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Dynamics of Bogomol’nyi-Prasad-Sommerfield dyons: Effective field theory approach
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Based on a detailed analysis of nonlinear field equations of the SU~2! Yang-Mills-Higgs system, we obtain
the effective field theory describing the low-energy interaction of Bogomol’nyi-Prasad-Sommerfield~BPS!
dyons and massless particles~i.e., photons and Higgs particles!. Our effective theory manifests electromagnetic
duality and spontaneously broken scale symmetry and reproduces the multimonopole moduli space dynamics
of Manton in a suitable limit. Also given is a generalization of our approach to the case of BPS dyons in a
gauge theory with an arbitrary gauge group that is maximally broken to U(1)k. @S0556-2821~98!05206-0#

PACS number~s!: 14.80.Hv, 11.15.Kc
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I. INTRODUCTION

In certain spontaneously broken non-Abelian gauge th
ries we have magnetic monopoles as solitonic particles~in
addition to the usual elementary field quanta! and, since their
initial discovery by ’t Hooft and Polyakov@1# in 1974, much
effort has been made to clarify their physical role. The
more recently, a number of exact results have been obta
in a class of supersymmetric gauge theories by exploiting
electromagnetic duality symmetry@2#. Magnetic monopoles
relevant in this supersymmetric gauge theories are the
called Bogomol’nyi-Prasad-Sommerfield~BPS! monopoles
@3#, i.e., magnetic-charge-carrying static solutions to
Yang-Mills-Higgs field equations in the BPS limit of vanish
ing Higgs potential. In the BPS limit, there is a Bogomol’n
bound on the static energy functional and remarkably
have degeneratestatic multimonopole solutions that satura
the bound. Originally this was a semiclassical result at m
but, in the supersymmetric gauge theories, Witten and O
@4# subsequently showed that this result may continue to
valid even after quantum corrections are included.

To study the duality and other issues, various authors
cussed the interaction of slowly moving BPS monopol
mainly following the work of Manton@5#. The central point
is that the moduli space of~gauge inequivalent! static
N-monopole solutions is finite dimensional and possess
natural metric coming from the kinetic-energy terms of t
Yang-Mills-Higgs Lagrangian. Manton suggested that
low-energy dynamics of a given set of monopoles and dy
may be approximated by geodesic motions on the mo
space. The metric for the two-monopole moduli space w
determined by Atiyah and Hitchin@6# and has given infor-
mation regarding the classical and quantum scattering
cesses of monopoles. More recently@7#, the knowledge of
the metric has been used in theories with extended super
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metry to show the existence of some of the dyonic sta
required by the electromagnetic duality conjecture of Mo
tonen and Olive@8#.

While Manton’s approach is believed to give a valid a
proximate description, it deviates from the viewpoint
modern effective field theory: it isnot based on all relevan
degrees of freedom at low energy. Dynamical freedoms
Manton’s approach are restricted to collective coordinate
monopoles, but the freedoms associated with photonsg)
and massless Higgs particles (w) are also relevant at low
energy. We hope to remedy this in this article. Instead
looking into the dynamics of collective coordinates ofall
monopoles~this is Manton’s moduli-space approximation!,
we will here obtain our effective field theory by studyin
how the collective coordinates of asinglemonopole or dyon
get involved dynamically with soft electromagnetic an
Higgs field excitations in the vicinity of the monopole o
dyon. This effective theory can describe the low-energy
teraction of monopoles with on-shell photons and Higgs p
ticles, and in the appropriate limit produces the result
Manton as well.~Note that, in our approach, monopoles
dyons interact through the intermediary of electromagne
and Higgs fields filling the space.! Moreover, it has the dis-
tinctive advantage that the underlying symmetries of
theory, the electromagnetic duality and spontaneously b
ken scale invariance, are clearly borne out, making our
fective action unique.

The basic idea of our approach can be captured by c
sidering the low-energy effective theory of massive vec
particles in the BPS limit of the SU~2! Yang-Mills-Higgs
model. In the unitary gauge with the Higgs fields aligned
fa(x)5da3„f 1w(x)…, the latter model is described by th
Lagrange density1

1We setc51 and our metric convention is that with the signatu
(2 1 1 1).
5239 © 1998 The American Physical Society
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L52
1

4
FmnFmn2

1

2
u~DmWn2DnWm!u22

1

2
]mw]mw2e2~ f

1w!2Wm†Wm1 ieFmnWm
†Wn1

e2

4
~Wm

†Wn2Wn
†Wm!

3~Wm†Wn2Wn†Wm!, ~1.1!

where Fmn5]mAn2]nAm is the electromagnetic field
strength andDmWn([]mWn1 ieAmWn) the covariant de-
rivative of the charged vector field. The Higgs scalarw,
which is massless in the BPS limit, plays the role of dilato
When the energy transferDE is much smaller than the
W-boson massmv5e f, the above theory may be substitute
by an effective theory with the actionSeff , whose dynamical
variables consist of the positionsXn(t) of W bosons and two
massless fieldsAm and w. Ignoring contact interactions o
‘‘heavy’’ W fields and also relatively short-ranged magne
moment interaction from Eq.~1.1!, this low-energy action
Seff is easily identified, viz.,

Seff5E d4xH 1

4
FmnFmn2

1

2
Fmn~]mAn2]nAm!

2
1

2
]mw]mwJ 1E dtLeff , ~1.2!

with Leff given by

Leff5 (
n51

N

$2„mv1gsw~Xn ,t !…A12Ẋn
22qn@A0~Xn ,t !

2Ẋn~ t !•A~Xn ,t !#%, ~1.3!

whereqn56e and gs5 mv / f 5e.0, denoting the electric
and dilaton charges of theW particle, respectively. While we
are eventually interested in the low-energy dynamics, i
also usuful to keep the full relativistic kinetic terms for pa
ticles and solitons. We remark that aside from the elec
magnetic gauge invariance, this effective theory also inhe
from the original theory the spontaneously broken scale
variance, which is described by

mv1gsw8~x!5
1

l
@mv1gsw~x/l!#,

~1.4!

Am8 ~x!5
1

l
Am~x/l!, Xn8~ t !5lXn~ t/l!,

wherel is a real number.
From Eq.~1.3! we see that the low-energy dynamics ofW

particles are governed by the force law@here, Vn
[ (d/dt) Xn] 2

2As the force law for the n-th W particle, E, B, and
H (52“w) appearing here may be allowed to include only co
tributions that are really external to the veryW particle.
.

s

-
ts
-

d

dt F $mv1gsw~Xn ,t !%
Vn

A12Vn
2G

5qnE~Xn ,t !1qnVnB~Xn ,t !

1gsH~Xn ,t !A12Vn
2, ~1.5!

where we have introduced the Higgs field strengthH(x)
[2“w(x) together with the electric and magnetic field
(E,B). When nonrelativistic kinematics is appropriate, E
~1.5! reduces to

mv

d2

dt2
Xn5qn@E~Xn ,t !1Vn3B~Xn ,t !#1gsH~Xn ,t !

~1.6!

and then, as was done in the classical electrodynamics@9#,
one may use this force law with field equations satisfied
Am and w to discuss various low-energy processes. Asso
ated with a uniformly acceleratingW particle with accelera-
tion a, for instance, the usual near-zone fields will be acco
panied by the radiation fields

E~r ,t !;
qn

4p

R3~R3a!

R3
, B~r ,t !;2

qn

4p

R3a

R2
,

~1.7!

H~r ,t !;
gs

4p

~R•a!R

R3
, H0~r ,t !;

gs

4p

R•a

R2
,

where R is the radial distance vector evaluated at the
tarded time. Also the low-energy laboratory cross sectio
for the gW andwW scatterings are easily calculated to be

S ds

dV D
gW,wW→gW

5S e2

4pmv
D 2

sin2 u,

~1.8!

S ds

dV D
gW,wW→wW

5S e2

4pmv
D 2

cos2 u ,

whereu is the angle between the direction of outgoing ma
less particles and that of the incident massless fields. H
we have neglected the spin ofW particles. We have also
taken care of the photon spin by averaging over the ini
spin and summing over the final spin. Of course the sa
results may be obtained in the tree approximation of the
theory.

The above effective theory may also be used to derive
effective Lagrangian for a system of slowly movingW par-
ticles. This effective particle Lagrangian results once
eliminate massless fieldsAm(x) and w(x) from the above
effective Lagrangian by using their field equations in t
near-zone approximation. For details on this procedure,
Appendix A. Assuming nonrelativistic kinematics forW par-
ticles, we then find the slow-motion Lagrangian of th
form3

- 3Our effective Lagrangian will lose its validity if two oppositel
charged particles approach each other too closely.
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L5
1

2(n,m
gi j

~nm!~X!Ẋn
i Ẋm

j 1 (
n.m

gs
22qnqm

4puXn2Xmu
, ~1.9!

with the inertia metric

gi j
~nm!~X!5mvdnmd i j 2

gs
2

4p FdnmS (
k ~Þn!

1

uXk2Xnu D
2

12dnm

uXn2XmuGd i j 1
qnqm2gs

2

8puXn2Xmu

3F d i j 1
~Xn

i 2Xm
i !~Xn

j 2Xm
j !

uXn2Xmu2 G ~12dnm!. ~1.10!

In the special case of equally chargedW particles only, the
potential terms in Eq.~1.9! cancel, sinceqnqm5gs

25e2, and
the last term of the inertia metric~1.10! also cancels, with the
metric

gi j
~nm!~X!5mvdnmd i j 2

gs
2

4p H dnmS (k ~Þn!

1

uXk2Xnu D
2

12dnm

uXn2Xmu J d i j .

One may discuss, for instance, the low-energy scatterin
two W particles on the basis of this effective Lagrangian.

In this paper we shall make a systematic study of the fi
equations of the Yang-Mills-Higgs system to establish
low-energy effective theory involving BPS monopoles or d
ons. This will be much harder to analyze than the case of
W particles, for here we have to confront the problems as
ciated withnonlinearnature of the given field equations. I
Sec. II, static BPS dyon solutions are reviewed. Then, in S
III the force law analogous to Eq.~1.5! is derived for a BPS
dyon and so are the appropriate generalizations of the re
~1.7! and~1.8! when BPS dyons, rather thanW particles, are
involved. Two of us have considered parts of these proble
earlier @10,11#, but they did not encompass all the releva
processes~especially those involving massless Higgs p
ticles!. In Sec. IV, we formulate the effective field theor
involving the dyon positions and two massless fields m
tioned above in such a way that the results of Sec. III
fully accommodated. The resulting theory assumes the f
corresponding to a duality-invariant generalization of the
tion ~1.1!. It is conceivable that our effective theory ma
have validity beyond tree level in the context of approp
ately supersymmetrized models. Also, for a system of slo
moving BPS dyons~of the same sign!, we obtain the effec-
tive Lagrangian analogous to Eq.~1.9! by the same proce
dure as above and show that it is closely related to Manto
moduli-space dynamics for well-separated monopoles.
Sec. V we discuss similar issues for BPS dyons in a ga
theory with an arbitrary gauge group that is maximally b
ken to U(1)k. Here the appropriate monopole moduli spa
was recently obtained in Ref.@12#. Section VI is devoted to
the summary and discussion of our work.

We have included brief reviews of some relevant mate
als to make our paper reasonably self-contained. Presum
various ideas developed in this work were previously ant
of
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pated by Manton@13# and others@12,14#, who presented a
simple derivation of the moduli-space metric for we
separated monopoles on the basis of closely related id
However, to our knowledge, the full story as presented h
has not appeared before. In any case, our work might
viewed as a first-principle derivation of the effective fie
theory for the BPS monopoles and massless fields, in
sense that it has been extracted through a detailed stud
time-dependent dynamics as implied by nonlinear field eq
tions of the system.

II. STATIC BPS DYON SOLUTIONS IN SU „2… GAUGE
THEORY

We shall recall here the basic construct of the BPS dy
solution in an SU~2! gauge theory spontaneously broken
U~1!. For this discussion it is better not to work in the unita
gauge. The Lagrangian density is (a51,2,3)

L52
1

4
Ga

mnGmn
a 2

1

2
~Dmf!a~Dmf!a , ~2.1!

where

Ga
mn5]mAa

n2]nAa
m1eeabcAb

mAc
n , ~2.2!

