gy - 29 216,217 imply Eq. (2.14), we can forget the latter and
write
[Equation(2.3) is identically satisfied.The general solution Vi(2)
of Egs.(2.9),(2.9) is 2 Z) . _ 2
dzx+ V2) I2X= OwX (2.18
d¢ ¢, [ dx 2
P=qu® d(‘))‘yf(,,od‘ﬁ VGs| | a(In £ )=—W(@D)[(90)%+(3ux)?], (219

(2.10

whered(v) is an arbitrary function of, ¢ is an integration , .
constant, andy= y[ #(u)]. The two-dimensional line ele- where V' =dV(z)/dz. Equation(2.18 corresponds to Eq.

ment then represents a flat spacetime, even though the scafar® and Eqs(2.19,(2.20 are the sum and the difference
field is not constant. Note that all fields depend on a singl® EAS-(2.16,(2.17) respectively. Finally, given a solution of
variable (¢); however, the solution2.10 is not strictly a  £d- (2.18, the (logarithm of the physical conformal factor
“static” solution in the sens&1.1),(1.2). (A similar solution ~ ©f the two-dimensional metri¢ can be written as a func-
arises in two-dimensional dilaton-gravity when the dilatontion@l of x and locally cast in the form

has vanishing potentialThe nature of the solution becomes
particularly evident whelV(¢')= ¢’ and the model is in-
terpreted in 21 dimensions. In this case the three- w
dimensional line element corresponding to the solution —2yV(2) fw dw’ 9y x(W',2) 9 x (W' ,2)

0

(2.10 reads[V(¢')=¢']

2
d?=4 ex;{—yf:dw(/y(%)
0

dw(In f)=—=29V(2)d,xdwx, (2.20

In f(z,w;fg)=In f,

—*yrdZ’V(Z’){[&W)((W,Z’)]2
dédv + ¢p?d 62,

(2.12) +[IX(W,Z) P hu=wys (2.21)
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wheref, andw, are two constants. Let us now focus atten- 9(z W):e—Zyw(kl+k322)(k2+k3w)— (v2214)(2K5+ 4k kg + K3Z2)

tion on Eq.(2.18. Since the latter is a linear separable partial (2_'29)
differential equation in the variables and w, the solution
can be written in the form7] The solution (2.27)—(2.29 is generally non-static in the

sensg1.1),(1.2) because the fields depend on both variables.
[A particular case is given by the choikg=k3=0. In this
case y=yx(w) and f=exp(—yk§zzl2) depends only orz.
Hence, according to Eqgél.1),(1.2) we have a flat spacetime
where 7 and ¢ are the solutions of the linear second orderbut a non-static solutioh.However, whenk,=k;=0, i.e.

xzw=xo+ [ dcnz EwN), (222

ordinary differential equations g(z,w)=1, Egs.(2.27—-(2.29 reduce to thewell-known)
static solution[6]. [Alternatively, the latter can be obtained

d2» V'(z) dy d?¢ directly from Eqs.(2.249—(2.26) setting, for instanceA,

aZ TV 2N g N (223 =B,=5(a).] Let us see this in detail. Recalling EfL.1)

and Eq.(2.13 the three-dimensional line element reduds

It can be proved that the solutid®.22 is the most general — 7+ 2= R)
solution of Eq.(2.18 provided that the completeness theo-

2
rem for both Eqs(2.23 holds. (See for instanc¢7].) This ds*=foR™7i(—d7*+dR?) + R*d 67, (2.30
rather weak assumption is satisfied for a wide class of physi-
cal, well-behaved, function¥(z) in Egs.(2.23. As a con- x=k¢ In(R/Ry). (2.31

crete example of the_ formalism, let us now c_onsider the “@5%he above solution can be cast in a more familiar form with
V(2)=z corres_pondlng to thg(2+_1)-d|meqs!0nal _model. a redefinition of the integration constants and a change of
The (rea) solution(2.22 readsd]in this case it is straightfor- coordinates. Let us s®= V2 and r=tM, where is a
Ward_ to verlfy_thaF the Completepe§s theqrem holds beC"’Iuspearameter v;/ith dimensions of length aN¢ M are related to
the first equation in Eq$2.23 coincides with the Bessel or

. . - : k, and fo by N=2/(1+4k?), M=(2INfy)B* 2N, With
fied B I h f 1 0 1 0
modified Bessel equation depending on the signjo these redefinitions the line elemeg2t30 becomeq y=—4,

low-energy string case

W)= “daly Yz, @)z W)t
x(zW) X°+jo X (2 W) F X (2, W)} ds?=—U(r)dt®+ B2U " X(r)dr?+ B%rNd6?, (2.32

