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Solvable model of two-dimensional dilaton gravity coupled to a massless scalar field

Marco Cavaglia`*

Max-Planck-Institut fu¨r Gravitationsphysik, Albert-Einstein-Institut, Schlaatzweg 1, D-14473 Potsdam, Germany
~Received 27 August 1997; published 13 March 1998!

We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We
locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice
of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional
effective theory of 211 cylindrical gravity minimally coupled to a massless scalar field.
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I. INTRODUCTION

The investigation of lower-dimensional gravity is recei
ing a lot of attention because of its connection with stri
theory, dimensionally reduced models~minisuperspaces an
midisuperspaces! and black hole physics@1#. Lower dimen-
sional models may further provide some insight into the d
ficult challenge of quantizing gravity theories in the~more
physical! four-dimensional case. Hence, many 011, 111
and 211 integrable models have been analyzed and so
in the literature, both from the classical and quantum po
of view @2#.

In this context many papers have been devoted to
discussion of integrable and non-integrable two-dimensio
models@2#. It is well known that two-dimensional dilaton
gravity with an arbitrary potential is~classically! completely
integrable@3#. A remarkable feature of this model is that an
solution possesses a Killing vector@4#; i.e. the metric tensor
and the dilatonf can be cast in the form@3#

ds254r~u,v !dudv, ~1.1!

r~u,v !5h~c!]uc]vc, f[f~c!, ~1.2!

where c is a harmonic function, i.e.]u]vc50. ~With a
somewhat improper terminology we will call these solutio
‘‘static,’’ even though the Killing vector is not timelike an
hypersurface orthogonal.! This is the content of the genera
ized Birkhoff theorem@3,4#. When a scalar field is added t
the model, the Birkhoff theorem is no longer valid and no
static solutions appear. It is then worthwhile to investig
how the presence of a scalar field is related to issues
integrability and absence of Killing vectors. This perhaps c
help shed light on some unsolved problems in classical
quantum gravity such as, for instance, the origin of the bl
hole entropy.

Having this in mind, the purpose of this Brief Report
the discussion of the general solution of the model descri
by the action

S5E d2xA2g@fR1gV~f!~¹x!2#, ~1.3!
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whereR is the Ricci scalar,f is the dilaton field, andx is the
massless scalar field.g is a coupling constant and we hav
set 16pG51. Despite the non-trivial coupling between th
dilaton and the scalar field the model is completely solva
for a large class of functionsV(f). Even though in this
simple model one cannot obtain any black hole solution,
discussion of the general solution of the model based u
Eq. ~1.3! is important at least for two reasons: first this is~to
our knowledge! the only known example of a solvabl
dilaton-gravity-matter model with a non-trivial coupling be
tween the dilaton and the scalar field; second, whenV(f)
5f the model can be interpreted as the two-dimensio
effective theory of 211R3S1 cylindrical gravity minimally
coupled to a massless scalar field@5#. In this case the dilaton
plays the role of the scale factor ofS1.

II. FIELD EQUATIONS AND GENERAL SOLUTIONS

From the action, Eq.~1.3!, it is straightforward to obtain
the field equations. They can be cast in a useful and sim
form writing the two-dimensional line element in the ‘‘con
formal gauge’’~1.1!. The result is

]u]vf50, ~2.1!

]u]v~ ln r!5gV8~f!]ux]vx, ~2.2!

]u@V~f!]vx#1]v@V~f!]ux#50, ~2.3!

r]uS ]uf

r D5gV~f!~]ux!2, ~2.4!

r]vS ]vf

r D5gV~f!~]vx!2, ~2.5!

where the prime represents the derivative with respect tof.
It is surprising that the field equations can be locally in
grated. The equation for the fieldf is the key for solving the
system. From Eq.~2.1!, it follows that f is indeed a har-
monic function. Therefore, the general solution of Eq.~2.1!
is f(u,v)5a(u)1b(v), wherea(u) andb(v) are arbitrary
functions. The general solution can be classified in three
tinct classes: ~i! f(u,v)5f0 , i.e. f constant; ~ii !
]uf(u,v)50 or ]vf(u,v)50, i.e. f depending on a single
variable; ~iii ! f depending on bothu and v variables. The
5295 © 1998 The American Physical Society
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first two cases identify degenerate solutions of the mo
Let us now discuss separately the above cases.