~Dmf!a5]mfa1eeabcAm
b fc. ~2.3!

The field equations read

~DmGmn!a52eeabc~Dnf!bfc, ~2.4!

~DmDmf!a50. ~2.5!

Without any nontrivial Higgs potential in the Lagrangia
density, this is a classically scale-invariant system. For
system, spontaneous symmetry breaking is achieved by
manding the asymptotic boundary condition

ufu5Afafa→ f .0 as r→`. ~2.6!

The unbroken U~1! will be identified with the electromag
netic gauge group below.

The above system admits static soliton solutions in
form of magnetic monopoles~or, more generally, dyons!, the
stability of which is derived from the topological argumen
They will carry some nonzero charges with respect to lo
range fields. To be explicit, we may define the electric a
magnetic charges by

q5 R
r 5`

dSif̂
aEi

a , g5 R
r 5`

dSif̂
aBi

a , ~2.7!

with Ei
a[Ga

0i , Bi
a5 1

2 e i jkGa
jk , andf̂a5fa/Afafa, and the

dilaton charge4 by

gs5 R
r 5`

dSi] i ufu5 R
r 5`

dSif̂
a~Dif!a. ~2.8!

4This name is due to Harvey@14#, who also emphasized the rol
of a Higgs scalar as a dilaton.
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Then we haveg54pn/e (nPZ) for a topological reason
while q may take on classically any continuous value. Als
gs is nothing but the mass of a static localized soliton up
a factor, viz.,

gs5M / f , ~2.9!

with

M[E d3r T005E d3r
1

2
$Ei

aEi
a1Bi

aBi
a1~D0f!a~D0f!a

1~Dif!a~Dif!a%, ~2.10!

where T00 denotes the 00 component of the stress ene
tensor

Tmn5Ga
mlGal

n 1~Dmf!a~Dnf!a1hmnL. ~2.11!

The result~2.9!, which seems to be not very well known
can be proved as follows. Consider the so-called impro
stress energy tensor@15#

T̃mn5Tmn1
1

6
~hmn]22]m]n!ufu2, ~2.12!

which is also conserved and satisfies at the same time
property of being traceless, after using the field equatio
Then, for any static solution,

E d3r T̃005M2
1

6E d3r ¹2ufu2

5M2
1

3
f gs , ~2.13!

using Eq. ~2.10! and the asymptotic behaviorufu; f

2 gs/4pr . On the other hand, since the traceless tensorT̃mn

is also divergence-free, we have

E d3r T̃005E d3r T̃ ii 5E d3r ] i~ T̃i j xj !

5 R
r 5`

dSi

xj

6
~d i j ¹

22] i] j !ufu25
2

3
f gs .

~2.14!

The relation~2.9! follows immediately from Eqs.~2.13! and
~2.14!. 5

Based on Eq.~2.10!, it is not difficult to show that the
mass of configurations with giveng and q satisfies the in-
equality ~called the Bogomol’nyi bound! @3,16#

M> fAg21q2. ~2.15!

5If the new tensorT̃mn were used to define the soliton mass, o
would end up with the mass value 2M /3, but we adhere to ou
definition ~2.10! for the soliton mass since this mass also enters
equation of motion for a soliton~see Secs. III and IV!; thephysical
mass is equal toM .
,
o

y

d

he
s.

Moreover, to obtain static solutions to field equations~2.4!
and~2.5! with the lowest possible energyM5 fAg21q2 for
given g574pn/e (n is a positive integer! and q
5g tan b, it suffices to consider solutions to the first-ord
Bogomol’nyi equations@16#

Bi
a57cosb~Dif!a, Ei

a57sin b~Dif!a, ~D0f!a50.
~2.16!

These are equations relevant to BPS dyons and forb50
reduce to the Bogomol’nyi equations for uncharged mo
poles:

Bi
a57~Dif!a, A0

a50. ~2.17!

Actually all dyon solutions to Eq.~2.16!, denoted as

„f̄a(r ;b),Āi
a(r ;b),Ā0

a(r ;b)…, can be obtained from the stati

monopole solutions„f̄a(r ;b50),Āi
a(r ;b50)… satisfying

Eq. ~2.17!. This is achieved by the simple substitution@18#

f̄a~r ;b!5f̄a~r cosb;0!,

Āi
a~r ;b!5cosbĀi

a~r cosb;0!, ~2.18!

Ā0
a~r ;b!57sin bf̄a~r cosb;0!.

The n561 solutions to Eq.~2.17! are well known@3#:

Āa
i ~r ;0!5eai j

r̂ j

er S 12
mvr

sinh mvr D ,
~2.19!

f̄a~r ;0!56 r̂ af S coth mvr 2
1

mvr D .

These describe the BPS one-~anti-!monopole solution, cen-
tered at the spatial origin, withg574p/e and massM
5gsf 54p f /e. If the substitution~2.18! is made with these
solutions, the results are the~classical! BPS dyon solutions
with g574p/e, q574p tan b/e, and massM5gsf
54p f /e cosb. Being a Bogomol’nyi system, there are als
static multi-monopole solutions satisfying Eq.~2.17!. How-
ever, physically, they may be viewed as representing c
figurations involving several of the fundamentaln561
monopoles described above. The latter interpretation is s
ported by the observation that the dimension of the mod
space of solutions withg574pn/e is 4n @17#; this is pre-
cisely the number one would expect for configurations on
monopoles, each of which is specified by three position
ordinates and a U~1! phase angle associated with dyonic e
citations.

III. TIME-DEPENDENT SOLUTIONS BASED ON FIELD
EQUATIONS

A. Summary of our previous analyses

We now turn to the study of low-energy dynamics invol
ing BPS dyons, as dictated by the time-dependent field eq
tions of the Yang-Mills-Higgs system. Particularly importa
processes are those in which a single BPS dyon inter
with electromagnetic and Higgs fields: they give the m

e
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direct information on the nature of effective interaction ve
tices involving these freedoms. Some of these proce
were previously analyzed by two of us@10,11# and in this
subsection we shall recall the results obtained there.

The first case concerns an accelerating BPS dyon in
presence of a weak, uniform, electromagnetic field asym
totically @11#, viz., under the condition that

fa

ufu
Bi

a→~B0! i ,
fa

ufu
Ei

a→~E0! i for r→`. ~3.1!

This generalizes the problem originally considered by M
ton @18# some time ago. Due to the uniform asymptotic fiel
present, the center of dyon is expected to undergo a con

acceleration, namely,X(t)5 1
2 at2 ~the accelerationa to be

fixed posteriorly! in the reference frame with respect
which the dyon has zero velocity att50. To find the appro-
priate solution to the field equations~2.4! and ~2.5!, the fol-
lowing ansatz has been chosen in Ref.@11#:

fa~r ,t !5f̃a~r 8;b!,

Ai
a~r ,t !52tai Ā0

a~r 8;b!1Ãi
a~r 8;b!, ~3.2!

A0
a~r ,t !52tai Āi

a~r 8;b!1Ã0
a~r 8;b!,

with

f̃a~r 8;b!5f̄a~r 8;b!1Pa~r 8;b!,

Ãi
a~r 8;b!5Āi

a~r 8;b!1a i
a~r 8;b!,

~3.3!

Ã0
a~r 8;b!57sin bf̄a~r 8;b!1a0

a~r 8;b!,

wherer 8[r2X(t), the functions„f̄a(r ;b),Ām
a (r ;b)… repre-

sent the static dyon solution given by~2.18! ~with g
574p/e and q5g tan b), and the yet-to-be-determine
functions (Pa,am

a ) are assumed to beO(a) @or O(B0) or
O(E0)]. Terms beyondO(a) are ignored. Note that the
functions (Pa,am

a ) will account for the long-range electro
magnetic and Higgs fields as well as the field deformati
near the dyon core.

It then follows that the field equations~2.4! are fulfilled if
the functions (Pa,am

a ) satisfy the equations

B̃i
a57~D̃ i1ai !

ab~cosbf̃b6tan ba0
b!, ~3.4!

~D̄ i D̄ ia0!a52e2 cos2 beabcebd ff̄
cf̄ fa0

d , ~3.5!

where D̃ i
ab[(Di

ab)Aa→Ãa, G̃c
j i [(Gc

ji )Aa→Ãa, and the sup-
pressed dependent variable isr 8. At the same time, the field
strengthEi

a to O(a) is given by

Ei
a~r ,t !52taj Ḡa

i j 1~D̃ i1ai !
abÃ0

b . ~3.6!

From these equations and the condition~3.1!, one finds that
the accelerationa should have the value given by
-
es

e
-

-

ant

s

Ma5gB01qE0 S M5
4p f

e cosb D , ~3.7!

while the functiona0
a behaves asymptotically such as

a0
a~r 8;b!→7cosb~sin bB02cosbE0!•r 8 r̂ a for r→`.

~3.8!

Note that Eq.~3.7! is the equation of motion in the dyo
instantaneous rest frame and the corresponding cova
generalization

d

dtS MV

A12V2D 5g~B02V3E0!1q~E01V3B0!

S V[
d

dt
XD ~3.9!

can also be secured by further considering the implication
the Lorentz boost of our ansatz~3.2! is performed.

The explicit, closed-form solution to Eqs.~3.4! and ~3.5!
has been given in Ref.@11#. Because of its rather compli
cated structure, we shall here describe its characteristic
tures only. It is everywhere regular, with the fields near
dyon core~i.e., at a distanced;1/mv) deformed suitably to
match smoothly the long-range fields having simple phys
interpretation. The physical contents of the long-range e
tromagnetic field is given in terms ofBi

em[(fa/ufu) Bi
a and

Ei
em[ (fa/ufu) Ei

a and that of the long-range Higgs field b
Hm[2 (fa/ufu) (Dmf)a. These quantities are convenient

expressed using theretarded distanceR5r2 1
2 at ret

2 , with t ret

determined~for a givenr and t) through the implicit equa-

tion t2t ret5ur2 1
2 at ret

2 u[R. Explicitly, in the regionmvr 8
@1,

Bem~r ,t !;B01
g

4p

R̂2vret

~12R̂•vret!
3R2

2
q

4p

R̂3vret

R2

1H g

4p

R̂3~R̂3a!

R
2

q

4p

R̂3a

R
J , ~3.10!

Eem~r ,t !;E01
q

4p

R̂2vret

~12R̂•vret!
3R2

1
g

4p

R̂3vret

R2

1H q

4p

R̂3~R̂3a!

R
1

g

4p

R̂3a

R
J , ~3.11!

H~r ,t !;
gs

4p

R̂2vret

~12R̂•vret!
3R2

1H gs

4p

~R̂•a!R̂

R
J ,

~3.12!

H0~r ,t !;
gs

4p

R̂•vret

~12R̂•vret!
3R2

1H gs

4p

~R̂•a!

R
J ,

~3.13!

where a is given by Eq. ~3.7!, vret[at ret, and gs
54p/e cosb ~i.e., equal to the dilaton charge of the dyon!.
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Note that expressions~3.10! and ~3.11! are fully consistent
with the electromagnetic fields of a pointlike dyon in motio
and exhibit the manifest electromagnetic duality.@See Eq.
~1.7! for a comparison.# This statement applies to both nea
zone fields ofO(R22) and radiation fields@the O(R21)
terms marked by the curly brackets in Eqs.~3.10!–~3.13!#.
Now the radiation energy flux, measured by the 0i compo-
nent of the stress energy tensor, is given as

Trad
0i 5Ga

0kGa
ik1~D0f!a~Dif!a5e i jkEj

emBk
em1H0Hi

5
gs

2

16p2R2 ~ ua3R̂u1ua•R̂u!, ~3.14!

where we used the relationgs
25g21q2.

