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More on supersymmetric domain walls,N counting, and glued potentials
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Various features of domain walls in supersymmetric gluodynamics are discussed. We give a simple field-
theoretic interpretation of the phenomenon of strings ending on the walls recently conjectured by Witten. An
explanation of this phenomenon in the framework of gauge field theory is outlined. The phenomenon is argued
to be particularly natural in supersymmetric theories which support degenerate vacuum states with distinct
physical properties. The issue of the existence~or nonexistence! of the BPS saturated walls in the theories with
glued ~super!potentials is addressed. The amended Veneziano-Yankielowicz effective Lagrangian belongs to
this class. The physical origin of the cusp structure of the effective Lagrangian is revealed, and the limitation
it imposes on the calculability of the wall tension is explained. Related problems are considered. In particular,
it is shown that the so-called discrete anomaly matching, when properly implemented, does not rule out the
chirally symmetric phase of supersymmetric gluodynamics, contrary to recent claims.
@S0556-2821~98!05808-1#
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I. INTRODUCTION

Recently there has been a renewed interest in the stud
theoretical aspects ofN51 supersymmetric~SUSY! gauge
theories. In addition to the calculation of exact effective p
tentials @1# and conjectured dualities between theories w
distinct gauge groups@2#, it has been realized that in som
supersymmetric theories there exists a class of dynam
objects whose energy can be calculated exactly@3#. Those
are the domain walls interpolating between discrete va
which are typical for many SUSY gauge theories. The
markable fact is that the energy density~tension! of these
walls is exactly calculable even in the strong coupling
gime.

For supersymmetric gluodynamics, the theory of gluo
and gluinos with no matter, the calculation of the ener
density was carried out in Ref.@3#, in an indirect way. The
key ingredient is the central extension of theN51 superal-
gebra,

$Qȧ
†
Qḃ

†
%5

N

4p2
~sW !ȧḃE d3x¹W ~ Trl2!, ~1!

where Qȧ
† is the supercharge,l is the gluino field, and

(sW ) ȧḃ5$s3,2 i ,2s1%ȧḃ is a set of matrices converting th
vectorial index of the representation (1,0) of the Loren
group in the spinorial indices. The commutator~1! is given
for SU(N) gauge group; the parameterN stands for the num-
ber of colors. The right-hand side of Eq.~1! is a reflection of
‘‘geometric’’ anomalies of SUSY gluodynamics~i.e., that in
the trace of the energy-momentum tensor plus its super
eralizations!.

The integral over the full derivative on the right-hand si
is zero for all localized field configurations. It does not va
570556-2821/98/57~8!/5195~19!/$15.00
of

-

al

a
-

-

s
y

z

n-

-

ish, however, for the domain walls. Equation~1! implies that
the tension of the domain wall is

«5
N

8p2
u^ Tr l2&`2^ Tr l2&2`u, ~2!

where the subscript6` marks the values of the gluino con
densate at spatial infinities~say, atz→6` assuming that the
domain wall lies in thexy plane!. The existence of the exac
relation~2! is a consequence of the fact that the domain w
in the case at hand is a Bogomol’nyi-Prasad-Sommerfie
~BPS-!saturated configuration preserving 1/2 of the origin
supersymmetry. A general discussion of BPS saturated
main walls was given in@4#, while a particular wall realiza-
tion in the framework of the amended@5# Veneziano-
Yankielowicz effective Lagrangians@6# were studied in
some detail in@7# and @8#.

On the other hand, a theory related to supersymme
gluodynamics was analyzed recently from the point of vi
of D-brane physics@9#. In this picture the domain walls als
appear naturally. Moreover, they seem to have some ra
surprising properties. These properties are natural from
D-brane perspective but were considered unusual~even para-
doxical! from the field-theoretical point of view@9#. One of
such features is an ‘‘abnormal’’N dependence of the wal
tension. The wall energy density of some BPS satura
walls scales asN, rather thanN2, a dependence one migh
expecta priori from glueball solitons. The second surpris
@9# is that the confining QCD string emanating from th
probe color charges~quarks! on one side of the wall can
terminate on the wall, without penetrating on the other si

So far these features had no satisfactory explanation in
field-theoretical framework. One of our tasks is to und
stand how this works in field theory, at least at a qualitat
level. We show that both aspects—theN dependence and
5195 © 1998 The American Physical Society
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termination of the flux tubes on the walls—are quite natu
consequences of the peculiar gauge dynamics. We sug
various toy models, which are simpler than SUSY gluod
namics but still carry essential features of the phenom
under discussion, to substantiate our qualitative observati
For instance, an Abelian model is presented where pr
fractional charges generate induced ‘‘mirror’’ fraction
charges on the wall in spite of the fact that at the fundam
tal level the model contains no fractionally charged fields

Then we turn to the Veneziano-Yankielowicz effecti
Lagrangians. Previously they were exploited as a framew
for quantitative analysis of the domain walls@7#. A BPS wall
interpolating between a chirally symmetric vacuum@5# and
one of the conventional vacua with^ll&Þ0 was explicitly
built. However, building a wall interpolating between tw
neighboring chirally asymmetric vacua turned out to be
much harder endeavor. The task had not been solved in
@7#. Moreover, it was argued later@8# that such walls do no
exist within the framework of the Veneziano-Yankielowic
effective Lagrangians.

A crucial feature of such a Lagrangian emerging in SU
gluodynamics is discontinuity of the superpotentialW. The
realization compatible with all symmetries of the underlyi
theory requires, with necessity, a ‘‘glued’’ potential@5#, with
N distinct sectors and matching lines along the boundarie
the sectors. We explain the physical nature of this phen
enon. The sector pattern, with cusps, reflects a restructu
of heavy degrees of freedom~which were integrated out! in
the process of an adiabatic variation of the light degrees
freedom. A level crossing takes place in the heavy secto
the theory. Precisely for this reason, onecannotconstruct the
domain wall from the effective Lagrangian if the wa
crosses the cusp. The presence of the cusps prevents
from being able to use this potential for calculating a w
profile if the field configuration along the wall crosses t
cusp somewhere in space. In fact, if one naively tries to
this in the presence of the cusp an apparent paradox aris
the wall in the effective theory seems to have a lower ene
density than the BPS bound on this quantity in the origi
theory. The missing energy density is contributed by the
citation of the heavy modes which are necessarily exc
when the light fields take values in the vicinity of the cus

The statement is thoroughly illustrated by two toy mode
The phenomenon is quite general and may be considere
supersymmetric as well as nonsupersymmetric context.

The chirally symmetric vacuum,̂ll&50, is inherent to
the Veneziano-Yankielowicz Lagrangian. Recently it w
claimed@10# that a discrete anomaly matching rules out t
existence of such phase, at least its most straightforward
alization. We make a digression to show that the claim is
to an inconsistent treatment of the discrete anomaly ma
ing. In SUSY gluodynamics and similar theories the discr
anomaly matching imposes no constraints on the spectr
The only information one gets are rather mild constrains
certain amplitudes following from the classical symmetr
that become anomalous at the quantum level~see, e.g.,@11#!.
The existence of a discrete anomaly-free subgroup add
new information.

The organization of the paper is as follows. Section II
devoted to general aspects of the BPS walls in SUSY g
dynamics. We analyze, qualitatively, theN dependence o
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the wall tension and visualize the phenomenon of strin
ending on the domain walls. An analogy between the wa
in SUSY gluodynamics and the axion domain walls in gau
theories with monopoles is worked out.

In Sec. III we turn to a more quantitative discussion bas
on the amended Veneziano-Yankielowicz effective acti
The issue of glued potentials is studied here. In Sec. III C
consider an explicit example of a supersymmetric the
which upon integrating out heavy modes generates an ef
tive potential with cusps. In this model we calculate expl
itly the cusp contribution to the wall tension and show ho
the apparent contradiction with the BPS bound is resolv
In Sec. III D aspects of the general theory of glu
~super!potentials are presented.

In Sec. IV we discuss other domain walls in gauge the
ries obtained as a Kaluza-Klein reduction on topologica
nontrivial space-time manifolds. The specific example co
sidered refers toR43S1. An unconventionalN dependence
of the wall tension arises which may be related toD-branes.

Section V is devoted to the issue of the discrete anom
matching and the chirally symmetric vacuum of SUSY glu
dynamics.

Finally, Sect. VI contains a brief summary and discuss
of our results.

II. N DEPENDENCE, FLUX TUBES ENDING
ON THE WALLS, AND ALL THAT

A. SUSY gluodynamics

We consider the supersymmetric generalization of p
gluodynamics—i.e., the theory of gluons and gluinos. At t
fundamental level the Lagrangian of the model has the fo
@12#

L52
1

4g0
2

Gmn
a Gmn

a 1
q

32p2
Gmn

a G̃mn
a 1

1

g0
2 @ ilaaDaḃl̄aḃ#,

~3!

where the spinorial notation is used. In the superfield l
guage the Lagrangian can be written as

L5
1

4g2
TrE d2uW21H.c., ~4!

where

1

g2
5

1

g0
2

2
iq

8p2
.

Hereq denotes the vacuum angle. Our conventions rega
ing the superfield formalism are summarized, e.g., in
recent review@13#. We will limit ourselves to the SU(N)
gauge group@the generators of the groupTa are in the fun-
damental representation, so that Tr(TaTb)5(1/2)dab].

SU(N) supersymmetric gluodynamics has a discrete sy
metry, Z2N , a ~non-anomalous! remnant of the anomalou
axial symmetry generated by the phase rotations of
gluino field. The gluino condensate^ll& is the order param-
eter of this symmetry. The discrete chiral symmetry may
may not be spontaneously broken@5#. Therefore, there exists
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a set of distinct vacua labeled by the value of the glu
condensate. In the phase with the broken chiral symm
Tr^ll&5L3exp(2pik/N) where k50,1,2,. . . ,N21 ~for q
50). In the chirally symmetric phase Tr^ll&50. The field
configurations interpolating between different values of^ll&
at spatial infinities are topologically stable domain walls. A
though the theory is in the strong coupling regime one
derive an exact lower bound on the surface energy den
~tension! for such a wall@3#

«>
N

8p2
u^Tr l2&`2^Tr l2&2`u. ~5!

