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More on supersymmetric domain walls,N counting, and glued potentials
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Various features of domain walls in supersymmetric gluodynamics are discussed. We give a simple field-
theoretic interpretation of the phenomenon of strings ending on the walls recently conjectured by Witten. An
explanation of this phenomenon in the framework of gauge field theory is outlined. The phenomenon is argued
to be particularly natural in supersymmetric theories which support degenerate vacuum states with distinct
physical properties. The issue of the existet@enonexistenceof the BPS saturated walls in the theories with
glued (supejpotentials is addressed. The amended Veneziano-Yankielowicz effective Lagrangian belongs to
this class. The physical origin of the cusp structure of the effective Lagrangian is revealed, and the limitation
it imposes on the calculability of the wall tension is explained. Related problems are considered. In particular,
it is shown that the so-called discrete anomaly matching, when properly implemented, does not rule out the
chirally symmetric phase of supersymmetric gluodynamics, contrary to recent claims.
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PACS numbgs): 11.27+d, 04.50+h, 12.60.Jv

[. INTRODUCTION ish, however, for the domain walls. Equati) implies that
the tension of the domain wall is
Recently there has been a renewed interest in the study of
theoretical aspects dfi=1 supersymmetri¢SUSY) gauge N
theories. In addition to the calculation of exact effective po- e=——[(TrA?).—(Tra?) ., %)
tentials[1] and conjectured dualities between theories with 8m
distinct gauge groupR2], it has been realized that in some
supersymmetric theories there exists a class of dynamicalhere the subscript «~ marks the values of the gluino con-
objects whose energy can be calculated exd@ly Those densate at spatial infinitigsay, atz— = assuming that the
are the domain walls interpolating between discrete vacudomain wall lies in thexy plane. The existence of the exact
which are typical for many SUSY gauge theories. The rerelation(2) is a consequence of the fact that the domain wall
markable fact is that the energy densitgnsion of these in the case at hand is a Bogomol'nyi-Prasad-Sommerfield-
walls is exactly calculable even in the strong coupling re-(BPSJysaturated configuration preserving 1/2 of the original
gime. supersymmetry. A general discussion of BPS saturated do-
For supersymmetric gluodynamics, the theory of gluonsmain walls was given if4], while a particular wall realiza-
and gluinos with no matter, the calculation of the energytion in the framework of the amendefb] Veneziano-
density was carried out in Reff3], in an indirect way. The Yankielowicz effective Lagrangiang6] were studied in
key ingredient is the central extension of tNe=1 superal- some detail if7] and[8].
gebra, On the other hand, a theory related to supersymmetric
gluodynamics was analyzed recently from the point of view
of D-brane physic$§9]. In this picture the domain walls also
{QZQ;}: 12((;);13] d3xV( TrA2), (1) appear naturally. Moreover, they seem to have some rather
41 surprising properties. These properties are natural from the
D-brane perspective but were considered unu@an para-

. ] ) ] doxical from the field-theoretical point of vieyd]. One of
wPere Q, is the supercharge) is the gluino field, and  gych features is an “abnormalN dependence of the wall
(O')d,}3={a'3,—i,—0'1}dl§ is a set of matrices converting the tension. The wall energy density of some BPS saturated
vectorial index of the representation (1,0) of the Lorentzwalls scales a®, rather thanN?, a dependence one might
group in the spinorial indices. The commutatay is given  expecta priori from glueball solitons. The second surprise
for SU(N) gauge group; the parametdrstands for the num- [9] is that the confining QCD string emanating from the
ber of colors. The right-hand side of Ed) is a reflection of probe color chargesguarks on one side of the wall can
“geometric” anomalies of SUSY gluodynamidse., that in  terminate on the wall, without penetrating on the other side.
the trace of the energy-momentum tensor plus its supergen- So far these features had no satisfactory explanation in the
eralizations. field-theoretical framework. One of our tasks is to under-

The integral over the full derivative on the right-hand sidestand how this works in field theory, at least at a qualitative
is zero for all localized field configurations. It does not van-level. We show that both aspects—the dependence and
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termination of the flux tubes on the walls—are quite naturalthe wall tension and visualize the phenomenon of strings
consequences of the peculiar gauge dynamics. We suggestding on the domain walls. An analogy between the walls
various toy models, which are simpler than SUSY gluody-in SUSY gluodynamics and the axion domain walls in gauge
namics but still carry essential features of the phenomentheories with monopoles is worked out.
under discussion, to substantiate our qualitative observations. In Sec. Il we turn to a more quantitative discussion based
For instance, an Abelian model is presented where prob@n the amended Veneziano-Yankielowicz effective action.
fractional charges generate induced “mirror” fractional The i_ssue of glueq potentials is studied here. In Seq. I C we
charges on the wall in spite of the fact that at the fundamenconsider an explicit example of a supersymmetric theory
tal level the model contains no fractionally charged fields. Which upon integrating out heavy modes generates an effec-
Then we turn to the Veneziano-Yankielowicz effective five potential with cusps. In this model we calculate explic-
Lagrangians. Previously they were exploited as a frameworflly the cusp contribution to the wall tension and show how
for quantitative analysis of the domain wal. A BPS wall the apparent contradiction with the BPS bound is resolved.
interpolating between a chirally symmetric vacufij and " Sec. D aspects of the general theory of glued
one of the conventional vacua with\)#0 was explicitly ~ (SUPeJpotentials are presented. , ,
built. However, building a wall interpolating between two _ !N Sec. IV we discuss other domain walls in gauge theo-
neighboring chirally asymmetric vacua turned out to be d'€S obtained as a Kaluza-Klein reduction on topologically
much harder endeavor. The task had not been solved in RefoNtrivial space-time manifolds. The specific example con-
[7]. Moreover, it was argued latg8] that such walls do not sidered refers td&r, <X S;. An unconventionaN dependence

exist within the framework of the Veneziano-Yankielowicz ©f the wall tension arises which may be relatedtdranes.
effective Lagrangians. Section V is devoted to the issue of the discrete anomaly

A crucial feature of such a Lagrangian emerging in SUSYmatChi_”g and the chirally symmetric vacuum of SUSY gluo-
gluodynamics is discontinuity of the superpotentisl The ~ dynamics. _ _ _ _
realization compatible with all symmetries of the underlying  Finally, Sect. VI contains a brief summary and discussion
theory requires, with necessity, a “glued” potential, with  ©f our results.

N distinct sectors and matching lines along the boundaries of

the sectors. We explain the physical nature of this phenom- Il. N DEPENDENCE, FLUX TUBES ENDING

enon. The sector pattern, with cusps, reflects a restructuring ON THE WALLS, AND ALL THAT

of heavy degrees of freedofwhich were integrated ouin

the process of an adiabatic variation of the light degrees of
freedom. A level crossing takes place in the heavy sector of We consider the supersymmetric generalization of pure
the theory. Precisely for this reason, arennotconstruct the ~ gluodynamics—i.e., the theory of gluons and gluinos. At the
domain wall from the effective Lagrangian if the wall fundamental level the Lagrangian of the model has the form
crosses the cusp. The presence of the cusps prevents diel

from being able to use this potential for calculating a wall

A. SUSY gluodynamics

profile if the field configuration along the wall crosses the ._ _ il Ry R G282, + —[IN32D ,;n2],
cusp somewhere in space. In fact, if one naively tries to do 49(2) MVTRY L gon2 THRVTRY gg
this in the presence of the cusp an apparent paradox arises— (3)

the wall in the effective theory seems to have a lower energy
density than the BPS bound on this quantity in the originawhere the spinorial notation is used. In the superfield lan-
theory. The missing energy density is contributed by the exguage the Lagrangian can be written as
citation of the heavy modes which are necessarily excited
when the light fields take values in the vicinity of the cusp. 1
The statement is thoroughly illustrated by two toy models. L= i TrJ d?6W2+H.c., (4)
The phenomenon is quite general and may be considered in 9
supersymmetric as well as nonsupersymmetric context.
The chirally symmetric vacuumAX\)=0, is inherent to
the Veneziano-Yankielowicz Lagrangian. Recently it was
claimed[10] that a discrete anomaly matching rules out the ]
existence of such phase, at least its most straightforward re- g 95 872
alization. We make a digression to show that the claim is due
to an inconsistent treatment of the discrete anomaly match-ere 9 denotes the vacuum angle. Our conventions regard-
ing. In SUSY gluodynamics and similar theories the discreténg the superfield formalism are summarized, e.g., in the
anomaly matching imposes no constraints on the spectruniecent review{13]. We will limit ourselves to the SUY)
The only information one gets are rather mild constrains orgauge grougthe generators of the groulf* are in the fun-
certain amplitudes following from the classical symmetriesdamental representation, so that THCP) = (1/2)627].

where

1 1 id
a2

that become anomalous at the quantum léseg, e.g.[11]). SU(N) supersymmetric gluodynamics has a discrete sym-
The existence of a discrete anomaly-free subgroup adds retry, Z,y, a (non-anomalousremnant of the anomalous
new information. axial symmetry generated by the phase rotations of the

The organization of the paper is as follows. Section Il isgluino field. The gluino condensaa \) is the order param-
devoted to general aspects of the BPS walls in SUSY gluoeter of this symmetry. The discrete chiral symmetry may or
dynamics. We analyze, qualitatively, tine dependence of may not be spontaneously brokigg]. Therefore, there exists
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a set of distinct vacua labeled by the value of the gluinowhat we get for the type | walls, but is in apparent contra-
condensate. In the phase with the broken chiral symmetrgiction with the BPS energy density of the type Il wall.
Tr{)\)\>=A3exp(27rik/N) wherek=0,1,2,... N—1 (for O Can one avoid this conclusion? The answer is yes. Con-
=0). In the chirally symmetric phase (WA)=0. The field sider a functionF which is nonanalytic so that although all
configurations interpolating between different value$xof) its derivatives ar®©(1) at the minimumM, , at some finite
at spatial infinities are topologically stable domain walls. Al- distanceM =M, + M [with M =O(1/N)] the derivatives
though the theory is in the strong coupling regime one carecome largg O(N), for examplg. Then, if the wall solu-
derive an exact lower bound on the surface energy densitfon M, passes through this region of the field space, the
(tension for such a wall 3] standard counting leading to=O(N?) does not work. An
extreme example of such a situation arises if the effective
Lagrangian has a structure Nf distinct sectors in the space
of fields, and no single analytical functidh exist. TheN
sector structure then is an implicit sourceMfdependence.
In our normalization the condensaf@r \?) scales adN in ~ Such a potential is singulaior rather has a singular first
the largeN limit. derivative along the boundaries of the sectors, being glued
One may consider two types of walls. The wall of type | from different pieces along the boundaries. As we will dis-
connects a vacuum with the spontaneously broken chiratuss later, this situation can arise due to the fact that the state
symmetry with the symmetric vacuurm{ Tr )\2>:o)_ For that was the ground state in one sector, becomes an excited