In Ref. @10#, an analogous perturbative scheme was u
to study light scattering off a neutral BPS monopole in t
long-wavelength limit. Here the incident electromagne
wave is assumed to have magnetic field given as

Bin
em5ReF iM v2

g
aeik•x2 ivtG ~v5uku,k•a50!,

~3.15!

where the frequencyv and the magnitudea are taken to be
sufficiently small so thatv/mv!1 andva!1. The center of
the monopole is then expected to undergo a nonrelativ
motion

X~ t !5Re@2 iae2 ivt# ~3.16!

@with the initial conditionX(0)50]. So, in this case, the
solution to the field equations~2.4! may be sought on the
basis of the ansatz

fa~r ,t !5f̄a~r2X!1Re@Pa~r ,t !#,

@Pa~r ,t !5P̃a~r2X!e2 ivt#,

Ai
a~r ,t !5Āi

a~r2X!1Re@a i
a~r ,t !#,

@a i
a~r ,t !5ã i

a~r2X!e2 ivt#, ~3.17!

A0
a~r ,t !5Re@ ã0

a~r2X!e2 ivt#,

where Āi
a(r ) and f̄a(r ) represent the static BPS monopo

solution in Eq.~2.19!. The function (P̃a, ãm
a ) are assumed to

be O(av) and in the asymptotic region should account
the incident wave and outgoing radiations.

Using the ansatz~3.17! with field equations~2.4! and
~2.5! give rise to complicated differential equations for t

functions (P̃a, ãm
a ). However, as noted in Ref.@10#, a great

simplification is achieved with the introduction of the fun
tions b i

a(r ,t) by the equation

Ga
i j ~r ,t !57e i jk@~Dkf!a~r ,t !1bk

a~r ,t !#. ~3.18!

The field equations are fulfilled if theb i
a satisfy the equation

@~D̄kD̄k1v2!b̃ i #
a1e2eabcebdeb̃ i

df̄ef̄c50 ~3.19!
d

ic

r

@here,D̄ i
ac[] idac1eeabcĀi

b(r2X)], and then the functions

f̃a and Ãi
a can be found using

P̃a5
1

v2 @~D̄ i b̃ i !a2 ieveabcã0
bf̄c2 iv2aj] j f̄

a#,

~3.20!

ã i
a5

1

v2 @7e i jk~D j b̃k!
a1eeabcb̃ i

bf̄c2 iv~D̄ i ã0!a

2 iv2aj] j Āi
a#. ~3.21!

So what remains nontrivial is to solve Eq.~3.19!. There is no
equation to fix the functionsa0

a , but this just reflects arbi-
trariness in the choice of gauge.

The solution to Eq.~3.19!, found in Ref.@10#, reads

b̃ i
a~r 8!56 iv2ai f coth mvr 8eik•r8r̂ 8a7 iv2ai

eivr 8

er8
r̂ 8a

1O~av3!, ~3.22!

wherer 8[r2X. Then, using this with Eqs.~3.20! and~3.21!

@with the gauge choiceã0
b(r 8)5vaiĀi

b(r 8), made for the

consistency of our ansatz#, the expressions forP̃a(r 8) and

ã i
a(r 8) follow. In this way, long-range fields in the prese

process have been identified as

Bem~r ,t !;7 iv2af eik•r2 iwt7 iv2@ r̂3~ r̂3a!#
eivr 2 iwt

er
,

Eem~r ,t !;6 iv2~ k̂3a! f eik•r2 iwt7 iv2~ r̂3a!
eivr 2 iwt

er
,

~3.23!

H~r ,t !; iv2
a• r̂

er
eivr 2 iwt r̂ ,

H0~r ,t !; iv2
a• r̂

er
eivr 2 iwt

where only the real parts are relevant. Notice the appeara
of outgoing spherical waves, describing electromagnetic
Higgs scalar radiations. Based on these results, the rel
differential cross sections are determined as

S ds

dV D
em

5
~v4/2e2!u r̂3au2

1

2
v4f 2a2

5S g2

4pM D 2

sin2 Q,

~3.24!

S ds

dV D
Higgs

5
~v4/2e2!ua• r̂ u2

1

2
v4f 2a2

5S gs
2

4pM D 2

cos2 Q,

~3.25!

whereQ is the angle betweenr̂ ~i.e., the observation direc
tion! and the incidentBem field and we used the relationg2

5gs
25(4p/e)2 here. Notice a close similarity between the
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results for a BPS monopole and the corresponding form
~1.8! for an electrically chargedW particle.

B. Accelerating dyon solution
in weak uniform asymptotic fields

A BPS dyon, having nonzero dilaton charge, will have
nontrivial coupling to the Higgs field. To deduce the corr
sponding force law from the field equations in a convinci
way, it is necessary to consider a more general, unifo
asymptotic field than in Eq.~3.1!. In this section, we there
fore suppose that there exists also a weak, uniform, Hi
field strength asymptotically, viz.,

fa

ufu ~Dif!a→2~H0! i as r→` ~3.26!

in addition to the electromagnetic field strengths (E0 ,B0)
specified as in Eq.~3.1!. Of course, the imposition of Eq
~3.26! would make the asymptotic condition~2.6!, required
for any field configuration with finite total energy, obsole
This is not a problem; our interest here is in studying
time-dependent flow of energy from one spatial region
another, as predicted by field equations. For sufficien
small (E0 ,B0 ,H0), we may again seek the appropriate p
turbative solution to the field equations on the basis of
ansatz given in Eqs.~3.2! and ~3.3!. This will lead to Eqs.
~3.4! and ~3.5! and also to the relation~3.6! for Ei

a . How-
ever, the solution of our present interest is, unlike that giv
in Ref. @11#, the one satisfying Eqs.~3.4! and ~3.5! for non-
zeroH0 .

Our first task is to determine the dyon accelerationa un-
der this generalized asymptotic condition. For this purpo
we assume the asymptotic form of the functiona0

a to be
given as

a0
a~r 8;b!→cosbC•r 8 r̂a8 for r→` ~3.27!

(C is some constant vector! and then we have

fa

ufu ~D̃ ia0!a→6cosbCi for r→`. ~3.28!

Now we use this information and the given asymptotic co
ditions with Eqs.~3.4! and ~3.6! to deduce two linear rela
tions involvingB0 , E0 , H0 , a, andC. Solving the latter for
a andC, we immediately obtain

a57
1

f
@cosbB01sin bE07H0# ~3.29!

and

C57
1

f
@sin bB02cosbE0#. ~3.30!

Notice thatC does not depend onH0 . If Eq. ~3.29! is rewrit-
ten using g574p/e, q574p tan b/e, and gs
54p/(e cosb)5M/f, it assumes the form

Ma5gB01qE01gsH0 . ~3.31!
s

-

,

s

.
e
o
y
-
e

n

e,

-

This is the desired equation of motion for a dyon in its i
stantaneous rest frame. We remark here that, by conside
the Lorentz boost of the above solution, Eq.~3.31! may be
generalized to the form~see Appendix B!

d

dtS ~M2gsXmHm!V

A12V2 D 5g~B02V3E0!1q~E01V3B0!

1gsH0A12V2. ~3.32!

This should be compared with the force law for aW particle,
given in Eq.~1.5!.

If the strengths of the asymptotic fields are such that

H056~cosbB01sin bE0!, ~3.33!

we see from Eq.~3.29! that a50, i.e., the dyon does no
‘‘feel’’ any force ~at least to the first order in the applie
fields!. In view of Eq. ~3.2!, the corresponding solution i
necessarily static. Here one has the special case where
applied fields are consistent with the original Bogomol’n
equations~2.16!. This happens ifa0

a50 ~and henceC50)
and

B056cosbH0 , E056sin bH0 . ~3.34!

We are now talking about a static BPS dyon solution in
presence ofself-dual uniform fields. After some calculation
we have found that the appropriate static solution forb50
~i.e., the case of a neutral monopole! and toO(H0) is given
by

fa~r !56 r̂ af S coth mvr 2
1

mvr D6
1

2
H0•rr̂ a

mvr

sinh2 mvr

7
1

2
@~H0!a2H0• r̂ r̂a#

r

sinh mvr
7coth mvrH0•rr̂ a ,

~3.35!

Aa
i ~r !5eai j

r̂ j

er S 12
mvr

sinh mvr D
1

1

2
eai j r̂ j

]

]r S r 2

sinh mvr DH0• r̂

1eai j@~H0! j2H0• r̂ r̂ j #
r

2sinhmvr

1
r 2r coshmvr

2sinhmvr
r̂ae i lm r̂ l~H0!m , ~3.36!

A0
a~r !50. ~3.37!

The corresponding solution forbÞ0 ~i.e., the BPS dyon
case! then also follows once the trick in Eq.~2.18! is used.6

We now consider the solution to Eqs.~3.4! and ~3.5!
when a is nonzero; this will lead to a time-dependent so

6While Eq. ~3.35! is only an approximate solution@i.e., valid to
O(H0)] of the Bogomol’nyi equation, we remark that itsmv→`

limit, namely, fa(r )56 r̂ a(2H0•r1 f 2 1/er) and Aa
i (r )

5eai j ( r̂ j /er) 2
1
2 r̂ ae i lmxl(H0)m , corresponds to an exact but sin

gular solution ofBi
a57(Dif)a.
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tion, accompanied by suitable radiation fields. Followi
Ref. @11#, we introduce rescaled quantities

y5r 8 cosb, Ai
a~y!5

1

cosb
Ãi

aS r 85
y

cosb
;b D

~3.38!

and recast Eqs.~3.4! and ~3.5! as

Bi
a57SDi

~y!1
ai

cosb D abS f̃b6
sin b

cos2 b
a0

bD , ~3.39!

~D̄ i
~y!D̄ i

~y!a0!a52e2eabcebd ff̄
c~y;b50!f̄ f~y;b50!a0

d ,
~3.40!

where D̄ i
(yi )ac[(]/]yi) dac1eeabcĀi

b(y;b50), Di
(y)ab

[(]/]y) dac1eeabcAi
b(y), andBi

a(y) denotes the magneti
field strength obtained from the vector potentialAi

a(y). The
solution to Eq.~3.40! that fulfills the condition~3.27! is
given by

a0
a5coth mvy~C•y!ŷa1

y

sinh mvy
@~C!a2~C• ŷ!ŷa#,

~3.41!

where y[uyu5r 8 cosb and the vectorC is given by Eq.
~3.30!. We have also the solution to Eq.~3.39! expressed as

f̃a56 ŷaF f S coth mvy2
1

mvyD1
ŷ•a

2e cosb

3S 12
mvy

sinh mvyD G6
aaf y

2cosb sinh mvy
7

sin b

cos2 b
a0

a

7 ŷa

]

]y
~y coth mvyV!7S ]

]ya 2 ŷa

]

]yD S y

sinh mvy
VD ,

~3.42!

Aa
i 5eai j

ŷ j

eyS 12
mvy

sinh mvyD1
f y

2 cosb S coth mvy

2
1

mvyD e i jk ŷ jakŷa1eai j

]

]yj S y

2 sinhmvy
VD

1~12coshmvy!ŷae i lmŷl

]

]ymS y

sinh mvy
VD ,

~3.43!

where the functionV, which is adjustable, must satisfy th
Laplace equation¹2V50. All asymptotic boundary condi
tions, including Eq.~3.26!, are satisfied if we here choose

V52
1

2 cos2 b
~sin bC•y2cosbH0•y!. ~3.44!

Using Eqs.~3.42! and ~3.43!, we find completely regular

expressions for the functions f̃(r 8;b), Ãi
a(r 8;b)

5cosbAi
a(y5r 8 cosb), and Ã0

a(r 8;b)57sinbf̄(r 8;b)
1a0

a(r 8;b) @see Eq.~3.3!#, immediately. If those are in
serted into Eq.~3.2!, we have the explicit perturbative solu
tion appropriate to a BPS dyon in the presence of unifo
electromagnetic and Higgs field strengths asymptotica
Note that only elementary functions enter our solution~but in
a rather complicated way! and the result forH050 of course
coincides with that already given in Ref.@11#. Long-range
electromagnetic and Higgs fields, which are easily extrac
from this time-dependent solution to the field equatio
again take simple forms. As for theBem, Eem, andH0, the
expressions~3.10!, ~3.12!, and~3.13! are still valid under the
condition that the acceleration parametera is now specified
by Eq. ~3.29!. On the other hand, the expression ofH now
contains also a uniform-field term over the result~3.12!, viz.,

H~r ,t !;H01
gs

4p

R̂2vret

~12R̂•vret!
3R2

1H gs

4p

~R̂•a!R̂

R
J .