In our normalization the condensate^Tr l2& scales asN in
the largeN limit.

One may consider two types of walls. The wall of type
connects a vacuum with the spontaneously broken ch
symmetry with the symmetric vacuum (^ Tr l2&50). For
such a wall the BPS bound for the tension is

«;O~N2!.

The walls of type II connect two adjacent~or close! chirally
asymmetric vacua, e.g.,k50 andk51 ~or k50 andk52,
etc.!. Even though for each of these vacua the order par
eter is of orderN, the difference between the order para
eters isO(1). The BPSbound for the tension, therefore, is

«;O~N!.

Let us assume for the moment that the BPS-satura
walls of type II do indeed exist in SUSY gluodynamics. A
though we cannot prove this at present, there are no vis
reasons forbidding them.1

The question then arises as to how one can understan
largeN scaling of the wall energy density from the point
view of the effective field theory which describes dynam
of the low lying physical states, mesons and glueballs
their superpartners.

At large N the mesons and the glueballs should ha
masses of order 1, trilinear couplings of order 1/N, and so on
@14#. This is conveniently encoded in an effective Lagran
ian of the form

L5N2F@Mi ,]Mi #, ~6!

where$Mi% is a set of fields representing all relevant degre
of freedom, mesons and glueballs. The value of the fu
tional F itself and all its derivatives at the minima should
independent ofN. This would ensure the properN depen-
dence of the masses and coupling constants. Now, sup
we have a solution of classical equations of motionMwall
which describes a wall configuration interpolating betwe
two distinct minima. SinceN2 is an overall factor in Eq.~6!,
at first sight one may expect thatF@Mwall#5O(1), and,
therefore, the wall tension«5O(N2). Such a situation is
standard in the soliton physics. This is perfectly in line w

1Even if for some reason we do not understand at present the
II walls would turn out to be not BPS-saturated, it is natural
expect that their tension is of the order of the BPS bound~5!.
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what we get for the type I walls, but is in apparent cont
diction with the BPS energy density of the type II wall.

Can one avoid this conclusion? The answer is yes. C
sider a functionF which is nonanalytic so that although a
its derivatives areO(1) at the minimumM* , at some finite
distanceM5M* 1dM @with dM5O(1/N)] the derivatives
become large@O(N), for example#. Then, if the wall solu-
tion Mwall passes through this region of the field space,
standard counting leading to«5O(N2) does not work. An
extreme example of such a situation arises if the effec
Lagrangian has a structure ofN distinct sectors in the spac
of fields, and no single analytical functionF exist. TheN
sector structure then is an implicit source ofN dependence.
Such a potential is singular~or rather has a singular firs
derivative! along the boundaries of the sectors, being glu
from different pieces along the boundaries. As we will d
cuss later, this situation can arise due to the fact that the s
that was the ground state in one sector, becomes an ex
state in another, and vice versa. At the boundary there
degenerate states, and the level crossing occurs. Due to
cusps at the boundary the naive estimate of the tension
sented above does not work in the case of the glued po
tial. As we will see, the effective potential in SUSY gluod
namics has precisely thisN-sector structure.

Of course, in the full theory everything is smooth. O
can ensure the smoothness of an effective Lagrangian
including more fields in it. Those extra fields will not corre
spond to low energy excitations in the vicinity of the minim
~and therefore will be unimportant for local properties lik
Green’s functions!, but will be essential for smoothing th
singularity at the cusps. In the example just discussed
would have to include in the game at leastN fields. That is
how N enters the effective potential as a hidden parame
@besides the overallN2 factor in Eq.~6!#. Then the typical
value of relevant fieldsMi inside the wall solution can be
O(N21), each field contributes toF at the levelO(N22), but
there areN relevant fields, and the value ofF;1/N. Note
that the wall width isL;N0. Then the volume energy den
sity inside the wallE;N and, correspondingly, the wall ten
sion «;N.

The fact that the volume energyE is O(N) inside the BPS
wall connecting two neighboring vacua, say with Tr^ll&
5L3exp(2pik/N) wherek50 and 1, is seen in the micro
scopic theory~3! per se. Indeed, for the BPS wall

Gmn
a Gmn

a ;]zl
2;Dl2/L.

Since the volume energy densityE;NGmn
a Gmn

a , andDl2 in
the neighboring chirally asymmetric vacua isO(1), wecon-
clude thatE scales asN.

How do we learn about theN-sector structure of the ef
fective Lagrangian emerging in SUSY gluodynamics? If t
gauge group is SU(N), the theory has a discreteZ2N chiral
symmetry, which is spontaneously broken down toZ2 in
some of the vacua. This means that the effective Lagrang
for mesons/glueballs must have at leastN degenerate minima
which differ from each other only in the value of the phasef
of the order parameter Trl2 ~the latter is an interpolating
field for one of the lighter mesons!. The minima lie atf
50,2p/N,4p/N and so on. Then, clearly, we must have
much more rapid variation ofF as a function off, than one

pe
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would naively infer. Naively, since there is no explicitN
dependence inF, one would say that if the first minimum
lies at f50, the second one should be atf;1. The only
way out is either to have anN-sector structure~within the
construction that includes only fixed,N independent numbe
of fields in the effective Lagrangian!, or to build a Lagrang-
ian on a minimal set ofN fields. In both cases a hidde
parameterN appears. It does not affect the value of the d
rivatives ofF at the minima, which are all of order 1.

In Sec. III we will consider the amended Venezian
Yankielowicz effective Lagrangian and will see that it i
deed has the required structure. In a somewhat simpli
picture, we can understand how it appears by considering
dependence of the vacuum energy in the Yang-Mills the
on the vacuum angleq. As is well known from the consid-
eration of the Ward identities@15#, this dependence has
‘‘wrong’’ q periodicity. That is, naively the energy is per
odic in q with the period 2pN rather than 2p,

Evac}N2Fcos
q

N
21G . ~7!

The correct periodicity of the physical quantities is resto
in the following way. The ground state atq,p, becomes an
excited state atq.p. At q5p there are two degenerat
states. At this point due to the level crossing the vacu
energy has a cusp so that

Evac}N2F S cos
q22pk

N D21G , ~2k21!p,u,~2k11!p.

~8!

Now, the interaction of the phasef with the gluonic degrees
of freedom is the same as of the rescaled angleq/N. The
effective potential forf is, therefore, roughly

Evac}N2F211cosS f2
2pk

N D G ,

~2k21!p

N
,f,

~2k11!p

N
. ~9!

This potential indeed has the form of Eq.~6!. Moreover, the
derivatives of the functionF at all the minima areO(1).
Nevertheless, it hasN minima atf52pk/N. The value ofF
on interpolating trajectories varies from zero at the mini
to O(N22) at the cusp. A naive estimate of the wall tensi
would therefore give a value much smaller2 thanO(N2).

Our next remark concerns a field-theoretical understa
ing of a confining string which ends on a domain wall.
simple example of such a situation is the wall that separ
the confining phase in a gauge theory from a nonconfin
one. The type I wall in SUSY gluodynamics is precisely
this kind. Recall that the chirally symmetric vacuum
^l2&50 sustains massless excitations. It was argued in@5#
that this phase is in fact conformally invariant and can

2In fact, a naive~and wrong! estimate would giveO(N0). Actu-
ally, a much larger contribution,O(N1), resides in the cusp; se
Sec. III.
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thought of as a kind of a non-Abelian Coulomb phase. N
consider a wall that separates a confining phase from a C
lomb phase. A probe charge placed in the confining phas
a source of the electric flux which travels in a flux tube—t
confining string. On the other side of the wall, however, it
energetically favorable for the flux to spread out into a Co
lomb field. So an observer in the Coulomb phase will not s
a string but, rather, a point charge~in fact, twice as big in
magnitude as the original probe charge, since the elec
flux will spread in half the space! sitting on the domain wall.
One is not used to thinking about a phase boundary betw
the Coulomb and confining phases, since usually the two
not degenerate in energy. It is the peculiar feature of sup
symmetric theories that two physically completely distin
phases are degenerate.

It is very easy to find an easy-to-handle example o
domain wall separating the confining and the Abelian Co
lomb phases by introducing some extra fields in SUSY gl
dynamics. Start from the Lagrangian~4!, and add one chira
matter superfieldF in the adjoint representation of the gaug
group, with the superpotential

W5m TrF21M 21~Tr F2!2 ~10!

@the gauge group SU(2) is assumed#. The second term in the
superpotential is non-renormalizable. One can think of it a
result of integrating out some heavy degrees of freedom
that at a large scaleM we return back to a renormalizabl
theory. It is assumed thatm!L, but mM@L2.

If M 2150 the theory we deal with is nothing but a soft
brokenN52 model studied by Seiberg and Witten@16#. In
the Seiberg-Witten vacua TrF2;L2, monopole condensa
tion takes place, and due to the dual Meissner effect
probe electric charges placed in one of these vacua will fo
flux tubes. The presence of a very weak additional inter
tion M 21(Tr F2)2 not considered in Ref.@16# does not af-
fect the picture obtained there, since this term can be view
as an arbitrary small perturbation if the theory resides in o
of the Seiberg-Witten vacua.

However, at large values of TrF2 the termM 21(Tr F2)2

leads to a drastic restructuring—no matter how smallM 21 is
there appears a new vacuum state at TrF2;mM. In this
vacuum the gauge symmetry is broken down to U(1) b
very large vacuum expectation value of theF field, the
monopoles are very heavy, and the theory is obviously in
weakly coupled Coulomb phase. Supersymmetry guaran
that the vacuum energy densities in both phases vanish
two phases are degenerate. Under the circumstances a
main wall separating the weakly coupled Coulomb phase
the strongly coupled confining phase~one of the Seiberg-
Witten vacua! must exist, with the wall tension;m2M . If
the confining phase is to the left of the wall, and we put th
a probe electric charge, a flux tube going towards the w
develops; the chromoelectric flux is clearly diffused to t
right of the wall.

