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Based on a detailed analysis of nonlinear field equations of tH@)Stang-Mills-Higgs system, we obtain
the effective field theory describing the low-energy interaction of Bogomol'nyi-Prasad-SomméBiesI
dyons and massless particleég., photons and Higgs particle®ur effective theory manifests electromagnetic
duality and spontaneously broken scale symmetry and reproduces the multimonopole moduli space dynamics
of Manton in a suitable limit. Also given is a generalization of our approach to the case of BPS dyons in a
gauge theory with an arbitrary gauge group that is maximally broken toXU{$P556-282198)05206-(

PACS numbd(s): 14.80.Hv, 11.15.Kc

[. INTRODUCTION metry to show the existence of some of the dyonic states
required by the electromagnetic duality conjecture of Mon-
In certain spontaneously broken non-Abelian gauge thectonen and Olive8].

ries we have magnetic monopoles as solitonic partiles While Manton’s approach is believed to give a valid ap-
addition to the usual elementary field quardad, since their proximate description, it deviates from the viewpoint of
initial discovery by 't Hooft and Polyakofl] in 1974, much  modern effective field theory: it inot based on all relevant
effort has been made to clarify their physical role. Then,degrees of freedom at low energy. Dynamical freedoms in
more recently, a number of exact results have been obtainadanton’s approach are restricted to collective coordinates of
in a class of supersymmetric gauge theories by exploiting thénonopoles, but the freedoms associated with photans (
electromagnetic duality symmetf®]. Magnetic monopoles and massless Higgs particleg)( are also relevant at low
relevant in this supersymmetric gauge theories are the s@mergy. We hope to remedy this in this article. Instead of
called Bogomol'nyi-Prasad-SommerfielPS monopoles |qoking into the dynamics of collective coordinates aif
[3], i.e., magnetic-charge-carrying static solutions to theyqnonoles(this is Manton’s moduli-space approximatjon
Yang-Mills-Higgs field equations in the BPS limit of vanish- \ e il here obtain our effective field theory by studying

ing Higgs potential. In the BPS limit, there is a Bogomol'nyi how the collective coordinates ofsinglemonopole or dyon
bound on the static energy functional and remarkably we

have degeneratgtatic multimonopole solutions that saturate get |n\;pll\:jed dynqmlcqlly r‘]N'th. S.O.ﬁ eI?c:]romagnencl and
the bound. Originally this was a semiclassical result at mostHIggS leld excitations In the vicinity of the monopole or
but, in the supersymmetric gauge theories, Witten and OIivéjyon'.ThIS effective theo_ry can describe the Iow-er]ergy n-
[4] subsequently showed that this result may continue to pieraction of _monopoles W'th on-;hgll photons and Higgs par-
valid even after quantum corrections are included. ticles, and in the approprlgte limit produces the result of
To study the duality and other issues, various authors dis¥lanton as well(Note that, in our approach, monopoles or
cussed the interaction of slowly moving BPS monopdesgyons_lnterz_ict thr_o_ugh the intermediary of_electromag_netlc
mainly following the work of Mantorf5]. The central point @nd Higgs fields filling the spageMoreover, it has the dis-
is that the moduli space ofgauge inequivaleit static tinctive advantage that the undgrlymg symmetries of the
N-monopole solutions is finite dimensional and possesses €0y, the electromagnetic duality and spontaneously bro-
natural metric coming from the kinetic-energy terms of thek€n scale invariance, are clearly borne out, making our ef-
Yang-Mills-Higgs Lagrangian. Manton suggested that the/€Ctive action unique.
low-energy dynamics of a given set of monopoles and dyons, 1€ basic idea of our approach can be captured by con-
may be approximated by geodesic motions on the modul?'de,””g t_he Iow-energy gffectlve theory of massive vector
space. The metric for the two-monopole moduli space wa®a'ticles in the BPS limit of the SW) Yang-Mills-Higgs
determined by Atiyah and Hitchif6] and has given infor- m;)del. In the unitary gauge with the Higgs flelc_is aligned as
mation regarding the classical and quantum scattering pra” (¥) = 8as(f+ ¢(x)), the latter model is described by the
cesses of monopoles. More recenfi, the knowledge of Lagrange densi
the metric has been used in theories with extended supersym-

IWe setc=1 and our metric convention is that with the signature
*Electronic address: dsbak@mach.scu.ac.kr (— + + +).
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where we have introduced the Higgs field strengtfx)
where F,,=d,A,—d,A, is the electromagnetic field =-Ve(x) together with the electric and magnetic fields

strength andD ,\W,(=4d,W,+ieA,W,) the covariant de- (E,B). When nonrelativistic kinematics is appropriate, Eq.
rivative of the charged vector field. The Higgs scalar (1.5 reduces to

which is massless in the BPS limit, plays the role of dilaton. d

When the energy transfehE is much smaller than the _

W-boson massn, =ef, the above theory may be substituted m”WX”_q“[E(X“ VX B(Xn, D] gsH(Xn 1)

by an effective theory with the actidBy, whose dynamical (1.6

variables consist of the positioi,(t) of W bosons and two ) )
massless field&\, and ¢. Ignoring contact interactions of and then, as was done in the classical electrodynafics
“heavy” W fields and also relatively short-ranged magneticOne may use this force law with field equations satisfied by

moment interaction from Eq(1.1), this low-energy action Au and ¢ to discuss various low-energy processes. Associ-
Ser is easily identified, viz., ated with a uniformly accelerating/ particle with accelera-

tion a, for instance, the usual near-zone fields will be accom-
panied by the radiation fields

4 1 mv 1 mv
Ser= | d'| ZF“Fu 5F(3,A,~ 9,Au)

0, RX(RXa) g, RXa
1 E(T,t)~ET, B(f,t)~—4— —n
- E&Mgoﬁ'“go + f dtleg, (1.2 1.7
Os (R-a) 0 gs R-a
with L given by H(r,t)~E RE H (r,t)~4—¥,
N — o where R is the radial distance vector evaluated at the re-
Ler= 2, {—(M,+0s¢(Xn,1))VI—X2— g [A%(X, 1) tarded time. Also the low-energy laboratory cross sections
n=1 . .
for the yW and ¢W scatterings are easily calculated to be
_Xn(t) A(Xn !t)]}! (13) do e2 2 '
aq =\ sir? 0,
whereq,=*e andgs= m,/f=e>0, denoting the electric YW, eW— YW mm, (1.9

and dilaton charges of th& particle, respectively. While we

are eventually interested in the low-energy dynamics, it is do
also usuful to keep the full relativistic kinetic terms for par- a0
ticles and solitons. We remark that aside from the electro-

magnetic gauge invariance, this effective theory also inheritgyhereg is the angle between the direction of outgoing mass-
from the original theory the spontaneously broken scale intess particles and that of the incident massless fields. Here
variance, which is described by we have neglected the spin ¥ particles. We have also
taken care of the photon spin by averaging over the initial
, 1 spin and summing over the final spin. Of course the same
m, +gs¢’ (X) = - [M, +gsp(x/N)], results may be obtained in the tree approximation of the full
(1.4 theory.
1 The above effective theory may also be used to derive the
AL(X)==A (XIN), X' (H)=AX,(t/IN), effective Lagrangian for a system of slowly movillg par-
" NH " ticles. This effective particle Lagrangian results once we
eliminate massless field&,(x) and ¢(x) from the above
where\ is a real number. effective Lagrangian by using their field equations in the
From Eq.(1.3) we see that the low-energy dynamicsW#f  near-zone approximation. For details on this procedure, see
particles are governed by the force laphere, V,  Appendix A. Assuming nonrelativistic kinematics @t par-
= (d/dt) X,]? ticles3, we then find the slow-motion Lagrangian of the
form

e2

YW, oW— oW ( A4mm,

2
) cos 6,

2pAs the force law for then-th W particle, E, B, and
H (=—V¢) appearing here may be allowed to include only con- 3Our effective Lagrangian will lose its validity if two oppositely
tributions that are really external to the vty particle. charged particles approach each other too closely.
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92— 9n0m pated by Mantor{13] and otherd12,14], who presented a

(1.9 simple derivation of the moduli-space metric for well-
separated monopoles on the basis of closely related ideas.
However, to our knowledge, the full story as presented here
has not appeared before. In any case, our work might be

1 L
— I gmmxxixi S 28 _Anim
L ZmEm glJ (X)anm an 477|Xn_xm| ’

with the inertia metric

92 1 viewed as a first-principle derivation of the effective field
ggjﬂm(x):mvgnm@j— —S{gnm( —) theory for the BPS monopoles and massless fields, in the
Am kZn) [Xk=Xql sense that it has been extracted through a detailed study of

1-s ) time-dependent dynamics as implied by nonlinear field equa-
“X ;md&” + SQT?('“ ?(S | tions of the system.
n~ \m TIAN™ Am

Il. STATIC BPS DYON SOLUTIONS IN SU (2) GAUGE

(1-8,m). (1.10 THEORY

We shall recall here the basic construct of the BPS dyon
solution in an SW2) gauge theory spontaneously broken to
U(1). For this discussion it is better not to work in the unitary
gauge. The Lagrangian density @=1,2,3)

(X=X (X=X

X
|xn_xm|2

5”'"‘

In the special case of equally chargédparticles only, the
potential terms in Eq(1.9) cancel, sinceqnqngg:ez, and
the last term of the inertia metri@.10 also cancels, with the

metric L !
g ] £=-7CLCL 50D D (21
(M) x) — -== ol
gij”m (X)=m, 6pmdij 4W(5nm(zk(¢n)|xk_xn|) where
— 1_5nm Si: G/a‘LV:(?”A;—(?VAg'FeEabCAgAg, (22)
|Xn_xm| !
(Dﬂd’)a: ‘?,ud)a—'— efabcA,Zd)c' (2.3

One may discuss, for instance, the low-energy scattering of
two W particles on the basis of this effective Lagrangian. The field equations read
In this paper we shall make a systematic study of the field

equations of the Yang-Mills-Higgs system to establish the (D,G"") 3= —€eapd D" $)°¢°, (2.9
low-energy effective theory involving BPS monopoles or dy- u
ons. This will be much harder to analyze than the case of the (D,D*¢)a=0. (2.9

W particles, for here we have to confront the problems asSQy rinout any nontrivial Higgs potential in the Lagrangian

ciated withnonlinearnature of the given field equations. In . 7 . . . :

: . . : density, this is a classically scale-invariant system. For this
Sec. ll, static BPS dyon solutions are reviewed. Then, in Secs. stem. spontaneous svmmetry breakina is achieved by de-
[l the force law analogous to E@1.5) is derived for a BPS Y » SP y y 9 y

dyon and so are the appropriate generalizations of the resulpgandlng the asymptotic boundary condition