~3.45!

This in turn implies that one may continue to use formu
~3.14!, with a specified by Eq.~3.29!, to find the radiated
energy flux in the form of electromagnetic and Higgs wav

C. Electromagnetic and Higgs waves incident on dyons

In Sec. III A, the light scattering off a neutral BPS mon
pole was described in the long-wavelength limit. Since
theory admits also a massless Higgs boson, one might
consider a Higgs wave scattering by a BPS monopole
dyon, which would reveal tree-level interactions between
massless Higgs boson and a BPS dyon. Therefore, to m
our analysis complete, we will here analyze light and Hig
wave scattering by a BPS dyon with the help of an analog
perturbative scheme.

In the presence of incident electromagnetic and Hig
plane waves, the dyon is expected to undergo a motion of
form ~3.16! with the vectora describing the oscillating di-
rection and amplitude of the dyon in response to the incid
waves. The vectora is taken to be real; this amounts t
choosing the initial conditionX(0)50. HereX(t) describes
the position~i.e., the center! of the dyon that is defined as th
zero of the Higgs fieldf(r ,t). We shall again construct a
solution to the field equations~2.4! and ~2.5! corresponding
to this oscillating dyon with incident electromagnetic a
Higgs plane waves. Due to the oscillatory motion, it mu
radiate electromagnetic and Higgs waves as in the case
neutral monopole. Hence the solution describes the sca
ing of light and Higgs particle by a dyon.

One may begin the analysis with an ansatz for the solu

fa~r ,t !5f̄a~r2X;b!1Re@P̃a~r2X;b!e2 ivt#,
~3.46!

Am
a ~r ,t !5Ām

a ~r2X;b!1Re@ ãm
a ~r2X;b!e2 ivt#1O~a2!,

~3.47!

where„f̄a(r ;b),Ām
a (r ;b)… is the static dyon solution charac

terized by magnetic and electric charges (g574p/e, q5

74p tan b/e). The functions„P̃a(r2X;b),ãm
a (r2X;b)…

represent excitations from the undeformed but moving dy
with the center atX(t) and in particular contain the
asymptotic fields required for the motion and the radiatio
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emitted by the dyon. In spite of the clarity in their interpr
tation, we shall not work with these functions due to t
complexity in resulting equations. Instead, we define n
functions

P̃8a5P̃a~r2X;b!2X̃•“f̄a~r2X;b!, ~3.48!

ãm8
a5ãm

a ~r2X;b!2X̃•“Ām
a ~r2X;b!, ~3.49!

where X̃ is implicitly defined by the relationX(t)

5Re@X̃e2 ivt#. These functions in fact represent the ent
time-dependent corrections to the static configurations. A

the case of a monopole, the functions (P̃a,ãm
a ) and

(P̃8a,ãm8
a) are assumed to beO(a) and we will solve the

field equations to the first order ina. The field equation~2.4!
now reads

~DiDiA0!a2 iv~D̄ i ã08!a5 ieveabcf̄bP̃8c

2e2eabcecdefbA0
dfe,

~3.50!

~D jG
i j !a2v2ã i8

a1 iv~D̄ i ã08!a12ieveabcã i8
bĀ0

c

5eeabcA0
b~DiA0!c2eeabcfb~Dif!c, ~3.51!

while the other field equation~2.5! becomes

~DiDif!a1v2P̃8a12ieveabcĀ0
bP̃8c1 ieveabcã08

bf̄c

5e2eabcecdeA0
bA0

dfe, ~3.52!

where only part of the relevant quantities are expresse

terms of (P̃8a,ãm8
a).

To proceed further, we find it convenient to introduce t

functions b̃ i
a(r2X) by

Bi
a~r ,t !57

~Dif!a~r ,t !

cosb
2tan bEi

a6
b̃ i

a~r2X!e2 ivt

cosb
.

~3.53!

Note that b̃ i
a effectively describes dynamical excitation

from the BPS saturated state satisfying the combi
Bogomol’nyi equation@see Eq.~2.16!#

Bk~r ,t !57
~Dkf!a~r ,t !

cosb
2tan bEk

a . ~3.54!

If we use the relation~3.53! to eliminateDif from Eq.
~3.52! and the Bianchi identity (DiBi)

a50, we obtain

v2P̃a85~D̄ i b̃ i !a2 ieveabc~ ã08
bf̄c1Ā0

bP̃8c!, ~3.55!

while direct insertion of Eq.~3.53! into Eq. ~3.51! yields

v2ã i8
a1 iv~D̄ i ã80!a57

1

cosb
eijk~D̄jbk!

a1eeabcb̃i
bf̄c

2ivetanbe i jk~D̄ j ã k
8!a
in

in

d

2 iveeabcã i8
bĀ0

c. ~3.56!

One may also reexpress relation~3.53! in terms ofP̃8a and

ãm8
a as

e i jk~D̄ j ãk8!a57
~D̄kP̃8!a

cosb
7cosbeabcã i8

bf̄c

1tan b@~D̄ i ã08!a2 ivã i8
a#6

b̃ i
a

cosb
.

~3.57!

It is then not difficult to verify that Eq.~3.50! is identically
satisfied when Eqs.~3.57!, ~3.55!, and~3.56! are used.

Taking an appropriate combination of Eqs.~3.57! and

~3.56! to eliminate theã i8
a dependence and using relatio

~3.55!, we can derive a second-order equation forb̃ i
a , which

reads

@~D̄kD̄k1v2! b̃ i #a1e2 cos2 beabcebdeb̃ i
df̄ef̄c50.

~3.58!

On the other hand, eliminating thee i jk(D̄ j ãk8)
a terms from

Eqs.~3.57! and ~3.56! leads to

v2ã i8
a57cosbe i jk~D̄ j b̃k!

a1e cos2 beabcb̃ i
bf̄c

2 iv~D̄ i ã08!a6 iv sin b@~D̄ iP̃8!a1 b̃ i
a#.

~3.59!

Once b̃ i
a are obtained from Eq.~3.58!, we may use Eqs

~3.55! and~3.59! to fix (P̃8a, ã i8
a) up to unknown functions

ã08
a . Again note that there is no equation forã08

a , which

merely reflects that the choice ofã08
a is related to pure gauge

degrees of freedom. Equation~3.58! is the same as Eq.~3.19!
when we scaler to r /cosb and v to v cosb. Thus the
scattering solution immediately follows if we use the resu
of Sec. III A:

b̃ i
a56 iv2ai f coth mvr 8 cosbeik•r r̂ 8a

7 iv2ai

eivr

er8 cosb
r̂ 8a1O~av3!, ~3.60!

wherer 8[r2X. ~We will see below that this particular ho
mogeneous solution in fact describes the oscillating dyon
incident electromagnetic and Higgs planewaves. Of cou
the solution is not the most general solutions of the ab
equation.! Upon making the gauge choice

ã08
a57sin bP̃8a1vaiĀi

a ~3.61!

and using Eqs.~3.55! and ~3.55!, we find the expressions

P̃8a;7vFa• k̂ f eik•r2
a• r̂

er cosb
eivr G r̂ a, ~3.62!
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ã i8
a;v f @~ k̂3a! i cosb2ai sin b#eik•r r̂ a

2v@~ r̂3a! i cosb2ai sin b#eivr r̂ a ~3.63!

in the scattering region where the terms ofO(r 22) are ig-
nored. Consequently, the electromagnetic and Higgs field
the asymptotic region are given as

Bem57 iv2@cosb k̂3~ k̂3a!2sin b~ k̂3a!# f eik•r2 iwt

7 iv2@cosb r̂3~ r̂3a!2sin b~ r̂3a!#
eik•r2 iwt

er cosb
,

~3.64!

Eem57 iv2@cosb~ k̂3a!1sin b k̂3~ k̂3a!# f eik•r2 iwt

7 iv2@cosb~ r̂3a!1sin b r̂3~ r̂3a!#
eik•r2 iwt

er cosb
,

~3.65!

H52 iv2~a• k̂!k̂ f eik•r2 ivt1 iv2~a• r̂ ! r̂
eivr 2 ivt

er cosb
,

~3.66!

H052 iv2~a• k̂! f eik•r2 ivt1 iv2~a• r̂ !
eivr 2 ivt

er cosb
,

~3.67!

where only the real parts are relevant. From those exp
sions, one may clearly see the presence of incident pla
waves as well as the electromagnetic and Higgs radia
fields emitted by the dyon. As expected, the force law can
verified explicitly by finding zero off(r ,t):

M Ẍ5M
d2

dt2
Re@2 iae2 ivt#5Re@gBinc

em1qEinc
em1gsH inc

em# r5X .

~3.68!

Here the subscript inc indicates that it refers only to
incident part of the given field. The results~3.64!–~3.67! can
be used to calculate the related scattering cross sect
With the energy momentum tensor~2.11!, the time-averaged
incident flux densities in electromagnetic and Higgs sec
are, respectively,

~T0i ! inc
em5

1

2
v4f 2ua3 k̂u2k̂ i , ~3.69!

~T0i ! inc
Higgs5

1

2
v4f 2ua• k̂u2k̂ i , ~3.70!

while the time-averaged radiated energy flux densities a

~T0i !rad
em5

v4

2e2r 2 cos2 b
ua3 r̂ u2r̂ i , ~3.71!

~T0i !rad
Higgs5

v4

2e2r 2 cos2 b
ua• r̂ u2r̂ i . ~3.72!
in

s-
e-
n
e

e

ns.

rs

Based on these, we find that, when a light is incident up
the dyon, i.e.,a•k50, the related differential cross section
are7

S ds

dV D
em→em

5S g21q2

4pM D 2

sin2 Q, ~3.73!

S ds

dV D
em→Higgs

5S g21q2

4pM D S gs
2

4pM D cos2 Q , ~3.74!

whereQ is the angle betweenr̂ and the combinationgBinc
em

1qEinc
em. On the other hand, for an incident Higgs wave, w

find

S ds

dV D
Higgs→em

5S gs
2

4pM D S g21q2

4pM D sin2 u, ~3.75!

S ds

dV D
Higgs→Higgs

5S gs
2

4pM D 2

cos2 u , ~3.76!

whereu is the angle betweenr̂ and k̂.
As should be the case, the cross sections~3.73! and~3.74!

for vanishing b agree with those of light scattering by
monopole in Eqs.~3.24! and ~3.25!. ~However, the case o
the Higgs and dyon or monopole scattering was not con
ered before.! Also it should be stressed that the cross secti
found above are manifestly duality symmetric~i.e., involve
the combinationg21q2 only! and have the same form as th
corresponding cross sections for aW particle@see Eq.~1.8!#.
In fact, formulas~3.73!–~3.76! apply to solitons and elemen
tary quanta alike only if appropriate values for the mass a
various charges are used.

IV. EFFECTIVE THEORY FOR ELECTROMAGNETIC
AND HIGGS SCALAR INTERACTIONS OF BPS DYONS

A. Duality-invariant Maxwell theory

According to the results of the preceding section, the
haviors of BPS dyons in low-energy processes are not v
different from those ofW particles; that is, solitons and e
ementary field quanta behave alike. This in turn suggests
there should exist a simple effective field theory for low
energy BPS dyons interacting with long-range fields. Ho
ever, unlikeW particles, dyons carry both electric and ma
netic charges and so their electromagnetic interacti
cannot be accounted for by the usual Maxwell theory: W
need a duality-symmetric generalization of the latter. Ev
from 1960s, Schwinger considered such a duality-symme
Maxwell theory seriously@19# and then several different ver
sions were developed by him and others@20# since. For our
discussion we find the simple first-order action approa

7In view of the relationg21q25gs
2 , the multiplicative factors

appearing on the right hand sides of Eqs.~3.73! and ~3.74! are
actually the same; here@and also in Eqs.~3.75! and~3.76!# we have
just written the expression in such a way that the vertices invol
may be seen clearly.
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given by Schwinger@21# in 1975, adequate. Its basic ide
will be recalled briefly in this subsection.