Another example of a wall that serves as a sink of
chromoelectric flux is a situation when the Coulomb pha
exists not in half the space~say, to the left of the wall! but
only inside the wall. For example if one considers a wall
SUSY gluodynamics that separates the phases Trl25L3

and Trl252L3, it is very likely that the order parameterl2
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will vanish inside the wall. Both phases then are confin
but the wall itself is ‘‘made’’ of the Coulomb vacuum. I
such a case the flux tube that originates in one of the ph
will not penetrate into another but, most likely, the flux w
spread out in transverse directions inside the wall in a tw
dimensional Coulomb field. Energetically this is preferab
since the energy of the two-dimensional Coulomb field
pends only logarithmically on the size of the system, wh
the energy of the string that penetrates into the other pha
linear.

Note that in this latter scenario the degeneracy betw
the Coulomb and confining phases is not necessary. The
ture can be dynamically realized both in the supersymme
and nonsupersymmetric contexts. An illustrative nonsup
symmetric model, where inside the wall the theory is in t
Abelian Coulomb phase while outside it is in the confini
phase, was presented in Ref.@3#. It would be instructive to
exploit this model for a more quantitative analysis of a fl
tube coming from the confining phase and diffusing its
inside the wall~i.e., in the Coulomb phase!. A ~semi!quanti-
tative analysis seems possible since at least inside the
the theory@3# is in the weak coupling regime.

Finally, if in the previous examples we consider the Hig
phase instead of the Coulomb phase~either to the left of the
wall, or inside it!, the chromoelectric flux will still disappea
in the wall. In this case it is even more trivial, since t
chromoelectric flux is not conserved in the Higgs phase,
it will be screened by the Higgs phase vacuum either on
left side or inside the wall. We would like to argue that t
type II wall, considered in Ref.@9#, is, in fact, an example o
this kind, in a certain sense. Indeed, consider the type II w
Let us say, on the left there lies a phase with the conden
of monopoles, while on the right with the condensate
dyons.3 Let us imagine a probe electric charge to the left
the wall. Since the dyons are electrically charged, their c
densate acts like a Higgs vacuum, in the sense that it ca
easily polarized to completely screen the electric flux t
might enter the dyon condensate through the wall. Of cou
since the dyons are also magnetically charged, any such
larization of their condensate will lead to appearance of
magnetic charge to the right of the wall. However, the m
netic flux tube emanating from this induced magnetic cha
can be directed towards the domain wall. In that case it w
be screened on the other side of the wall by polarization
the condensate of the monopoles. In other words it is p
sible that the dyonic condensate to the right of the wall w
be polarized to screen the electric charge while the mono
condensate to the left of the wall will be polarized to co
pensate for the excess of the induced magnetic charge.
result the confining electric string will terminate on the wa

Note, that this picture is somewhat different from the o
advocated in Ref.@9#, where it was suggested that a bou
state of a monopole and a dyon appears on the wall.
difficult to talk about monopoles and dyons forming a bou
state, since they do not exist as free particles on either sid
the wall, because both vacua have nonvanishing condens

3Both, the monopoles and dyons in SUSY gluodynamics are to
understood in the same sense as those in the ’t Hooft constru
@17#.
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B. Toy model—axion wall

The type II wall can be thought of as carrying the qua
quantum numbers in the presence of a QCD string, in
sense that it can screen a fundamental charge or o
charges which are nontrivially transformed under the cen
ZN , in the theory where all dynamical fields are invaria
with respect toZN . Surprising as it is, one can trace the ve
same phenomenon in simple Abelian models. Although
parallel is not perfect, a simple Abelian example may
useful for deeper understanding of this general phenome

The problem we keep in mind is the axion wall in th
presence of a monopole@18#. For simplicity we will consider
the SU(2) case~the Georgi-Glashow model!. The SU(2)
symmetry is spontaneously broken by the vacuum expe
tion value of a Higgs field down to U(1) giving rise to the
Hooft-Polyakov monopoles@19#. After the breaking, the
fields in the adjoint representation have the U(1) char
61, while those in the fundamental representation ha
charges61/2.

Let us recall some facts about the monopoles in the p
ence of theq term. The Lagrangian of the Georgi-Glasho
model is

L52
1

4e2
Fa

mnFmn
a 1

q

32p2
F̃a

mnFmn
a 1LH~F!, ~11!

wheree is the gauge coupling constant and the last term
the scalar Lagrangian for the Higgs fieldFa in the adjoint
representation of the SU~2! group.

It was shown by Witten@20# that if qÞ0, a monopole
becomes a dyon with the electric charge

q5
qe2

8p2
m1ne, ~12!

wherem is the magnetic charge,

m5
4p

e
. ~13!

Whenq changes from 0 to 2p one getsn→n11.
In the theory~11! q is constant, given once and foreve

However, if the axions are added in the theory, then, eff
tively, q is substituted by the axion field which can vary
space-time. The axion field can be introduced through
phantom-axion construction@21#, i.e., we add an SU~2!-
singlet Higgs field coupled to a doublet quark field. In t
limit when the expectation value of the SU~2!-singlet Higgs
field tends to infinity, the quark becomes infinitely massi
and disappears from the spectrum, and so does the mod
of the singlet Higgs field. Its phase becomes an axion fi
a(x).

The axion Lagrangian is

La5
f a

2

2
]ma]ma2K2@12cos~a2q!#, ~14!

where the parameterK2 is connected with the vacuum su
ceptibility, it is exponentially small in the model at han
;exp(28p2/e2). Moreover, f a is ~a very large! expectation
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value of the Higgs singlet. In this limit the only other axio
interaction to be taken into account is its coupling toFF̃ .
The q term in Eq.~11! becomes

Lq8 5
q2a~x!

32p2
F̃a

mnFmn
a . ~15!

One can now setq50 ~and we will do this hereafter!.
The vacua ata50 and a52p are physically identical.

Correspondingly, axion domain walls exist in this syste
@22# interpolating betweena50 anda52p. Assume a wall
lies in thexy plane, so that the axion profile depends only
z. The wall solution centered at origin is

a~z!52p22 arccos tanh~mz!, ~16!

wherem is the axion mass,m5K/ f a , and the width of the
wall is of orderm21. Of course, it is assumed thatm!M
whereM is the monopole mass.

Start from the monopole with electric charge zero to
left of the wall, and let it adiabatically propagate through t
wall. Effectively, q adiabatically changes from 0 to 2p. To
the right of the wall the monopole becomes a dyon w
electric charge 1. Inside the wall, the electric charge of
monopole gradually increases.

Thus, one gets an apparent nonconservation of the ele
charge of the monopole. However, since U~1! is unbroken,
the total electric charge must be conserved. The questio
where is the missing electric charge.

As was shown by Sikivie@23#, the monopoles actually
induce electric charges61/2 on the wall. When the mono
pole is far to the left of the wall, it is neutral, but the char
induced on the wall is11/2. When the monopole is far to th
right of the wall, the induced charge will be21/2, so the
total charge is conserved, 1/25121/2.

To see that this is indeed the case we observe that
extra term~15! in the Lagrangian is immediately translate
into an additional piece in the definition of the electroma
netic current

j m
axion5

dL8

dAm
5

1

8p2
]n~aF̃mn

3 !, ~17!

where it is assumed that the expectation value of the tri
Higgs field is aligned along the third direction, so thatFmn

3 is
the photon field strength tensor. Note thatj m

axion is automati-
cally conserved;]m j m

axion50. The corresponding contributio
in the electric charge consists of two parts,

Q5E d3x j0
axion5

1

8p2
~ F̃0n

3 ]na1a]nF̃0n
3 !. ~18!

Let us assume that the distance between the wall centR
and the monopole is much larger thanm21. For such distant
monopoles the physical meaning of each term in Eq.~18! is
transparent. The second term vanishes everywhere excep
point where the monopole sits. Thus, it gives the elec
charge of the monopole/dyon. If the latter sits to the left
the wall, wherea50, the monopole electric charge vanishe
To the right of the walla52p, and
e

e

ric

is

he

-

et

the
c
f
.

DQmonopole5
e

4pE d3x¹W BW monopole5
em

4p
51.

The first term in Eq.~18! is obviously saturated inside th
wall; it describes the electric charge induced on the ax
wall in the presence of a distant monopole. The induc
charge is equal to the flux of the monopole magnetic fi
through the plane of the wall timesDa/(8p2). Since this flux
is 1/2 of the flux through the large sphere (5em/252p), the
induced charge on the wall is obviously equal to61/2 de-
pending on whether the monopole is on the left or on
right of the wall.

Thus, the picture is in complete agreement with the c
servation of the total electric charge.

This picture can be readily generalized for SU(N). Then
there areN21 different monopoles corresponding toN21
@5rank for SU(N)] Abelian U~1! factors in the Cartan sub
algebra of SU(N). Repeating the same analysis, one can
that fundamental and antifundamental representations@N#

and @N̄# are induced on the domain wall (n,n11) and (n
11,n) respectively. Heren50,1, . . . ,N21 corresponds to
a52pn. One can see that taking two domain walls (n,n
11) and (n11,n12) one can get all representations corr
sponding to the product of two fundamental representati
@N#3@N#. For m consecutive walls we have@N#3@N# . . .
3@N#. If one takesm5N21 than one can get antifunda
mental representation, in full agreement with the fact that
N21 walls (0,1),(1,2), . . . ,(N22,N21) make together a
wall (0,N21), which is equivalent to the wall (N,N21).
But the last one, as any (n11,n) wall, corresponds to anti-
fundamental representation@N̄#.

Returning to our original problem, SUSY gluodynamic
we note that the phase ofl2 in a sense plays a role analogo
to the axion field. It could be interesting to pursue the an
ogy between the Abelian toy model and SUSY gluodyna
ics further.