N 2 2
szﬁKTr)\ Yoo = {Tr N%) _.]. (5)

such a wall the BPS bound for the tension is state in another, and vice versa. At the boundary there are
degenerate states, and the level crossing occurs. Due to the
e~0O(N?). cusps at the boundary the naive estimate of the tension pre-

) ) sented above does not work in the case of the glued poten-
The walls of type Il connect two adjacefur closg chirally 5 As we will see, the effective potential in SUSY gluody-

asymmetric vacua, e.gk=0 andk=1 (or k=0 andk=2,  5mics has precisely thN-sector structure.
etc.)..Even though for e_ach of these vacua the order param- s course, in the full theory everything is smooth. One
eter is of ordem, the difference between the order param-can ensure the smoothness of an effective Lagrangian by
eters isO(1). The BPSbound for the tension, therefore, is  jncluding more fields in it. Those extra fields will not corre-
&£~O(N) spond to low energy excitations in the vicinity of the minima
' (and therefore will be unimportant for local properties like
Let us assume for the moment that the BPS-saturategreen’s functions but will be essential for smoothing the
walls of type Il do indeed exist in SUSY gluodynamics. Al- Singularity at the cusps. In the example just discussed one
though we cannot prove this at present, there are no visibl&ould have to include in the game at ledfields. That is
reasons forbidding therh. how N enters the effective potential as a hidden parameter
The question then arises as to how one can understand theesides the overal? factor in Eq.(6)]. Then the typical
largeN scaling of the wall energy density from the point of value of relevant fielddM; inside the wall solution can be
view of the effective field theory which describes dynamicsO(N™1), each field contributes t6 at the levelO(N~?), but
of the low lying physical states, mesons and glueballs anghere areN relevant fields, and the value &~ 1/N. Note
their superpartners. that the wall width isL~N°. Then the volume energy den-
At large N the mesons and the glueballs should havesity inside the walE~N and, correspondingly, the wall ten-
masses of order 1, trilinear couplings of orde¥land so on  sione~N.
[14]. This is conveniently encoded in an effective Lagrang- The fact that the volume energyis O(N) inside the BPS

ian of the form wall connecting two neighboring vacua, say with(NX)
= A3exp(2mik/N) wherek=0 and 1, is seen in the micro-
L=N?F[M;,dM;], (6)  scopic theory(3) per se Indeed, for the BPS wall
where{M} is a set of fields representing all relevant degrees GZVGZVN INZ~ANZIL.

of freedom, mesons and glueballs. The value of the func-
tional F itself and all its derivatives at the minima should be Since the volume energy densWJNszGiw andAXZin
independent oN. This would ensure the prop& depen-  the neighboring chirally asymmetric vacuad$1), we con-
dence of the masses and coupling constants. Now, SUPPOgg de thatE scales ad\.
we have a solution of classical equations of mothdy,, How do we learn about thBl-sector structure of the ef-
which describes a wall configuration interpolating betweerective Lagrangian emerging in SUSY gluodynamics? If the
two diStinCt minima. SinCQ\IZ iS an OVera” faC'[OI‘ in qu), gauge group is SLN)' the theory has a discre&N chiral
at first sight one may expect th& M. ]=0(1), and,  symmetry, which is spontaneously broken downzg in
therefore, the wall tensio=O(N?). Such a situation is some of the vacua. This means that the effective Lagrangian
standard in the soliton physics. This is perfectly in line with g, mesons/glueballs must have at leisiegenerate minima
which differ from each other only in the value of the phase
of the order parameter Xf (the latter is an interpolating
IEven if for some reason we do not understand at present the typéeld for one of the lighter mesonsThe minima lie at¢
Il walls would turn out to be not BPS-saturated, it is natural to =0,27/N,47/N and so on. Then, clearly, we must have a
expect that their tension is of the order of the BPS bo(f)d much more rapid variation df as a function ofp, than one
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would naively infer. Naively, since there is no expliéit  thought of as a kind of a non-Abelian Coulomb phase. Now
dependence irfF, one would say that if the first minimum consider a wall that separates a confining phase from a Cou-
lies at =0, the second one should be a4t-1. The only lomb phase. A probe charge placed in the confining phase is
way out is either to have aN-sector structuréwithin the  a source of the electric flux which travels in a flux tube—the
construction that includes only fixel, independent number confining string. On the other side of the wall, however, it is
of fields in the effective Lagrangianor to build a Lagrang- energetically favorable for the flux to spread out into a Cou-
ian on a minimal set oN fields. In both cases a hidden lomb field. So an observer in the Coulomb phase will not see
parameteiN appears. It does not affect the value of the de-a string but, rather, a point chargi fact, twice as big in
rivatives of F at the minima, which are all of order 1. magnitude as the original probe charge, since the electric
In Sec. Il we will consider the amended Veneziano-flux will spread in half the spagesitting on the domain wall.
Yankielowicz effective Lagrangian and will see that it in- One is not used to thinking about a phase boundary between
deed has the required structure. In a somewhat simplifiethe Coulomb and confining phases, since usually the two are
picture, we can understand how it appears by considering theot degenerate in energy. It is the peculiar feature of super-
dependence of the vacuum energy in the Yang-Mills theorygymmetric theories that two physically completely distinct
on the vacuum anglé. As is well known from the consid- phases are degenerate.
eration of the Ward identitieg15], this dependence has a It is very easy to find an easy-to-handle example of a

“wrong” o periodicity. That is, naively the energy is peri- domain wall separating the confining and the Abelian Cou-
odic in ¢ with the period 2rN rather than 2r, lomb phases by introducing some extra fields in SUSY gluo-

dynamics. Start from the Lagrangia), and add one chiral

) U matter superfield in the adjoint representation of the gauge
EvacN7 cogg —1/. () group, with the superpotential
The correct periodicity of the physical quantities is restored W=mTrd2+M }(Tr ®?)? (10)

in the following way. The ground state &t v, becomes an

excited state aty>m. At 9= there are two degenerate [the gauge group SU(2) is assurhethe second term in the
states. At this point due to the level crossing the vacuunsuperpotential is non-renormalizable. One can think of it as a
energy has a cusp so that result of integrating out some heavy degrees of freedom, so
that at a large scal® we return back to a renormalizable

9—27k ; 2
E,.oN? | cose—" _1} (2k—1)m<g<(2k+1)7. theory. Itis assumed that<<A, butmM=AZ2
N If M~ *=0 the theory we deal with is nothing but a softly

brokenN=2 model studied by Seiberg and Witt€h6]. In
the Seiberg-Witten vacua T2~ A2, monopole condensa-
tion takes place, and due to the dual Meissner effect the
probe electric charges placed in one of these vacua will form
flux tubes. The presence of a very weak additional interac-
ok tion M~ Y(Tr ®2)2 not considered in Ref.16] does not af-
EvacocNZ[ - 1~|—co{ b— T” , fect the picture obtained there, since this term can be viewed
as an arbitrary small perturbation if the theory resides in one
of the Seiberg-Witten vacua.
(9) However, at large values of T2 the termM ~(Tr ®
leads to a drastic restructuring—no matter how stvall* is
) o there appears a new vacuum state atbfrmM. In this
This potential indeed has the form of E). Moreover, the  \5cuum the gauge symmetry is broken down to U(1) by a
derivatives of the functiorF at all the minima aré€d(1).  yery large vacuum expectation value of tHe field, the
Nevertheless, it ha minima até=2mk/N. The value o mongpoles are very heavy, and the theory is obviously in the
on interpolating trajectories varies from zero at the minimayeakly coupled Coulomb phase. Supersymmetry guarantees
to O(N"?) at the cusp. A naive estimate of the wall tensionhat the vacuum energy densities in both phases vanish: the
would therefore give a value much sma‘?ldinan O(N?). two phases are degenerate. Under the circumstances a do-
_ Our next remark concerns a field-theoretical understandmain wall separating the weakly coupled Coulomb phase and
ing of & confining string which ends on a domain wall. A the strongly coupled confining phasgene of the Seiberg-
simple example of such a situation is the wall that separategitten vacua must exist, with the wall tensior-m2M. If
the confining phase in a gauge theory from a nonconfininghe confining phase is to the left of the wall, and we put there
one. The type | wall in SUSY gluodynamics is precisely of 3 probe electric charge, a flux tube going towards the wall
this kind. Recall that the chirally symmetric vacuum at develops; the chromoelectric flux is clearly diffused to the
(N?)=0 sustains massless excitations. It was arguef&jn right of the wall.
that this phase is in fact conformally invariant and can be ~ apother example of a wall that serves as a sink of the
chromoelectric flux is a situation when the Coulomb phase
exists not in half the spadsay, to the left of the wallbut
2In fact, a naive(and wrong estimate would giveD(N°). Actu- only inside the wall. For example if one considers a wall in
ally, a much larger contributiorQ(N?), resides in the cusp; see SUSY gluodynamics that separates the phases®¥Fn3
Sec. Ill. and Trn2=— A3, itis very likely that the order parametkf

Now, the interaction of the phagk with the gluonic degrees
of freedom is the same as of the rescaled anyl¥. The
effective potential forg is, therefore, roughly

(2k—1)7 (2k+21)m
N TN

2)2
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will vanish inside the wall. Both phases then are confining B. Toy model—axion wall

but the wall itself is “made” of .th.e Coul_omb vacuum. In The type Il wall can be thought of as carrying the quark
such a case the flux tube that originates in one of the phas%amum numbers in the presence of a QCD string, in the
will not penetrate into another but, most likely, the flux will sense that it can screen a fundamental charge or other
spread out in transverse directions inside the wall in a twogharges which are nontrivially transformed under the center
dimensional Coulomb field. Energetically this is preferable,z, in the theory where all dynamical fields are invariant
since the energy of the two-dimensional Coulomb field devyith respect taz,,. Surprising as it is, one can trace the very
pends only logarithmically on the size of the system, whilesagme phenomenon in simple Abelian models. Although the
the energy of the string that penetrates into the other phase fyrallel is not perfect, a simple Abelian example may be
linear. o _ useful for deeper understanding of this general phenomenon.
Note that in this latter scenario the degeneracy between The problem we keep in mind is the axion wall in the
the Coulomb and confining phases is not necessary. The pigresence of a monopof@8]. For simplicity we will consider
ture can be dynamically realized both in the supersymmetrigne SU(2) casdthe Georgi-Glashow model The SU(2)
and non;upersymmetric pontexts. An illustrative nonsupersymmetry is spontaneously broken by the vacuum expecta-
symmetric model, where inside the wall the theory is in theygn value of a Higgs field down to U(1) giving rise to the ’t
Abelian Coulomb phase while outside it is in the confining Hooft-Polyakov monopoleg19]. After the breaking, the
phase, was presented in RE3]. It would be instructive to  fie|gs in the adjoint representation have the U(1) charges
exploit this model for a more quantitative analysis of a flux + 1 \yhile those in the fundamental representation have
tube coming from the confining phase and diffusing itselfchargest 1/2.
inside the wall(i.e., in the Coulomb phageA (semiquanti- Let us recall some facts about the monopoles in the pres-

tative analysis seems possible since at least inside the walhce of thed term. The Lagrangian of the Georgi-Glashow
the theory{3] is in the weak coupling regime. model is