The goal is to find a simple Lagrangian description for t
generalized Maxwell system

]nFnm5Je
m~x!, ~4.1a!

]n * Fnm5Jg
m~x!, ~4.1b!

where * Fmn5 1
2 emnldFld and Je and Jg denote conserved

electric and magnetic sources, respectively. This system
marked by the duality symmetry

Je8
m~x!5cosaJe

m~x!1sin aJg
m~x!,

Jg8
m~x!52sin aJe

m~x!1cosaJg
m~x!,

F8mn~x!5cosaFmn~x!1sin a * Fmn~x!. ~4.2!

For a given distribution ofJe
m andJg

m , the field strengthsFmn

~satisfying suitable asymptotic conditions! can be determined
using Eqs.~4.1!. However, for a Lagrangian, vector pote
tials are needed. Based on Eq.~4.1b!, we may here introduce
the vector potentialAm(x) by

Fmn~x!5]mAn~x!2]nAm~x!

2E d4x8~n•]!21~x,x8!
1

2
emnld@nlJgd~x8!

2ndJgl~x8!#. ~4.3!

Here nm may be any fixed, spacelike, unit vector and t
Green’s function (n•])21 is realized by

~n•]!21~x,x8!5E
0

`

dj@ad4~x2x82nj!

2~12a!d4~x2x81nj!#

5$aQ@n•~x2x8!#

2~12a!Q@2n•~x2x8!#%dn~x2x8!,

~4.4!

where one can choose eithera50,1 ~semi-infinite string! or
a51/2 ~symmetric infinite string! and dn(x2x8) denotes a
three-dimensionald function with a support on the hypersu
face orthogonal tonm. Similarly, Eq. ~4.1a! informs us that
we may also write

Fmn~x!52
1

2
emnld@]lCd~x!2]dCl~x!#

1E d4x8~n•]!21~x,x8!@nmJe
n~x8!2nnJe

m~x8!#,

~4.5!

Cm(x) being another vector potential that is unrestricted
Eq. ~4.1a! alone.

The two potentialsAm and Cm cannot be completely in
dependent, since they are connected through Eqs.~4.3! and
~4.5!. In fact, the latter relations allow one to determine t
is

y

potentials in terms ofFmn up to a gauge transformation
separately forAm andCm. Explicitly, we have

Am~x!52E d4x8~n•]!21~x,x8!nnFmn~x8!1]mLe~x!,

~4.6!

Cm~x!52E d4x8~n•]!21~x,x8!nn* Fmn~x8!1]mLg~x!,

~4.7!

whereLe(x) andLg(x) are arbitrary gauge functions@which
may be set to zero in the gaugenmAm(x)5nmCm(x)50].
Because of these, we can regard the potentialCm to represent
the field-strength-dependent functionCm(F) as specified by
Eq. ~4.7!, while the field strengthsFmn are expressed in
terms of the potentialAm through Eq.~4.3!.8 We also remark

that, with the choicenm5(0,n̂) @see Eq.~4.4!#, using formula
~4.6! @for Le(x)50] with the magnetic Coulomb field of a
point monopole leads to the famous Dirac vector poten

with a semi-infinite string along the directionn̂ if the values
a50,1 are assumed in the Green’s function realization~4.4!.

Varying the direction ofn̂ just leads to gauge equivalen
potentials if the magnetic charge carried by the monop
satisfies the well-known quantization condition@22#. On the
other hand, if one adopts the Schwinger value@19,21# a
51/2 in Eq. ~4.4!, the resulting monopole vector potenti
will contain a symmetrically located infinite string singula

ity along the direction6n̂. In the latter case, the vecto

potentials corresponding to different choices ofn̂ can be
shown to be gauge equivalent@19,21# if the magnetic charge
is quantized by twice the Dirac unit. As for the magne
monopoles of the Yang-Mills-Higgs system, either value
a may be adopted to define (n•])21; however, if one wishes
to have a manifestly duality-symmetric action formulatio
the Schwinger valuea51/2 may be chosen~see below!.

We are now ready to present Schwinger’s first-order
tion approach. It is based on the action

S5E d4xH 1

4
FmnFmn2

1

2
Fmn~]mAn2]nAm!2Je

mAm

2Jg
mCm~F !J , ~4.8!

where Am and Fmn are taken to be independent fields a
Cm(F) are specified as above, i.e., through Eq.~4.7!. Obvi-
ously, the first Maxwell equation]nFnm5Je

m(x) is the con-
sequence ofdS/dAm(x)50. On the other hand, from
dS/dFmn(x)50 we obtain

Fmn~x!5]mAn~x!2]nAm~x!1E d4x8
1

2
emnld@nlJgd~x8!

2ndJgl~x8!#~n•]!21~x8,x!, ~4.9!

8Alternatively, utilizing the relations~4.6! and ~4.5!, one may as-
sign a primary role on thedual potentialCm ~rather thanAm).
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or taking the dual,

* Fmn~x!5
1

2
emnld@]lAd~x!2]dAl~x!#

2E d4x8@nmJg
n~x8!2nnJg

m~x8!#~n•]!21~x8,x!.

~4.10!

Then, based on Eq.~4.10!, it is easy to derive the secon
Maxwell equation]n * Fnm5Jg

m(x) also. Therefore, the ac
tion ~4.8! can be used to describe the system~4.1!. Here
notice another consequence of Eq.~4.9!: Multiplying Eq.
~4.9! by nn and picking the gaugenmAm50 yields

nnFmn~x!52~n•]!Am~x! ~4.11!

and hence relation~4.6! follows. Moreover, our definition of
Cm(F) and the first Maxwell equation]nFnm5Je

m(x) may be
used to confirm the representation~4.5!.

Astute readers should have noticed that Eq.~4.9! is not
quite our earlier equation~4.3!, unless our Green’s function
(n•])21(x8,x) satisfies the symmetry property

~n•]!21~x8,x!52~n•]!21~x,x8!. ~4.12!

Actually, this odd character of the Green’s function is a
necessary for the action~4.8! to be invariant under the dua
ity transformation~4.2! @now generalized to include the du
ality rotation betweenAm and Cm(F) in an obvious way#
@21#. The condition~4.12! is met if the Schwinger valuea
5 1

2 is chosen with our representation~4.4!.

B. Low-energy effective theory of BPS dyons

Our detailed analysis of nonlinear field equations~given
in Sec. III! revealed that BPS dyons behave just like poi
like objects carrying electric, magnetic and dilaton charg
~This does not mean that the core region of the dyon pro
remains rigid; rather, the core profile gets deformed suita
to accommodate any change in the long-range tail part.! This
observation applies to our force law~3.32!, to the near-zone
and radiation-zone fields given in Eqs.~3.10!–~3.13! and
~3.45!, and to the scattered waves of electromagnetic
Higgs particles found in Eqs.~3.64!–~3.67!. As a matter of
fact, these results are exact parallels of the correspon
formulas for theW particles, aside from the ubiquitous sig
of duality-invariant electromagnetic coupling in all of ou
formulas derived for BPS dyons. Therefore, we should
able to account for the entire low-energy dynamics involv
N BPS dyons and massless fields by a simple effective fi
theory, described by an action corresponding to a dua
symmetric generalization of the low-energyW particle action
~1.2!. We shall make this statement more precise below.

What we ask for our effective field theory is that it shou
be able to describe to a good approximation the dynam
development of a configuration ofN well-separated BPS dy
ons~i.e., at any given instant, the Higgs field hasN zeros at
various locations!, while allowing incoming and outgoing
radiations~with moderate frequency! of massless fields. Fo
this purpose, we must first specify appropriate dynam
variables that may enter our effective theory. We shall h
-
s.
le
ly

d

ng

e

ld
-

al

l
e

keep the position coordinates of BPS dyons~or the location
of zeros in the Higgs field!, Xn(t)(n51,̄ ,N), the electro-
magnetic fields @Am(x)#, and the Higgs field@w(x)#.
Each BPS dyon has three kinds of charges, that is,qn , gn

(574p/e), and (gs)n (5Agn
21qn

2) for thenth dyon; these
charges are made local sources for the electromgnetic
Higgs fields. The electromagnetic field strengthFmn may be
defined so that Eq.~4.3! may hold, and the Higgs field
strength byHm52]mw. In our perturbative solutions given
in Sec.III, how should one identify the contributions th
may duly be associated with the fieldsAm andw ~or the field
strengthsFmn or Hm)? Actually, for all of our explicit solu-
tions, the field strengthsGa

mn and (Dmf)a in the region away
from the dyon core~i.e., for mvr @1) have nonvanishing

components only in theisospindirectionf̂a. Only the fields
in this region are relevant for the present discussion and h
one may identifyAm andw unambiguously by going to the
unitary gauge,9 that is, fa(x)5@ f 1w(x)#da3 and Am(x)
5A3

m(x) away from the core region. Fields within the dyo
core and charged vector fields correspond to the freedom
be integrated out.

We are now ready to write down the action, which inco
porates all of our findings on low-energy processes involv
BPS dyons. Noting that the results of our analysis for
dyons differ from those forW particles only by the presenc
of the electromagnetic duality symmetry, the desired lo
energy action is given by the form

Seff5E d4xH 1

4
FmnFmn2

1

2
Fmn~]mAn2]nAm!

2
1

2
]mw]mwJ 1E dt(

n51

N

$2@Mn1~gs!nw~Xn ,t !#

3A12Ẋn
22qn@A0~Xn ,t !2Ẋn•A~Xn ,t !#

2gn@C0~Xn ,t !2Ẋn•C~Xn ,t !#%, ~4.13!

whereCm5(C0,C), as a function ofFmn, are defined by Eq.
~4.7! with the Green’s functions (n•])21 satisfying the sym-
metry property~4.12!. As one can easily verify, the abov
action is still invariant under the scale transformation of t
form ~1.4!. Considering the variations ofFmn and Am, we
then obtain Eq.~4.3! and the generalized Maxwell equation
~4.1! with the source term given by

Jg
0~x!5 (

n51

N

gnd3
„x2Xn~ t !…,

9A gauge-invariant identification can also be given. Clearly, in
region away from the core, we may setw.ufu2 f , which in turn

leads toHm.2f̂a(Dmf)a. Also note thatf̂aGa
mn in this region is

essentially the same as the gauge-invariant ’t Hooft tensor@1#,

Fmn5f̂aGa
mn2 (1/e) eabcf̂a(Dmf̂)b(Dnf̂)c, which is known to

satisfy the generalized Maxwell equation~4.1!. Using this ’t Hooft
tensor, one may then simply define the electromagnetic fieldAm,
say, by relation~4.3!.
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Jg~x!5 (
n51

N

gnẊn~ t !d3
„x2Xn~ t !…,

~4.14!

Je
0~x!5 (

n51

N

qnd3
„x2Xn~ t !…,

Je~x!5 (
n51

N

qnẊn~ t !d3
„x2Xn~ t !….

The corresponding equation of motion for the fieldw reads

]m]mw~x!5 (
n51

N

~gs!n
A12Ẋnd3

„x2Xn~ t !…[Js~x!.

~4.15!

On the other hand, theXn variation with our action leads to
the equation of motion

d

dt F $mv1~gs!nw~Xn ,t !%
Vn

A12Vn
2G

5qn@F0i~Xn ,t !1Vn
jFi j ~Xn ,t !#

1gn@F̄0i~Xn ,t !1Vn
j F̄i j ~Xn ,t !#

1~gs!nA12Vn
2¹w~Xn ,t !, ~4.16!

where we have definedFmn[]mAn2]nAm and F̄mn[]mCn

2]nCm. Here, because of Eqs.~4.3! and ~4.5!, we have

Fmn5Fmn andF̄mn5* Fmn almost everywhere, that is, awa
from the string singularity; in this way, the force law~3.32!
is also incorporated in our action. The effective theory d
fined by the above action, by its very construction, will r
produce all the consequences in Sec. III in the proper k
matical regime.