(1.7) and(1.8) when BPS dyons, rather thaM particles, are e
involved. Two of us have considered parts of these problems |1 Paba—1>0 asr—c. (2.6
earlier[10,11], but they did not encompass all the relevantThe unbroken (1) will be identified with the electromag-
processedqespecially those involving massless Higgs par-netic gauge group below.
ticles. In Sec. IV, we formulate the effective field theory  The above system admits static soliton solutions in the
involving the dyon positions and two massless fields menform of magnetic monopole®r, more generally, dyohsthe
tioned above in such a way that the results of Sec. Ill argtability of which is derived from the topological argument.
fU”y accommodated. The resulting theory assumes the fOfnThey will carry some nonzero Charges with respect to |ong_
corresponding to a duality-invariant generalization of the acrange fields. To be explicit, we may define the electric and
tion (1.1). It is conceivable that our effective theory may magnetic charges by
have validity beyond tree level in the context of appropri-
ately supersymmetrized models. Also, for a system of slowly _ ~aca _ " ama
moving BPS dyongof the same sign we obtain the effec- a= ﬁzmd&ﬁ SN jgrmdS(ﬁ B, (27
tive Lagrangian analogous to E¢L.9) by the same proce-
dure as above and show that it is closely related to Manton's,..,. ra_ ~0i pa_ 1_ ~jk Sa_ sa
moduli-space dynamics for well-separated monopoles. IrzvillghtoEr; ghC;?g'éBbi 2€ikGa » and = ¢*/\ Pady, and the
Sec. V we discuss similar issues for BPS dyons in a gauge y
theory with an arbitrary gauge group that is maximally bro- .
ken to U(1)f. Here the appropriate monopole moduli space Os= fﬁ dSa|¢|= 3§ dS¢3(D;¢)2. (2.8
was recently obtained in Rdf12]. Section VI is devoted to r== r==
the summary and discussion of our work.

We have included brief reviews of some relevant materi-
als to make our paper reasonably self-contained. Presumably4This name is due to Harveyl4], who also emphasized the role
various ideas developed in this work were previously antici-of a Higgs scalar as a dilaton.
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Then we haveg=4mn/e (neZ) for a topological reason Moreover, to obtain static solutions to field equatig@sd)
while g may take on classically any continuous value. Also,and(2.5) with the lowest possible energyl = f \Jg?+ g7 for
gs is nothing but the mass of a static localized soliton up togiven g=*4mn/e (n is a positive integer and q

a factor, viz.,
gs=M/f, (2.9

with
— 3 00 3 1 ara apa a a

+(Di¢)*(Di¢)%, (2.10

=g tan B, it suffices to consider solutions to the first-order
Bogomol'nyi equation$16]
Bf=+cosB(Di¢)?,

Ef=+sin B(D;i$)?, (Do¢)*=0.

(2.19

These are equations relevant to BPS dyons andgfei0
reduce to the Bogomol'nyi equations for uncharged mono-
poles:

Bi'=+(Di¢)?,

AZ=0. (2.17)

where T% denotes the 00 component of the stress energy

tensor

TH' =G GY + (D ) (DY) o+ p#7 L. (2.1

Actually all dyon solutions to Eq.(2.16), denoted as
(%(r; B),A(r; B),Ad(r; B)), can be obtained from the static
monopole solutions(¢?(r; 3=0),A%(r; 3=0)) satisfying

The result(2.9), which seems to be not very well known, EG.(2.17. This is achieved by the simple substitutigi8]

can be proved as follows. Consider the so-called improved

stress energy tenspi5]

~ 1
THY=TH A S (0% = 09" 1%, (2.12

which is also conserved and satisfies at the same time the

ba(r; B)=pa(r cOSB;0),
AR(r;8)=cos BAX(r cosf;0), (2.18

Xg‘(r;ﬁ)= Fsin ,BEa(r cos 3;0).

property of being traceless, after using the field equationsrne n=+1 solutions to Eq(2.17 are well known[3]:

Then, for any static solution,
~ 1
f dr T°°=M—6J d®r V2| ¢|?

1
=M -3 fgs, (2.13
3
using Eg. (2.10 and the asymptotic behaviof¢|~f

— g¢/4mr. On the other hand, since the traceless tefigdr
is also divergence-free, we have

f dr }'oo:f dr ?’“=f d®r a;(Tiix))

_ X! 2 i 22
= r:mng(tsijV —d'd)| | —gfgs-

(2.19

The relation(2.9) follows immediately from Eqgs(2.13 and
(2.14.°

Based on EQq(2.10, it is not difficult to show that the
mass of configurations with giveg and g satisfies the in-
equality (called the Bogomol'nyi bound 3,16

M=f\g°+q°. (2.15

5f the new tensofT “” were used to define the soliton mass, one
would end up with the mass valuev3, but we adhere to our

m,r
sinhm,r )’

1
m,r /)’

These describe the BPS ofeti-) monopole solution, cen-
tered at the spatial origin, witly=+47x/e and massM
=g,f=4=f/e. If the substitution(2.18 is made with these
solutions, the results are thelassical BPS dyon solutions
with g=F4=wl/e, q=F4m tanB/e, and massM=gf
=4+fle cosB. Being a Bogomol'nyi system, there are also
static multi-monopole solutions satisfying E@.17). How-
ever, physically, they may be viewed as representing con-
figurations involving several of the fundamentak *+1
monopoles described above. The latter interpretation is sup-
ported by the observation that the dimension of the moduli
space of solutions witly= *4an/e is 4n [17]; this is pre-
cisely the number one would expect for configurations of
monopoles, each of which is specified by three position co-
ordinates and a (1) phase angle associated with dyonic ex-
citations.

_ r
A'a(r;O):eai-—J(l
er 2.19

ga(r;O)= i?af cothm,r —

Ill. TIME-DEPENDENT SOLUTIONS BASED ON FIELD
EQUATIONS

A. Summary of our previous analyses

We now turn to the study of low-energy dynamics involv-
ing BPS dyons, as dictated by the time-dependent field equa-

definition (2.10 for the soliton mass since this mass also enters thdions of the Yang-Mills-Higgs system. Particularly important

equation of motion for a solitofsee Secs. Il and 1)/ the physical
mass is equal td/1.

processes are those in which a single BPS dyon interacts
with electromagnetic and Higgs fields: they give the most
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direct information on the nature of effective interaction ver- A7rf

tices involving these freedoms. Some of these processes Ma=gBy+qE, (M= = cosB)’ (3.7
were previously analyzed by two of (140,11 and in this

subsection we shall recall the results obtained there. while the functiona?d behaves asymptotically such as

The first case concerns an accelerating BPS dyon in the
presence of a weak, uniform, electromagnetic field asymp- a,. = cos B(sin BBn— cos BE.) -r'r2  for r—o
totically [11], viz., under the condition that o(r';p)— = cosB(sin ABo PEo) _()3_5'3)

a a . . . .
iB?"(BO)i: ¢—E?H(E0)i for r—o. (3.1) Note that Eq.(3.7) is the equation of motion in the dyon

|| || instantaneous rest frame and the corresponding covariant
generalization
This generalizes the problem originally considered by Man-
ton[18] some time ago. Due to the uniform asymptotic fields dl MV
present, the center of dyon is expected to undergo a constant at W =g(Bo—VXEg)+q(Ep+VXBg)

acceleration, namelyX(t)= % at? (the acceleratiora to be
fixed posteriorly in the reference frame with respect to

which the dyon has zero velocity & 0. To find the appro- (
priate solution to the field equatiori.4) and(2.5), the fol-
lowing ansatz has been chosen in Héfl]:

_d )
V=5 X (3.9

can also be secured by further considering the implication as
the Lorentz boost of our ansat.2) is performed.

GA(r.) =9 B), The explicit, closed-form solution to Eq&3.4) and (3.5
has been given in Refl1]. Because of its rather compli-
AR(r,t)= —taiA_\E’,‘(r’;ﬁ)ﬂLZ?(r’;/B), (3.2  cated structure, we shall here describe its characteristic fea-

tures only. It is everywhere regular, with the fields near the
dyon core(i.e., at a distance~1/m,) deformed suitably to

match smoothly the long-range fields having simple physical
interpretation. The physical contents of the long-range elec-

AY(r,t)=—taAXr';B)+A(r'; B),

with tromagnetic field is given in terms &™=($%/|$|) B and
~ — E;™= (¢%|¢|) E? and that of the long-range Higgs field by
HA(r'; B)=2(r"; B)+1I3(r"; B), H“=— (¢%|¢|) (D*¢)?. These quantities are conveniently
- — expressed using thretarded distanc®=r — %atfet, with te
AN B)=AXr";B) +ai(r';B), (33 determined(for a givenr andt) through the implicit equa-

_ _ ' tion t—t=|r— % at%|=R. Explicitly, in the regionm,r’
o(r':B)=Fsin B(r'; B)+ ag(r'; B), >1,
wherer’ =r—X(t), the functions(¢*(r; 8),A%(r; B)) repre- BEM(r 1)~ By + 9 R-Vvie g RXyg

sent the static dyon solution given b§2.18 (with g

{ 4T (1-R-v,)3R2 47 R2
=¥4m/e and g=g tanB), and the yet-to-be-determined

functions (l_[a,aZ) are assumed to b&(a) [or O(Bgy) or g Iix(lix a q Rxa
O(Eg)]. Terms beyondO(a) are ignored. Note that the = R 2. r | G110
functions ﬂa,aZ) will account for the long-range electro-
magnetic and Higgs fields as well as the field deformations q R_v g Rxv
near the dyon core. E®M(r,t)~Eg4 —— ———— o+ — ret
It then follows that the field equatiortg.4) are fulfilled if 4T (1-R.v)°R2 47 R?
the functions Ha,ai) satisfy the equations R -
g RX(RXa) g RXa
BP=+(D;+ay)(cos fp°+tan Baf), (3.9 4w R 4m R } (34D
(DiDiag)*=—€” cof Beapcepard’d'ad, (39 H(r m&&% 9 <R'a>R}
~ _ ) AT (1-Rv®R? 4T R )7
where D#=(D?3) pa_za, G)!=(G!)pa_za and the sup- (3.12
pressed dependent variableris At the same time, the field R R
strengthE? to O(a) is given by HO(r ) Os R Vet +[ Os (R-a)J
- ~ (nV~ %z (1-R-v,3R2 (4m R}’
E3(r,t)=—ta;GJ +(D;+a;)%°Af. (3.6 (3.13

From these equations and the condit{@nl), one finds that where a is given by Eg. (3.7, Ve=at,, and gs
the acceleratiom should have the value given by =47/e cosB (i.e., equal to the dilaton charge of the dyon
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Note that expression.10 and (3.11) are fully consistent [nhere, D=4, 8,.+ e€.pAP(r —X)], and then the functions
with the electromagnetic fields of a pointlike dyon in motion ~

and exhibit the manifest electromagnetic dualiigee Eq. ¢
(1.7) for a comparisor].This statement applies to both near- 1 o o
zone fields of O(R™?) and radiation fieldgthe O(R™ 1) [1%=—[(D;B)a— ieweapcadd®—iw?a;d; %],
terms marked by the curly brackets in E¢3.10—(3.13)]. w