A. Constant f

This is the simplest~degenerate! case. When]uf~u,v!50
and ]vf~u,v!50, Eqs. ~2.2!–~2.5! reduce to@we assume
V(f0)Þ0]

]u]v~ ln r!50, ]ux50, ]vx50. ~2.6!

The general solution of Eqs.~2.6! is obvious,

x5x0 , ln~r!5c~u!1d~v !, ~2.7!

wherex0 is a constant andc(u) andd(v) are two arbitrary
functions. Recalling Eq.~1.1! and using the reparametriza
tion invariance of the metric in theu and v variables, the
three-dimensional line element can be cast in the formds2

54dzdy, wherez5*duec(u) and y5*dved(v). The solu-
tion is then static and the spacetime is flat, as expected s
this case corresponds to a pure dilaton-gravity model w
vanishing potential. Sincef is constant, the above solutio
represents a flat (R23S1) spacetime with constantS1 scale
factor when interpreted as a 211 reduced model@V(f)
5f#.

B. f depending on a single coordinate

Let us suppose, without loss of generality, that]vf50,
i.e. b(v)50. ~Alternatively, ]uf50.! From Eq. ~2.5! we
have]vx50, and Eqs.~2.2!–~2.4! reduce to the form

]u]v~ ln r!50, ~2.8!

d2f

du2 2]u ln~r!
df

du
5gV~f!S dx

duD 2

. ~2.9!

@Equation~2.3! is identically satisfied.# The general solution
of Eqs.~2.8!,~2.9! is

r5
df

du
expFd~v !2gE

f0

f

df8V~f8!S dx

df8D
2G ,

~2.10!

whered(v) is an arbitrary function ofv, f0 is an integration
constant, andx[x@f(u)#. The two-dimensional line ele
ment then represents a flat spacetime, even though the s
field is not constant. Note that all fields depend on a sin
variable ~f!; however, the solution~2.10! is not strictly a
‘‘static’’ solution in the sense~1.1!,~1.2!. ~A similar solution
arises in two-dimensional dilaton-gravity when the dilat
has vanishing potential.! The nature of the solution become
particularly evident whenV(f8)5f8 and the model is in-
terpreted in 211 dimensions. In this case the thre
dimensional line element corresponding to the solut
~2.10! reads@V(f8)5f8#

ds254 expF2gE
f0

f

df8f8S dx

df8D
2Gdfdv1f2du2,

~2.11!
l.

ce
h
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le

n

where we have defined the new coordinatev as in the pre-
vious section anduP@0,1# is theS1 variable. The geometry
of the spacetime isR23S1, and the scale factorf is a func-
tion of the light cone variable orthogonal toy. For instance,
choosing x5x01arctan(f/k), Eq. ~2.11! reads ~x5v1f
and t5v2f!

ds25 f 0 expS g/2

11~x2t !2/4k2D ~2dt21dx2!1
~x2t !2

4
du2 .

~2.12!

C. Complete case

In this case, setting

r~u,v !5 f ~u,v !
da~u!

du

db~v !

dv
, ~2.13!

and using the new coordinates (a,b) ~note that the coordi-
nate transformation is never degenerate, the degenerate
being included in the previous sections!, Eqs. ~2.2!–~2.5!
reduce to

]a]b~ ln f !5gV8~a1b!]ax]bx, ~2.14!

V8~a1b!~]ax1]bx!12V~a1b!]a]bx50, ~2.15!

]a~ ln f !52gV~a1b!~]ax!2, ~2.16!

]b~ ln f !52gV~a1b!~]bx!2. ~2.17!

Now the system of second order partial differential equatio
~2.14!–~2.17! can be integrated, solving first Eq.~2.15!, and
then using the solutionx in Eqs.~2.16!,~2.17!. This program
can be easily completed using the new variablesz5a1b
and w5a2b. Since Eq. ~2.15! and the constraints
~2.16!,~2.17! imply Eq. ~2.14!, we can forget the latter and
write

]z
2x1

V8~z!

V~z!
]zx5]w

2 x, ~2.18!