When BPS dyons in the system are sufficiently slow
moving so that only negligible radiations are produced,
above effective field theory may be turned into the effect
particle Lagrangian analogous to Eq.~1.9!. For this, it suf-
fices to integrate out the fieldsAm(x) and w(x) using the
near-zone solutions to the respective equations of mo
@for a given distribution of sourcesJg

m(x), Je
m(x), and

Js(x)]; this is the same procedure to obtain the slow mot
Lagrangian~1.9! for W particles ~see also Appendix A!.
Then the Higgs field is expressed as@see Eq.~A6!#

w~x,t !52
1

4p(
n

~gs!nA12Ẋn
2

ux2Xnu

1
1

4p

]

]t S (n
~gs!nA12Ẋn

2D
2

1

8p

]2

]t2S (
n

~gs!nA12Ẋn
2,ux2Xnu D 1¯.

~4.17!

To obtain the corresponding expression forAm(x), one may
use the formula~4.4! with the help of the following expres
-

e-

e
e

n

n

sion forFmn @describing the near-zone solution to the gen
alized Maxwell equation~4.1!#:

F0i~x,t !5
1

4p(
n

qn~xi2Xn
i !

ux2Xnu3/2
F12

3

2

~x2Xn!•Ẋn

ux2Xnu
1

1

2
Ẋn

2G
2

1

4p(
n

gne i jk Ẋn
j ~ t !~xk2Xn

k!

ux2Xnu3/2
1O~Ẋ3!, ~4.18!

1

2
e i jkF jk~x,t !5

1

4p(
n

qne i jk Ẋn
j ~xk2Xn

k!

ux2Xnu3/2

1
1

4p(
n

gn~xi2Xn
i !

ux2Xnu
3
2

1O~Ẋ2!.

~4.19!

Given this expressions and the choicenm5(0,n̂), the inte-
gral on the right-hand side of Eq.~4.4! may be performed to
discover, modulo gauge transformation, the following~near-
zone! expression for the fieldAm(x):

A0~x,t !5(
n

F qn

4pux2Xnu
1

qn

8p

]2

]t2 ux2Xnu

1gnẊn•v~x;Xn!G1O~Ẋ3!, ~4.20!

Ai~x,t !5(
n

F qnẊn
i

4pux2Xn~ t !u
1gnv i~x;Xn!G1O~Ẋ2!,

~4.21!

wherev i(x;Xn) denotes the unit-monopole static vector p
tential~with a symmetrically located infinite string!, given by

v~x;Xn!52
1

8p F n̂3~x2Xn!/ux2Xnu

ux2Xnu2n̂•~x2Xn!

2
n̂3~x2Xn!/ux2Xnu

ux2Xnu1n̂•~x2Xn!
G . ~4.22!

Note that the electric charge contributions in Eqs.~4.20! and
~4.21! are identical to those in Eqs.~A4! and ~A5!. Also
required is the expression for the magnetic potentialCm.
Using Eqs.~4.18! and~4.19! in Eq. ~4.7! and making appro-
priate gauge transformation, one has an expression du
Eqs.~4.20! and ~4.21!:

C0~x,t !5(
n

F gn

4pux2Xnu
1

gn

8p

]2

]t2 ux2Xnu

2qnẊn•v~x;Xn!G1O~Ẋ3!, ~4.23!

Ci~x,t !5(
n

F gnẊn
i

4pux2Xnu
2qnv i~x;Xn!G1O~Ẋ2!.

~4.24!
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The desired effective Lagrangian will result if the field
Am(x) and w(x) are eliminated from the action~4.13! by
using the above effective solutions. Here it is useful to not
that, thanks to the field equations satisfied byAm and w,
contributions from the massless field action in Eq.~4.13! are
e
on

is
-
is
rm

g-

-

e

equal to one-half of those from the interaction terms w
matter. In particular, for the action given in Eq.~4.8!, the use
of Eqs. ~4.1!, ~4.3!, and ~4.5! allows us to replace its field
action ~i.e., the part not involving matter current explicitly!
by
nalogous

rm
E d4xH 2
1

4
Fmn~]mAn2]nAm!2

1

4
* FmnE d4x8~n•]!21~x,x8!@nmJgn~x8!2nnJgm~x8!#J

;E d4xH 2
1

4
Fmn~]mAn2]nAm!2

1

2
]mCnE d4x8~n•]!21~x,x8!@nmJgn~x8!2nnJgm~x8!#J

;E d4xH 1

2
Je

mAm1
1

2
Jg

mCm~F !J , ~4.25!

where, on the second line, we have dropped the contribution apparently describing the string-string interaction. As a
reduction holds for the Higgs field action of Eq.~4.13! also. Based on this observation, using the solutions~4.17!, ~4.20!,
~4.21!, ~4.23!, and~4.24! in the action~4.13! leads to the effective Lagrangian of the form

E dtL5E dtH 2(
n

MnA12Ẋn
21

1

2 (
n,m ~Þn!

~qngm2gnqm!~Ẋn2Ẋm!•v~Xn ,Xm!2
1

8p (
n,m ~Þn!

~qnqm1gngm!S 1

uXn2Xmu

1
1

2 F ]2

]t2 ux2XmuG
x5Xn

2
Ẋn•Ẋm

uXn2Xmu D 1 (
n,m ~Þn!

~gs!n~gs!m

8p S A12Ẋn
2A12Ẋm

2

uXn2Xmu

1
1

2 F ]2

]t2 ux2XmuG
x5Xn

D J , ~4.26!

with irrelevant self-interaction terms dropped. Ignoring terms beyondO(Ẋ2), this Lagrangian may then be changed to the fo
~cf. Appendix A!

L52(
n

Mn1
1

2(n
MnẊn

22
1

16p (
n,m ~Þn!

~gs!n~gs!m

uẊn2Ẋmu2

uXn2Xmu
1

1

2 (
n,m ~Þn!

~qngm2gnqm!~Ẋn2Ẋm!•v~Xn ,Xm!

2
1

16p (
n,m ~Þn!

@~gs!n~gs!m2qnqm2gngm#H Ẋn•Ẋm

uXn2Xmu
1

~Xn2Xm!•Ẋn~Xn2Xm!•Ẋm

uXn2Xmu3 J
1

1

8p (
n,m ~Þn!

~gs!n~gs!m2qnqm2gngm

uXn2Xmu
. ~4.27!
esic
ing
lier
li
Some comments are in order regarding the slow-motion
fective Lagrangian derived above. If the given system c
sists of BPS dyons with the same values of charges only@i.e.,
qn5q, gn5g, and (gs)n5Ag21q2 for all n], all the terms
in Eq. ~4.27! that are not quadratic in velocities cancel. Th
is the case in whichstatic multimonopole solutions are pos
sible, and for some given initial velocities the dynamics
governed solely by the kinetic Lagrangian of the same fo
as found for slowly moving equal-chargeW particles~see
Sec. I!. Another case of interest follows if we let the ma
netic charge of all BPS dyons to be equal~i.e., gn5g for all
n) and keep in Eq.~4.27! only terms that are at most qua
dratic in velocity or electric charge. Then (gs)n'g1qn

2/2g
and the Lagrangian~4.27! reduces to~hereM5g f)
f-
- L5

1

2(n
M ~Ẋn

22qn
2/g2!2

g2

16p (
n,m ~Þn!

uẊn2Ẋmu2

uXn2Xmu

1
1

16p (
n,m~Þn!

~qn2qm!2

uXn2Xmu
1

g

2 (
n,m~Þn!

~qn2qm!

3~Ẋn2Ẋm!•v~Xn ,Xm!. ~4.28!

Using precisely this form, Gibbons and Manton@13# showed
that one can derive the Lagrangian appropriate to geod
motion of n well-separated monopoles on the correspond
multiple-monopole moduli space; this generalizes the ear
work by Manton@13# on the nature of two-monopole modu
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space, where the relevant asymptotic metric was known
the self-dual Euclidean Taub–Newman-Unti-Tambeur
metric @23# with a negative mass parameter. Without repe
ing this analysis mention here only that the electric cha
variablesqn in Eq. ~4.28! may be interpreted as conserve
momenta conjugate to the collective coordinates represen
U~1! phase angles of individual monopoles. In conclusi
our low-energy action~4.13! predicts the same physics as t
moduli-space geodesic approach~for well-separated BPS
monopoles of the same magnetic charges!, when the effect of
radiation can be ignored. Our action~4.13! can be used to
describe low-energy processes involving radiation of theAm

or w explicitly also.

V. EXTENSION TO MORE GENERAL GAUGE MODELS

A. Preliminaries

Up to this point our discussion was exclusively in t
context of SU~2! Yang-Mills-Higgs model. We now want to
generalize our discussion to the case of BPS dyons appe
in a gauge theory with an arbitrary compact simple gau
groupG that is maximally broken to U(1)k (k is the rank of
G). As we shall see, much of the structure derived in
G5SU(2) model will find a direct generalization to th
case.

Using the matrix notationsAm[Am
p Tp and f[fpTp(p

51, . . . ,d5dimG) with Hermitian generatorsTp normal-
ized by Tr(TpTq)5kdpq , the Lagrange density reads

L52
1

4k
TrGmnGmn2

1

2k
TrDmfDmf, ~5.1!

where Gmn[]mAn2]nAm2 ie@Am,An# and (Dmf)[]mf
2 ie@Am ,f#. As is well known, generators may be decom
posed intok mutually commuting operatorsTr that span the
Cartan subalgebra and lowering and raising operatorsEaW

obeying @Tr ,EaW #5a rEaW and @EaW ,E2aW #5( r 51
k a rTr

([aW •TW ). The nature of the symmetry breaking is dete
mined by the asymptotic value of the Higgs field in som
fixed direction, say, on the positivez axis. It may be taken to

lie in the Cartan subalgebra; this then defines a unit vectoĥ
by

^f&v5(
r 51

k

f ĥrTr[ f ĥ•TW , ~5.2!

where f is some positive number. We have a maximal sy

metry breaking, i.e.,G→U(1)k, if ĥ is orthogonal to none o
the root vectors. In the latter case, there is a unique se

so-called simple rootsbW r (r 51, . . . ,k) that satisfies the con

ditions ĥ•bW r.0 for all r and all other roots can be express
as linear combinations of these simple roots with inte
coefficients all of the same sign. Only this case will be co
sidered in this paper.

Let us briefly summarize known properties of monopo
or dyons in this model@24#. In the asymptotic region, the
magnetic fieldBi[Bi

pTp must commute with the Higgs field
and therefore, in the spatial direction chosen to define^f&v ,
must assume the form
as
o
t-
e

ng
,

ing
e

e

-

-

of

r
-

s

Bi~r !;
xi

4pr 3gW •TW . ~5.3!

Topological arguments lead to the quantization condition

gW 5
4p

e (
r 51

k

nrbW r* ~bW r* [bW r /bW r
2!, ~5.4!

the non-negative integernr being the topologically con-
served charges related to the homotopy class of the H
field at spatial infinity. We may now define the special U~1!
electric and magnetic charges using the asymptotic Hi
field direction as

QE5
1

f R
r 5`

dSi

1

k
Tr~fEi !,

~5.5!

QM5
1

f R
r 5`

dSi

1

k
Tr~fBi ! ~5gW •ĥ!

and similarly the dilaton charge as

QS5
1

f R
r 5`

dSi

1

k
Tr~fDif!. ~5.6!

Then, just as in theG5SU(2) model discussed in Sec. I
one can show that the mass of a static soliton, which
always equal tof QS , satisfies the Bogomol’nyi boundM
> fAQM

2 1QE
2. Hence, for given values ofQE andQM , one

may obtain static solutions to field equations with the low
possible energy,M5 fAQE

21QM
2 , by solving again the

Bogomol’nyi equations which have the same structure as
corresponding equations of the SU~2! model, viz., ~2.16!.
Especially, withQE50, these lowest energy configuration
will have the mass

M5 f gW •ĥ5(
r 51

k

nr S 4p

e
f ĥ•bW r D . ~5.7!