Now the radiation energy flux, measured by thecdmpo- (3.20
nent of the stress energy tensor, is given as

a and;&? can be found using

~ 1 - S —
. . . , . al= Fe (D B2+ ee b —iw(D;ag)?
T?;deng;k-f—(DO¢)a(D'¢)a= E”kEjemBﬁm-f—HoH' i ;Z[ Ijk( Jﬁk) abcBi @ (Diag)
2 P2 Aa
g - - —iw“a;d,A]. (3.21)
= 1g22 ([axRl+[a-R)), (3.14 e
So what remains nontrivial is to solve E8.19. There is no

where we used the relati(g§=gz+q2. equation to fix the functiongg, but this just reflects arbi-
In Ref.[10], an analogous perturbative scheme was useff@riness in the choice of gauge.

to study light scattering off a neutral BPS monopole in the The solution to Eq(3.19, found in Ref.[10], reads

long-wavelength limit. Here the incident electromagnetic

wave is assumed to have magnetic field given as

iwr
- _ e -
B2(r")=*iw?a;f cothm,r' e "'r'a2xiw?a r'a

er
iMw? )
B&“RE{T""QKX_'ﬂ (w=klk-a=0), +0(aw?), (322

(319 wherer’=r— X. Then, using this WitﬁEq$3.2@ and(3.21)
where the frequency and the magnituda are taken to be [with the gauge choic&B(r’)=waiAF(r’), made for the

sufficiently small so thaiy/m,<1 andwa<1. The center of consistency of our ansdfzthe expressions foﬁa(rr) and

the monopole is then expected to undergo a nonrelativistie- . . .
motion P P g a2(r'") follow. In this way, long-range fields in the present

process have been identified as

!

X(t)=Reg —iae™ '] (3.16 gior—iwt
e =i 2 ik-r—iwt—: 2re<, (r
[with the initial conditionX(0)=0]. So, in this case, the B¥(r.y)~*iwafe FloTrx(rxa)] er
solution to the field equation&.4) may be sought on the o
basis of the ansatz gior —iwt

ECM(r,t)~ +iw?(kxa)felk  WEjw2(rxa) e
H3(r )= 3(r—X) + R TIA(r,1)], (3.23

2 _ 112 —iwt H(r t)NinEGiwr—ith
(=T -x)e 1) H~iwt— ,

AR(r,t)=A(r—X)+Re a(r,1)], ab
N HO(r't)NinEelwrﬂwt
[a?(r,t)=a?(r—X)e 'Y, (3.17
_ where only the real parts are relevant. Notice the appearance
a(r,t)=Re ag(r_x)e—iwt], of outgoing spherical waves, describing electromagnetic and
Higgs scalar radiations. Based on these results, the related
WhereXf‘(r) and ga(r) represent the static BPS monopole differential cross sections are determined as

; ; ; rma Ta ~

solution in Eq.(2_.19). The funcuqn {1 ; @) are assumed to do (w*12?)|r x a2 9 \2
be O(aw) and in the asymptotic region should account for — = = Sif 0,
the incident wave and outgoing radiations. dQ em Ew“fzaz 4mM

Using the ansatZ3.17) with field equations(2.4) and 2
(2.5 give rise to complicated differential equations for the (3.29
fl.mcti.o.ns (ﬁa ;Z). _Howevgr, as n(_)ted in qu10], a great q 41962 (a. 712 5 12
simplification is achieved with the introduction of the func- (_‘7) _(o7/2e )|a-r| :( 9s ) 02 O
tions B(r,t) by the equation dQ Higgs lw4f2a2 47M ;

2

GH(rO=F el (Dp)*(r,0+Br D] (318 (3.29
The field equations are fulfilled if the? satisfy the equation \yhere® is the angle between (i.e., the observation direc-
—— L~ ) ~ tion) and the incidenB®™ field and we used the relatiay?
[(DkDyt %) Bi]*+ e€apcenaei #°¢°=0 (3.19  =g2=(4n/e)? here. Notice a close similarity between these
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results for a BPS monopole and the corresponding formulaghis is the desired equation of motion for a dyon in its in-
(1.9) for an electrically chargetlV particle. stantaneous rest frame. We remark here that, by considering
the Lorentz boost of the above solution, £E§.31) may be

B. Accelerating dyon solution generalized to the fornsee Appendix B

in weak uniform asymptotic fields d

(M—=ggX, H¥)V
A BPS dyon, having nonzero dilaton charge, will have a gt =9(Bo—VXEq)+q(Eg+VXBy)

[ 2
nontrivial coupling to the Higgs field. To deduce the corre- 1=v
sponding force law from the field equations in a convincing +gsHoV1— V2. (3.32
way, it is necessary to consider a more general, uniform, . .
asymptotic field than in Eq3.1). In this section, we there- This should be compared with the force law foneparticle,

fore suppose that there exists also a weak, uniform, Higg€iven in Eq.(1.5). o
field strength asymptotically, viz., If the strengths of the asymptotic fields are such that

¢a HO:i(COSBBo+Sin IBEo), (333)

m(Di‘ﬁ)aH_(HO)i as r—e (326 \ye see from Eq(3.29 thata=0, i.e., the dyon does not
“feel” any force (at least to the first order in the applied

in addition to the electromagnetic field strength&, (B,)  fields). In view of Eq. (3.2), the corresponding solution is
specified as in Eq(3.1). Of course, the imposition of Eq. Necessarily static. Here one has the special case where the
(3.26 would make the asymptotic conditid®.6), required applle_d fields are consistent w!th the original Bogomol'nyi
for any field configuration with finite total energy, obsolete. eduations(2.16. This happens itzg=0 (and henceC=0)
This is not a problem; our interest here is in studying theand
time-dependent flpw of energy from one spatial regiqn to By=*cosBH,, Eo=sinBH,. (3.34
another, as predicted by field equations. For sufficiently
small (Eq,Bg,H), we may again seek the appropriate per-We are now talking about a static BPS dyon solution in the
turbative solution to the field equations on the basis of thpresence otelf-dual uniform fieldsAfter some calculation
ansatz given in Eqg3.2) and (3.3. This will lead to Eqs. We have found that the appropriate static solutionfer0
(3.4 and (3.5) and also to the relatio(B.6) for E*. How- (i.e., the case of a neutral monoppénd toO(H,) is given
ever, the solution of our present interest is, unlike that giverpy
in Ref.[11], the one satisfying Eq$3.4) and (3.5 for non- 1 ) 1 A omyr

zeroHy. ¢a(r)=ifaf(coth m,r — t—H0~rraT
Our first task is to determine the dyon acceleratomn- m,r/ =2 sinft-m,r

v

der this generalized asymptotic condition. For this purpose, 1 ~~ r _ -
we assume the asymptotic form of the functiaf to be +5[(Ho)a=Ho- Iral g+ cothm,rHo-1m 4,
given as ’
(3.395
ag(r’;ﬂ)acosﬂc-r’ﬂ; for r—oo (3.27 ~
, r m,r
. Axr)=€aij s | 1- oo
(C is some constant vectoand then we have er sinhm,r
5 . 1 .9 r2 e
W(Diao)aetcosﬁci for r—o. (3.28 2 i | sinhmyr |70 "
Now we use this information and the given asymptotic con- + €4ij[ (Ho); —Ho- FFj]m
ditions with Eqgs.(3.4) and (3.6) to deduce two linear rela- v
tions involvingBg, Eq, Hg, a, andC. Solving the latter for r—r coshmyr. ~
a andC, we immediately obtain Ry — mr la€iml1(Ho)m, (3.3
1 . 2(r)=0. 3.3
a=F £[cos 8By +sin BEoT Ho] (3.29 o1 (3.37

The corresponding solution fo8#0 (i.e., the BPS dyon

cas@ then also follows once the trick in E.18 is used®
We now consider the solution to Egé3.4) and (3.5

whena is nonzero; this will lead to a time-dependent solu-

and
1
C=1?[Sin BBy—cos BEy]. (3.30

Notice thatC does not depend dly. If Eq. (3.29 is rewrit- Swhile Eq. (3.35 is only an app_roximate solutiop.e., _valid to
ten using g=F4mle, q=F4mtanple, and g O(Hg)] of the Bogomol’nylAequatlon, we remark that |muﬁw
=41/(e cosB)=MIf, it assumes the form limit, ~ namely, ¢a(r)==ry(~Ho-r+f-1/er) and Ay(r)
=€, (rjler) —%rae”mx,(HO)m, corresponds to an exact but sin-
Ma=gBy+qgEy+gsHg. (3.3 gular solution ofB¥= ¥ (D; ¢)?.
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tion, accompanied by suitable radiation fields. Followingserted into Eq(3.2), we have the explicit perturbative solu-

Ref.[11], we introduce rescaled guantities

S
' _cosB’B)
(3.38

Aa
cos ,BA'

y=r'cosp, AlXy)=

and recast Eq€3.4) and(3.5) as

sing

a__ — (y) ai ab(~ + )
Bi= +(Diy + COS,B) ¢b_m6¥o , (3.39

(DYDY ag)?= — e?epcenaid(Y; B=0) ¢'(y; B=0)al,
(3.40

where  DY)3=(3/dy') 8,5+ €€apAr(y; f=0), DY
=(0/9Y) Sact eeaboAib(y), andB(y) denotes the magnetic
field strength obtained from the vector potentigl(y). The
solution to Eq.(3.40 that fulfills the condition(3.27) is
given by

[(C)a—(C-y)Yal,
(3.41)

wherey=|y|=r’ cosB and the vectorC is given by Eq.
(3.30. We have also the solution to E(B.39 expressed as

a_ Vot c——
ag=cothm,y(C-y)yat o m,y

ba=*y fcothmy—i+&
a a *” m,y/ 2ecospB
a,fy _sing

m,y
% ( 1= sinh mvy> iZCOSIB sinhm,y " cod B “o

_~ 0 M) T | s — Yo iy
_,_yaw(y cot mvy )+ W_ya@ m ,

(3.42
e Vi My
Aa_sa”ey sinhm,y +2005/3 cothm,y
1 NN d y
my E”kyjakyaJrfa”W mv

.9 y
+(1—coshm,y)Ya€imYi m( WV> ,
(3.43

where the functiorV, which is adjustable, must satisfy the
Laplace equatiorV?V=0. All asymptotic boundary condi-
tions, including Eq(3.26), are satisfied if we here choose

1
V=" 5502 p(SiNAC-y—cosBHo-y).  (3.44

Using Egs.(3.42 and (3.43), we find completely regular
expressions for the functions$(r’;B), AXr’;B)
=cosBAXy=r" cosp), and Ad(r';B)=FsinBe(r’;B)
+a§(r’;B) [see Eq.(3.3)], immediately. If those are in-

tion appropriate to a BPS dyon in the presence of uniform
electromagnetic and Higgs field strengths asymptotically.
Note that only elementary functions enter our solutiout in

a rather complicated wawyand the result foH,=0 of course
coincides with that already given in Rdfl1]. Long-range
electromagnetic and Higgs fields, which are easily extracted
from this time-dependent solution to the field equations,
again take simple forms. As for tH8®™ E®™ andHP, the
expression$3.10), (3.12, and(3.13 are still valid under the
condition that the acceleration paramegeis now specified

by Eg. (3.29. On the other hand, the expressiontbfnow
contains also a uniform-field term over the re€8lt12), viz.,

H(r,t)"’H0+

gs Ii_Vret [ gs (é&)ﬁ?]
— )= :
4 (1_R'Vret)3R2 4 R

(3.45

This in turn implies that one may continue to use formula
(3.14), with a specified by Eq(3.29, to find the radiated
energy flux in the form of electromagnetic and Higgs waves.