Finally, if in the previous examples we consider the Higgs
phase instead of the Coulomb phdsgher to the left of the 1
wall, or inside i}, the chromoelectric flux will still disappear L=——FrF2 +
i i it i Vi i 4e? B 3272
in the wall. In this case it is even more trivial, since the

chromoelectric flux is not conserved in the Higgs phase, and h is th i d the | .
it will be screened by the Higgs phase vacuum either on thg/neree is the gauge coupling constant and the last term is

left side or inside the wall. We would like to argue that the € scalar Lagrangian for the Higgs fiekf in the adjoint

type Il wall, considered in Ref9], is, in fact, an example of '€Presentation of the Sp) group.

this kind, in a certain sense. Indeed, consider the type Il wall It was shown bY Witter{ 20] that if 0, a monopole

Let us say, on the left there lies a phase with the condensafé€comes a dyon with the electric charge

of monopoles, while on the right with the condensate of

dyons® Let us imagine a probe electric charge to the left of

the wall. Since the dyons are electrically charged, their con-

densate acts like a Higgs vacuum, in the sense that it can be

easily polarized to completely screen the electric flux thatwhereu is the magnetic charge,

might enter the dyon condensate through the wall. Of course,

since the dyons are also magnetically charged, any such po- _Am

larization of their condensate will lead to appearance of net M=

magnetic charge to the right of the wall. However, the mag-

netic flux tube emanating from this induced magnetic charg&vhen & changes from 0 to 2 one getsn—n+1.

can be directed towards the domain wall. In that case it will In the theory(11) & is constant, given once and forever.

be screened on the other side of the wall by polarization oHowever, if the axions are added in the theory, then, effec-

the condensate of the monopoles. In other words it is plautively, 4 is substituted by the axion field which can vary in

sible that the dyonic condensate to the right of the wall willspace-time. The axion field can be introduced through a

be polarized to screen the electric charge while the monopolghantom-axion constructiof21], i.e., we add an S(@)-

condensate to the left of the wall will be polarized to com-singlet Higgs field coupled to a doublet quark field. In the

pensate for the excess of the induced magnetic charge. Asliait when the expectation value of the 8)-singlet Higgs

result the confining electric string will terminate on the wall. field tends to infinity, the quark becomes infinitely massive
Note, that this picture is somewnhat different from the oneand disappears from the spectrum, and so does the modulus

advocated in Refl9], where it was suggested that a boundof the singlet Higgs field. Its phase becomes an axion field

state of a monopole and a dyon appears on the wall. It ig(x).

difficult to talk about monopoles and dyons forming a bound  The axion Lagrangian is

state, since they do not exist as free particles on either side of

the wall, because both vacua have nonvanishing condensates.

FA'FS,+Lp(®), (1D

9e?
q= FMJF ne, (12
T

(13

f2

Eaaﬂaﬁ#a— K?[1—coga— )], (14)

L=

*Both, the monopoles and dyons in SUSY gluodynamics are to bavhere the _pa_rameteKz is connected with the vacuum sus-

understood in the same sense as those in the 't Hooft constructiggeptibility, it is exponentially small in the model at hand,
[17]. ~exp(—872/e?). Moreover,f, is (a very large expectation



5200 IAN I. KOGAN, ALEX KOVNER, AND MIKHAIL SHIFMAN 57

value of the Higgs singlet. In this limit the only other axion ew

e -
— _ 3 =P
interaction to be taken into account is its couplingRé. AQmonopolé= 4 j d XVBmon0pole_47T_
The ¥ term in Eq.(11) becomes

1.

The first term in Eq(18) is obviously saturated inside the

_ wall; it describes the electric charge induced on the axion
J—a(X)~

0= 5 Fg"Ff‘w. (15 wall in the presence of a distant monopole. The induced

32m charge is equal to the flux of the monopole magnetic field

through the plane of the wall timesa/(872). Since this flux
is 1/2 of the flux through the large sphere éu/2=217), the
induced charge on the wall is obviously equal®d/2 de-
pending on whether the monopole is on the left or on the
right of the wall.

Thus, the picture is in complete agreement with the con-
servation of the total electric charge.

a(z)=2m— 2 arccos tantmz), (16) This picture can be readily generalized for $U( Then
there areN—1 different monopoles corresponding fb—1

wherem is the axion massn=K/f,, and the width of the [=rank for SUN)] Abelian U(1) factors in the Cartan sub-
wall is of orderm™1. Of course, it is assumed thet<M  algebra of SUN). Repeating the same analysis, one can see
whereM is the monopole mass. that fundamental and antifundamental representatjongs

Start from the monopole with electric charge zero to theand[N] are induced on the domain walh+1) and f
left of the wall, and let it adiabatically propagate through the+1,n) respectively. Here@=0,1,... N—1 corresponds to
wall. Effectively, 9 adiabatically changes from 0 tar2To  a=2wn. One can see that taking two domain walls, r{
the right of the wall the monopole becomes a dyon with+1) and (+1,n+2) one can get all representations corre-
electric charge 1. Inside the wall, the electric charge of thesponding to the product of two fundamental representations
monopole gradually increases. [N]X[N]. For m consecutive walls we hayeN]X[N]. ..

Thus, one gets an apparent nonconservation of the electric[ N]. If one takesm=N—1 than one can get antifunda-
charge of the monopole. However, sinc€l)is unbroken, mental representation, in full agreement with the fact that the
the total electric charge must be conserved. The question §—1 walls (0,,(1,2),...,(N—2N—1) make together a
where is the missing electric charge. wall (ON—1), which is equivalent to the wallN,N—1).

As was shown by Sikivig23], the monopoles actually But the last one, as anyi¢-1,n) wall, corresponds to anti-
induce electric charges 1/2 on the wall. When the mono- fyndamental representati¢i].

pole is far to the left of the wall, it is neutral, but the charge  Retyrning to our original problem, SUSY gluodynamics,
induced on the wall is- 1/2. When the monopole is far to the \ye note that the phase  in a sense plays a role analogous
right of the wall, the induced charge will be 1/2, so the (o the axion field. It could be interesting to pursue the anal-

total charge is conserved, HA —1/2. ogy between the Abelian toy model and SUSY gluodynam-
To see that this is indeed the case we observe that theg fyrther.

extra term(15) in the Lagrangian is immediately translated  |n summary, in supersymmetric theories which have de-

One can now sefr=0 (and we will do this hereafter

The vacua atat=0 and a=2r are physically identical.
Correspondingly, axion domain walls exist in this system
[22] interpolating betweea=0 anda=27. Assume a wall
lies in thexy plane, so that the axion profile depends only on
z. The wall solution centered at origin is

netic current fact that the confining string can end on a domain wall is
quite natural. Actually, the wall does not have to be BPS
-axion_é_[/_ ia = 17) saturated to serve as a sink for the chromoelectric flux car-

WA, T g ). ried by the string.

Regardless, it is still an interesting question whether all
where it is assumed that the expectation value of the triplepossible BPS saturated walls are dynamically realized in
Higgs field is aligned along the third direction, so tRgt, is ~ SUSY gluodynamics. In the next section we will attempt to
the photon field strength tensor. Note th—,gfon is automati- address this question. Although we will not be able to give a

cally conservedg” axion_ g The corresponding contribution positive proof, we will show that the straightforward search
in the electric charge consists of two parts in the framework of the Veneziano-Yankielowicz

Lagrangians for the walls connecting neighboring chirally

. 1 asymmetric vacua is in general a dangerous endeavor. As we

Q:f d3xjgx'°”=—2('lfgvc7,,a+ ad,Fs,). (18  shall see the cusp structure of these Lagrangians makes it
8 impossible to decide this question without additional non-

) trivial dynamical information. We will also present a toy
Let us assume that the distance between the wall céhter yersion of the underlying phenomenon.

and the monopole is much larger than . For such distant

monopoles the physical meaning of each term in @§) is Ill. GLUED POTENTIALS
transparent. The second term vanishes everywhere except the
point where the monopole sits. Thus, it gives the electric
charge of the monopole/dyon. If the latter sits to the left of
the wall, wherea=0, the monopole electric charge vanishes. First, we briefly remind the relevant formalism. The ef-
To the right of the walla= 27, and fective Lagrangian for SUSY gluodynamics was written

A. N counting and paradoxes of the wall building
in the Veneziano-Yankielowicz Lagrangians
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down a long time ag$6] and then amended recenfly] to Eliminating, as usual the component ofS with the help

properly incorporate the non-anomalazyg symmetry. of classical equations of motion at fixeg the effective po-
We will write down the Lagrangian realizing the anoma- tential can be written as

lous Ward identities in terms of the chiral superfield

> U(¢)==V"In 3 exp{—4NV(¢* ¢)*TIn?| ¢|
S= Tr W2, (19 -
327N
+(a+ﬂn)z]}}- (22)
namely,
L gtonzss e [ g2 st , HereV is the total space-time volume of the systefnis the
£= Zf dmON*(SS) +§J d“oN Inﬁ+2mn lowest component of the superfigklanda=arg(¢). In the

limit V—o only one term in the sum over contributes for
every value ofx; which particular term depends on the value
, (200 of a. Thus, for —w/N<a<w/N the only contribution
comes fromn=0. In this sector the scalar potential is

10— SN _
+§Jd ON Inﬁ—Zmn

whereo is a numerical parameter, U(¢)=4N2(d* $)28n ¢ In ¢*. (23)

a=eA% "N, In general we have
. " : : U(¢)=4N(¢* ¢)?An(pe™>™N)In(¢*&?™N) (24
andA is the scale parameter, a positive number of dimension
of mass which we will set equal to unity in the following.