On the other hand, Weinberg@24# showed that the dimensio
of the corresponding moduli space is equal to 4( r 51

k nr . This
suggests that, in analogy to the SU~2! case, all static solu-
tions might be viewed as being composed of a number
fundamentalBPS monopoles, each with a single unit of t
pological charge~i.e., nr5d rr 8 , for the r 8 type!.

The fundamental static BPS monopole solutions can
obtained by simple embeddings@25# of the spherically sym-
metric SU~2! solution given in Eq.~2.19!. Note that, with

each rootaW , we can always define an SU~2! subalgebra with
generators

t
~aW !

1
5

1

A2aW 2
~EaW 1E2aW !,t

~aW !

2
5

i

A2aW 2
~2EaW 1E2aW !,

t
~aW !

3
5

aW •TW

aW 2
. ~5.8!
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Now, if Āi
a(r , f ) and f̄ i

a(r , f ) denotes the static SU~2! BPS
monopole solution corresponding to a Higgs expectat
value f @see Eq.~2.19!#, then

Ai~r !5(
i 51

3

Āi
a~r , f ĥ•bW r !t ~bW r !

a
,

~5.9!

f i~r !5(
i 51

3

f̄ i
a~r , f ĥ•bW r !t ~bW r !

a
1 f @ ĥ2~ ĥ•bW r* !bW r #•TW

is the fundamental monopole solution wi

gW 52 (4p/e)bW r* and massMr5 (4p/e) f ĥ•bW r . As in the
SU~2! case, we can also obtain the dyon solution correspo
ing to these fundamental monopoles by applying the tr
~2.18!. Here, to push the SU~2! analogy further, it will be
useful to write the corresponding asymptotic field streng
as10

Bi;gr

xi

4pr 3r̂ at
~bW !

a
, Ei;qr

xi

4pr 3r̂ at
~bW !

a
,

Dif;2~gs!r

xi

4pr 3r̂ at
~bW !

a
, ~5.10!

which means, on the positivez axis~i.e., the direction chosen

to definef̄0), the behaviors

Bi;gr

xi

4pr 3 ~bW r* •TW !, Ei;qr

xi

4pr 3 ~bW r* •TW !,

Dif;2~gs!r

xi

4pr 3 ~bW r* •TW !. ~5.11!

For the r -type fundamental dyon, we then have the valu
gr524p/e, qr5gr tan b, and (gs) r5Agr

21qr
2; the mass

of this dyon is equal toMr5(gs) r f ĥ•bW r* .

B. Low-energy effective theory

What sort of low-energy dynamics for fundamental BP
dyons follows from the field equations of the theory? As
the SU~2! case, some of the most direct information on th
problem can be obtained by considering the fundamental
ons in the presence of some weak asymptotic uniform fie
Only the asymptotic, gauge, or Higgs field strengths t
commute with the Higgs fieldf may be allowed here@i.e.,
the uniform Higgs field belonging to the unbroken U(1k

subgroup only#. We may specify the nature of these appli
field strengths by their values on thez axis where the Higgs

field originally there isf̄05 f ĥ•TW . ~This way of specifying
the applied field strengths will have a clear physical mean
if one works in a unitary gauge where the Higgs field
everywhere aligned in the direction of^f&v .) Now the prob-
lem is to find the solution to the field equations, describ

10In a quantized theory, the electric chargeqr defined by Eq.

~5.10! will be required to be an integer multiple ofebW j
2.
n

d-
k

s

s

y-
s.
t

g

g

the motion of ther -type fundamental dyon in a nonzer
asymptotic field as specified through the conditions

Bi~r ,t !→~BW 0! i•TW , Ei~r ,t !→~EW 0! i•TW ,

Dif~r ,t !→2~HW 0! i•TW ~5.12!

along the z axis and asr→`. Here note that (BW 0) i•TW

[( r 51
k (B0) i

rTr , etc., and the constant vectorsBW 0 , EW 0 , and

HW 0 are assumed to be of sufficiently small magnitude.
Remarkably, the desired solution can be given using

corresponding solution of the SU~2! model, which we dis-
cussed in Sec. III. This is the generalization of the emb
ding procedure described in Eq. ~5.9!. Let

Ām
a (x; f ,B0 ,E0 ,H0) denote the~in general time dependent!

SU~2! BPS dyon solution in the presence of the asympto
field (B0 ,E0 ,H0). Then it may directly be verified that

Am~x!5(
i 51

3

Āi
a~x; f ĥ•bW r ,B¢ 0•bW r ,E¢ 0•bW r ,H¢ 0•bW r !t ~bW !

a

1xl$~GW 0!lm2@~GW 0!lm•bW r* #bW r%•TW , ~5.13!

f i~x!5(
i 51

3

f̄ i
a~x; f ĥ•bW r ,B¢ 0•bW r ,E¢ 0•bW r ,H¢ 0•bW r !t ~bW !

a
1 f @ ĥ

2~ ĥ•bW r* !bW r #•TW 2xi$~HW 0! i2@~HW 0! i•bW r* #bW r%•TW

~5.14!

@here (GW 0) i j [e i jk(BW 0)k and (GW 0)0i[(EW 0)k] is a solution de-
scribing ther -type dyon in the nonzero asymptotic field a
specified by Eq.~5.12!. Then, based on our SU~2! solution,
we may immediately conclude that ther -type dyon in its
instantaneous rest frame should accelerate according to
formula @see Eq.~3.29!#

ai52
1

f ĥ•bW r

@cosb~BW 0! i•bW r1sin b~EW 0! i•bW r2~HW 0! i•bW r #

~5.15!

which may be rewritten, using the charges defined by
~5.11!, as

Mrai5grbW * •~BW 0! i1qrbW * •~EW 0! i1~gs!rbW * •~HW 0! i .
~5.16!

To find the associated long-distance fields~including radia-
tion!, recall that, for the SU~2! case, the relevant field
strengths have nonvanishing components only in the di

tion of r̂ a ~or the Higgs field! and have the amplitude de
scribed byBem, Eem, H andH0 through Eqs.~3.10!–~3.13!
and~3.45!. This term implies that, for our solution given b
Eqs. ~5.13! and ~5.14!, the corresponding field strength
would have the following large-distance behaviors on thz
axis:
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Bi~r ,t !;~BW 0! i•TW 1
grbW r* •TW

4p H ~R̂2vret! i

~12R̂•vret!
3R2

1
@R̂3~R̂3a!# i

R J 2
qrbW r* •TW

4p

~R̂3vret! i

R2

1
~R̂3a! i

R
, ~5.17!

Ei~r ,t !;~EW 0! i•TW 1
qrbW r* •TW

4p H ~R̂2vret! i

~12R̂•vret!
3R2

1
@R̂3~R̂3a!# i

R J 1
grbW r* •TW

4p H ~R̂3vret! i

R2

1
~R̂3a! i

R J , ~5.18!

2Dif~r ,t !;~HW 0! i•TW 1
~gs!rbW r* •TW

4p H ~R̂2vret! i

~12R̂•vret!
3R2

1
~R̂•a!R̂i

R J , ~5.19!

2D0f~r ,t !;
~gs!rbW r* •TW

4p H R̂•vret

~12R̂•vret!
3R2

1
R̂•a

R J .

~5.20!

Also considering the Lorentz-boosted solution would chan
the force law~5.16! into the corresponding covariant form
@cf. Eq. ~3.32!#

d

dt S „Mr2~gs!rbW r* •XmHW m
…Vi

A12V2 D
5grbW r* •@~BW 0! i2e i jkVj~EW 0!k#

1qrbW r* •@~EW 0! i1e i jkVj~BW 0!k#

1~gs!rbW r* •~HW 0! iA12V2. ~5.21!

Without any further analysis, it is clear from the above d
cussion that the differences from the SU~2! dyon case are
mainly in prolification of various charges as we have mo
massless fields. In detail we are just seeing that, given

r -type fundamental dyon associated with the rootbW r , it in-
teracts withk different pairs of massless photon and Hig
field @all in a identical manner to the SU~2! case#, with the
strength of its coupling with ther 8th photon or Higgs field

set by the magnetic chargegrr 85gr(bW r* ) r 8 , electric charge

qrr 85qr(bW r* ) r 8 , and dilaton charge (gs)
rr 85(gs) r(bW r* ) r 8 .

The massless fields here are precisely the ones one e
identifies by going to the unitary gauge where the Higgs fi

is everywhere in the direction off̄0 ; the components lying
in the Cartan subalgebra from the gauge and Higgs fie
e

-

e
e

sily
d

s

correspond to nonmassive physical excitations. The lo
energy effective action may now be written down on t
basis of this observation and the corresponding result in
SU~2! case. The effective theory would involve a set of p
sition coordinatesXn (n51, . . . ,N) for fundamental dyons
~the type of which may also be indicated by the indexn),
U~1! gauge fieldsAm

(r )(x) (r 51, . . . ,k) and Higgs fields
w (r )(x) (r 51, . . . ,k), while the massive vector boso
modes are to be integrated out. We then have the action@cf.
Eq. ~4.13!#

Seff5E d4x H 1

4
F ~r !mnF ~r !mn2

1

2
F ~r !mn~]mAn

~r !2]nAm
~r !!

2
1

2
]mw~r !]mw~r !J 1E dt(

n51

N

3H 2S Mn1(
r

~gs!
nrw~r !~Xn ,t ! DA12Ẋn

2

2(
r

qnr@A~r !0~Xn ,t !2Ẋn•A~r !~Xn ,t !#

2(
r

gnr@C~r !0~Xn ,t !2Ẋn•C~r !~Xn ,t !#J ~5.22!

with C(r )m, as functions ofF (r )mn, defined in the same way
as Eq.~4.7!. @In Eq. ~5.22!, the indexn in qnr, gnr, and
(gs)

nr is actuallyr 8 if the nth dyon in question is of ther 8

type, viz.,qnr5qr 8(b
W

r 8
* ) r , gnr5gr 8(b

W
r 8
* ) r , etc.#

The action~5.22! captures low-energy dynamics of an
number of fundamental BPS dyons~corresponding to various
type! and massless fields in the system. This includes s
tering physics involving dyons and on-shell photons
Higgs particles. Also, for a slowly moving system of BP
dyons, one may ignore radiation effects and go on to eli
nate all massless fields from this action by using the ne
zone solutions to the respective field equations. This pro
dure, which parallels verbatim our discussion in the SU~2!
case, leads to the effective particle Lagrangian, which has
same structure as the SU~2!-case Lagrangian~4.26!. Changes
appear just in the interaction strengths, i.e., the second, th
and fourth terms on the right-hand side of Eq.~4.26! now
come with the strengths

(
r 51

k

~gs!
nr~gs!

mr5~gs!n~gs!mbW n* •bW m* ,

(
r 51

k

~qnrqmr1gnrgmr!5~qnqm1gngm!bW n* •bW m* ,

~5.23!

(
r 51

k

~qnrgmr2gnrqmr!5~qngm2gnqm!bW n* •bW m*

instead of having the values (gs)n(gs)m , (qnqm1gngm), and

(qngm2gnqm). Similarly, when terms beyondO(Ẋ2) are ig-
nored, the Lagrangian~4.27! is valid for the present case als

only if we insert the multiplicative factorbW n* •bW m* inside the
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summation symbol of every term on the right-hand side
Eq. ~4.27! except for the first two purely kinematical ones.
one setsgn5g524p/e and further makes the expansio
(gs)n5ugu1qn

2/2ugu with this quadratic particle Lagrangian
one obtains the slow-motion Lagrangian of Lee, Weinbe
and Yi @12#, which is quadratic not only in velocities but als
in electric charges. Then, as was shown in Ref.@12#, a simple
Legendre transform may be performed to change the la
into the Lagrangian appropriate to geodesic motion in
corresponding multiple-monopole moduli space.11

VI. DISCUSSION

In this paper an effective field theory approach for B
dyons and massless fields has been developed, starting
the analysis of nonlinear field equations of the Yang-Mil
Higgs system. Our approach, while being consistent with
moduli-space dynamics of Manton, can describe the lo
energy interaction of oppositely charged BPS dyon and a
the process involving radiation of various massless qua
explicitly. Our discussion was entirely at the classical lev
but, for an appropriately supersymmetrized system, our
fective theory might be generalized to have a quantum
nificance. The electromagnetic duality and~spontaneously
broken! scale invariance, which are manifest in our a
proach, may play a useful role in such an endeavor. It wo
also be desirable to make some contact with the result
Seiberg and Witten@2#.