C. Electromagnetic and Higgs waves incident on dyons

In Sec. lll A, the light scattering off a neutral BPS mono-
pole was described in the long-wavelength limit. Since the
theory admits also a massless Higgs boson, one might also
consider a Higgs wave scattering by a BPS monopole or
dyon, which would reveal tree-level interactions between a
massless Higgs boson and a BPS dyon. Therefore, to make
our analysis complete, we will here analyze light and Higgs
wave scattering by a BPS dyon with the help of an analogous
perturbative scheme.

In the presence of incident electromagnetic and Higgs
plane waves, the dyon is expected to undergo a motion of the
form (3.16 with the vectora describing the oscillating di-
rection and amplitude of the dyon in response to the incident
waves. The vectoa is taken to be real; this amounts to
choosing the initial conditioxX(0)=0. Here X(t) describes
the position(i.e., the centgrof the dyon that is defined as the
zero of the Higgs fieldp(r,t). We shall again construct a
solution to the field equation®.4) and (2.5 corresponding
to this oscillating dyon with incident electromagnetic and
Higgs plane waves. Due to the oscillatory motion, it must
radiate electromagnetic and Higgs waves as in the case of a
neutral monopole. Hence the solution describes the scatter-
ing of light and Higgs patrticle by a dyon.

One may begin the analysis with an ansatz for the solution

B3(r,t) = ¢(r—X; B) + R II(r— X; B)e~ "],
(3.46

Ai(r,t)zKi(r—X;B)Jr Re a’(r—X;B)e "]+ 0(a?),
(3.47

Where(¢a(r;ﬁ),AZ(r;ﬁ)) is the static dyon solution charac-
terized by magnetic and electric charges=(~4x/e, q=
F4 tan B/e). The functlons(l'[a(r—X;,B),ai(r—X;,B))
represent excitations from the undeformed but moving dyon
with the center atX(t) and in particular contain the
asymptotic fields required for the motion and the radiations
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fation, we shall not work i these functions due 16 the ~weeana|*AG (356
;:J)nrr;ﬁ:)enxslty in resulting equations. Instead, we define newﬁo‘ne may also reexpress relati@53 in terms of 2 and
o o a,’as
I"8=T14(r=X;B) = X-VA(r—X;B), (3.48 _
_ —~, . _(DI")? _ ~b e
@ = a(r=XB) - X-VAL(T=Xig),  (3.49 U PI) =T "o T OOSPeancai

ba

where X is implicitly defined by the relationX(t)

=Re[)?e‘“‘"]. These functions in fact represent the entire cospB’
time-dependent corrections to the static configurations. As in (3,57

the case of a monopole, the functionﬁa@i) and

(ﬁ’a,Zf) are assumed to b®(a) and we will solve the
field equations to the first order e The field equatiori2.4)

+tan B[(D;ay)—iwa, ¥+

It is then not difficult to verify that Eq(3.50 is identically
satisfied when Eq<€3.57), (3.59, and(3.56) are used.
Taking an appropriate combination of Eg8.57 and

now reads pe
- - (3.56 to eliminate thea;? dependence and using relation
(DiDAg)2—iw(Djap)d=iewe®$°II’® (3.55, we can derive a second-order equationtidr, which
— eZEabcecded)bAgd)e, reads
(3.50 [(DiDy+ 0?)b;]a+€? cof Beapcenach d°h°=0.

_ . o (3.58
(DjGij)a— w?a!?+iw(Daf)?+ 2ieweal °A§ _
aberb . b ib . On the other hand, eliminating thg; (D a)? terms from
=ee®”Ag(DiAg)*—ee®¢°(D;g)°, (35)  Egs.(3.57 and(3.56 leads to
while the other field equatiof2.5 becomes wzzi,a: Icosﬁeijk(D_jEk)aJre o2 ﬁfachFgc

(DiDjg)2+ wZﬁ/a+ 2iew6abCAgﬁlc+iewfabCZE)b(ﬁC —iw(lsiz’é)aiiw sin ﬁ[(aﬁ/)a_l_BIa]

=e%e % IAIAG¢°, (3.52 (3.59

where only part of the relevant quantities are expressed igy, e b2 are obtained from Eq(3.58, we may use Egs.

ra ra —~ —~
terms of (1'%, @,’). o . . (3.55 and(3.59 to fix (IT'?, a]?) up to unknown functions
To proceed further, we find it convenient to introduce the~ . . . ~,a .
L = a(®. Again note that there is no equation fag®, which
functionsb(r — X) by

merely reflects that the choice Ega is related to pure gauge

(Di)3(r 1) B_a(r_x)e—iwt degrees of freedom. Equati¢B.58) is the same as E¢§3.19
B3(r,t)=F— " —tan BEAF ———— when we scaler to r/cosB and w to w cosB. Thus the
cosp cosp scattering solution immediately follows if we use the results

(853  of sec. A

Note that B? effectively describes dynamical excitations

ye . b2=+iw?a;f cothm,r’ cosger'?
from the BPS saturated state satisfying the combined : @ v A

Bogomol'nyi equatior{see Eq(2.16)] glor
Fio?a—r'3+0(awd), (3.60
B __(Dygp)A(r,t) £ . er’ cosp
k(r,t)——i—w tan BE, . (3.59

wherer’=r—X. (We will see below that this particular ho-

If we use the relatior(3.53 to eliminateD;¢ from Eq.  Mogeneous solution in fact describes the oscillating dyon by
(3.52 and the Bianchi identity®;B;)2=0 wel obtain incident electromagnetic and Higgs planewaves. Of course,
! ' the solution is not the most general solutions of the above

wzﬁ.;:(EiEi)a—iewfabc(zébgcﬂLKBﬁ’c), (3.55 equation). Upon making the gauge choice
while direct insertion of Eq(3.53 into Eq.(3.51) yields =7 sin 11"+ wa A2 (3.60

—~ — 1 — —_— and using Egs(3.55 and(3.55, we find the expressions
wzai'a-i- i (J)( D; a,o)a: IC_Eijk(Djbk)a'f‘eEabcbib(ﬁc

0S8 ~
= eiwr Fa

~ . a-
. ——~, ra__ — . iker_ &~
—Iwetanﬂeijk(Djak)a II Fow|a-kfe er COS,B s (362
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22~ wfl[(kXa): cosB—a: sin gleikrra Based on .these, we find that, whgn a Iight is incident.upon
ai"~ of[( )i B-a Al the dyon, i.e.a-k=0, the related differential cross sections

—w[(rxa); cosf—a; sin gle“rd (3.63 &€

2 2\ 2
in the scattering region where the terms®fr —2) are ig- (d_‘r) :<9 +q ) Sir? ® (3.73
nored. Consequently, the electromagnetic and Higgs fields in dQ ome 47M ’
the asymptotic region are given as
_ . o o do 9’+q?|( 9: 2
B®™= T iw?[cos Bk X (kX a)—sin B(kxa)]fe'k it aQ N Tam N g /cos @, (374
em—Higgs
R R R eik-rfiwt
—i 2 _qj -
+locosprx(rxa)—sin f(rxa)] cosp’ where® is the angle between and the combinatiogBS™
+qEjt. On the other hand, for an incident Higgs wave, we
(3.649 i
ind
E®™= T iw?[cos (kX a)+sin Bk x (kxa)]felk—wt do . g \[g2+q? w0 78
— 2 - . ~ ~ fher—iwt dQ Higgs—em 4mM 4mM , -
+|w[cos,B(rxa)+smﬁrx(rxa)]m, .
do g
(3.69 _— = S
aa) . _ gy cog 0, (3.76
o iggs—Higgs
o R Aelwrflwt
204 ik-r—iot i 204 - “
H=—1o%a-kikfe tlo%(a r)rer cospB’ where 6 is the angle betweenandk.
(3.66 As should be the case, the cross secti@s3d and(3.74
o for vanishing 8 agree with those of light scattering by a
R ket 22 glor—lot monopole in Egs(3.24) and (3.25. (However, the case of
Ho=—iw“(a-k)fe +io“(a: f)m' the Higgs and dyon or monopole scattering was not consid-

(3.67  ered beforg.Also it should be stressed that the cross sections
found above are manifestly duality symmet(ie., involve
where only the real parts are relevant. From those expre¢he combinatiory®+q? only) and have the same form as the
sions, one may clearly see the presence of incident plan€orresponding cross sections foaparticle[see Eq(1.8)].
waves as well as the electromagnetic and Higgs radiatiof fact, formulas(3.73—(3.76 apply to solitons and elemen-
fields emitted by the dyon. As expected, the force law can béary quanta alike only if appropriate values for the mass and
verified explicitly by finding zero ofp(r,t): various charges are used.