(2.249
whereU(r)=(2M/N)rt~N2 As expected, the model does
where not admit black hole solutions and the metric becoriiés
flat whenk,=0, i.e. when the scalar field is constant. This
X(al)(z,w)z[Al(a)sin( aw)+ B (a)cod aw)] can be verified directly from Eq2.21), recalling thate is a
harmonic function, and Edq2.13.
X[Ci(a)do(@z) +D(a)Yo(az)], (2.29

Let us briefly conclude the section with another interest-
2 ~ ing set of solutions. Choosing for instance in Eg125 A=
Xa (Z,W)=[Ay(@)e™+B,(a)e™ "] D,=0, B;C,=K, and using Eq(2.24), we have[8]

X[Cy(a)lg(az)+Dy(a)Ko(az)], K
(2.26) X(Z,w)=xo+ Nz (2.33

whereJ, andY,, are the zeroth order Bessel functions of first,, .« .ok is a constant. From Eq2.21) it is straightforward
and second kindl, and K, are the zeroth order modified ;5 gptain the metric
Bessel functions, and the coefficiedts. . . ,.D are real func-
tions. — £ ayKZZ22A2- WD _ g2 2402

Starting from Egs.(2.24—(2.26), or directly from Eqgs. ds’=foe (—dw?+dz’)+2°dé" (2.34
(2.18—(2.20, some interesting particular solutions can be '
calculated. Let us look, for example, for a solution of Eq.The choiceB;=D;=0, A;C,=K gives instead the comple-
(2.18 of the form x(z,w)={(z) +v(w). Inserting the pre- mentary solution
vious ansatz in Eq2.18), we have

K
) z? X(Z,W)=xot+ ==, (2.39
x(Z,W)=xo+Kkq In zZ+kow+Kks| w +E . (2.27 we—z

NERPR d?=foe~ W2 (— quP+ dZ) + 22d 02

The conformal scale factor of the two-dimensional line ele- 0 :
. (2.39

ment is
) The discussion of the global properties of E(533—(2.36
f="fy,z " ig(z,w), (2.28 is beyond the scope of this brief report and will be discussed

elsewhere; so here we will not enter into details. Let us
where stress, however, that the above solutions are asymptotically
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flat and singular whenw+z=0, i.e. when the scalar field )
diverges. With different choices of the coefficients in Egs. Pﬁu( ):VV_1(¢>)((9UQD)2- (3.2
(2.25,(2.26 it is possible to construct non-singular solu- P
tions. yb
@(”7) =W H)(d,0)% (33
I1l. CONCLUSIONS

where we allow for the presence of a dilatonic potential

In this Brief Report we have briefly discussed the two-\7(¢)_ Equation(3.1) does not depend op. Hence, only the
dimensional dilaton-gravity-matter theory described by theconstraints(3.2),(3.3) are modified by the presence of the
action(1.3). WhenV(¢) = ¢ the model can be interpreted as scalar field. The validity of the Birkhoff theorem is thus re-
the two-dimensional effective theory of+2l cylindrical |ated to the right-hand sidéRHS) of Egs. (3.2),(3.3). Fur-
gravity minimally coupled to a massless scalar field. ther, a static solution is obtained only when the RHS of Eq.

The model of Eq.(1.3 has the remarkable property of (3.2 is equal to the RHS of Eq3.3). In that casep= ¢(u
being completely solvable and we have derived and classi+ ) or ¢=¢(u—v) and the equations of motion can be
fied its solutions for a large class of functioN§¢). It is  reduced to a system of ordinary differential equations.
well-known that any two-dimensional pure dilaton-gravity Clearly, the above condition is satisfied in the case of pure
theory satisfies the generalized Birkhoff theorem; i.e. anyilaton-gravity wheny is identically zero but cannot be sat-
solution of the system can be reduced to the fotm),(1.2).  isfied by any dilaton-gravity theory coupled to a scalar field.
Here, because of the presence of the scalar field, the Birkhoffinally, the integrability property of the system does not
theorem is no longer valid. It is then interesting to examineseem to be related to the existence of non-static solutions.
how the presence of the scalar field modifies the equations of
motion with respect to the pure dilaton-gravity case. Let us ACKNOWLEDGMENTS
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