Please, note thhl factors in Egs(19) and(20). at M<arg¢<w_
An important element in the Lagrangia(®0) is an N N
integer-valued Lagrange multiplier. In calculating the par-
tition function and all correlation functions the sum oveis In other words, the complex plane is divided intoN

implied. The variablen takes only integer values and is not a sectors. The scalar potential in théh sector is just that in
local field. It does not depend on the space-time coordinatethe first sector rotated by 277/N. The scalar potential itself
and, therefore, integration over it imposes a global constrain continuous, but its first derivative in the angular direction
on the topological charge. It is easy to see ttafter the experiences a jump at apg=(2n+1)=/N. The scalar po-

Euclidean rotationthe constraint takes the form tential is “glued” out of N pieces. TheZy symmetry is
explicit in this expression. It is quite obvious that the prob-
1 _ lem at hand ha®l+1 supersymmetric minimaN- minima
=0 zf d*xG;,G5,=Z. (21) at¢p=e">""N corresponding to a nonvanishing value of the
ar

gluino condensate(spontaneously broken discrete chiral
symmetry, and a minimum ath=0 (unbroken chiral sym-

While theF term in Eq.(20) is unambiguously fixed, the metry).

D term is not specified by the anomalous Ward identities. |ncluding the kinetic term of the field S, as it appears in
We have chosen it in the simplest possible form, with theEq_ (20), leads to the following effective Lagrangian:
numerical coefficient which gives the correct lafgecount-

ing. — N2 1/3 * 13, _

The extra term added to the Lagrangian is clearly super- =N, d T V(e (9
symmetric and is also invariant under all global symmetries
of the original theory. The single-valuedness of the scala[js
potential and theZy invariance which were missing in the th
original Veneziano-Yankielowizc effective Lagrangian areg,
restored" The chiral phase rotation by the angtekZN with
integerk just leads to the shift oh by k units. Sincen is

We now ask ourselves whether this Lagrangian can be
ed to find an explicit wall solution. In fact, the solution for
e type | wall has been considered in detai[ T} and was
und to exist and to be BPS-saturated. The situation with
the type Il walls is more complicated. Note that any field
. . : ) configuration that interpolates between the two vacu@ at
summ.ed over in the func_t|onall integral, the resulting La-_ 1 andé=e'2"N has to go through a point where the phase
grangian forS is indeedZy invariant. of the field ¢ is #/N. At this point the scalar potential has a
The constraint ofiS— S]¢ following from the Lagrangian  cusp, and one has to be very careful in treating such configu-
(20) results in a peculiar form of the scalar potential. Therations.
expression for the scalar potential is given in Réf. As an illustration, let us forget for a while about possible
complications and estimate the tension of the type Il wall
using the Lagrangiaf®5). The potential and kinetic energies
“The explicit invariance here iy rather than the comple®,y should contribute to the tension of the wall roughly the same
of the original SUSY gluodynamics, since we have chosen to writemount, so we concentrate on the kinetic term. The variation
our effective Lagrangian for the superfield which is invariant underof the field ¢ inside the wall at largé\ is A ¢~ O(1/N). The
A——\. massm of the field ¢ is independent o with our choice of
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the coefficient of the kinetic term.The width of the wall Usge
obviously is of orderL~1/m~O(1). The kinetic energy S s
contribution is, therefore,

Exn~N?(A¢)?/L?~0(1), e~E,,L~0O(1). (26

The same estimate is obtained if we consider the potential
energy contribution.

Surprisingly, this is by far lower than the BPS bound on
the wall energy in the original theory, E(b), which gives
e~0(N). At first sight this might seem to be an arithmetic
paradox even in the framework of the effective thepey se
viewed as a generalized Wess-Zumino model. In the gener-
alized Wess-Zumino models with a superpotent4S) the

FIG. 2. The effective potential obtained after the heavy figld
is integrated out. The cusp g=0 reflects a restructuring of the
vacua in theg sector.

Nevertheless, even though there is no paradox at the level

: of the effective theory, clearly the effective potential grossly
BPS bound i<[3,4], see als424)) misrepresents the tension of the type Il wall. This is surpris-
£>2|W(S) —W(Sy)|, (27)  ing since the field¢ changes slowly inside the wall, and

normally one would think that the effective potential should
whereS, ; are the values of the field in two vacua betweenproperly describe slowly varying configurations. It is clear
which the given wall interpolates. Taken at its face value thathat this failure is intimately connected with the cusp struc-
would give a bound ok ~O(N) for the type Il wall we are ture of the effective potential. Our aim now is to understand
considering. what is the physical origin of the cusp structure. To warm up

In fact, there is no arithmetic paradox here. The BPSwe consider first a very simpl@on-supersymmetrianodel,

bound (27) on the wall energy in the generalized Wess-leading to a similar structure, and then move on to a more
Zumino models assumes that the superpotential is smooth. breneral picture of the phenomenon in supersymmetry.
the effective theory(20), for the walls that cross the cusp

(type 11), it experiences a jump, B. Glued effective potential in a simple model

AWA=W(SA+) = W(Sp-) #0. To understand how an effective potential with cusps can
appear from a smooth potential of the original theory it is

[HereS, is the point where the wall crosses the discontinu-best to consider an explicit example. Let us takéhansu-
ity line, and W(Sx_) and W(Sx ) are the values of the persymmetrig theory of two scalar fields with the potential
superpotential below and above this line, respectiydife  (Fig. 1)
superpotential which is obtained from EG0), after summa- N ;
tion overn, has a phase discontinuity along the same lines U(dx)==(d>— 1%+ = (x>~ u®)2—k2px, (29
where the effective scalar potenti@¥) has a cusp. Account- 2 2
ing for the jump modifies the bound and, instead of &7),

we therefore have where ¢ and y are real fields and and{ are the coupling

constants. The coupling constattis taken to be real. The
2|W(S1) —W(Sp) —AWA|. (28)  mass of thep quantumM?=4\ %2, while that of they quan-
tum m?=4¢u’. Let us assume that the field is much
Due to the discontinuitA W, , the expression in Eq28) is  heavier than the fielgh, M>m. For technical simplicity we
O(1), in full accord with Eq.(26). will also assume thak<<m,M, and the expectation values
7, are of the same order of magnitude, although this is not
crucial.

5This is, in fact, how the meson should behave at latgend this b ;rr]he th?.ory has‘;vo t;ymmetrly bre(#:mg minima. When
is the reason of choosing the coefficiéwt in front of the kinetic oth coupling constants, are large, those are
term in Eq.(20). {p=nx=u} and{¢=—nx=—u}. (30)

X Let us now derive an effective potential for the figjdby
o integrating outé. To calculate the effective potential in the
leading adiabatic approximation we fix the value yofand
solve for ¢ in this background. Note that for a fixed and not
too large value ofy the potential for¢ has two local
minima. Generically, the two local minima are nondegener-
ate. Fory<0 the statap= — 5 has lower energ§while for
x>0 the global minimum is ath= 7. At y=0 both local
minima become degenerate. At this point there is a discon-

o

FIG. 1. The scalar potential in the model considered in Sec. ®We neglect here small corrections of orde and «/7 to the
Il B. values of¢ at the minima.
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tinuous change of the vacuum in the heavy sector. As a resuttusly. This “first order phase transition” leads to disconti-
the effective potential develops a cusp of precisely the samauity in the first derivative of the effective potential, and,
nature as discussed in the previous section, therefore, a cusp.
The second lesson is that the wall configuration that con-
¢ nects the points on different sides of the cusp necessarily
Ueti= — k%7l x|+ E(Xz— w2z, (31) involves excitation of heavy modes. This is since close to the
point x, inside the wall the heavy modesustrearrange in
order to make the transition between the two degenerate
Thus, although the underlying theory is perfectly smooth, thaszacuum states.
effective theory has two sectors and a cusg a0 (Fig. 2). Finally, the description of the wall with the help of the
We can again pose the gquestion about the existence of theaive glued potential is not valid if the bulk of the wall
wall, and the calculability of its energy density from the energy comes from the change of the heavy fields. The prob-
effective Lagrangian. Clearly there exists a solution of thelem stems from the fact that the effective potential is calcu-
original equations of motion, stemming from E9), with  lated in expansion in powers of M/, which is the adiabatic
the wall boundary conditions, i.e., interpolating between theapproximation. As we already stressed, the adiabatic ap-
two vacua of Eq(30). It is equally clear that the estimate of proximation breaks down inside the wall due to the level
its energy from the effective Lagrangian will be generically crossing. On one hand, this is a signal of possible appearance
incorrect. The obvious reason is that the effective Lagrangiaef terms proportional taM in the effective action. On the
is completely independent of the larger mass sbaldhisis  other hand, this is precisely the situation in which a non-
natural since it was calculated in the leading adiabatic aptrivial topological Berry phase should appear. A more careful
proximation, i.e., in the limitM —c. On the other hand, to calculation of effective action should reveal the presence of
produce the wall one has to excite the heavy figldvhich  the terms of the type
jumps from — 7 to + » inside the wall profile. This costs
energy proportional td, so the wall energy density in this ML (e0) = (=) 1%

theory must be proportional t. The wall tension in the This topological term does not affect the vacuum sector, but
present example can be calculated directly from the “funda- polog '

mental” Lagrangian(29) without appealing to the effective adds the missing large piece, cusp contribution, to the energy

(33

; ; of the wall.
Lagrangian(31). Roughly it behaves as Returning to SUSY gluodynamics it is now clear why the
e=xM 72+ ymu? (32) original BPS bound is so badly violated by wall configura-

tions in the effective theory. The reason is that the effective

. theory misses a large cusp contribution to the energy which

wherex andy are numbers of order one. If the expectation comes from the heavy modes not appearing in the effective
values of the heavy and light fields are of the same order, 5qrangian that are excited inside the wall. We conclude,
7~ the bulk of the wall energy is contributed by the {herefore, that the Veneziano-Yankielowicz effective La-

heavy modes. In that case the wall energy cannot be obtaingfangian, as it stands, cannot be used to calculate the wall
from the effective potential fog. One can say that a domi- gnergy; without additional information we cannot say

nant part of the wall tension is associated with the cusp. \yhether or not the BPS saturated type Il walls exist in SUSY
Physically the picture of what is happening is very simple.qj,odynamics.