.. d? )
MX=M WRe[—iae*"”‘]z R 9B+ qEST+ gH T — x -

(3.68

Here the subscript inc indicates that it refers only to the According to the results of the preceding section, the be-
incident part of the given field. The resu(%64—(3.67 can  haviors of BPS dyons in low-energy processes are not very
be used to calculate the related scattering cross sectiondifferent from those oW particles; that is, solitons and el-
With the energy momentum tens@.11), the time-averaged ementary field quanta behave alike. This in turn suggests that
incident flux densities in electromagnetic and Higgs sectorshere should exist a simple effective field theory for low-
are, respectively, energy BPS dyons interacting with long-range fields. How-
ever, unlikeW particles, dyons carry both electric and mag-
netic charges and so their electromagnetic interactions
cannot be accounted for by the usual Maxwell theory: We
need a duality-symmetric generalization of the latter. Even
o 1 o from 1960s, Schwinger considered such a duality-symmetric
(TO m'ggsziw“fﬂa. k|2K; , (3.70  Maxwell theory seriously19] and then several different ver-
sions were developed by him and othg26] since. For our

discussion we find the simple first-order action approach,

IV. EFFECTIVE THEORY FOR ELECTROMAGNETIC
AND HIGGS SCALAR INTERACTIONS OF BPS DYONS

A. Duality-invariant Maxwell theory

. 1 P
(T ie=5 o f2laxk|?k;, (3.69

while the time-averaged radiated energy flux densities are

4

. w A~
(T = mlaXrFri - (3.71 "In view of the relationg?+qg?=g?2, the multiplicative factors
appearing on the right hand sides of E¢3.73 and (3.74 are
4 actually the same; hefend also in Eqs3.75 and(3.76)] we have

|a- ;|2Fi _ (3.72 just written the expression in such a way that the vertices involved

(TOi)Higgs:
rad
may be seen clearly.

w
2e’r? cos B
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given by Schwingef21] in 1975, adequate. Its basic idea potentials in terms of*” up to a gauge transformations
will be recalled briefly in this subsection. separately foA* and C*. Explicitly, we have

The goal is to find a simple Lagrangian description for the
generalized Maxwell system B f 4) 1 , s
A#(X)=— [ d™X'(n-3) = (XX )N F*"(X") + d* Ae(X),
a,F"#=JE(x), (4.1a (4.6)

3, *F"=J4(x), (4.1b
C“(x)z—f d*x’(n-9) " H(x,x")nF FAY(X") + A g(X),
where * F#’= 3 €*"°F, 5 and J, and J, denote conserved @7
electric and magnetic sources, respectively. This system is '

marked by the duality symmetry whereA (x) andA4(x) are arbitrary gauge functiofieshich

may be set to zero in the gaugeA*(x) =n,C#(x)=0].

Because of these, we can regard the potefitfato represent
the field-strength-dependent functi@),(F) as specified by
Eqg. (4.7), while the field strength$-#" are expressed in
terms of the potentiah* through Eq(4.3).2 We also remark

that, with the choiceﬂf‘:(o,ﬁ) [see Eq(4.4)], using formula
For a given distribution o84 andJf, the field strength&*” (4.6) [for A4(x)=0] with the magnetic Coulomb field of a
(satisfying suitable asymptotic conditiorean be determined point monopole leads to the famous Dirac vector potential
using Egs.(4.1). However, for a Lagrangian, vector poten- with a semi-infinite string along the directionif the values
tials are needed. Based on E4.1b), we may here introduce a=0,1 are assumed in the Green’s function realizatiy).

the vector potentiah®(x) by Varying the direction ofn just leads to gauge equivalent
FAY(x) = a*AY(X) — 9" AH(X) pot_en_tials if the magnetic cha_rge_ carried _b_y the monopole
satisfies the well-known quantization conditif22]. On the

JeH(x) = cos aJ§(x)+sin aJy(x),
JgH(X) = —sin aJg(x) +cos aJgy(x),

F'#(x)=cos aF*"(x)+sin a *F*"(x). (4.2

i . 1 oy , other hand, if one adopts the Schwinger vaju®,21] a
_f d™"(n-d) " 2(x,x") 5 €4 M Jgs(X") =1/2 in Eq. (4.4), the resulting monopole vector potential
will contain a symmetrically located infinite string singular-
~Nedgn(X")]. (4.3 ity along the direction=n. In the latter case, the vector
Here n* may be any fixed, spacelike, unit vector and thepotentials corresponding to different choices rofcan be
Green’s function - 9) ~ is realized by shown to be gauge equivaldr9,21] if the magnetic charge

is quantized by twice the Dirac unit. As for the magnetic

1 , % , monopoles of the Yang-Mills-Higgs system, either value of
(n-9) *(x,x")= fo d¢[as’(x—x'—né) a may be adopted to defin@ () ~; however, if one wishes
to have a manifestly duality-symmetric action formulation,
—(1—a)8*(x—x'+né)] the Schwinger valua=1/2 may be chosefsee below.

_ , We are now ready to present Schwinger’s first-order ac-
={a®[n-(x—x")] tion approach. It is based on the action
—(1=a)0[—n-(x=X")]} 6p(x—=X"), . 1

(4.4 S= f d4x{ 27 Fum P A O A) —JA,

where one can choose eitheer=0,1 (semi-infinite string or
a=1/2 (symmetric infinite stringand §,(x—x") denotes a —JSCM(F)] , 4.9
three-dimensionad function with a support on the hypersur-

face orthogonal tm*. Similarly, Eq.(4.18 informs us that . )
we may also write where A, and F#" are taken to be independent fields and

C,.(F) are specified as above, i.e., through Ey7). Obvi-
, N ously, the first Maxwell equatios,F"*=J{(x) is the con-
FA(X) == 5 €0\ Co(X) = d5C\(X)] sequence 0f3S/8A,(x)=0. On the other hand, from
68/ 6F ,,(X)=0 we obtain

+ f d*x’(n-d) "1(x,x")[N*ILx") —n*IH(x")],

(4.5

C*(x) being another vector potential that is unrestricted by —Nadgn(x)](n-9) " HX" ), (4.9
Eq. (4.19 alone.

The two potentialsA* and C* cannot be completely in-
dependent, since they are connected through &g3. and 8alternatively, utilizing the relation$4.6) and (4.5), one may as-
(4.5). In fact, the latter relations allow one to determine thesign a primary role on theual potentialC,, (rather thanA ).

1
FAY(x) = g*A"(X) — d"A*(X) + f d*x’ > "N\ Jgs(x")
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or taking the dual, keep the position coordinates of BPS dy@os the location
of zeros in the Higgs field X,(t)(n=1,--,N), the electro-
magnetic fields[A,(x)], and the Higgs field[ ¢(x)].
Each BPS dyon has three kinds of charges, thafjis,g,
(=%4wle), and @s), (= \/g2n+q2n) for thenth dyon; these
_f d4x/[nMJS(X’)_nV‘]é’v(X’)](n.a)_l(x',x)_ charges are made local sources for the electromgnetic and
Higgs fields. The electromagnetic field stren§t” may be
(4.10 defined so that Eq(4.3) may hold, and the Higgs field
o _ strength byH ,=—4,¢. In our perturbative solutions given
Then, based on Eq4.10, it is easy to derive the second in Sec.lll, how should one identify the contributions that
Maxwell equationd, *F"*=J¢(x) also. Therefore, the ac- may duly be associated with the field& and¢ (or the field
tion (4.8 can be used to describe the systésl). Here  strengths=** or H,,)? Actually, for all of our explicit solu-
notice another consequence of H4.9: Multiplying Eq.  tions, the field strength&%” and O, #)? in the region away
(4.9 by n, and picking the gauge,A*=0 yields from the dyon core(i.e., for m,r>1) have nonvanishing
n,FA7(x)=—(n- 3)A*(X) (4.11) components only in thisospindirection ¢2. Only the fields
in this region are relevant for the present discussion and here
and hence relatiot#.6) follows. Moreover, our definition of One may identifyA* and ¢ unambiguously by going to the
C*(F) and the first Maxwell equation,F "= J%(x) may be  unitary gaugé, that is, ¢*(x)=[f+¢(x)]1823 and A*(x)
used to confirm the representati¢h5). =A4(X) away from the core region. Fields within the dyon
Astute readers should have noticed that B9 is not ~ core and charged vector fields correspond to the freedoms to

quite our earlier equatiof4.3), unless our Green’s function be integrated out.

1
TR ()= 5 €M ANX) 3 AX)]

(n. (?)71()(’ 7)() satisfies the symmetry property We are now re:’?ldy_ to write down the action, Wthh inC(?r'
porates all of our findings on low-energy processes involving
(n-d) Xx",x)=—(n-9) " (x,x"). (4.12 BPS dyons. Noting that the results of our analysis for the

dyons differ from those fowV particles only by the presence
Actually, this odd character of the Green’s function is alsoof the electromagnetic duality symmetry, the desired low-
necessary for the actio#.8) to be invariant under the dual- energy action is given by the form
ity transformation(4.2) [now generalized to include the du-
ality rotation betweermA , and C,(F) in an obvious way 1_ 1_
[21]. The condition(4.15) is metﬂif the Schwinger valua Seff:f d4X{ ZF“ Fuv— EFM (A= dAL)
= 1 is chosen with our representati¢f.4).

N
+f A, {~ (Mt (G9ne (X )]

1
—— L
B. Low-energy effective theory of BPS dyons 2 Iued™e
Our detailed analysis of nonlinear field equatidgézen 5 0 .
in Sec. Il)) revealed that BPS dyons behave just like point- XANL=X=ga[A°(Xp, 1) = X A(Xp 1) ]
like objects carrying electric, magnetic and dilaton charges. o .
(This does not mean that the core region of the dyon profile ~9al C° (X 1) =X C(Xn D1}, (4.13
remains rigid; rather, the core profile gets deformed suitably

to accom_modate_any change in the long-range tail)panis  \ynerecr= (C°,C), as a function oF#”, are defined by Eq.
observat_lon applies t_o our fqrce Iz_a(@.32), to the near-zone (4.7) with the Green’s functionsn(- 4) ~* satisfying the sym-
and radiation-zone fields given in Eqe3.10—(3.13 and ey property(4.12. As one can easily verify, the above
(3.49, and to the scattered waves of electromagnetic andtion is still invariant under the scale transformation of the
Higgs particles found in Eq$3.64—(3.67). As a matter of ;m (1.4). Considering the variations df* and A%, we

fact, these results are exact parallels of the correspondingen optain Eq(4.3) and the generalized Maxwell equations
formulas for theW particles, aside from the ubiquitous sign (4.1) with the source term given by

of duality-invariant electromagnetic coupling in all of our

formulas derived for BPS dyons. Therefore, we should be

able to account for the entire low-energy dynamics involving N

N BPS dyons and massless fields by a simple effective field Jgx0 = > 93 (x—Xy(1)),
theory, described by an action corresponding to a duality- n=1

symmetric generalization of the low-energyparticle action

(1.2). We shall make this statement more precise below.

What we ask for our effective field theory is that it should °A gauge-invariant identification can also be given. Clearly, in the
be able to describe to a good approximation the dynamicakgion away from the core, we may set=|¢|—f, which in turn
development of a configuration of well-separated BPS dy- leads toH ,=— (D, ¢)? Also note that}*G~" in this region is
ons(i.e., at any given instant, the Higgs field Hdszeros at  essentially the same as the gauge-invariant 't Hooft tefishr
various locations while allowing incoming and outgoing gur— [baeg;”— (1/e) €°°3(D )P(D?$)¢, which is known to
radiations(with moderate frequengyof massless fields. For satisfy the generalized Maxwell equati¢hi). Using this 't Hooft
this purpose, we must first specify appropriate dynamicatensor, one may then simply define the electromagnetic Aeld
variables that may enter our effective theory. We shall hergay, by relation(4.3).