]z~ ln f !52gV~z!@~]zx!21~]wx!2#, ~2.19!

]w~ ln f !522gV~z!]zx]wx, ~2.20!

where V85dV(z)/dz. Equation ~2.18! corresponds to Eq
~2.15! and Eqs.~2.19!,~2.20! are the sum and the differenc
of Eqs.~2.16!,~2.17! respectively. Finally, given a solution o
Eq. ~2.18!, the ~logarithm of the! physical conformal factor
of the two-dimensional metricf can be written as a func
tional of x and locally cast in the form

ln f ~z,w; f 0!5 ln f 0

22gV~z!E
w0

w

dw8]w8x~w8,z!]zx~w8,z!

2gEz

dz8V~z8!$@]wx~w,z8!#2

1@]zx~w,z8!#2%w5w0
, ~2.21!
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where f 0 andw0 are two constants. Let us now focus atte
tion on Eq.~2.18!. Since the latter is a linear separable part
differential equation in the variablesz and w, the solution
can be written in the form@7#

x~z,w!5x01E
2`

`

dlC~l!h~z,l!j~w,l!, ~2.22!

whereh and j are the solutions of the linear second ord
ordinary differential equations

d2h

dz2 1
V8~z!

V~z!

dh

dz
5lh,

d2j

dw2 5lj. ~2.23!

It can be proved that the solution~2.22! is the most genera
solution of Eq.~2.18! provided that the completeness the
rem for both Eqs.~2.23! holds. ~See for instance@7#.! This
rather weak assumption is satisfied for a wide class of ph
cal, well-behaved, functionsV(z) in Eqs. ~2.23!. As a con-
crete example of the formalism, let us now consider the c
V(z)5z corresponding to the~211!-dimensional model.
The ~real! solution~2.22! reads@in this case it is straightfor-
ward to verify that the completeness theorem holds beca
the first equation in Eqs.~2.23! coincides with the Bessel o
modified Bessel equation depending on the sign ofl#

x~z,w!5x01E
0

`

da$xa
~1!~z,w!1xa

~2!~z,w!% ,

~2.24!

where

xa
~1!~z,w!5@A1~a!sin~aw!1B1~a!cos~aw!#

3@C1~a!J0~az!1D1~a!Y0~az!#, ~2.25!

xa
~2!~z,w!5@A2~a!eaw1B2~a!e2aw#

3@C2~a!I 0~az!1D2~a!K0~az!#,

~2.26!

whereJ0 andY0 are the zeroth order Bessel functions of fi
and second kind,I 0 and K0 are the zeroth order modifie
Bessel functions, and the coefficientsA, . . . ,D are real func-
tions.

Starting from Eqs.~2.24!–~2.26!, or directly from Eqs.
~2.18!–~2.20!, some interesting particular solutions can
calculated. Let us look, for example, for a solution of E
~2.18! of the form x(z,w)5z(z)1y(w). Inserting the pre-
vious ansatz in Eq.~2.18!, we have

x~z,w!5x01k1 ln z1k2w1k3S w21
z2

2 D . ~2.27!

The conformal scale factor of the two-dimensional line e
ment is

f 5 f 0z2gk1
2
g~z,w!, ~2.28!

where
-
l

r

i-

se

se

t

.

-

g~z,w!5e22gw~k11k3z2!~k21k3w!2 ~gz2/4!~2k2
2
14k1k31k3

2z2!.
~2.29!

The solution ~2.27!–~2.29! is generally non-static in the
sense~1.1!,~1.2! because the fields depend on both variabl
@A particular case is given by the choicek15k350. In this
casex[x(w) and f 5exp(2gk2

2z2/2) depends only onz.
Hence, according to Eqs.~1.1!,~1.2! we have a flat spacetim
but a non-static solution.# However, whenk25k350, i.e.
g(z,w)51, Eqs. ~2.27!–~2.29! reduce to the~well-known!
static solution@6#. @Alternatively, the latter can be obtaine
directly from Eqs. ~2.24!–~2.26! setting, for instance,Ai
5Bi5d(a).# Let us see this in detail. Recalling Eq.~1.1!
and Eq.~2.13! the three-dimensional line element reads~w
5t, z5R!

ds25 f 0R2gk1
2
~2dt21dR2!1R2du2, ~2.30!

x5k1 ln~R/R0!. ~2.31!