The field x is light and therefore changes slowly inside the ™ | the next section we would like to give a detailed ex-

wall, on the scale h. The heavy fields follows this change  ample of how this situation arises in a supersymmetric
adiabatically almost everywhere in space, except for the reteory. The model we will consider has the same symmetries
gion wherex=0. In this region, within a distance of order a5 SUSY gluodynamics and an effective potential of the
1M, the value of¢ changes from- 7 to 7. The big contri-  veneziano-Yankielowicz type. We will see in detail how the

bution to the wall energy density, proportional M comes  cysp structure of the effective Lagrangian appears when in-
precisely from this small region in space in which the figld  tegrating out the heavy superfields and will be able to trace

sits on the cusp of the. effective 'potential. exactly the missing piece of the wall energy.
If we use the effective potential to calculate the wall en-

ergy, the result will be of ordemu?, since this is indeed the

contribution of the light field. The contribution of the heavy

fields can be thought of as an extra contribution of the cusp The model of the previous subsection was only intended

in the light field effective potential. for explaining how cusps arise in the effective potential. We
There are several lessons we want to draw from this toylow want to consider a model which captures more features

model. First, the physical reason for the appearance of th@herent to SUSY gluodynamics. Consider a generalized

cusp in the effective potentiéglued potentiglat some value Wess-Zumino model of two scalar chiral superfiefbisand

Xo Of the field is that at this particular value of the light field, X, with the superpotential

the system of heavy fields has twor more degenerate c

ground states. In general, when the value of the light field __ % FN+2_ Zy2

changes continuously, the heavy fields follow adiabatically W N+2q) bbX+ 2x ' 34

after this change. However when the light field passes

throughy,, there is a level crossing in the heavy system andvhere the coefficienta, b, andc are real positive numbers.

the properties of the heavy field vacuum change discontinuthis model obviously has &y symmetry, under which

C. Supersymmetric model withN sector superpotential

a
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NT1 ' N+r1o9x

The global minima of the energy are determined from the

equations
W_ ON*1_pX=0 W_ bd+cX=0. (36
a2 =0 Gx = bdFex=0. (39
These equations have o@g symmetric solution
d=X=0 (37
andN solutions which spontaneously break thgsymmetry
b2 1/N ) b
Cp=| ] €PN Xy=c @y (38

Choosingb>c, we find that the fieldb near the asymmetric
vacua is very heavy; its mass
2

M=(N+1)b?, (39

while the fieldX is light, with the massn=c.’

The effective potential for the fielK is obtained by
eliminating the heavy field by virtue 9W/9® =0, see the
first equation in(36). The conditiondW/d®=0 hasN+1

solutions
b 1/(N+1) 2’7Tin
¢>*(X)=(5X) exp[ NT1

. (40

The solution has to be substituted in the superpotential,
M, X]=M P, (X),X]

L(N+1)
_E E W(N+2)/(N+1)
N+2

a
2min
xXex

c 2
+ 5 X2 (42)

N+1

For instance, ify is real and positive,n=0, if argy
=2m/N thenn=1, and so on. At arg= 7/N both branches,
with n=0 andn=1, have the same energies. The resulting
effective superpotential hdé sectors and is “glued” along

N rays,

c_, N+1 [b)HN*D
Weffzz 2_m 5 X(N+2)/(N+1), (43)
t 77-< <7T
a N argy N’
L(N+1) :
Weﬁzg)(Z_E E ex 2mi X(N+2)/(N+1)’
2 N+2 \a N+1
(44)
¢ ’7T< <3’7T

and so or{see Eq(41)]. The discontinuities in the effective
superpotentialor, equivalently, the cusps in the effective
potentia) occur along the rays

(2k+1)7r

where two branches in E¢40) with n=k andn=k+1 are
degenerate in energy; see Hd42). For instance, at arg
=a/N

2
2wi/N[C|X|
T(N+1)

N+ 1
|x

N+2

b
a

xexd
N+1

|(N+2)/(N+l)

This is not the end of the story, however. The effective su-

perpotential is obtained by choosing for every valu&dhe

Now we are ready to address the issue of the domain

solution that gives a minimal energy. The energy as a funcwalls. Consider a domain wall that connects two adjacent

tion of the lowest componeng of the superfieldX for each

asymmetric vacua. The BPS bound on its tension is

branch is - 2 £>2| W@, Xo) ~ W(®y Xy)|
b * 2rin 2/ 12\ 2N
‘—b 5)( exp[ m +Cx (42) _ 2N b_ b_ SIn(Z—W) (45)
N+2 clac N/
_Clearly, the energy is minimal for the branch for whicharg At large N this is of order IN. On the other hand, a naive
Is closest to estimate based on the effective potential for the light field
would yield
"Strictly speaking, the mass matrix is non-diagonal. There is a b2/ p2\2N 1
small admixture ofX in the heavy diagonal combination, and a e~mlAy|2~— —| —~N72 (46)
X 2
small admixture ofd in the light diagonal combination. These ad- ciac N

mixtures areO(cb™IN"1), and the absolute shift in the mass ei-
genvalues i©(cN™1). This shift, as well as the mixing mentioned

above, can be neglected in the lilt>1 andb>c. Moreover, if
N>1, it is not necessary to requike>c. Even atb~c the hierar-

Just like in SUSY gluodynamics the two expressions are
incompatible. We know already that the reason is that the
adiabatic approximation used to derive the effective La-

chy of masses takes pladd>m, and the off-diagonal elements of grangian breaks down at the cusp. For configurations cross-

the mass matrix are negligible.

ing the cusp an extra “topological” term has to be added to
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the effective Lagrangian, as discussed in the previous sec- N+1 T

tion. Let us first estimate a part of the tension associated with &A= 4m(bp)(N+2)/(N+l)a_ 1/(N+1)Sinm- (52)

the cusp, and the corresponding restructuring of the heavy

field _q’). A straightforward estimate analogous to that of Eq. This is precisely the term that has to be added to the

(46) is effective potential ofy in order to be able to calculate the

b2/ p2\2N 1 wall tension properly. Equatiofb62) can be generalized to a
8/\~M|A¢|2~? el N (47)  wall configuration which connects any two vacua, and not
necessarily the two adjacent ones. The extra term in this case

i.e., we reproduce the order of magnitude of the BPS boun@ould be just the sum of contributions of all cusps crossed

(45). by the wall.

As a matter of fact, in the present case one can do better Note that although the$ component is built above
than that. To this end we note that the only point where théhrough the BPS saturation, the flb, x} wall in the origi-
adiabatic approximation breaks down is at the cusp. In othefal theory is not BPS-saturated, at least, in some range of
words, almost everywhere throughout the space the heawarametersWe mean the type Il wall connecting, say, two
field ¢ does indeed follow the change gf adiabatically. —neighboring asymmetric vacua with=0 andn=1 in Eq.

Only at the point inside the wall, where (38).]
) To see that this is indeed the case consider the m@dgl
x=pe'™, with a=b=c=1 andN>1.[For these values of parameters

the field ® is still much heavier tharX; see the footnote

the value of¢ changes rapidly. This change, of course, doesfollowing Eg. (39)]. Assume that the wall is BPS saturated.
not happen abruptly, but rather on the scale of the inversgpqn,

massM ! of the field ¢. The field y remains constant ) .
throughout the region of space where the rapid variatio# of o,h= (g’\‘“—_) ex '_7T+ 2'_77)
takes place. The profile of in this region as well as the z X 2 N /'
energy associated with this variation can be calculated by

considering the original theory at a frozen cusp valug of — — iT 2w
If x=pexpiw/N), the wall profile of the fieldp is deter- Ix=(—d+x)exg -+ |- (53)
mined from the following superpotential:
As a consequence,
W= N2 el NG (48)
¢ N+2 P ' — — iT 2w
‘92¢+‘92X:(¢N+1_¢)9X ?""W ) (54)

At x=p exp(n/N) the two branches of Eq40) are degen-
erate. Thep wall under consideration interpolates between

b |\ MN+D)
ex;{irr

aP
where the upper and lower signs correspond to the final and * — i 2im
initial points, respectively. These points are two degenerate f,x(&z¢+ﬁz)()az¢dz: et W)
minima of the potential stemming from E@8). The ¢ wall

in question is BPS saturated. This is because the BPS equa-
tion in this case is a pair of the first order equations for two
real fields(real and imaginary parts ap),

where the right-hand side contains no dependencE(We

can take advantage of this fact. Multiply both sidesagy‘T
' (49) and integrate over from —oo to +o0. Then

1

N

N N+1

Dy 01~

X

1 1|~
N+2_ — 2
N+2? 2¢ }

o)

_ €BPS
aw im 2 =T (55)

whereegpg is the tension defined on the right-hand side of
which possess one conserved quantitge Ref[4] for de-  Eg. (45 and the values of the field in the vacua, Eq(38),
tails) are substituted. Equatiofs5) implies

Im[ WD) — W((I),,O))ex;{ Ig — @)

€BPS

0. (5D | oo 22c,. @9

N

Using Eq.(51) one can always eliminate one real field, get- ) N
ting in this way a trajectory in the plan@Re ¢,Im ¢} that whereC; is a realpositivenumber. On the other hand,
connectsp, o 1. The trajectory depends on one real variable. .
The resulting one first-order equation for one real function szf (9,0+ 0,x) (3, b+ 3,x)dz
always has a solution. —o
We conclude that the tension of thg wall (the cusp .
term) is given by the BPS bound for the theory with the :f (9,3, + Iox,X)
superpotentia(48), —o
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+ , (57)

F (d,x)(3,¢)dz+ H.c.

mountain ridges

whereC, is a realpositive number. The first term is obvi-
ously equal teegps/2, While the second term can be read off
from Eq. (56). In this way we obtain

W
& &€
C,= BPS+2(—%S—C1), (59

2

or C,+2C,=—¢epgpd2. This relation is obviously inconsis-
tent, which proves that we cannot built a BPS saturated wall
in the problem at hand.

Thus the lesson to be drawn is as follows. Consideration canyon
of the effective low-energy theory, by itself, yields informa-
tion on the vacuum structure. The fact of existence of the ¢
walls can be unambiguously inferred from this information. g1, 3. A superpotential with two mountain ridges and a canyon
But neither the nature of the waBPSversusnon-BP3, nor  gnd five vacuum states.
its tension can be properly found from the analysis of the
effective low-energy theory if the corresponding potential isThese points are denoted W@y,B,C,D,E on Fig. 4. The
glued from distinct sectors, and the wall in question crossepoints A,B,C lie on the left ridge, the poinb on the right

the cusps. ridge, while the poinE belongs to the bottom of the canyon.
The low-energy reduction is obtained by eliminating the
D. Elements of the general theory field @ by virtue of the equation
Given an effective low-energy theory, obtained after inte- IMD,X)

grating out all heavy fields, with a discrete set of degenerate
vacua(as it is typical for supersymmetrythe question we

ask is can one infer from this low-energy theory the exis-

tence of the BPS walls interpolating between the distinc©UPStituting®, (X) back in the superpotentia’ we get an

vacua? Under what circumstances the BPS wall seen in tHa(ective low-energy superpotential

effective theory is a reflection of the wall in the full theory?
And vice versa if we see no BPS walls in the effective

low-energy theory does it mean there are no such walls in th
full theory?