In summary, in supersymmetric theories which have
generate vacua with very different physical properties,
fact that the confining string can end on a domain wall
quite natural. Actually, the wall does not have to be B
saturated to serve as a sink for the chromoelectric flux c
ried by the string.

Regardless, it is still an interesting question whether
possible BPS saturated walls are dynamically realized
SUSY gluodynamics. In the next section we will attempt
address this question. Although we will not be able to giv
positive proof, we will show that the straightforward sear
in the framework of the Veneziano-Yankielowic
Lagrangians for the walls connecting neighboring chira
asymmetric vacua is in general a dangerous endeavor. A
shall see the cusp structure of these Lagrangians mak
impossible to decide this question without additional no
trivial dynamical information. We will also present a to
version of the underlying phenomenon.

III. GLUED POTENTIALS

A. N counting and paradoxes of the wall building
in the Veneziano-Yankielowicz Lagrangians

First, we briefly remind the relevant formalism. The e
fective Lagrangian for SUSY gluodynamics was writte
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down a long time ago@6# and then amended recently@5# to
properly incorporate the non-anomalousZN symmetry.

We will write down the Lagrangian realizing the anom
lous Ward identities in terms of the chiral superfield

S5
3

32p2N
Tr W2, ~19!

namely,

L5
1

4E d4uN2~S̄S!1/31
1

3E d2uNSS ln
SN

sN
12p in D

1
1

3E d2ūNS̄S ln
S̄N

s̄N
22p in D , ~20!

wheres is a numerical parameter,

s5eL3eiq/N,

andL is the scale parameter, a positive number of dimens
of mass which we will set equal to unity in the following
Please, note theN factors in Eqs.~19! and ~20!.

An important element in the Lagrangian~20! is an
integer-valued Lagrange multipliern. In calculating the par-
tition function and all correlation functions the sum overn is
implied. The variablen takes only integer values and is not
local field. It does not depend on the space-time coordin
and, therefore, integration over it imposes a global constr
on the topological charge. It is easy to see that~after the
Euclidean rotation! the constraint takes the form

n5
1

32p2E d4xGmn
a G̃mn

a 5Z. ~21!

While theF term in Eq.~20! is unambiguously fixed, the
D term is not specified by the anomalous Ward identiti
We have chosen it in the simplest possible form, with
numerical coefficient which gives the correct largeN count-
ing.

The extra term added to the Lagrangian is clearly sup
symmetric and is also invariant under all global symmetr
of the original theory. The single-valuedness of the sca
potential and theZN invariance which were missing in th
original Veneziano-Yankielowizc effective Lagrangian a
restored.4 The chiral phase rotation by the angle 2pk/N with
integerk just leads to the shift ofn by k units. Sincen is
summed over in the functional integral, the resulting L
grangian forS is indeedZN invariant.

The constraint on@S2S̄#F following from the Lagrangian
~20! results in a peculiar form of the scalar potential. T
expression for the scalar potential is given in Ref.@7#.

4The explicit invariance here isZN rather than the completeZ2N

of the original SUSY gluodynamics, since we have chosen to w
our effective Lagrangian for the superfield which is invariant un
l→2l.
n

es
nt

.
e

r-
s
r

-

Eliminating, as usual theF component ofS with the help
of classical equations of motion at fixedn, the effective po-
tential can be written as

U~f!52V21 lnF(
n

exp$24N2V~f* f!2/3@ ln2ufu

1~a1pn!2#%G . ~22!

HereV is the total space-time volume of the system,f is the
lowest component of the superfieldS, anda5arg(f). In the
limit V→` only one term in the sum overn contributes for
every value ofa; which particular term depends on the valu
of a. Thus, for 2p/N,a,p/N the only contribution
comes fromn50. In this sector the scalar potential is

U~f!54N2~f* f!2/3ln f ln f* . ~23!

In general we have
U~f!54N2~f*f!2/3ln~fe2i2pn/N!ln~f*ei2pn/N! ~24!

at
~2n21!p

N
,argf,

~2n11!p

N
.

In other words, the complexf plane is divided intoN
sectors. The scalar potential in thenth sector is just that in
the first sector rotated by22p/N. The scalar potential itsel
is continuous, but its first derivative in the angular directi
experiences a jump at argf5(2n11)p/N. The scalar po-
tential is ‘‘glued’’ out of N pieces. TheZN symmetry is
explicit in this expression. It is quite obvious that the pro
lem at hand hasN11 supersymmetric minima—N minima
at f5ei2pn/N, corresponding to a nonvanishing value of t
gluino condensate~spontaneously broken discrete chir
symmetry!, and a minimum atf50 ~unbroken chiral sym-
metry!.

Including the kinetic term of the field S, as it appears
Eq. ~20!, leads to the following effective Lagrangian:

L5N2$]mf1/3]mf* 1/31U~f!%. ~25!

We now ask ourselves whether this Lagrangian can
used to find an explicit wall solution. In fact, the solution f
the type I wall has been considered in detail in@7# and was
found to exist and to be BPS-saturated. The situation w
the type II walls is more complicated. Note that any fie
configuration that interpolates between the two vacua af
51 andf5ei2p/N has to go through a point where the pha
of the fieldf is p/N. At this point the scalar potential has
cusp, and one has to be very careful in treating such confi
rations.

As an illustration, let us forget for a while about possib
complications and estimate the tension of the type II w
using the Lagrangian~25!. The potential and kinetic energie
should contribute to the tension of the wall roughly the sa
amount, so we concentrate on the kinetic term. The varia
of the fieldf inside the wall at largeN is Df;O(1/N). The
massm of the fieldf is independent ofN with our choice of

e
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the coefficient of the kinetic term.5 The width of the wall
obviously is of orderL;1/m;O(1). The kinetic energy
contribution is, therefore,

Ekin;N2~Df!2/L2;O~1!, «;EkinL;O~1!. ~26!

The same estimate is obtained if we consider the poten
energy contribution.

Surprisingly, this is by far lower than the BPS bound
the wall energy in the original theory, Eq.~5!, which gives
«;O(N). At first sight this might seem to be an arithmet
paradox even in the framework of the effective theoryper se,
viewed as a generalized Wess-Zumino model. In the ge
alized Wess-Zumino models with a superpotentialW(S) the
BPS bound is~@3,4#, see also@24#!

«.2uW~S1!2W~S0!u, ~27!

whereS0,1 are the values of the field in two vacua betwe
which the given wall interpolates. Taken at its face value t
would give a bound of«;O(N) for the type II wall we are
considering.

In fact, there is no arithmetic paradox here. The B
bound ~27! on the wall energy in the generalized Wes
Zumino models assumes that the superpotential is smoot
the effective theory~20!, for the walls that cross the cus
~type II!, it experiences a jump,

DW`5W~S`1!2W~S`2!Þ0.

@HereS` is the point where the wall crosses the discontin
ity line, andW(S`2) andW(S`1) are the values of the
superpotential below and above this line, respectively.! The
superpotential which is obtained from Eq.~20!, after summa-
tion over n, has a phase discontinuity along the same lin
where the effective scalar potential~24! has a cusp. Account
ing for the jump modifies the bound and, instead of Eq.~27!,
we therefore have

2uW~S1!2W~S0!2DW`u. ~28!

Due to the discontinuityDW` , the expression in Eq.~28! is
O(1), in full accord with Eq.~26!.

5This is, in fact, how the meson should behave at largeN and this
is the reason of choosing the coefficientN2 in front of the kinetic
term in Eq.~20!.

FIG. 1. The scalar potential in the model considered in S
III B.
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Nevertheless, even though there is no paradox at the l
of the effective theory, clearly the effective potential gross
misrepresents the tension of the type II wall. This is surp
ing since the fieldf changes slowly inside the wall, an
normally one would think that the effective potential shou
properly describe slowly varying configurations. It is cle
that this failure is intimately connected with the cusp stru
ture of the effective potential. Our aim now is to understa
what is the physical origin of the cusp structure. To warm
we consider first a very simple~non-supersymmetric! model,
leading to a similar structure, and then move on to a m
general picture of the phenomenon in supersymmetry.

B. Glued effective potential in a simple model

To understand how an effective potential with cusps c
appear from a smooth potential of the original theory it
best to consider an explicit example. Let us take a~nonsu-
persymmetric! theory of two scalar fields with the potentia
~Fig. 1!

U~f,x!5
l

2
~f22h2!21

z

2
~x22m2!22k2fx, ~29!

wheref andx are real fields andl andz are the coupling
constants. The coupling constantk is taken to be real. The
mass of thef quantumM254lh2, while that of thex quan-
tum m254zm2. Let us assume that the fieldf is much
heavier than the fieldx, M@m. For technical simplicity we
will also assume thatk!m,M , and the expectation value
h,m are of the same order of magnitude, although this is
crucial.

The theory hastwo symmetry breaking minima. When
both coupling constantsl,z are large, those are

$f5h,x5m% and $f52h,x52m%. ~30!

Let us now derive an effective potential for the fieldx by
integrating outf. To calculate the effective potential in th
leading adiabatic approximation we fix the value ofx and
solve forf in this background. Note that for a fixed and n
too large value ofx the potential forf has two local
minima. Generically, the two local minima are nondegen
ate. Forx,0 the statef52h has lower energy,6 while for
x.0 the global minimum is atf5h. At x50 both local
minima become degenerate. At this point there is a disc

6We neglect here small corrections of orderk/m andk/h to the
values off at the minima.
.

FIG. 2. The effective potential obtained after the heavy fieldf
is integrated out. The cusp atx50 reflects a restructuring of the
vacua in thef sector.
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tinuous change of the vacuum in the heavy sector. As a re
the effective potential develops a cusp of precisely the sa
nature as discussed in the previous section,

Ueff52k2huxu1
z

2
~x22m2!2. ~31!

Thus, although the underlying theory is perfectly smooth,
effective theory has two sectors and a cusp atx50 ~Fig. 2!.