The above solution can be cast in a more familiar form w
a redefinition of the integration constants and a change
coordinates. Let us setR5br N/2 and t5tM , whereb is a
parameter with dimensions of length andN, M are related to
k1 and f 0 by N52/(114k1

2), M5(2/N f0)b122/N. With
these redefinitions the line element~2.30! becomes~g524,
low-energy string case!

ds252U~r !dt21b2U21~r !dr21b2r Ndu2, ~2.32!

whereU(r )5(2M /N)r 12N/2. As expected, the model doe
not admit black hole solutions and the metric becomesR3

flat whenk150, i.e. when the scalar field is constant. Th
can be verified directly from Eq.~2.21!, recalling thatf is a
harmonic function, and Eq.~2.13!.

Let us briefly conclude the section with another intere
ing set of solutions. Choosing for instance in Eq.~2.25! A15
D150, B1C15K, and using Eq.~2.24!, we have@8#

x~z,w!5x01
K

Az22w2
, ~2.33!

whereK is a constant. From Eq.~2.21! it is straightforward
to obtain the metric

ds25 f 0egK2z2/2~z22w2!2
~2dw21dz2!1z2du2.

~2.34!

The choiceB15D150, A1C15K gives instead the comple
mentary solution

x~z,w!5x01
K

Aw22z2
, ~2.35!

ds25 f 0e2 gK2z2/2~w22z2!2
~2dw21dz2!1z2du2.

~2.36!

The discussion of the global properties of Eqs.~2.33!–~2.36!
is beyond the scope of this brief report and will be discus
elsewhere; so here we will not enter into details. Let
stress, however, that the above solutions are asymptotic
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flat and singular whenw6z50, i.e. when the scalar field
diverges. With different choices of the coefficients in Eq
~2.25!,~2.26! it is possible to construct non-singular sol
tions.

III. CONCLUSIONS

In this Brief Report we have briefly discussed the tw
dimensional dilaton-gravity-matter theory described by
action~1.3!. WhenV(f)5f the model can be interpreted a
the two-dimensional effective theory of 211 cylindrical
gravity minimally coupled to a massless scalar field.

The model of Eq.~1.3! has the remarkable property o
being completely solvable and we have derived and cla
fied its solutions for a large class of functionsV(f). It is
well-known that any two-dimensional pure dilaton-grav
theory satisfies the generalized Birkhoff theorem; i.e. a
solution of the system can be reduced to the form~1.1!,~1.2!.
Here, because of the presence of the scalar field, the Birk
theorem is no longer valid. It is then interesting to exam
how the presence of the scalar field modifies the equation
motion with respect to the pure dilaton-gravity case. Let
consider for simplicity]ufÞ0 and]vfÞ0. In this case Eqs
~2.1! and~2.3!–~2.5! imply Eq. ~2.2!, and so we can neglec
the latter. Equation~2.3! simply defines the scalar field an
can be solved settingV(f)]vx5]vw and V(f)]ux5
2]uw. Usingw the remaining equations read

]u]vf1rV̄~f!50, ~3.1!
.
d
,

r,

n

an

d

ev
.
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e
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y

ff
e
of
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r]uS ]uf

r D5gV21~f!~]uw!2, ~3.2!

r]vS ]vf

r D5gV21~f!~]vw!2, ~3.3!

where we allow for the presence of a dilatonic potent
V̄(f). Equation~3.1! does not depend onw. Hence, only the
constraints~3.2!,~3.3! are modified by the presence of th
scalar field. The validity of the Birkhoff theorem is thus r
lated to the right-hand side~RHS! of Eqs. ~3.2!,~3.3!. Fur-
ther, a static solution is obtained only when the RHS of E
~3.2! is equal to the RHS of Eq.~3.3!. In that casew[w(u
1v) or w[w(u2v) and the equations of motion can b
reduced to a system of ordinary differential equatio
Clearly, the above condition is satisfied in the case of p
dilaton-gravity whenw is identically zero but cannot be sa
isfied by any dilaton-gravity theory coupled to a scalar fie
Finally, the integrability property of the system does n
seem to be related to the existence of non-static solution
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