The full general theory is not yet worked out, and the
answers to these questions in the generic situation are n
known so far. In this section we will present some illustrative™' * ™ '™
considerations which are valid in the simplest possible set® direction.
ting: the generalized Wess-Zumino models, with all param- First of all, let us prove that the vacua of the full theory
eters in the superpotentials that are real. We will limit our-(€Xxtrema of) lie on the mountain ridges and/or bottoms of
selves to the wall solutions where all fields take real valuesth® canyondextrema ofWey). Indeed,
so we do not have to travel in the complex plane, and can
apply a rich physical intuition stemming from the fact that
the BPS equations in this case are those of high-viscosity |
fluid (the so-called creek equationgt]. We will see that T
even in this simplest case the situation is quite nontrivial.
Whenever the low-energy theory has a glued potential, we
can count the number of distinct walls but, generically, can
say nothing about their BPS nature and/or tension.

Let us consider for simplicity two chiral superfield®, | ‘ |
andX, and a superpotential shown on Fig.(Blore exactly, ! e P
Fig. 3 displays)V as a function of¢,y for real values of U SRS
¢,x.) Shown are two “mountain ridges,” the left ridge and | : | |
the right one, separated by a “canyon.” The heavy field is

TZO—WI):(D*(X). (60)

Wert( X) = WP (X), X). (61)

Equation (60) determines the positions of the mountain

ridges and the bottom of the canyon, while Egfl) projects
em onto théVy plane. One can visualiZed/y; as shadows

of the ridges left by a parallel horizontal beam of light in the

Weff

| left ridge

@, the light one isX. The vacua of the theory correspond to x
the points where FIG. 4. The projection of the superpotential of Fig. 3 onto the
Wy plane. Shown are the shapes of the mountain ridges and the
444 8W:0 (59 canyon bottom. The points of extrema W are denoted by

9D X o A,B,C,D,E.
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AWett  [OMD,X)  IW(P,X) oD, the branch of the effective superpotential corresponding to
= + =0, the lowest energy is shown by rectangles. We get a typical

dx X P X | : o .
P=0,(X) five-sector structure of the scalar potential in the effective

theory. From this structure we conclude, with certainty, that
the theory under consideration has five degenerate vacuum
n_states, so that each pair can be connected by a domain wall.
Inspecting the low-energy theory, without additional infor-
mation on the full theory, we can say nothing, generally
speaking, as to the nature of these walls. The reason is ob-
vious: we have no idea where each sector comes from,

low-energy effective theoryV.¢(X) is a smooth function whether or not two extrema in question belong to one and the
and the low-energy theory r?as two BPS walls too. Tr,leirsa‘me mounFain ridgeeanyon. Ifthe){ dq, no restructuring of
existence can be seen from the creek equation in the low€ heavy fieldé vacuum occurs inside the wall, and we

if Eq. (59) is satisfied. Thus the extrema oV, and W
coincide.

Let us assume now, for a short while, that the right mou
tain ridge and the canyon do not exist, and the profilé\of
has only the left mountain ridge, with three vac#aB and
C. In this case the solution of E@60) is unique. The full
theory has two BPS wall#AB andCB. The potential of the

energy theonyper se return back to the situation with the unique solution of Eq.
(60) discussed above.
AWert If extrema from different sectors actually do belong to
IX= % (62)  distinct mountain ridges or canydh€g. (60) has more than

one solution there is no unambiguous way to decide BPS

The wall profile X(z) we find from Eq.(62) is a litle bit ~ versusnon-BPS from inspection of the low-energy theory
different from what one would get by solving the creek equa-2lone. We need additional information regarding what hap-

tions in the full theory, pens with the heavy fields inside the wall. In any case, a part
of the wall tension associated with the light fields will not
e IW(D,X) @ IW(D,X) 63 saturates.
XX T e o (9
The difference vanishes in the limit when the fiald be- IV. THE KALUZA-KLEIN DOMAIN WALL

comes infinitely heavy; it dies off as positive powers of

1M ,. At the same time, the wall tension found in the ef-I ina b h iahbori . .
fective theoryexactly coincidesvith that one would find in  '2ting between the neighboring vacua in supersymmetric

the full theory. No 1M, corrections can appear. This is a gluodynamics is expected to scaleMsather tharN?. This
remarkable feature of BPS supersymmetric walls. The tendives rise to a natural |dgnt|f|cat|on of thesg walls with the
sion of such a wall is exactly determined by the centralD-brane solutions found in Reff9]. Here we will show, that
charge [3,4,7] which reduces, in turn, toW(®y,X,)  this phenomenon, “abnormal’N dependence, is actually
—W(®,X;)| in the full theory, and to |W(Xy)es  More general, and shows up in other wall configurations re-
—W(X1)er] in the effective low-energy theory(Here lated to Witten's analysis. In fact, the low-energy limit of the
{®g1,X04} are the points of extremaThe two expressions theory considered in Ref9] is a five-dimensional Kaluza-
above coincidaedentically. Klein (KK) theory with a five-dimensional SB{) gauge
Summarizing, if for all values of the light fields the solu- field Ay, ,M=1,...,5 andcharged matter. After compactifi-
tion for the heavy fields, to be integrated out, is unique, thecation there are two types of gauge fields—our original SU
existence of a BPS wall in the effective theory entails the(N) gauge fieldA, and a new 1) gauge fieldB, coming
existence of such a wall in the full theory, amite versa  from the G5 components of the metric tensor as well as a
Moreover, if one calculates the wall tension in the effectivescajar made from the fith compone of the SUN)
theory, one gets the exact answer valid in the full theoryga ge field. We are going to demonstrate that if this theory is
with no 1M, corrections. _ _ , _ modified, so that the supersymmetry is broken explicitly,
Letus return to the superpotential dep|cted.9n Fig. 3, Withhere is a new type of domain wall due to the figlg. By
two mountain ridges and one canyon. In addition oA 5 ing this low-energy theoper se with no reference to

an:jCI? \évallsat:\ﬁ full thetgry has BtE W?ggvgmh IS gI;S D-branes, we demonstrate that the wall tension scalé$, as
saturated, an ree continuous sets o welis CE, in parallel with the brane-based derivation of Ré&fl. More-

andDE. Each set includes an infinite amount of degenerate ! .
. over, these walls carry an induced fractional chafi8.

walls (by degenerate we mean that the tensions of all wall% tually the situati inds that with th ; I
inside each set are the sam&he phenomenon of continu- onceptually e situation reminds that wi € axion wa
ously degenerate supersymmetric walls was first observed ﬂscussed in Sect. Il B. _ . . ,
Ref.[25]. Besides these BPS walls, the full theory may have 1 n€ theory to be considered is gravity plus the gauge field
AD,BD, andCD walls that are not BPS saturated. Depend-~w i five dimensions. To warm up we start from the Abe-
ing on the values of parameters in the superpotential it ma}/2n case, i.e., the (1) gauge group. At this stage we also
be expedient for some or all non-BPS walls to decay into Pmit the superpartners from the discussion. The action is

pair of BPS walls.

What can be said about the effective theory? The corre-
sponding low-energy effective potential will be glued out of Generally speaking, distinct sectors can belong to one and the
five pieces, as indicated in Fig. 4. In each of five domainssame branch, see poimsandC in Fig. 4.

As was discussed above, the tension of the walls interpo-
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1 Changing adiabaticallA; from zero to 1R all levels in

— ksR— — FnFMN the particle spectrum are shifted by one. For example, a
4e massless neutraith respect toB,) particle will be trans-
muted into a heavyri=1/R) charged ¢=1) particle. Thus,

(64) if there is a domain wallA;(x) interpolating betweerg
(—)=0 andAs(°)=1/R, and one scatters a massless neu-
tral particle withn=0 on the domain wall it either reflects or

where x5 and e; are the five-dimensional gravitational and becomes massive and charged. The total KK charge must be

gauge coupling constant&,, is the metric,R stands for conserved in the process, since it is the gauge charge which
the curvatureFMN is the gauge field strength tensor, all capi- generates a part of the general coordinate transformation,

S= f d®x\/- G|

+GMN(gy —i1Ay)P* (In+HIANDP |,

tal Latin letters run from 1 to 5, sayl,N=1,....,5, while = §Gyn=duen(X,Xs) +dnem(X,Xs) Which for ep(X,Xs)

the Greek lettergs,v,...=1,...,4. It is assumed that one =dy se(x) is the U1) gauge transformationgB,= 6G ;5

of the five dimensions forms a circle, so that we deal with=4,e.

M4x S' KK model. The matter sector consists of charged The conservation of the KK charge is insured in a way

scalars®, the simplest possible choice. very similar to the one discussed in Sec. Il B. In the presence
After M4x S! decomposition of the metric of the charged particles the domain wall itself acquires an

induced KK chargey. The total charge of the domain wall
9ur By ) w97 TB#BY —B¥ plus the particle is conserved. The real process of the particle
Gun= B, 1+B,B*/’ G™"= _B 1 penetration through the domain wall looks as follows: the

(65) initial state is the KK neutral particlegqen=0) plus the
charged domain wall, with the chargg= +1/2. The final

we get four-dimensional gravity, two () gauge fieldsA, state(if the particle initially has momenturp,> 1/R) is the
andB,,, plus a scalaAs (we put dilatonG>®=1). charged particleg=n=1 plus the domain wall with the
For any manifoldK with a nontrivial 7,(K) the KK  chargegs=—1/2. The total charge-1/2 is conserved.
theory contains special Wilson line operators These walls have a variety of interesting properties. Thus,
for example, if the theory contains fermions, their charge
. may be half integer. In this case the charges of the wall and
u,=P exp( fﬁ Adx) (66) the fermion are exchanged in the scattering process and there

is no threshold energy for this process. Moreover, the fer-
Where»y is a closed noncontractible contour & In our mion and the wall can form a neutral bound state. For a
caseK=M*x S! and;(S!)=Z. For the U1) gauge field  detailed discussion, see R¢t8].
Under what circumstances is this wall stable? The five-
U=e'¢, ¢e[0,2m). dimensional Maxwell term (1E§)F gives rise to the
four-dimensional kinetic term (1(3&)& A5a As wheree is
The phasep represents the constant component of the gaugehe four-dimensional gauge couplmg It is quite evident that
field As=[0,1R], whereR is the compactification radius. to get a stable domain wall an effective potentimhich does
Other values ofA; can be gauged into the intend,1R) not exist at the classical leyeust be generated. Such an
while As=1/R is gauge equivalent té\s=0. The corre- effective potential UAs) is indeed induced at the one-loop
sponding gauge function is=xX5/R. This means that the level. The mass operator for the scalar field modes is
chargedwith respect to fieldd) fields are related by a gauge

transformation, R n
. m:_|(95+A5, mn:—+A5. (70)
W a_1R(X.X5) = €X/RW, _(X,Xs), (67) R
where x denotes four noncompact coordinates. Using thelhe mass spectrum depends on the valuBgWith period-
standard KK decomposition icity 1/R. Due to this dependence there is an effective poten-
tial for the field A5 which is given, at one loop, bfsee[26]
for detaily
W(X,X5) = 2 s /RY (%), (68)
where ¥,(x) describes different four-dimensional fields — V(As)= mf dtt’in(1—2e~'cos 27RAs
with masseam2=n?/R? and chargesq=n with respect to
the KK gauge fieldB,=G s, we see that the gauge trans- +e 2, (71

formation (67) shiftsn—n+1:

_ This potential is periodic irAg, with the period 1R. It has
W”(X)|A5:1/R_\P“H(X)lAs:O' (69 minima atAs=n/R. Using this effective potential it is not
difficult to see that the wall width. is of the order ofR/e
and the energy densityvall tension scales as

*We refer to the chargg as the KK charge, as opposed to the
conventional charge defined with respecttp. L(1/e?)(1/RL)%=(1/e)(1/R®).
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Observe that the wall tension scales as rbther than 2.
This is essentially the same difference as betweemtlaad
N? scaling laws in SUSY gluodynamics. IndeedN1is an
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anomaly matchingwas suggested in Ref$28-3Q, in a
model-building context where it was quite informative and
useful. Below we will show that in supersymmetric gluody-

effective coupling constant in the string description of thenamics and similar settings no new physical results can be

gauge theory.

obtained from the procedure, besides those Ward identities

The sameN dependence arises also in the non-Abelianwhich are already obtained by a different method. These
case. If there are no fields transforming in the fundamenta¥Ward identities neither support nor rule out the chirally sym-

representation, the gauge groGpis actually not SUN) but
SU(N)/Zy and 7,(G)=Zy, So one may havé a Z, do-

metric Kovner-Shifman vacuum.
Let us introduce the construction in an explicit form, first

main wall. The domain walls will be somewhat more com-in a somewhat simplified setting of a nonsupersymmetric

plicated: instead of one phase field there dre 1 indepen-
dent phasef=rank of the group SU{)].

Yang-Mills theory, with the intention to revisit SUSY gluo-
dynamics later on. Assume we have a SW(Yang-Mills

In the supersymmetric theory the situation is essentialljtheory with one quark field'® belonging to the adjoint rep-
different. The fermions and the bosons give contributions ofesentation of the gauge group. Note that, unlike SUSY gluo-
the opposite signs to the effective potential, which, thus, candynamics, ¥ is the Dirac field, so it can be coupled to an
cel each other. This is so since supersymmetry should bexternal “electromagnetic” fielth , vectorially, with a very
maintained at any value &5 and the vacuum energy must small coupling constarg,
be zero. Therefore, in five-dimensional SUSY gauge theory
(which is essentially a low-energy limit of Witten's theory
there are no stable domain walls of the type just discussed. _ . _
To get a nonzero one-loop effective potential supersymmetry N€ fieldA,, is auxiliary and is needed only for the purpose
must be broken explicitly. This can be achieved either byofacpnstructmg the 't Hooft AVV triangle$31]. The quark
imposing different boundary conditions on bosons and fer-Y " IS assumed to be massless.
mions, or by adding non-SUSY mass terms by hand, or in This theory,_classmally, has two con_served currents, the
any other way—in any case themdll be an induced effective Vvector current¥ y*¥ and the axial oneW y*y*¥. (There
potential In the particular case o *x U(1) relevant details are two other conserved currer{2], but this is another
can be found in Ref.26], and the result for the wall tension story) The vector current is useless from the point of view of
in the largeN limit is the 't Hooft matching[31] and we will forget about it, fo-
cusing on the axial 1) symmetry associated with the axial
current. This symmetry is internally anomalous,

AL=eV3y PaA, . (73)

N 1

R3eyN’

At large N the proper coupling constant is net but g
=ey/N, and the domain wall tension has a typi€albrane
behavior—linear in botiN and 14,

(72
(74)

— N ~
(WY W)= QGZVGZV'
so that the only remnant of this “nonsymmetry” is a discrete
Z,n - The fact of survival of the discretg,y symmetry is
most readily seen from the instanton-induced 't Hooft inter-
action[33] which in the case at hand include$l 4ermion

Thus we see that in the theory of the type considered itines. The factor Ml is related to the coefficien in the
[9] (with explicitly broken SUSY a new type of the domain right-hand side of Eq(74), which in turn represent$(G),
wall, with an abnormal N-dependence, emerges. The (one halj of the Dynkin index for the adjoint representation.
D-brane interpretation of these walls should also be possibldf instead of the adjoint quark we were dealing with the
quark in a representatioR, thenT(G) —T(R).

The survival of a discrete unbroken subgroup of the axial
U(1) is similar to what we have in SUSY gluodynamics.

The issue of the discrete anomaly matching in SUSY  To construct the 't Hooft triangles that must be matched at
gluodynamics was raised in RdfL0], with the conclusion  the fundamental and constituent levels we have to have a
that the chirally symmetric vacuum suggested in R&l.  continuous axial symmetry, rather than a discrete one. The
does not satisfy the matching condition, at least in its naiveyasic idea of the discrete matchif28—30 is embedding the
realization. Although this topic is peripheral to the main sub-theory under consideration into a larger one, where we do
ject of the present work, we would like to dwell briefly on have a continuous axial symmetry, which is later spontane-
this issue in view of general important consequences whiclyusly broken down toZ,y. The spontaneous breaking
might follow. should happen in such a way that at low energies we recover

The construction which goes under the namedistrete  the original theory plus possible extra decoupled degrees of

freedom. Such an embedding is easy to achieve by exploiting
the phantom axion constructi¢@l]. Let us add to our Yang-
aMills theory a quark fieldQ in the fundamental representa-

e~(N/g)(1/R%).

V. COMMENT ON DISCRETE ANOMALY MATCHING

Y et us note that these walls are nothing but

(4+1)-dimensional generalization & domain walls in gluody-
namics at finite temperatuf®7]. The only difference is that for

finite-T theory we must have antiperiodic boundary conditions for

fermions, while in this case there is no such requirement.

tion of the gauge group. This quark is coupled técalor-
single) complex scalar fieldp,

ALy=hQrQ P+ H.c+V(|D|), (75)
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where h is a coupling constant, an®¥(|®|) is a self- This is so since it is a Goldstone boson appearing due to
interaction potential which will eventually ensure the devel-spontaneous breaking of a continuous global symmetry.

opment of a large vacuum expectation value of the field The axion fielda is not coupled to thé\, field because
the auxiliary quarkQ does not have this coupling. It is
(P)=v—c0. coupled, however, to the gluon field, through the standard
Whenv becomes very large, the quatkand the modulus of vertex
the filed® disappear from the spectrum, leaving only &rg 1 _
the axion field, as a remnant. The qua&kand the modulus a 2GivGiv. (81
of the filed ® are auxiliary elements of the construction. 32w

With the extra fields introduced in this way we have an ad-_, ) i h .
ditional axial U1) symmetry Since its coupling to the curredt, is

. . ) ion_ __ 2
Q—Que’, Qe—Que ™, d—de ?l  (76) = ANuH, ), ®2

This symmetry is internally anomalous too. Out of two in- W€ conclude that at low energies, in the effective low-energy
ternally anomalous (1) symmetries we can readily pick up theory,(J,)=(J,)**"plus a possible pole term ifJ ,) due
an anomaly-free combination, to the cpntrlbutlon of massless composites builttgfshould
they exist. Here
g—ye' Qu—Qe PN, b deNe (77)

A

) N -
The corresponding conserved axial current has the form <JM>aX'°n:¥( ) (0|G,GL.lyy)- (83

M= pv

J,=W¥y*y*¥ —2NQy"y*Q+scalar term.  (78) The momentuny in Eq. (83) is the momentum flowing in
The vacuum expectation value of the fieldspontaneously the GG vertex(the total momentum of the photon philt is
breaks the (1) symmetry of Eq.(77), but since the corre- assumed thag—0.
sponding charge of thé field is 4N, there is a survivor, a ~ The matching of Eqs(80) and(83) tells us that
Z4n Subgroup.

So, we have a theory which, at the fundamental level, has N?—1 FE o4
an internally anomaly-free axial () containing a discrete gg2 MM
subgroup. At the scale below only the discrete subgroup

survives. Let us examine now implications of the 't Hooft _pnssible contributions due to massleis composites.
anomaly matching. The triangle to be considered is AVV

where the A vertex is due to the axial curr¢i8), while the  |f there are none, then the expression on the left-hand side
vector vertices are due to EZ3). Note that the auxiliary vanishes.
quarkQ has no coupling t&\, . Recall that our initial task was getting information on the
The AVV triangle appearing at the fundamental level is emergence or nonemergence of the massles®omposites.
) The entire construction with embedding the discrete remnant
Py =N -1 FE (79 of the anomalous axial (1) was designed for that purpose.
Koogg2 VR We are neither closer nor further now from this goal. Indeed,
one can discard this construction altogether, and just con-
whereF,,, is the photon field strength tensor built of the sider the internally anomalous currei). Then, combining
auxiliary fieldA,, . If the photons are on mass shell, Eg9) ~ both the external and internal anomaly, we would get
implies [34,3]] the existence of a pole coupled g,

N _
Q)(WGZVGZVW” (84)

2

T s N =, N1
2 1 (80) Jd (\I”y Y\I’):QGMVGMV_FWFMVFMV' (85)