There are some interesting related problems that req
further study. We mention a few of them.

~i! Our effective action is correct when all monopoles a
separated a large distance compared to the core size. If
identical monopoles overlap, the individual coordinates
not meaningful anymore. We can describe the low-ene
dynamics by the geodesic motion on the Atiyah-Hitch
moduli space. However, radiation, however weak it may
should come out from this motion in the moduli space,
cluding the exchange of the relative charge between
identical monopoles. Our point particle approximation do
not capture this physics. It would be interesting to couple
full moduli space dynamics to the weak radiation.

~ii ! The present effective field theory approach should
generalized to the case of full,N52 or N54, super–Yang-
Mills system. In particular, the spin effect including the ele
tric and magnetic dipole moments would appear. See R
@27# for the corresponding moduli-space description.

~iii ! For larger gauge groups, we have only considered
cases where the given simple gauge group is maximally
ken. If a non-Abelian subgroup remains unbroken, there
fundamental monopoles carrying non-Abelian magne
charges and their low-energy dynamics would be richer.~For
a recent investigation on this subject, see Ref.@28#.! An ex-
tension of our analysis in this direction would be most de
able; for instance, one might consider here following t

11It has been shown recently@12,26# that the moduli space metri
obtained by this procedure for distinct fundamental monopoles i
fact the exact metric over the whole moduli space, i.e., for all val
of intermediate distances. This may imply that our effective act
is correct even when two distinct monopoles overlap each othe
f
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behavior of the effective theory as one varies the asympt
Higgs field from a value giving a purely Abelian symmet
breaking to one that leaves a non-Abelian subgroup unb
ken. Finally, we should mention the recent work by one
the authors and Min@29# where some interesting observatio
was made regarding to the radiation reaction and the fin
size effect in the dynamics of the BPS monopole and
duality of these effects against those of theW particles.
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APPENDIX A: EFFECTIVE LAGRANGIAN FOR A
SYSTEM OF W PARTICLES

From the low-energy effective action~1.2! we can derive
the effective Lagrangian for a system of slowly movingW
particles, given in Eq.~1.9!, in the following way. The field
equations for the massless fieldsAm(x) andw(x) read

]n~]mAn2]nAm!5Jm~x!

J0~x!5(
n

qnd3
„x2Xn~ t !…,

J~x!5(
n

qnẊn~ t !d3
„x2Xn~ t !…, ~A1!

]n]nw5(
n

gsA12Ẋn
2~ t !d3

„x2Xn~ t !…[Js~x!.

~A2!

Assuming slowly varying sources, we may then express
fields Am(x),w(x) by their usual retarded solutions consi
ered in the near-zone approximation. This gives the elec
magnetic potential

Am~x,t !5
1

4pE Jm~x8,t2ux2x8u!

ux2x8u
d3x8

5
1

4pE Jm~x8,t !

ux2x8u
d3x82

1

4p

]

]t F E Jm~x8,t !d3x8G
1

1

8p

]2

]t2 F E ux2x8uJm~x8,t !d3x8G1¯ ~A3!

and so for the point sources

in
s
n
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A0~x,t !5
1

4p(
n

qn

ux2Xn~ t !u
1

1

8p

]2

]t2S (
n

qnux2Xn~ t !u D
1¯, ~A4!

A~x,t !5
1

4p(
n

qnẊn

ux2Xn~ t !u
1¯ . ~A5!

Similarly, for the Higgs field, we have

w~x,t !52
1

4pE Js~x8,t2ux2x8u!

ux2x8u
d3x8

52
1

4p(
n

gsA12Ẋn
2

ux2Xn~ t !u
1

1

4p

]

]t S (n
gsA12Ẋn

2D
e

he

z

2
1

8p

]2

]t2S (
n

gsA12Ẋn
2ux2Xn~ t !u D 1¯ . ~A6!

These expressions may also be obtained by considering
small-velocity expansion of the known Lie´nard-Wiechert–
type potentials.

The desired effective Lagrangian for slowly movingW
particles is obtained if we eliminate~or integrate out! the
massless fieldsAm(x) and w(x) from the action~1.2! by
using the above~approximate! solutions to the field
equations12. Here note that, because of Eqs.~A1! and ~A2!,
the contribution from the massless field action in Eq.~1.2!
can be written in the same form as the interaction ter
appearing in the matter action*dt Leff . So, to our approxi-
mation, the result of using Eqs.~A4!–~A6! in the action
~with irrelevant self-interactions dropped! is
E dt L5E dtH 2(
n

mvA12Ẋn
21

gs
2

8p (
n,m ~Þn!

S A12Ẋn
2A12Ẋm

2

uXn2Xmu
1

1

2 F ]2

]t2 ux2Xm~ t !uG
x5Xn

D
2

1

8p (
n,m ~Þn!

qnqmS 1

uXn2Xmu
1

1

2 F ]2

]t2 ux2Xm~ t !uG
x5Xn

2
Ẋn•Ẋm

uXn2Xmu D J ; ~A7!

Here notice that

F ]2

]t2
ux2XmuG

x5Xn

5F ]

]t

@x2Xm~ t !#•Ẋm~ t !

ux2Xmu G
x5Xn

5
Ẋn•Ẋm

uXn2Xmu
2

~Xn2Xm!•Ẋn~Xn2Xm!•Ẋm

uXn2Xmu3
2

d

dt
F ~Xn2Xm!•Ẋm

uXn2Xmu G ~A8!
n
re
the
he

-
s

for
and so if we ignore terms beyondO(Ẋ2) and also total time
derivative terms fromL, we obtain the Lagrangian of th
form

L5
1

2(n
mvẊn

22
gs

2

16p (
n,m ~Þn!

uẊn2Ẋmu2

uXn2Xmu
2

1

16p (
n,m ~Þn!

~gs
2

2qnqm!H Ẋn•Ẋm

uXn2Xmu
1

~Xn2Xm!•Ẋn~Xn2Xm!•Ẋm

uXn2Xmu3 J
1

1

8p (
n,m ~Þn!

gs
22qnqm

uXn2Xmu
. ~A9!

As one can easily verify, this can readily be rewritten in t
form in Eqs.~1.9! and ~1.10!.

APPENDIX B: DERIVATION OF THE FORCE LAW IN
LORENTZ BOOSTED FRAME

The system in Eq.~2.1! is invariant against the Lorent
~boost! transformation

t→t* 5
t1u•r

A12u2
,

r→r* 5r2~ û•r !û1
1

A12u2 @~ û•r !û1ut#, ~B1!

under which (Am ,f) transform as

Am~x!→Am* ~x* !5
dxn

dx* m
An~x!,

f~x!→f* ~x* !5f~x!. ~B2!

This of course implies that the fields„Am* (r ,t),f* (r ,t)… ob-
tained by the Lorentz boost of an initially given solutio
„Am(r ,t),f(r ,t)… should also satisfy the field equations. He
we use this simple observation in order to show that
moving dyon seen in a different inertial frame obeys t
covariant equation of motion.

Let „Am(r ,t),f(r ,t)… be a dyon solution of the field equa
tions ~2.4! and~2.5!, subject to the constant asymptotic field
(B,E,H) with zero initial ~center! velocity. The trajectory of
the dyon will be governed by the equation of motion

12This is equivalent to the more traditional approach described,
instance, in the textbook by Landau and Lifshitz@30#.
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M
d2

dt2
X5gB1qE1gsH, ~B3!

as was shown in Eq.~3.31!. In this reference frame the
asymptotic value ofH0@[2 (fa/ufu) (D0f)a# may be
taken to be O(a2) at most. Then a new solutio
„Am* (r ,t),f* (r ,t)… generated by the Lorentz boost in E
~B1! is associated with the asymptotic fields (B* ,E* ) speci-
fied by

E5~ û•E* !û1
1

A12u2
@E* 2~ û•E* !û1u3B#,

~B4!

B5~ û•B* !û1
1

A12u2
@B* 2~ û•B* !û2u3E* #

and (H* 0,H* ) by

H5
1

A12u2
@~ û•H* !û2uH* 0#1H* 2~ û•H* !û,

~B5!

H05
1

A12u2
@H* 02u•H* #.

Let Xm[„t,X(t)… denotes the dyon trajectory seen in t
original frame andX* m[„t* ,X* (t* )… the trajectory in the
boosted frame. Then they should be related by@cf. Eq. ~B1!#

t5
t* 2u•X*

A12u2
,

X5X* 2~ û•X* !û1
1

A12u2
@~ û•X* !û2ut* #. ~B6!

We may now reexpress each side of Eq.~B3! using the vari-
ables in the boosted frame. The left-hand side is rewritten
O(a), as

M
d2

dt2
X~ t !5M

dt*

dt

d

dt* S dt*

dt

d

dt*
X~ t ! D

5MS S u•

dV*

dt*
D u

~12u2!3/2
1

S û•

dV*

dt*
D û

~12u2!1/2

1

dV*

dt*
2S û•

dV*

dt*
D û

~12u2!
D , ~B7!

whereV* 5 (d/dt* ) X* . On the other hand, inserting Eq
~B4! and~B5! into Eq. ~B3!, we find that the right-hand sid
can be expressed as
to

gB1qE1gsH5g$~ û•B* !û

11A12u2 @B* 2~ û•B* !û2u3E* #}

1qH ~ û•E* !û1
1

A12u2
@E* 2~ û•E* !û

1u3B#J 1gsH 1

A12u2
@~ û•H* !û

2uH* 0#1H* 2~ û•H* !ûJ . ~B8!

The equation of motion~B3! implies that the last line of Eq
~B7! should be equal to the right-hand side of Eq.~B8!.
Since this is a vector equality, the components parallel tu
on each side should agree and so should the compon
perpendicular tou on each side. We multiply each perpe
dicular component by the factorA12u2 and then add the
resulting perpendicular parts on each side to the parallel p
on the corresponding side. These operations lead to the
tion

MS S u•

dV*

dt*
D u

~12u2!3/2
1

1

~12u2!1/2

dV*

dt*
D

5g~B* 2u3E* !1q~E* 1u3B!

1gsA12u2H* 2F̌, ~B9!

whereF̌ is given by

F̌5gs

u

A12u2
~u•H* 2H0* ! ,

5gs

u

A12u2

d

dt*
~X* •H* 2t* H* 0!.

~B10!

Ignoring O(a2) terms, we may replaceu in Eq. ~B9! by V*
sinceV* is u1O(a). Thus it is now straightforward to find
the desired covariant equation

d

dt* S @M2gsXm* H* m#V*

A12V* 2 D 5g~B* 2V* 3E* !1q~E* 1V*

3B!1gsH* A12V* 2. ~B11!

A few comments are in order. First we assumed the ac
eration,dV/dt or dV* /dt* , to be small as before and so th
above covariant equation of the dyon motion is of cou

valid to first order in the acceleration. The termF̌ in Eq.
~B10! is of second order in the acceleration, but it has be
included in the above covariant equation. The reason co
from the following observation. Let us consider the ca
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where the Higgs field has the constant asymptotic valuef 8
(Þ f ). If we carried out the same analyses to find the dy
motion with this choice, the mass parameter that enters
the dyon equation of motion isgsf 8 instead ofgsf . Hence
s
n,
n
to

the change in the asymptotic value of the Higgs field sho
be reflected in the mass appearing in the dyon equatio
motion @cf. Eq. ~1.5!#. This reasoning can be properly take
into account if we add the second-order contribution.
ld,
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