N
= 2 9nXn(H) 3= X(1)),
"~ (4.14

N
JS(x>:n§1 Q83 (x— Xy (1)),

N
Je<x>=n§1 GnXn(1) 3(X— Xy (1)).

The corresponding equation of motion for the figldeads

N
aﬂaﬂ¢(x>=n§1 (e)n V1= X3 (x—Xp(1)=J4(X).
(4.15

On the other hand, th¥,, variation with our action leads to
the equation of motion

Vi
a {mv+ (gs)n(P(Xn ,t)}\/?\/ﬁ

=l PO (X, ) + VA (X, 1)]
+gnl PO (X 1) + VR (X, 1)]

+(9)nV1- ViV (X 1),

where we have define@d*’=J¢*A"—
—9"CH,

(4.19

9'A* and FHr=ghC?
Here,_because of Eq$4.3) and (4.5, we have

FHr=F* and F*'=*F*” almost everywhere, that is, away

from the string singularity; in this way, the force 1a®.32
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sion for F#” [describing the near-zone solution to the gener-
alized Maxwell equatiori4.1)]:

Ga(X'=Xp)| 3 (x=Xp)-X, 1.
0i Ty2
F ( t) 2 |X X |3/2 2 |X_Xn| +2Xn
gne M XD (X =XE) .
- o(Xx3), (4.1
1 Gne Xt (XK= XK)
= eKF(xt
o€ KXt = 77; Ix—X,|32
X! )
T m—n+o(xz)
on |X_Xn|2
(4.19

Given this expressions and the choité=(0,n), the inte-
gral on the right-hand side of E¢4.4) may be performed to
discover, modulo gauge transformation, the followingar-
zone expression for the field*(x):

Un Un
AO(X,t):; {m#—%?w—x“
+0nXn- 0(X; X)) |+ O(X3), (4.20
qn n ;
Al =2, mwn 0 (X:X;) | +0(X?),
(4.21)

is also incorporated in our action. The effective theory de-

fined by the above action, by its very construction, will re-\yherew'(x;X,,) denotes the unit-monopole static vector po-

produce all the consequences in Sec. Il in the proper kinegential (with a symmetrically located infinite strifggiven by
matical regime.

When BPS dyons in the system are sufficiently slowly 1
moving so that only negligible radiations are produced, the o(X;X,)=—=—
above effective field theory may be turned into the effective 87
particle Lagrangian analogous to E@.9). For this, it suf-
fices to integrate out the field&*(x) and ¢(x) using the
near-zone solutions to the respective equations of motion
[for a given distribution of sourcegg(x), J&(x), and
Js(X)]; this is the same procedure to obtain the slow motionNote that the electric charge contributions in E@s20 and
Lagrangian(1.9) for W particles (see also Appendix A (4.21) are identical to those in Eq$A4) and (A5). Also
Then the Higgs field is expressed [@ge Eq.(A6)] required is the expression for the magnetic poten@él

Using Egs.(4.18 and(4.19 in Eq. (4.7) and making appro-
2 (9e)nV1— x2 priate gauge transformation, one has an expression dual to
’7T n |X Xn|

Egs.(4.20 and(4.21):
d —
_E(; (gs)n 1—Xﬁ)

NX (X— X)X — X
|X_Xn| —n-(X=X,)

N (X— X )/ [X— X
X=X+ 0 (x=Xp) |

4.22

e(x,t)=—

2
Cox,t)= E —” g“ a—|x—X|
4|x— x| m ot? n

“8a (E (99 V1= X3 x| | + X @06 Xp) [ $OOC), (423
(4.17 g.X
n n H N
t (% Xp) [+0O(X?).
To obtain the corresponding expression Agt(x), one may (x.t)= 2 4w |X Xal ~Gn@ (X Xo) (X9

use the formula4.4) with the help of the following expres-

(4.29
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The desired effective Lagrangian will result if the fields equal to one-half of those from the interaction terms with
A¥*(x) and ¢(x) are eliminated from the actio®.13 by  matter. In particular, for the action given in B¢.8), the use
using the above effective solutions. Here it is useful to noticeof Egs. (4.1, (4.3), and (4.5 allows us to replace its field

that, thanks to the field equations satisfied Ay and ¢, action (i.e., the part not involving matter current explicitly
contributions from the massless field action in E413 are by

f 4 1 nv 1* mv 4,1 -1 ’ ' '
d*x _ZF (aMAV—avAM)—Z F fd X"(n-3) (X, X")[N,g,(X") =N, Jg,(X") ]
f 4 1 mv 1 MmOV 4,1 -1 ’ ' ’
~ [ d*x _ZF (0#AV—0VAM)—§0 C jd X'(n-3) (X, x")[N,dg,(X") =N, g, (X") ]

~ | d* EMA +EJ”C F 4.2

where, on the second line, we have dropped the contribution apparently describing the string-string interaction. As analogous
reduction holds for the Higgs field action of E@.13 also. Based on this observation, using the solutighs?), (4.20),
(4.22), (4.23, and(4.249 in the action(4.13 leads to the effective Lagrangian of the form

1

1
fdtL=f [ > MpV1 x2+— E (GG~ GnClm) (Xn = Xin) - (X Xen) — 5 . > (qnqm+9n9m)<m

m (#n)

CYZ ] XX ) > (0G| V1- KNI,
2| " eex IXn=Xml |~ nmcen 87 \ | X=Xl
n
1 2
i | (4.20
X=X,

with irrelevant self-interaction terms dropped. Ignoring terms be;ﬁb(ﬁdz), this Lagrangian may then be changed to the form
(cf. Appendix A

1 X=Xl 2 S
2 M nt 2 M X2 16 2# (gs)n(gs)m|x—x 2( (Qngm_gnqm)(xn_xm)'w(xnaxm)
1 X X (Xn_xm)'xn(xn_xm)'xm
- En‘mz# [(gs)n(gs)m Anldm— gngm]| |X —X | + IXn—Xm|3
1 (gs)n(gs)m_Qan_gngm
+ 4.2
877'n,m2(;&n) |Xn_Xm| ( 7)
|
Some comments are in order regarding the slow-motion ef- _ g2 |)'< X 12
fective Lagrangian derived above. If the given system con- | = _z M(Xﬁ 2/g2)_ D ml
sists of BPS dyons with the same values of charges [oely 25 1670, zn) [ Xn= Xl
adn=0, 9,=0, and @)= Vg?+q? for all n], all the terms 1 (Gn—0m)? g
in Eg. (4.27) that are not quadratic in velocities cancel. This + Tt 2 > (e
is the case in whiclstatic multimonopole solutions are pos- 16mnizn) [Xn=Xml  2nmictn)
sible, and for some given initial velocities the dynamics is - .
Ny d X (Xn=Xen)- (X X, (4.28

governed solely by the kinetic Lagrangian of the same form
as found for slowly moving equal-chargt/ particles(see
Sec. ). Another case of interest follows if we let the mag- Using precisely this form, Gibbons and Mantd8] showed
netic charge of all BPS dyons to be equa., g,=g for all  that one can derive the Lagrangian appropriate to geodesic
n) and keep in Eq(4.27) only terms that are at most qua- motion of n well-separated monopoles on the corresponding
dratic in velocity or electric charge. Themd),~g+92/2g multiple-monopole moduli space; this generalizes the earlier
and the Lagrangiaf.27) reduces tqdhereM =gf) work by Manton[13] on the nature of two-monopole moduli
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space, where the relevant asymptotic metric was known as Xj - -
the self-dual Euclidean Taub—Newman-Unti-Tambeurino Bi(r)~ 439 T. (5.3
metric[23] with a negative mass parameter. Without repeat-

ing this analysis mention here only that the electric chargerqs|qgical arguments lead to the quantization condition
variablesq,, in Eq. (4.28 may be interpreted as conserved

momenta conjugate to the collective coordinates representing dm X ) ) A
U(1) phase angles of individual monopoles. In conclusion, g=—2, nBr (B} =3, 18%), (5.4)
our low-energy action4.13 predicts the same physics as the €r=1

moduli-space geodesic approa¢for well-separated BPS o ) )
monopoles of the same magnetic chajgesien the effect of the non-negative integen, being the topologically con-
radiation can be ignored. Our acti¢d.13 can be used to Served charges related to the homotopy class of the Higgs

describe low-energy processes involving radiation ofatte ~ field at spatial infinity. We may now define the specidll)
or ¢ explicitly also. electric and magnetic charges using the asymptotic Higgs
field direction as

V. EXTENSION TO MORE GENERAL GAUGE MODELS

1 1
A. Preliminaries QE:? jgr:wds ;T"(d’Ei)v
Up to this point our discussion was exclusively in the (5.5
context of SW2) Yang-Mills-Higgs model. We now want to 1 - A
generalize our discussion to the case of BPS dyons appearing Qm=7 ﬁ:wds ~Tr(¢Bi) (=g-h)

in a gauge theory with an arbitrary compact simple gauge
groupG that is maximally broken to U(Z)(k is the rank of

G). As we shall see, much of the structure derived in th
G=SU(2) model will find a direct generalization to this

eand similarly the dilaton charge as

1 1
case. _ _ Qs=7 jg dS—Tr(¢Di¢). (5.9
Using the matrix notation®\,=AlT, and ¢=¢PT,(p r=e= K
=1,...d=dimG) with Hermitian generator§, normal- . . . )
ized by Tr(T,T,)=k8,q, the Lagrange density reads Then, just as in th&=SU(2) model discussed in Sec. II,

one can show that the mass of a static soliton, which is
1 , 1 always equal tof Qg, satisfies the Bogomol'nyi bouni¥l
L== 7 GG, =5 TID,¢D o, (5.1) =1/QZ + QZ. Hence, for given values &g andQy,, one
may obtain static solutions to field equations with the lowest
where G#'=g"*A"—d"A*—ie[A*,A”] and D ,¢)=d,¢ possible energy,M =f\/Q2E+ QZM, by solving again the
—ie[A,,¢]. As is well known, generators may be decom- Bogomol'nyi equations which have the same structure as the
posed intck mutually commuting operatofE, that span the corresponding equations of the &)Y model, viz., (2.16.
Cartan subalgebra and lowering and raising operaigys Especially, withQg=0, these lowest energy configurations
obeying [T,,E;l=a,E; and [E;.E_;]=3F ,aT,  wil have the mass