T

(0= & gz FuFr
Sandwiching both sides of this formula betwed| and

The coefficient in front oqu/q2 has to be matched by the |yy) in the limit g—0 we immediately reproduce E(B4).
contribution of physical massless particles. Some of thenThe only interesting dynamical question is whether the left-
may or may not occur dynamically, as composite mesons dnand side of Eq(84) vanishes or not. At first sight thi
baryons built from¥’s in the original Yang-Mills theory dependence of two terms in this equation is different, so one
under consideration. More important is the occurrence of thés tempted to say that they cannot cancel each other. A closer
massless axion field, which is coupled to the curdgpand,  look shows, however, that the discrepancy is superficial. In-
thus, participates in the matching with necessity. This is aleed, a typical graph for the second term is depicted in Fig.
distinctive feature of the discrete matching, as opposed to the. The gluons are converted into photons through ‘the
't Hooft matching, where such field, totally foreign to the loop. It is not difficult to count that the matrix element
original Yang-Mills theoryper se does not emerge. It is to shown in Fig. 5 scales d¢?, i.e., in the same way as the first
be stressed that, as opposed to the Peccei-Quinn constructiterm in Eq.(84).
[35], in the present setup the axion is necessarily massless If T(R) were a free parameter than one could establish the
and cannot acquire mass through nonperturbative effectsionvanishing of Eq(84) since the second term is propor-
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photons We see that, if at all, the massless composites of the
Rl Kovner-Shifman solution facilitate the anomaly matching.
¥ »_jiIO NGG Indeed, in the chirally asymmetric vacua the exact cancella-
e~ tion of two terms in Eq(86) must take place, while in the

chirally symmetric one this cancellation can be partial. The

FIG. 5. The two-photon matrix element BIGG. The photons ~ MISSING part_W|II then be filled by the contribution of mass-
are assumed to be on mass shell. !ess compo_snes. Regardless, Nhelepende_nce of both ter_ms

in Eqg. (86) is the same, and no constraints on the chirally

tional to (T(R))? while the first term to dinR. The choice of Sy??iﬂﬁ;gﬁggd?ggoggmion of extra matter which oro-
T(R) is not free, however, since, on the one hand, to have a : X . . P
discrete unbroken subgroufi, we must work with the motes th_e discret&,y symmetry into the contlnuous_one _
guarks in representation higher than fundamental, but on thléecessarlly leads to the appearance of a massless axion. This

other hand the representation cannot be too high, since otfXion is indeed practically decoupled from the dynamics of
erwise we lose asymptotic freedom. For this rea3¢R) the rest of the low energy sector when the symmetry break-

cannot scale faster that, These two requirements are con- i scalev? is large. However, at the same time it couples
tradictory unlessT(R)xN. strongly to the conserved global current by virtue of Eqg.
Thus Eq.(84) may or may not vanish, depending on (82). As a result, the contribution of the axion to the anomaly
whether the two terms cancel each other. As far ashhe Matching is finite and independent of the scaleThis con-
dependence is concerned, they are perfectly fit to cancel. [iibution is the first term on the right hand side of E(5)
the absence of massless composites theyld be forcedo ~ and (86). The discrete anomaly matching conditions, there-
cancel. This is nothing but the Novikov-Shifman-Vainshtein-fore, do not pose any restrictions on the spectrum of massless
Zakharov(NSVZ) low-energy theorem for the two-photon composite fermions but, rather, just determine the contribu-
coupling toGG [11]. tion of the axion which is not a physical quantity in the
Instead of the auxiliary photoA, we could have consid- original theory. In this language the “moduld” matching
ered the coupling to gravitons, i.e., thél current in the of Ref.[10] is the statement that the contribution of the axion
gravitational background. Then the issue would reduce to & an anomaly triangle has to be an integer multfptsf N.
formula connecting N?— 1)Rﬁ to a two-graviton matrix el- This statement is true in a simple case when the fundamental

ement of NGG. Again, the so called discrete matching fermions acquire mass only due _to a Yukawa coupling to the
would have nothing to say whether or not the two termsScalar whose vacuum expectation value brez_aks the_global
combine to cancel each othén the first case there are no U(1) symmetry down to the discrete subgroup in question. It
masslesa composites while in the second they would haveis, however, not provable as a general result and theres no
to be present to match the anomaly priori reason to believe that it holds in strongly interacting
Now, we can readily adapt our consideration to susytheories with confining dynamics, like SUSY gluodynamics.
gluodynamics. Again, we could have built a “tower of dis-  For example, let us consider the very same toy model
crete anomaly matching” by embedding the theory in a(75), but this time, instead of the vector curreg), let us
larger one where an internally nonanomalous axid)@dur-  analyze the triangle with two vector currei@s,,Q (and the
rent exists, with the subsequent spontaneous breaking of thimme axial current as abgveFor convenience one can

U(1) down toZy,y, the actual symmetry of SUSY gluody- coupleQy,Q to another auxiliary vector fieldl, , which is

namics. As we have just demonstrated, this procedure is refistinct from the fieldA introduced above. 4 does not
dundant. It would yield no more constrains or information
compared to what one gets considering the axial current of——
gluinos from the very beginning. The gluino is described by ,; : . .
the Majorana field, so we cannot couple it to the auxiliary Wt'_a no:je that ttTe exu(;s_tf?nce t°f the zrsl[lg]lyltsymmeltn_c pze;f]etwas
photon(vector current However, the anomaly in the gravi- questioned recently on ditierent groun - twas claimed tha

. . ol . _such a chirally symmetric phase would be necessarily superconfor-
tational background remains an open possibility. The relation v i . d. theref h ies than th
to be analyzed is mally invariant and, therefore, have more symmetries than the La-

grangian of the original theory. Unfortunately this argument is not

substantive. First, the fact of superconformal invariance of the

o N _ chirally symmetric phase was not establishefidfl. It is perfectly
aﬂ()\yﬂ;ﬁ)\) = 5 (0|GE,G3,| 2 gravitong conceivable that the correlators in this phase depend logarithmically
16w on Agcp- Second, even if the superconformal invariance is there,
2 this is not forbidden by general principles of quantum field theory.
n CRT';’, (86) For instance, in the realm of models of critical phenomena, the
872 phenomenon of symmetry enhancement at the infrared fixed point

is well known and not at all rare.

_ _  1Awe use the phrase “integer multiple B’ in a somewhat loose
whereC is a known constant. The question to be answered igense. This contribution depends on what particular anomaly tri-

are there massless composites built from gluons or gluinoszngle one considers and on some other details, e.g., the existence of
In the standard chirally asymmetric phase we expect nonenassive Majorana fermions in the spectrum. These details are un-
while in the chirally symmetric vacuum of Kovner and Shif- important for us here. For a thorough discussion see [R29%.[30]

man a set of massless composites must exist. and[10].
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couple toW.) The gauge strength tensor built fras, will Lagrangian has a cusp structure which arises due to adiabatic
be denoted byF,,. Now we can match the anomaly be- integration of the heavy degrees of freedom. The adiabatic
tween the high energy scalé>uv where the extra quark® approximation breaks down when the wall trajectory crosses
are massless and the intermediate scaléy>m>A). At the cusp. We have considered a simple model which illus-
this scale the quark® do not appear in the spectrum any- trates this feature in detail. In this toy model we were able to
more. Note that the truely dynamical quars and their ~ calculate the extra term, which gives the cusp contribution to
scaleA are irrelevant in this problem. the wall energy. Unfortunately in SUSY gluodynamics we
In this matching the contribution of the massless axion agre unaware of a well-defined procedure which could be used
the scalem must be equal to the contribution of the fermions to obtain the missing term, since tk@mendeyl Veneziano-
Q at the scaleM, since the only nontrivial dynamics that Yankielowicz effective Lagrangian was not obtained by ex-
happens ab is the spontaneous symmetry breaking due taplicitly integrating out heavy fields, but, rather, from certain

the Higgs field®. SinceQ couple directly to® their axial ~Ward identities of the theory. It is an interesting question
charges are necessarily integer multiples of, Eq. (77). whether these same Ward identities could also determine the

The contribution ofQ to the anomalous triangle M is cusp contribution.
We then made some observations of the general nature
1 _ pertinent to the theory of the domain walls in the effective
—4N? S F uvF v low-energy theories. Supersymmetric walls possess some
16 unique features. Namely, if we find the BPS wall teng(fam

a wall which does not cross the sector bounganythe ef-

B o o eelecive theary, he very sam tension akes place i the
: . . . i nay theory. There are no corrections inversely proportional to the
intermediate scalen is an integer multiple of K. This is of

course trivially so, since the axion coupling masses of the heavy fields which were integrated out.
' Finally, we worked out the issue of the discrete anomaly
matching in SUSY gluodynamics. This procedure, when ap-
N FF propriately implemented, is shown to impose no constraints
1672 *7 K on the existence of the chirally symmetric vacuum sfaie
We would like to make a remark on relation of our analy-
in conjunction with Eq.(82) automatically guarantee the re- sis to the calculations ¢8]. The analysis of8] is performed
quired proportionality. in the framework of the effective Taylor-Veneziano-
We are interested, however, in matching the anomaly beYankielowicz(TVY) effective Lagrangian, which in addition
tweenm and a still lower scalex<A. We would have the to the “glueball” superfieldS contains matter superfields
statement about “modulo N matching here if we knew that corresponding to additional matter fields in the SUSY QCD.
the contribution of the axion changes by an integer multipleDue to inclusion of these additional superfields to TVY La-
of 4N when crossing the scald. This we cannot know, grangian does not have a cusp structure and the wall configu-
however, because of the strong nontrivial interactiom\at rations considered ifi8] therefore do not cross any cusps.
The best we can do is to express this contribution in terms ofhe numerical analysis of the simplest TVY Lagrangian car-

a matrix element 06 G; see Eq(84). The fact that the axion fied in [8] showed that the BPS saturated wall, although
couples extremely weakly to the gauge fi@does not help  Present in the weak coupling regime—at small value of the
here, since it is a finite “renormalization” of this weak cou- Higgs mass—disappears for masses greater than some criti
pling due the strong interactions of the gauge field and cal massm, . Even more surprisingly at a slightly greater

that determines the contribution of the axion to the anomalyMassm,. even the non-BPS solutions that connect two ad-
jacent vacua but do not pass through the chiral p&n0

disappear altogether. Since the VY effective Lagrangian is
obtained from the TVY Lagrangian in the limim—~ the

In this paper we have analyzed aspects of the supersynauthors of[8] tentatively conclude that the only walls that
metric walls in SUSY gluodynamics and in a more generakexist in pure SUSY gluodynamics are the ones that pass
context. We have argued that the linear scaling of the walthrough the chirally symmetric vacuum. If this is the case it
tension withN does not contradict the picture where the wallis indeed very surprising, since the energy density of these
is a classical soliton in an effective Lagrangian describingwalls in the largeN limit is O(N?). We feel however that it
low-energy mesons and glueballs. We have also provided i& premature to draw such definite conclusions from the ex-
simple qualitative explanation of how the confining stringisting calculations for two main reasons. First, the calcula-
can end on a domain wall. tions have only been performed Bit=2,3. It is not clear

A key part of our analysis is related to the issue whatwhether the critical mass remains finite at lafjeif the
happens when the low-energy Lagrangian has a glued strukinetic term in the TVY Lagrangian is taken to reproduce the
ture. The Veneziano-Yankielowicz description of SUSY correct largeN scaling of meson masses. Secondly, even
gluodynamics belongs to this class. though the introduction of the matter fields eliminates the

We have tried to answer the question whether the walls irtusps in the effective potential we believe that in the SUSY
SUSY gluodynamics are indeed BPS saturated. Our concligluodynamics limit this effect must be unphysical. The
sion is that the knowledge of the effective Lagrangian byheavy degrees of freedom that should be responsible for
itself is not sufficient to answer this question if the wall in smoothening of the effective potential in SUSY gluodynam-
guestion crosses boundaries of distinct sectors. The effectivies should be glueballs which are heavier than the order pa-

a
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rameter fieldS but still much lighter than the matter fields, vacuum structure and domain walls in SUSY gluodynamics
which become infinitely heavy and should completely de-were studied usin-brane approach.

couple in this limit. To our mind it is therefore questionable
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