We can again pose the question about the existence o
wall, and the calculability of its energy density from th
effective Lagrangian. Clearly there exists a solution of
original equations of motion, stemming from Eq.~29!, with
the wall boundary conditions, i.e., interpolating between
two vacua of Eq.~30!. It is equally clear that the estimate o
its energy from the effective Lagrangian will be generica
incorrect. The obvious reason is that the effective Lagrang
is completely independent of the larger mass scaleM . This is
natural since it was calculated in the leading adiabatic
proximation, i.e., in the limitM→`. On the other hand, to
produce the wall one has to excite the heavy fieldf, which
jumps from 2h to 1h inside the wall profile. This costs
energy proportional toM , so the wall energy density in thi
theory must be proportional toM . The wall tension in the
present example can be calculated directly from the ‘‘fun
mental’’ Lagrangian~29! without appealing to the effective
Lagrangian~31!. Roughly it behaves as

«5xMh21ymm2, ~32!

wherex andy are numbers of order one. If the expectati
values of the heavy and light fields are of the same ord
h;m, the bulk of the wall energy is contributed by th
heavy modes. In that case the wall energy cannot be obta
from the effective potential forx. One can say that a dom
nant part of the wall tension is associated with the cusp.

Physically the picture of what is happening is very simp
The fieldx is light and therefore changes slowly inside t
wall, on the scale 1/m. The heavy fieldf follows this change
adiabatically almost everywhere in space, except for the
gion wherex50. In this region, within a distance of orde
1/M , the value off changes from2h to h. The big contri-
bution to the wall energy density, proportional toM comes
precisely from this small region in space in which the fieldx
sits on the cusp of the effective potential.

If we use the effective potential to calculate the wall e
ergy, the result will be of ordermm2, since this is indeed the
contribution of the light field. The contribution of the heav
fields can be thought of as an extra contribution of the c
in the light field effective potential.

There are several lessons we want to draw from this
model. First, the physical reason for the appearance of
cusp in the effective potential~glued potential! at some value
x0 of the field is that at this particular value of the light fiel
the system of heavy fields has two~or more! degenerate
ground states. In general, when the value of the light fi
changes continuously, the heavy fields follow adiabatica
after this change. However when the light field pas
throughx0, there is a level crossing in the heavy system a
the properties of the heavy field vacuum change discont
ult
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ously. This ‘‘first order phase transition’’ leads to discon
nuity in the first derivative of the effective potential, an
therefore, a cusp.

The second lesson is that the wall configuration that c
nects the points on different sides of the cusp necessa
involves excitation of heavy modes. This is since close to
point x0 inside the wall the heavy modesmustrearrange in
order to make the transition between the two degene
vacuum states.

Finally, the description of the wall with the help of th
naive glued potential is not valid if the bulk of the wa
energy comes from the change of the heavy fields. The p
lem stems from the fact that the effective potential is cal
lated in expansion in powers of 1/M , which is the adiabatic
approximation. As we already stressed, the adiabatic
proximation breaks down inside the wall due to the lev
crossing. On one hand, this is a signal of possible appear
of terms proportional toM in the effective action. On the
other hand, this is precisely the situation in which a no
trivial topological Berry phase should appear. A more care
calculation of effective action should reveal the presence
the terms of the type

M @f~`!2f~2`!#2. ~33!

This topological term does not affect the vacuum sector,
adds the missing large piece, cusp contribution, to the ene
of the wall.

Returning to SUSY gluodynamics it is now clear why th
original BPS bound is so badly violated by wall configur
tions in the effective theory. The reason is that the effect
theory misses a large cusp contribution to the energy wh
comes from the heavy modes not appearing in the effec
Lagrangian that are excited inside the wall. We conclu
therefore, that the Veneziano-Yankielowicz effective L
grangian, as it stands, cannot be used to calculate the
energy; without additional information we cannot s
whether or not the BPS saturated type II walls exist in SU
gluodynamics.

In the next section we would like to give a detailed e
ample of how this situation arises in a supersymme
theory. The model we will consider has the same symmet
as SUSY gluodynamics and an effective potential of
Veneziano-Yankielowicz type. We will see in detail how th
cusp structure of the effective Lagrangian appears when
tegrating out the heavy superfields and will be able to tr
exactly the missing piece of the wall energy.

C. Supersymmetric model withN sector superpotential

The model of the previous subsection was only intend
for explaining how cusps arise in the effective potential. W
now want to consider a model which captures more featu
inherent to SUSY gluodynamics. Consider a generaliz
Wess-Zumino model of two scalar chiral superfieldsF and
X, with the superpotential

W5
a

N12
FN122bFX1

c

2
X2, ~34!

where the coefficientsa, b, andc are real positive numbers
This model obviously has aZN symmetry, under which
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F→Fei2pn/N, X→Xei2pn/N, u→uei2pn/N. ~35!

The global minima of the energy are determined from
equations

]W
]F

5aFN112bX50,
]W
]X

52bF1cX50. ~36!

These equations have oneZN symmetric solution

F5X50 ~37!

andN solutions which spontaneously break theZN symmetry

Fn5S b2

acD
1/N

ei2pn/N, Xn5
b

c
Fn . ~38!

Choosingb@c, we find that the fieldF near the asymmetric
vacua is very heavy; its mass

M5~N11!
b2

c
, ~39!

while the fieldX is light, with the massm5c.7

The effective potential for the fieldX is obtained by
eliminating the heavy fieldF by virtue ]W/]F50, see the
first equation in~36!. The condition]W/]F50 hasN11
solutions

F* ~X!5S b

a
XD 1/~N11!

expH 2p in

N11 J . ~40!

The solution has to be substituted in the superpotential,

W@F,X#→W@F* ~X!,X#

52
N11

N12
bS b

aD 1/~N11!

X~N12!/~N11!

3expS 2p in

N11D1
c

2
X2. ~41!

This is not the end of the story, however. The effective
perpotential is obtained by choosing for every value ofX the
solution that gives a minimal energy. The energy as a fu
tion of the lowest componentx of the superfieldX for each
branch is

U2bS b

a
x D 1/~N11!

expH 2p in

N11 J 1cxU2

. ~42!

Clearly, the energy is minimal for the branch for which argx
is closest to

7Strictly speaking, the mass matrix is non-diagonal. There i
small admixture ofX in the heavy diagonal combination, and
small admixture ofF in the light diagonal combination. These a
mixtures areO(cb21N21), and the absolute shift in the mass e
genvalues isO(cN21). This shift, as well as the mixing mentione
above, can be neglected in the limitN@1 andb@c. Moreover, if
N@1, it is not necessary to requireb@c. Even atb;c the hierar-
chy of masses takes place,M@m, and the off-diagonal elements o
the mass matrix are negligible.
e

-

c-

2pn

N11
1

1

N11
arg x.

For instance, if x is real and positive,n50, if argx
52p/N thenn51, and so on. At argx5p/N both branches,
with n50 andn51, have the same energies. The result
effective superpotential hasN sectors and is ‘‘glued’’ along
N rays,

Weff5
c

2
X22

N11

N12
bS b

aD 1/~N11!

X~N12!/~N11!, ~43!

at 2
p

N
,argx,

p

N
,

Weff5
c

2
X22

N11

N12
bS b

aD 1/~N11!

expH 2p i

N11 J X~N12!/~N11!,

~44!

at
p

N
,argx,

3p

N
,

and so on@see Eq.~41!#. The discontinuities in the effective
superpotential~or, equivalently, the cusps in the effectiv
potential! occur along the rays

argx5
~2k11!p

N
,

where two branches in Eq.~40! with n5k andn5k11 are
degenerate in energy; see Eq.~42!. For instance, at argx
5p/N

Weff~x`6!5e2p i /NFcuxu2

2

2
N11

N12
bS b

aD 1/~N11!

uxu~N12!/~N11!

3expS 6
p i

N11D G .
Now we are ready to address the issue of the dom

walls. Consider a domain wall that connects two adjac
asymmetric vacua. The BPS bound on its tension is

«.2uW~F0 ,X0!2W~F1 ,X1!u

5
2N

N12

b2

c S b2

acD
2/N

sinS 2p

N D . ~45!

At large N this is of order 1/N. On the other hand, a naiv
estimate based on the effective potential for the light fi
would yield

«;muDxu2;
b2

c S b2

acD
2/N 1

N2
;N22. ~46!

Just like in SUSY gluodynamics the two expressions
incompatible. We know already that the reason is that
adiabatic approximation used to derive the effective L
grangian breaks down at the cusp. For configurations cr
ing the cusp an extra ‘‘topological’’ term has to be added

a
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the effective Lagrangian, as discussed in the previous
tion. Let us first estimate a part of the tension associated w
the cusp, and the corresponding restructuring of the he
field f. A straightforward estimate analogous to that of E
~46! is

«`;M uDfu2;
b2

c S b2

acD
2/N 1

N
, ~47!

i.e., we reproduce the order of magnitude of the BPS bo
~45!.

As a matter of fact, in the present case one can do be
than that. To this end we note that the only point where
adiabatic approximation breaks down is at the cusp. In o
words, almost everywhere throughout the space the he
field f does indeed follow the change ofx adiabatically.
Only at the point inside the wall, where

x5reip/N,

the value off changes rapidly. This change, of course, do
not happen abruptly, but rather on the scale of the inve
mass M 21 of the field f. The field x remains constan
throughout the region of space where the rapid variation of
takes place. The profile off in this region as well as the
energy associated with this variation can be calculated
considering the original theory at a frozen cusp value ofx.

If x5r exp(ip/N), the wall profile of the fieldf is deter-
mined from the following superpotential:

Wf5
a

N12
FN122breip/NF. ~48!

At x5r exp(ip/N) the two branches of Eq.~40! are degen-
erate. Thef wall under consideration interpolates betwee

f* 0,15S b

a
r D 1/~N11!

expF ipS 1

N
6

1

N11D G , ~49!

where the upper and lower signs correspond to the final
initial points, respectively. These points are two degene
minima of the potential stemming from Eq.~48!. Thef wall
in question is BPS saturated. This is because the BPS e
tion in this case is a pair of the first order equations for t
real fields~real and imaginary parts off),

]zf5
dW̄
df̄

expS 2
ip

2
1

2p i

N D , ~50!

which possess one conserved quantity~see Ref.@4# for de-
tails!