(E&-f). The nature of the symmetry breaking is deter-

k
mined by the asymptotic value of the Higgs field in some el b 4_77 roa

fixed direction, say, on the positiveaxis. It may be taken to M=fg-h 21 Ml e th-B: ). .7
lie in the Cartan subalgebra; this then defines a unit véctor

by On the other hand, Weinbefg4] showed that the dimension

of the corresponding moduli space is equal Efglnr . This

ko . suggests that, in analogy to the @Jcase, all static solu-

(¢),= >, fh,T,=th-T, (5.2 tions might be viewed as being composed of a number of
=1 fundamentaBPS monopoles, each with a single unit of to-

pological chargdi.e.,n,=é,,,, for ther’ type).
o L The fundamental static BPS monopole solutions can be
metry breaking, i.eG— U(1)", if h is orthogonal to none of  gptained by simple embedding@s] of the spherically sym-
the root vectors. In the latter case, there is a unique set ghetric SU?2) solution given in Eq.2.19. Note that, with

so—calle:‘d §imple roots; (r=1,... k) that satisfies the con-  each root, we can always define an §2) subalgebra with
ditionsh- 8,>0 for all r and all other roots can be expressedgenerators
as linear combinations of these simple roots with integer

wheref is some positive number. We have a maximal sym-

coefficients all of the same sign. Only this case will be con- L 1 ) i
sidered in this paper. t - =——=(Ea+E_)t ;=——=(-Es+E_0),
Let us briefly summarize known properties of monopoles (@ V2a2 (@ \V2a?
or dyons in this mode[24]. In the asymptotic region, the
magnetic fieldB;= Bipr must commute with the Higgs field o T
and therefore, in the spatial direction chosen to defibk, , (3»)2 - (5.9

must assume the form
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Now, if A(r,f) and ¢3(r,f) denotes the static §2) BPS  the motion fPfldther'type.ffugdﬁmenaal hdyon Idn"a nonzero
monopole solution corresponding to a Higgs expectatiorfSymptotic field as specified through the conditions

valuef [see Eq.(2.19], then B,(r,t)—(Bo)- T, E(rt)—(Eg)-T,

3
Ai(r) =2 AL fh- Bt

59 Dip(r,t)——(Ho)i- T (5.12

3 > >

Py h. P2 I | th i d —oo, H te that =T

¢i(r)=i§1 ¢3(r,th- Bty +1h—(h-BHB-T i ;nkg (Be )ZrTaXISe tzm ana;srthewc ons?a:(ra]t Czcetdi%a I§$O):amd
- r=1 0/i'r» "y ] 0

is the fundamental monopole  solution  with Hy are assumed to be of sufficiently small magnitude.
Remarkably, the desired solution can be given using the

g=— (4m/e)By and massM,= (4w/e)fh-B;. As in the  qresnonding solution of the $2) model, which we dis-
SU(2) case, we can also obtain the dyon solution correspondssseq in Sec. Iil. This is the generalization of the embed-

ing to these fundamental monopoles by applying the trickding procedure  described in  Eq.(5.9. Let

(2.18. Here, to push the S@) analogy further, it will be — = ) .
useful to write the corresponding asymptotic field strengthéo‘ﬂ(x'f’BO’EO’HO) den.ote.the(ln general time dependent .
aslo SU(2) BPS dyon solution in the presence of the asymptotic

field (Bg,Eq,Hp). Then it may directly be verified that

Xi ~ a Xi ~ a
Bi~0ry—afal 5, Ei~Org—aral ;. 3

47r® ap) 43 2 p) e s a .
A0 =3, AR B Bo By Eo- B Fo B,

Xi ~ a N > > > >
Do~ =99 pafal sy (.19 +XM(Go,—[(Goh BE 1AL T, (513
which means, on the positizeaxis(i.e., the direction chosen 3 A A
to defineg,), the behaviors ¢i(x)=§1 o3 (x;fh- B, ,By- B; ,Eq- By ,Ho.ﬁr)t(aé)+f[h
Xj s, o= Xj s, = A s s s s . e e
Bi~grﬁlr3(,3’f-'|'). EﬁQ;ﬁlrg(,@}*-T), —(h-B5)B:]- T=xX{(Ho)i—[(Ho)i- BF 1B} T
(5.19
—XI -)* T - - - . -
Di¢~—(9s)r 47-rr3(ﬂr - (5.1 [here Go)ij=e€ijk(Bo)x and Go)%=(Ey),] is a solution de-

scribing ther-type dyon in the nonzero asymptotic field as
For ther-type fundamental dyon, we then have the valuesspecified by Eq(5.12. Then, based on our $P) solution,
9,=—4mwle, q,=9g, tan B, and @S)rzx/ngrq’f; the mass we may immediately conclude that thretype dyon in its
of this dvon is equal tM. = fh. B~ instantaneous rest frame should accelerate according to the
s dyon s equ r=(95) -5 formula[see Eq(3.29]

B. Low-energy effective theory

What sort of low-energy dynamics for fundamental BPS a;= — é[cosﬂ(éo)i-ﬁrvLsin B(Eo)iﬁr—(ﬁo)i-ér]
dyons follows from the field equations of the theory? As in h- B,

the SU2) case, some of the most direct information on this (5.19
problem can be obtained by considering the fundamental dy-

ons in the presence of some weak asymptotic uniform fieldawhich may be rewritten, using the charges defined by Eg.
Only the asymptotic, gauge, or Higgs field strengths that5.11), as

commute with the Higgs field> may be allowed heréi.ei(,
the uniform Higgs field belonging to the unbroken U{1) kB P %
subgroup only. We may specify the nature of these applied M:ai=g:8" - (Bo)i+a:™ - (Eo)i+(9s): B ‘(HO)i(;s 16
field strengths by their values on theaxis where the Higgs '

field originally there is¢o=fh-T. (This way of specifying 10 find the associated long-distance fielicluding radia-

the applied field strengths will have a clear physical meaningjon), recall that, for the S(2) case, the relevant field

if one \t/]VOka I!n adu'mt;rydgau%e Wg;fe )trl]\le H't?]QS f'etl)d ISstrengths have nonvanishing components only in the direc-
everywhere aligned in the direction o), .) Now the prob- . ~a . ' . i
lem is to find the solution to the field equations, describingggrri]bgfdrbyg)!mthéent' '%gzr]:ﬁ:goat%?otz\;‘eég;g Tgh_t(tj3d(la3)de

- and(3.49. This term implies that, for our solution given by

Egs. (5.13 and (5.14), the corresponding field strengths

%n a quantized theory, the electric charge defined by Eq.  would have the following large-distance behaviors on zhe
(5.10 will be required to be an integer multiple eﬁf. axis:
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_ energy effective action may now be written down on the
(1—-R-v,e)°R? basis of this observation and the corresponding result in the
o I SU(2) case. The effective theory would involve a set of po-
[RX(RXa)]; a:87 - T (RX Ve sition coordinate,, (n=1, ... N) for fundamental dyons
T Ax R2 (the type of which may also be indicated by the indgx
U(1) gauge fieldsA{)(x) (r=1,... k) and Higgs fields

(RX ), e(x) (r=1,...k), while the massive vector boson

TR (5.17  modes are to be integrated out. We then have the aption
Eq. (4.13]

Bi(r,t)~(Bo)- T+

9 /3’*'1:[ (Ii—v )i correspond to nonmassive physical excitations. The low-
r=r revi
4

L BT (Revw,
(0 (B T TP | (R—Vied,

1 1
= 4 _E(Mpy _ZE(Muy (r_ (r)
4 (1_§,Vret)3R2 St fd X[4F F(f),U-V ZF (aI—LAV aVAM )

N N N N ~ N
JIRX(Rx@)) | | 9eBr T [ (RX Vi) _%aﬂ¢<r>&ﬂcp<r> +Jdt2
R 4T R2 n=1
(éxa)i Xq = Mn+2 (gs)m(P(r)(Xnvt)) Vl_xﬁ
+ R , (5.18 r

—Z qQUTAMO(X, 1) = Xn- AT (X, 1)]

- hd r-)’rk'-l_: R— reti
D)~ (Fig)y T+ 9P ‘ (R Ve

4 “R. 3R2 y
(1-R-vie)°R _2 gnr[c(r>0(xn,t)—Xn-C(r)(Xn,t)]} (5.22

(5.19

with C(V#, as functions oF (V¥ defined in the same way
as Eq.(4.7). [In Eq. (5.22, the indexn in g"", g"", and
(gs)r,éf -f[ é'vm R.a (gs)"" is actuallyr’ if the nth dyon in question is of the’

(

—D%(r,t)~ type, viz.,q"=q,.(8%),, 9" =0, (8), . etc]
The action(5.22 captures low-energy dynamics of any

(5.20 number of fundamental BPS dyofmorresponding to various

Also considering the Lorentz-boosted solution would changdyP® and massless fields in the system. This includes scat-

the force law(5.16 into the corresponding covariant form (€fing physics involving dyons and on-shell photons or
[cf. EQ.(3.32] Higgs particles. Also, for a slowly moving system of BPS

dyons, one may ignore radiation effects and go on to elimi-

4 1-R-v’R2 R

M. — 3* . X _HMWV. nate all massless fields from this action by using the near-
d M= (g5)Br - X HOV, zone solutions to the respective field equations. This proce-
dt V1-Vv? dure, which parallels verbatim our discussion in the(3U
. - case, leads to the effective particle Lagrangian, which has the
=087 -[(Bo)i— €k Vj(Eo)k] same structure as the S)-case Lagrangiafé.26. Changes
S - appear just in the interaction strengths, i.e., the second, third,
+0,87 - [(Eo)it+ €k Vj(Bo)k] and fourth terms on the right-hand side of £4.26 now
- - come with the strengths
+(99):BF - (Ho)iV1-V2. (5.21 )
Without any further analysis, it is clear from the above dis- > (gs)nr(gs)mrz(gs)n(gs)mlé:]k ':é*mv
r=1

cussion that the differences from the @Jdyon case are
mainly in prolification of various charges as we have more .
massless fields. In detail we are just seeing that, given the e
r-type fundamental dyon associated with the r8ot it in- Z‘l (@777 =(aa™+ g7 B - B
teracts withk different pairs of massless photon and Higgs (5.23
field [all in a identical manner to the SB) casd, with the
strength of its coupling with the'th photon or Higgs field K s

- S : > (@"g™—g"q™)=(q"g"—g"q™ B} - B}
set by the magnetic chargg’ =g,(87),:, electric charge =1 n-~m
q"'=0a,(8f),, and dilaton charged)” =(g9i(B)rr |
The massless fields here are precisely the ones one easifigtéad of having the valueg)n(gs)m (dndm+ gn9m), and
identifies by going to the unitary gauge where the Higgs field 0,9m— 9n0m)- Similarly, when terms beyon@(X?) are ig-
is everywhere in the direction ab,; the components lying Nored, the Lagrangiaf.27) is valid for the present case also
in the Cartan subalgebra from the gauge and Higgs fieldsnly if we insert the multiplicative factog}; - B, inside the
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summation symbol of every term on the right-hand side ofbehavior of the effective theory as one varies the asymptotic
Eq. (4.27 except for the first two purely kinematical ones. If Higgs field from a value giving a purely Abelian symmetry
one setsg,=g=—4mw/e and further makes the expansion breaking to one that leaves a non-Abelian subgroup unbro-
(gs)n=|g|+qﬁ/2|g| with this quadratic particle Lagrangian, ken. Finally, we should mention the recent work by one of
one obtains the slow-motion Lagrangian of Lee, Weinbergthe authors and Mifi29] where some interesting observation
and Yi[12], which is quadratic not only in velocities but also was made regarding to the radiation reaction and the finite-
in electric charges. Then, as was shown in REZ], a simple  size effect in the dynamics of the BPS monopole and the
Legendre transform may be performed to change the lattetuality of these effects against those of #hveparticles.

into the Lagrangian appropriate to geodesic motion in the
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the process involving radiation of various massless quanta
explicitly. Our discussion was entirely at the classical level, = APPENDIX A: EFFECTIVE LAGRANGIAN FOR A
but, for an appropriately supersymmetrized system, our ef- SYSTEM OF W PARTICLES
fective theory might be generalized to have a quantum sig-
nificance. The electromagnetic duality afspontaneously
broken scale invariance, which are manifest in our ap
proach, may play a useful role in such an endeavor. It woul
also be desirable to make some contact with the results
Seiberg and Wittef2].