ImF „W~F!2W~F* 0!…expS ip

2
2

2p i

N D G50. ~51!

Using Eq.~51! one can always eliminate one real field, ge
ting in this way a trajectory in the plane$Re f,Im f% that
connectsf* 0,1. The trajectory depends on one real variab
The resulting one first-order equation for one real funct
always has a solution.

We conclude that the tension of thef wall ~the cusp
term! is given by the BPS bound for the theory with th
superpotential~48!,
c-
th
vy
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«`54
N11

N12
~br!~N12!/~N11!a21/~N11!sin

p

N11
. ~52!

This is precisely the term that has to be added to
effective potential ofx in order to be able to calculate th
wall tension properly. Equation~52! can be generalized to
wall configuration which connects any two vacua, and n
necessarily the two adjacent ones. The extra term in this c
would be just the sum of contributions of all cusps cross
by the wall.

Note that although thef component is built above
through the BPS saturation, the full$f,x% wall in the origi-
nal theory is not BPS-saturated, at least, in some rang
parameters.@We mean the type II wall connecting, say, tw
neighboring asymmetric vacua withn50 andn51 in Eq.
~38!.#

To see that this is indeed the case consider the model~34!
with a5b5c51 andN@1. @For these values of paramete
the field F is still much heavier thanX; see the footnote
following Eq. ~39!#. Assume that the wall is BPS saturate
Then

]zf5~f̄N112x̄ ! expS ip

2
1

2ip

N D ,

]zx5~2f̄1x̄ !expS ip

2
1

2ip

N D . ~53!

As a consequence,

]zf1]zx5~f̄N112f̄ !expS ip

2
1

2ip

N D , ~54!

where the right-hand side contains no dependence onx̄. We
can take advantage of this fact. Multiply both sides by]zf̄
and integrate overz from 2` to 1`. Then

E
2`

`

~]zf1]zx!]zf̄dz5expS ip

2
1

2ip

N D
3F 1

N12
f̄N122

1

2
f̄2G

2`

`

52
«BPS

2
, ~55!

where«BPS is the tension defined on the right-hand side
Eq. ~45! and the values of thef field in the vacua, Eq.~38!,
are substituted. Equation~55! implies

E
2`

`

~]zx!~]zf̄ !dz52
«BPS

2
2C1 , ~56!

whereC1 is a realpositivenumber. On the other hand,

C25E
2`

`

~]zf1]zx!~]zf̄1]zx̄ !dz

5E
2`

`

~]zf]zf̄1]zx]zx̄ !
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1F E
2`

`

~]zx!~]zf̄ !dz1 H.c.G , ~57!

whereC2 is a realpositivenumber. The first term is obvi
ously equal to«BPS/2, while the second term can be read o
from Eq. ~56!. In this way we obtain

C25
«BPS

2
12S 2

«BPS

2
2C1D , ~58!

or C212C152«BPS/2. This relation is obviously inconsis
tent, which proves that we cannot built a BPS saturated w
in the problem at hand.

Thus the lesson to be drawn is as follows. Considera
of the effective low-energy theory, by itself, yields inform
tion on the vacuum structure. The fact of existence of
walls can be unambiguously inferred from this informatio
But neither the nature of the wall~BPSversusnon-BPS!, nor
its tension can be properly found from the analysis of
effective low-energy theory if the corresponding potentia
glued from distinct sectors, and the wall in question cros
the cusps.

D. Elements of the general theory

Given an effective low-energy theory, obtained after in
grating out all heavy fields, with a discrete set of degene
vacua~as it is typical for supersymmetry!, the question we
ask is can one infer from this low-energy theory the ex
tence of the BPS walls interpolating between the disti
vacua? Under what circumstances the BPS wall seen in
effective theory is a reflection of the wall in the full theory
And vice versa, if we see no BPS walls in the effectiv
low-energy theory does it mean there are no such walls in
full theory?

The full general theory is not yet worked out, and t
answers to these questions in the generic situation are
known so far. In this section we will present some illustrati
considerations which are valid in the simplest possible
ting: the generalized Wess-Zumino models, with all para
eters in the superpotentials that are real. We will limit o
selves to the wall solutions where all fields take real valu
so we do not have to travel in the complex plane, and
apply a rich physical intuition stemming from the fact th
the BPS equations in this case are those of high-visco
fluid ~the so-called creek equations! @4#. We will see that
even in this simplest case the situation is quite nontriv
Whenever the low-energy theory has a glued potential,
can count the number of distinct walls but, generically, c
say nothing about their BPS nature and/or tension.

Let us consider for simplicity two chiral superfields,F
andX, and a superpotential shown on Fig. 3.~More exactly,
Fig. 3 displaysW as a function off,x for real values of
f,x.! Shown are two ‘‘mountain ridges,’’ the left ridge an
the right one, separated by a ‘‘canyon.’’ The heavy field
F, the light one isX. The vacua of the theory correspond
the points where

]W
]F

50,
]W
]X

50. ~59!
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These points are denoted byA,B,C,D,E on Fig. 4. The
pointsA,B,C lie on the left ridge, the pointD on the right
ridge, while the pointE belongs to the bottom of the canyon

The low-energy reduction is obtained by eliminating t
field F by virtue of the equation

]W~F,X!

]F
50→F5F* ~X!. ~60!

SubstitutingF* (X) back in the superpotentialW we get an
effective low-energy superpotential

Weff~X!5W„F* ~X!,X…. ~61!

Equation ~60! determines the positions of the mounta
ridges and the bottom of the canyon, while Eq.~61! projects
them onto theWx plane. One can visualizeWeff as shadows
of the ridges left by a parallel horizontal beam of light in th
f direction.

First of all, let us prove that the vacua of the full theo
~extrema ofW) lie on the mountain ridges and/or bottoms
the canyons~extrema ofWeff). Indeed,

FIG. 3. A superpotential with two mountain ridges and a cany
and five vacuum states.

FIG. 4. The projection of the superpotential of Fig. 3 onto t
Wx plane. Shown are the shapes of the mountain ridges and
canyon bottom. The points of extrema inW are denoted by
A,B,C,D,E.
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dWeff

dX
5F]W~F,X!

]X
1

]W~F,X!

]F

]F*
]X G

F5F
*

~X!

50,

if Eq. ~59! is satisfied. Thus the extrema ofWeff andW
coincide.

Let us assume now, for a short while, that the right mo
tain ridge and the canyon do not exist, and the profile ofW
has only the left mountain ridge, with three vacua,A,B and
C. In this case the solution of Eq.~60! is unique. The full
theory has two BPS walls:AB andCB. The potential of the
low-energy effective theoryWeff(X) is a smooth function,
and the low-energy theory has two BPS walls too. Th
existence can be seen from the creek equation in the
energy theoryper se,

]zX5
dWeff

dX
. ~62!

The wall profileX(z) we find from Eq.~62! is a little bit
different from what one would get by solving the creek equ
tions in the full theory,

]zX5
]W~F,X!

]X
, ]zF5

]W~F,X!

]F
. ~63!

The difference vanishes in the limit when the fieldF be-
comes infinitely heavy; it dies off as positive powers
1/Mf . At the same time, the wall tension found in the e
fective theoryexactly coincideswith that one would find in
the full theory. No 1/Mf corrections can appear. This is
remarkable feature of BPS supersymmetric walls. The t
sion of such a wall is exactly determined by the cent
charge @3,4,7# which reduces, in turn, touW(F0 ,X0)
2W(F1 ,X1)u in the full theory, and to uW(X0)eff
2W(X1)effu in the effective low-energy theory.~Here
$F0,1,X0,1% are the points of extrema.! The two expressions
above coincideidentically.

Summarizing, if for all values of the light fields the solu
tion for the heavy fields, to be integrated out, is unique,
existence of a BPS wall in the effective theory entails
existence of such a wall in the full theory, andvice versa.
Moreover, if one calculates the wall tension in the effect
theory, one gets the exact answer valid in the full theo
with no 1/Mf corrections.

Let us return to the superpotential depicted on Fig. 3, w
two mountain ridges and one canyon. In addition to theAB
and CB walls, the full theory has aBE wall which is BPS
saturated, and three continuous sets of BPS wallsAE, CE,
andDE. Each set includes an infinite amount of degener
walls ~by degenerate we mean that the tensions of all w
inside each set are the same!. The phenomenon of continu
ously degenerate supersymmetric walls was first observe
Ref. @25#. Besides these BPS walls, the full theory may ha
AD,BD, andCD walls that are not BPS saturated. Depen
ing on the values of parameters in the superpotential it m
be expedient for some or all non-BPS walls to decay int
pair of BPS walls.

What can be said about the effective theory? The co
sponding low-energy effective potential will be glued out
five pieces, as indicated in Fig. 4. In each of five domai
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the branch of the effective superpotential corresponding
the lowest energy is shown by rectangles. We get a typ
five-sector structure of the scalar potential in the effect
theory. From this structure we conclude, with certainty, th
the theory under consideration has five degenerate vac
states, so that each pair can be connected by a domain
Inspecting the low-energy theory, without additional info
mation on the full theory, we can say nothing, genera
speaking, as to the nature of these walls. The reason is
vious: we have no idea where each sector comes fr
whether or not two extrema in question belong to one and
same mountain ridge~canyon!. If they do, no restructuring of
the heavy fieldf vacuum occurs inside the wall, and w
return back to the situation with the unique solution of E
~60! discussed above.

If extrema from different sectors actually do belong
distinct mountain ridges or canyons8 @Eq. ~60! has more than
one solution# there is no unambiguous way to decide BP
versusnon-BPS from inspection of the low-energy theo
alone. We need additional information regarding what h
pens with the heavy fields inside the wall. In any case, a p
of the wall tension associated with the light fields will n
saturate«.

IV. THE KALUZA-KLEIN DOMAIN WALL

As was discussed above, the tension of the walls inter
lating between the neighboring vacua in supersymme
gluodynamics is expected to scale asN rather thanN2. This
gives rise to a natural identification of these walls with t
D-brane solutions found in Ref.@9#. Here we will show, that
this phenomenon, ‘‘abnormal’’N dependence, is actuall
more general, and shows up in other wall configurations
lated to Witten’s analysis. In fact, the low-energy limit of th
theory considered in Ref.@9# is a five-dimensional Kaluza
Klein ~KK ! theory with a five-dimensional SU(N) gauge
field AM ,M51, . . . ,5 andcharged matter. After compactifi
cation there are two types of gauge fields—our original
(N) gauge fieldAm and a new U~1! gauge fieldBm coming
from theGm5 components of the metric tensor as well as
scalar made from the fifth componentA5 of the SU(N)
gauge field. We are going to demonstrate that if this theor
modified, so that the supersymmetry is broken explicit
there is a new type of domain wall due to the fieldA5. By
analyzing this low-energy theoryper se, with no reference to
D-branes, we demonstrate that the wall tension scales aN,
in parallel with the brane-based derivation of Ref.@9#. More-
over, these walls carry an induced fractional charge@18#.
Conceptually the situation reminds that with the axion w
discussed in Sect. II B.

The theory to be considered is gravity plus the gauge fi
AM in five dimensions. To warm up we start from the Ab
lian case, i.e., the U~1! gauge group. At this stage we als
omit the superpartners from the discussion. The action is

8Generally speaking, distinct sectors can belong to one and
same branch, see pointsA andC in Fig. 4.
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S5E d5xA2GF2k5R2
1

4e5
2

FMNFMN

1GMN~]M2 iAM !F* ~]N1 iAN!FG , ~64!

wherek5 and e5 are the five-dimensional gravitational an
gauge coupling constants,GMN is the metric,R stands for
the curvature,FMN is the gauge field strength tensor, all cap
tal Latin letters run from 1 to 5, say,M ,N51, . . . ,5, while
the Greek lettersm,n, . . .51, . . . ,4. It is assumed that on
of the five dimensions forms a circle, so that we deal w
M43S1 KK model. The matter sector consists of charg
scalarsF, the simplest possible choice.

After M43S1 decomposition of the metric

GMN5S gmn Bm

Bn 11BmBmD ; GMN5S gmn1BmBn 2Bm

2Bn 1 D
~65!

we get four-dimensional gravity, two U~1! gauge fieldsAm
andBm , plus a scalarA5 ~we put dilatonG5551).

For any manifoldK with a nontrivial p1(K) the KK
theory contains special Wilson line operators

Ug5P expS i R
g
AdxD , ~66!

where g is a closed noncontractible contour onK. In our
caseK5M43S1 andp1(S1)5Z. For the U~1! gauge field

U5eif, fP@0,2p!.

The phasef represents the constant component of the ga
field A55@0,1/R#, where R is the compactification radius
Other values ofA5 can be gauged into the interval@0,1/R)
while A551/R is gauge equivalent toA550. The corre-
sponding gauge function ise5x5 /R. This means that the
charged~with respect to fieldA) fields are related by a gaug
transformation,

CA551/R~x,x5!5eix5 /RCA550~x,x5!, ~67!

where x denotes four noncompact coordinates. Using
standard KK decomposition

C~x,x5!5 (
n52`

`

einx5 /RCn~x!, ~68!

where Cn(x) describes different four-dimensional field
with massesmn

25n2/R2 and charges9 q5n with respect to
the KK gauge fieldBm5Gm5, we see that the gauge tran
formation ~67! shifts n→n11:

Cn~x!uA551/R5Cn11~x!uA550 . ~69!

9We refer to the chargeq as the KK charge, as opposed to th
conventional charge defined with respect toAm .
e

e

Changing adiabaticallyA5 from zero to 1/R all levels in
the particle spectrum are shifted by one. For example
massless neutral~with respect toBm) particle will be trans-
muted into a heavy (m51/R) charged (q51) particle. Thus,
if there is a domain wallA5(x) interpolating betweenA5
(2`)50 andA5(`)51/R, and one scatters a massless ne
tral particle withn50 on the domain wall it either reflects o
becomes massive and charged. The total KK charge mus
conserved in the process, since it is the gauge charge w
generates a part of the general coordinate transforma
dGMN5]MeN(x,x5)1]NeM(x,x5) which for eM(x,x5)
5dM ,5e(x) is the U~1! gauge transformation,dBm5dGm5
5]me.

The conservation of the KK charge is insured in a w
very similar to the one discussed in Sec. II B. In the prese
of the charged particles the domain wall itself acquires
induced KK chargeq. The total charge of the domain wa
plus the particle is conserved. The real process of the par
penetration through the domain wall looks as follows: t
initial state is the KK neutral particle (q5n50) plus the
charged domain wall, with the chargeqi511/2. The final
state~if the particle initially has momentumpx.1/R) is the
charged particleq5n51 plus the domain wall with the
chargeqf521/2. The total charge11/2 is conserved.

These walls have a variety of interesting properties. Th
for example, if the theory contains fermions, their char
may be half integer. In this case the charges of the wall
the fermion are exchanged in the scattering process and t
is no threshold energy for this process. Moreover, the
mion and the wall can form a neutral bound state. Fo
detailed discussion, see Ref.@18#.

Under what circumstances is this wall stable? The fi
dimensional Maxwell term (1/4e5

2)FMN
2 gives rise to the

four-dimensional kinetic term (1/4e2)]mA5]mA5 wheree is
the four-dimensional gauge coupling. It is quite evident th
to get a stable domain wall an effective potential~which does
not exist at the classical level! must be generated. Such a
effective potential U(A5) is indeed induced at the one-loo
level. The mass operator for the scalar field modes is

m̂52 i ]51A5 ; mn5
n

R
1A5 . ~70!

The mass spectrum depends on the value ofA5 with period-
icity 1/R. Due to this dependence there is an effective pot
tial for the fieldA5 which is given, at one loop, by~see@26#
for details!

V~A5!5
1

~2pR!416p2E dtt3ln~122e2tcos 2pRA5

1e22t!. ~71!

This potential is periodic inA5, with the period 1/R. It has
minima atA55n/R. Using this effective potential it is no
difficult to see that the wall widthL is of the order ofR/e
and the energy density~wall tension! scales as

L~1/e2!~1/RL!25~1/e!~1/R3!.
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Observe that the wall tension scales as 1/e rather than 1/e2.
This is essentially the same difference as between theN and
N2 scaling laws in SUSY gluodynamics. Indeed, 1/N is an
effective coupling constant in the string description of t
gauge theory.

The sameN dependence arises also in the non-Abel
case. If there are no fields transforming in the fundame
representation, the gauge groupG is actually not SU(N) but
SU(N)/ZN and p1(G)5ZN , so one may have10 a ZN do-
main wall. The domain walls will be somewhat more com
plicated: instead of one phase field there areN21 indepen-
dent phases@5rank of the group SU(N)].

In the supersymmetric theory the situation is essenti
different. The fermions and the bosons give contributions
the opposite signs to the effective potential, which, thus, c
cel each other. This is so since supersymmetry should
maintained at any value ofA5 and the vacuum energy mu
be zero. Therefore, in five-dimensional SUSY gauge the
~which is essentially a low-energy limit of Witten’s theory!
there are no stable domain walls of the type just discus
To get a nonzero one-loop effective potential supersymm
must be broken explicitly. This can be achieved either
imposing different boundary conditions on bosons and
mions, or by adding non-SUSY mass terms by hand, o
any other way—in any case therewill be an induced effective
potential. In the particular case ofM43U(1) relevant details
can be found in Ref.@26#, and the result for the wall tensio
in the largeN limit is

«;
N

R3

1

eAN
. ~72!

At large N the proper coupling constant is note but g
5eAN, and the domain wall tension has a typicalD-brane
behavior—linear in bothN and 1/g,

«;~N/g!~1/R3!.

Thus we see that in the theory of the type considered
@9# ~with explicitly broken SUSY! a new type of the domain
wall, with an abnormal N-dependence, emerges. Th
D-brane interpretation of these walls should also be poss

V. COMMENT ON DISCRETE ANOMALY MATCHING

The issue of the discrete anomaly matching in SU
gluodynamics was raised in Ref.@10#, with the conclusion
that the chirally symmetric vacuum suggested in Ref.@5#
does not satisfy the matching condition, at least in its na
realization. Although this topic is peripheral to the main su
ject of the present work, we would like to dwell briefly o
this issue in view of general important consequences wh
might follow.

The construction which goes under the name ofdiscrete

10Let us note that these walls are nothing but
(411)-dimensional generalization ofZN domain walls in gluody-
namics at finite temperature@27#. The only difference is that for
finite-T theory we must have antiperiodic boundary conditions
fermions, while in this case there is no such requirement.
n
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anomaly matchingwas suggested in Refs.@28–30#, in a
model-building context where it was quite informative a
useful. Below we will show that in supersymmetric gluod
namics and similar settings no new physical results can
obtained from the procedure, besides those Ward ident
which are already obtained by a different method. The
Ward identities neither support nor rule out the chirally sy
metric Kovner-Shifman vacuum.

Let us introduce the construction in an explicit form, fir
in a somewhat simplified setting of a nonsupersymme
Yang-Mills theory, with the intention to revisit SUSY gluo
dynamics later on. Assume we have a SU(N) Yang-Mills
theory with one quark fieldCa belonging to the adjoint rep
resentation of the gauge group. Note that, unlike SUSY gl
dynamics,C is the Dirac field, so it can be coupled to a
external ‘‘electromagnetic’’ fieldAm vectorially, with a very
small coupling constante,

DL5eC̄agmCaAm . ~73!

The fieldAm is auxiliary and is needed only for the purpo
of constructing the ’t Hooft AVV triangles@31#. The quark
Ca is assumed to be massless.