There are some interesting related problems that require v
further study. We mention a few of them. 9, (9*A"=3"A) =I5 (x)

(i) Our effective action is correct when all monopoles are
separated a large distance compared to the core size. If two _ _
identical monopoles overlap, the individual coordinates are JO(X)_E a0 Xo(1),
not meaningful anymore. We can describe the low-energy
dynamics by the geodesic motion on the Atiyah-Hitchin :
moduli space. However, radiation, however weak it may be, J(X) =2 GpXn(t) 3(x—Xy(1)), (A1)
should come out from this motion in the moduli space, in- "
cluding the exchange of the relative charge between two

From the low-energy effective actidi.2) we can derive
_the effective Lagrangian for a system of slowly movivig
([j‘)articles, given in Eq(1.9), in the following way. The field
quuations for the massless field$(x) and ¢(x) read

identical monopoles. Our point particle approximation does P aVQD:E g /1_)'(2(,{)53()(_)( (1)=J4(X).
not capture this physics. It would be interesting to couple the v mooe 4 " s
full moduli space dynamics to the weak radiation. (A2)

(ii) The present effective field theory approach should be
generalized to the case of fuM=2 or N=4, super-Yang-
Mills system. In particular, the spin effect including the elec- Assuming slowly varying sources, we may then express the
tric and magnetic dipole moments would appear. See Refields A*(x),¢(x) by their usual retarded solutions consid-
[27] for the corresponding moduli-space description. ered in the near-zone approximation. This gives the electro-
(iii ) For larger gauge groups, we have only considered thenagnetic potential
cases where the given simple gauge group is maximally bro-
ken. If a non-Abelian subgroup remains unbroken, there are

fundamental monopoles carrying non-Abelian magnetic 1 IMX t=]x=x'])
charges and their low-energy dynamics would be ricteor A¥(X,t)= Ef - d3x’
a recent investigation on this subject, see R28].) An ex- x=x'|
tension of our analysis in this direction would be most desir-
able; for instance, one might consider here following the 1 [ IMX ) 1 9
=— —d3x’———U JH(x',t)d3x’
4 |X—X’| 4 Jt

it has been shown recenfl§2,26 that the moduli space metric 1 22
obtained by this procedure for distinct fundamental monopoles is in +— &_
fact the exact metric over the whole moduli space, i.e., for all values 87 ot?
of intermediate distances. This may imply that our effective action
is correct even when two distinct monopoles overlap each other. and so for the point sources

f|x—x’|J”(x',t)d3x’ +--+ (A3)



1 dn 1
A%(x,t)= 2 m 87 2 (2 On|X— Xn(t)|)
+eee (A4)
A0~ 53 e 49

Similarly, for the Higgs field, we have

1 Is(xX' t=|x=x"]) .

xt)y=——| ——d°x’
p(x)=—7— x]
1 gVI-X2 1 4 —
= a2 o] A a2 GV

fdthfdt{ m, V1—X2+ 9:
87Tnm(:&n)

6?

87Tnm(#n) qnqm(|x X |

Here notice that

DYNAMICS OF BOGOMOL'NYI-PRASAD-SOMMERFIELD . ..

5257

1 &
- 87 at?

Egsvl X2 x—Xq(t)| | +

These expressions may also be obtained by considering the
small-velocity expansion of the known ’lderd-Wiechert—
type potentials.

The desired effective Lagrangian for slowly movii'g
particles is obtained if we eliminatér integrate oyt the
massless field®\*(x) and ¢(x) from the action(1.2) by
using the above(approximatg solutions to the field
equation¥’. Here note that, because of E¢a1) and (A2),
the contribution from the massless field action in Ef2)
can be written in the same form as the interaction terms
appearing in the matter actigidt Ly;. So, to our approxi-
mation, the result of using Eq$A4)—(A6) in the action
(with irrelevant self-interactions droppets

X=xn)
] ; (A7)

. (AB)

IX Xml

[ t2|X Xm()]

2 X X
|Xn_xm|

X=X

LAV 3[x—xm<t>]->'<m<t>} _ XaXm %=X Xe(Xn= X)X [(x X)Xy } ”8)
i " x=X,, ot |X_Xm| X=X, |Xn_xm| |Xn_xm|3 dt |X Xm|
|
and so if we ignore terms beyor@(Xz) and also total time . A A A A
derivative terms fronL, we obtain the Lagrangian of the r—ri=r—(u-nu+ 1—u [(u-rjutut], (B1)
form
) o under which A, ,¢) transform as
:_2 2 gS |X Xm| 1 2
n 1677nm (#n) |X Xm| 167Tn,m(¢n) s v
. . AL(X)—AL(X*)= A, (X),
: Xo-Xm  (Xn=Xm) Xn(Xn=Xm) - Xim o
qnqm |X X | |Xn—Xm|3
2 H(X)— ™ (X*) = B(X). (B2)
1 Us—0nlm

+— —. A9
877'n,m(;&n) |Xn—Xm| ( )

This of course implies that the fieldAZ(r,t),q&*(r,t)) ob-
tained by the Lorentz boost of an initially given solution

As one can easily verify, this can readily be rewritten in the(A (r,t), ¢(r,t)) should also satisfy the field equations. Here

form in Egs.(1.9 and(1.10.

APPENDIX B: DERIVATION OF THE FORCE LAW IN
LORENTZ BOOSTED FRAME

The system in Eq(2.1) is invariant against the Lorentz
(boos} transformation

t+u-r
Vi-u?

t—t*=

we use this simple observation in order to show that the
moving dyon seen in a different inertial frame obeys the
covariant equation of motion.

Let (A, (r,t),(r,t)) be a dyon solution of the field equa-
tions(2.4) and(2.5), subject to the constant asymptotic fields
(B,E,H) with zero initial (centej velocity. The trajectory of
the dyon will be governed by the equation of motion

12This is equivalent to the more traditional approach described, for
instance, in the textbook by Landau and LifsHig0)].
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d2

MWX=gB+qE+gSH, (B3)

gB+qE+gSH:g{(ﬂ-B*)ﬂ
+1J1—u?[B* —(U-B*)u—uxE*]}

as was shown in EQq(3.31). In this reference frame the

asymptotic value ofH[=— (¢%|¢|) (D°4)?] may be - ~ 1 - ~
taken to be O(a?) at most. Then a new solution +q) (u-EYu+t \/mz[E*_(u'E*)u
(A;(r,t),¢*(r,t)) generated by the Lorentz boost in Eq.
(B1) is associated with the asymptotic field3*(E*) speci- 8] 1 [(A e
i +ux +gs —=[(u- u
fied by 9s \/W
E=(0-E*)u+ ! [E* —(0-E*)U+uxB] _UH*OHH*_(G'H*)G]' (B9
=(u-E*)u —(u-E*)u+u ,
1-u B4
(B4) The equation of motioiB3) implies that the last line of Eq.
(B7) should be equal to the right-hand side of E&8).
~ 1 PR . Since this is a vector equality, the components parallel to
B=(u-B*)u+ M[B —(u-B*)u—uxE*] on each side should agree and so should the components
perpendicular tal on each side. We multiply each perpen-
and (H*°,H*) by dicular component by the factof1—u? and then add the
’ resulting perpendicular parts on each side to the parallel parts
on the corresponding side. These operations lead to the rela-
1 A A A A tion
H= T SL(U-H*)u—uH* %]+ H* — (u-H*)u,
—u
B9 dv*
u.
1 M dt* N 1 dv*
HO= [H*O—u-H*]. (1-u?)32  (1—ud)'? dt*

1-u?
_ . =g(B* —uxXE*)+q(E*+uxB)
Let X#=(t,X(t)) denotes the dyon trajectory seen in the 3
original frame andX*#=(t* ,X*(t*)) the trajectory in the +gsV1—UPH* —F, (B9)
boosted frame. Then they should be relateddfyEq. (B1)]
whereF is given by
t* —u- X*

Ji-u? '

t=

. u
T PO (T He)
X=X*—(u-X*)u+ —=[(u-X*)u—ut*]. (B6)
N
d
(X*'H*_t*H*O).

We may now reexpress each side of E8@3) using the vari- =9s 1—y2 dt*
ables in the boosted frame. The left-hand side is rewritten, to (B10)
O(a), as

) Ignoring O(a?) terms, we may replace in Eq. (B9) by V*
Md—x H=M ﬂ i ﬂ ix ¢ sinceV* is u+0O(a). Thus it is now straightforward to find
dt? ()= dt dt*\ dt dt* () the desired covariant equation

P P i I d [MgXAH™ VY| oot (e v
) dt* dt* W W =g(B*—-V*XE*)+q(E*+V
__112\3/2 _12\12
(1=u) (1) XB)+gH* VI-V*2. (B1D)
dv* ~ dv* . : .
—| u- A few comments are in order. First we assumed the accel-
dt* dt* eration,dV/dt or dV*/dt*, to be small as before and so the
+ (1-w?) ' (B7) above covariant equation of the dyon motion is of course

valid to first order in the acceleration. The teiffnin Eq.
whereV* = (d/dt*) X*. On the other hand, inserting Egs. (B10) is of second order in the acceleration, but it has been
(B4) and(B5) into Eq.(B3), we find that the right-hand side included in the above covariant equation. The reason comes
can be expressed as from the following observation. Let us consider the case
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where the Higgs field has the constant asymptotic vélue the change in the asymptotic value of the Higgs field should
(#f). If we carried out the same analyses to find the dyorbe reflected in the mass appearing in the dyon equation of
motion with this choice, the mass parameter that enters intootion [cf. Eq. (1.5]. This reasoning can be properly taken

the dyon equation of motion ig,f’ instead ofgsf. Hence

into account if we add the second-order contribution.
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