This theory, classically, has two conserved currents,
vector currentC̄gmC and the axial one,C̄gmg5C. ~There
are two other conserved currents@32#, but this is another
story.! The vector current is useless from the point of view
the ’t Hooft matching@31# and we will forget about it, fo-
cusing on the axial U~1! symmetry associated with the axia
current. This symmetry is internally anomalous,

]m~C̄gmg5C!5
N

8p2
Gmn

a G̃mn
a , ~74!

so that the only remnant of this ‘‘nonsymmetry’’ is a discre
Z4N . The fact of survival of the discreteZ4N symmetry is
most readily seen from the instanton-induced ’t Hooft int
action @33# which in the case at hand includes 4N fermion
lines. The factor 4N is related to the coefficientN in the
right-hand side of Eq.~74!, which in turn representsT(G),
~one half! of the Dynkin index for the adjoint representatio
If instead of the adjoint quark we were dealing with th
quark in a representationR, thenT(G)→T(R).

The survival of a discrete unbroken subgroup of the ax
U~1! is similar to what we have in SUSY gluodynamics.

To construct the ’t Hooft triangles that must be matched
the fundamental and constituent levels we have to hav
continuous axial symmetry, rather than a discrete one.
basic idea of the discrete matching@28–30# is embedding the
theory under consideration into a larger one, where we
have a continuous axial symmetry, which is later sponta
ously broken down toZ4N . The spontaneous breakin
should happen in such a way that at low energies we reco
the original theory plus possible extra decoupled degree
freedom. Such an embedding is easy to achieve by exploi
the phantom axion construction@21#. Let us add to our Yang-
Mills theory a quark fieldQ in the fundamental representa
tion of the gauge group. This quark is coupled to a~color-
singlet! complex scalar fieldF,

DLF5hQ̄RQLF1 H.c.1V~ uFu!, ~75!
r
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where h is a coupling constant, andV(uFu) is a self-
interaction potential which will eventually ensure the dev
opment of a large vacuum expectation value of the fieldF,

^F&5v→`.

Whenv becomes very large, the quarkQ and the modulus of
the filedF disappear from the spectrum, leaving only argF,
the axion field, as a remnant. The quarkQ and the modulus
of the filed F are auxiliary elements of the constructio
With the extra fields introduced in this way we have an a
ditional axial U~1! symmetry

QL→QLeib, QR→QRe2 ib, F→Fe22ib. ~76!

This symmetry is internally anomalous too. Out of two i
ternally anomalous U~1! symmetries we can readily pick u
an anomaly-free combination,

cL→cLe2 ia, QL→QLe2 i2Na, F→Fei4Na. ~77!

The corresponding conserved axial current has the form

Jm5C̄gmg5C22NQ̄gmg5Q1scalar term. ~78!

The vacuum expectation value of the fieldF spontaneously
breaks the U~1! symmetry of Eq.~77!, but since the corre-
sponding charge of theF field is 4N, there is a survivor, a
Z4N subgroup.

So, we have a theory which, at the fundamental level,
an internally anomaly-free axial U~1! containing a discrete
subgroup. At the scale belowv only the discrete subgrou
survives. Let us examine now implications of the ’t Hoo
anomaly matching. The triangle to be considered is AV
where the A vertex is due to the axial current~78!, while the
vector vertices are due to Eq.~73!. Note that the auxiliary
quarkQ has no coupling toAm .

The AVV triangle appearing at the fundamental level

]mJm5
N221

8p2
FmnF̃mn , ~79!

where Fmn is the photon field strength tensor built of th
auxiliary fieldAm . If the photons are on mass shell, Eq.~79!
implies @34,31# the existence of a pole coupled toJm ,

^Jm&5
qm

q2

N221

8p2
FmnF̃mn . ~80!

The coefficient in front ofqm /q2 has to be matched by th
contribution of physical massless particles. Some of th
may or may not occur dynamically, as composite meson
baryons built fromC ’s in the original Yang-Mills theory
under consideration. More important is the occurrence of
massless axion field, which is coupled to the currentJm and,
thus, participates in the matching with necessity. This i
distinctive feature of the discrete matching, as opposed to
’t Hooft matching, where such field, totally foreign to th
original Yang-Mills theoryper se, does not emerge. It is to
be stressed that, as opposed to the Peccei-Quinn constru
@35#, in the present setup the axion is necessarily mass
and cannot acquire mass through nonperturbative effe
-

-

s

m
or

e

a
he

tion
ss
ts.

This is so since it is a Goldstone boson appearing due
spontaneous breaking of a continuous global symmetry.

The axion fielda is not coupled to theAm field because
the auxiliary quarkQ does not have this coupling. It i
coupled, however, to the gluon field, through the stand
vertex

a
1

32p2
Gmn

a G̃mn
a . ~81!

Since its coupling to the currentJm is

Jm
axion524Nv2~]ma!, ~82!

we conclude that at low energies, in the effective low-ene
theory,^Jm&5^Jm&axion plus a possible pole term in̂Jm& due
to the contribution of massless composites built ofC, should
they exist. Here

^Jm&axion5
qm

q2 S 2
N

8p2D ^0uGmn
a G̃mn

a ugg&. ~83!

The momentumq in Eq. ~83! is the momentum flowing in
theGG̃ vertex~the total momentum of the photon pair!. It is
assumed thatq→0.

The matching of Eqs.~80! and ~83! tells us that

N221

8p2
FmnF̃mn1S N

8p2D ^0uGmn
a G̃mn

a ugg& ~84!

5possible contributions due to masslessC composites.

If there are none, then the expression on the left-hand
vanishes.

Recall that our initial task was getting information on th
emergence or nonemergence of the masslessC composites.
The entire construction with embedding the discrete remn
of the anomalous axial U~1! was designed for that purpose
We are neither closer nor further now from this goal. Inde
one can discard this construction altogether, and just c
sider the internally anomalous current~74!. Then, combining
both the external and internal anomaly, we would get

]m~C̄gmg5C!5
N

8p2
Gmn

a G̃mn
a 1

N221

8p2
FmnF̃mn . ~85!

Sandwiching both sides of this formula between^0u and
ugg& in the limit q→0 we immediately reproduce Eq.~84!.
The only interesting dynamical question is whether the le
hand side of Eq.~84! vanishes or not. At first sight theN
dependence of two terms in this equation is different, so
is tempted to say that they cannot cancel each other. A cl
look shows, however, that the discrepancy is superficial.
deed, a typical graph for the second term is depicted in F
5. The gluons are converted into photons through theC
loop. It is not difficult to count that the matrix elemen
shown in Fig. 5 scales asN2, i.e., in the same way as the firs
term in Eq.~84!.

If T(R) were a free parameter than one could establish
nonvanishing of Eq.~84! since the second term is propo
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tional to„T(R)…2 while the first term to dimR. The choice of
T(R) is not free, however, since, on the one hand, to hav
discrete unbroken subgroupZN we must work with the
quarks in representation higher than fundamental, but on
other hand the representation cannot be too high, since
erwise we lose asymptotic freedom. For this reasonT(R)
cannot scale faster thanN. These two requirements are co
tradictory unlessT(R)}N.

Thus Eq. ~84! may or may not vanish, depending o
whether the two terms cancel each other. As far as thN
dependence is concerned, they are perfectly fit to cance
the absence of massless composites theywould be forcedto
cancel. This is nothing but the Novikov-Shifman-Vainshte
Zakharov ~NSVZ! low-energy theorem for the two-photo
coupling toGG̃ @11#.

Instead of the auxiliary photonAm we could have consid
ered the coupling to gravitons, i.e., the U~1! current in the
gravitational background. Then the issue would reduce
formula connecting (N221)RR̃ to a two-graviton matrix el-
ement of NGG̃. Again, the so called discrete matchin
would have nothing to say whether or not the two ter
combine to cancel each other~in the first case there are n
masslessC composites while in the second they would ha
to be present to match the anomaly!.

Now, we can readily adapt our consideration to SUS
gluodynamics. Again, we could have built a ‘‘tower of di
crete anomaly matching’’ by embedding the theory in
larger one where an internally nonanomalous axial U~1! cur-
rent exists, with the subsequent spontaneous breaking of
U~1! down to Z2N , the actual symmetry of SUSY gluody
namics. As we have just demonstrated, this procedure is
dundant. It would yield no more constrains or informati
compared to what one gets considering the axial curren
gluinos from the very beginning. The gluino is described
the Majorana field, so we cannot couple it to the auxilia
photon~vector current!. However, the anomaly in the grav
tational background remains an open possibility. The rela
to be analyzed is

]m~l̄gmg5l!5
N

16p2
^0uGmn

a G̃mn
a u 2 gravitons&

1
N221

8p2
CRR̃, ~86!

whereC is a known constant. The question to be answere
are there massless composites built from gluons or gluin
In the standard chirally asymmetric phase we expect no
while in the chirally symmetric vacuum of Kovner and Sh
man a set of massless composites must exist.

FIG. 5. The two-photon matrix element ofNGG̃. The photons
are assumed to be on mass shell.
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We see that, if at all, the massless composites of
Kovner-Shifman solution facilitate the anomaly matchin
Indeed, in the chirally asymmetric vacua the exact cance
tion of two terms in Eq.~86! must take place, while in the
chirally symmetric one this cancellation can be partial. T
missing part will then be filled by the contribution of mas
less composites. Regardless, theN dependence of both term
in Eq. ~86! is the same, and no constraints on the chira
symmetric solution@5# follow.11

To summarize, the addition of extra matter which pr
motes the discreteZ2N symmetry into the continuous on
necessarily leads to the appearance of a massless axion.
axion is indeed practically decoupled from the dynamics
the rest of the low energy sector when the symmetry bre
ing scalev2 is large. However, at the same time it coupl
strongly to the conserved global current by virtue of E
~82!. As a result, the contribution of the axion to the anoma
matching is finite and independent of the scalev. This con-
tribution is the first term on the right hand side of Eqs.~85!
and ~86!. The discrete anomaly matching conditions, the
fore, do not pose any restrictions on the spectrum of mass
composite fermions but, rather, just determine the contri
tion of the axion which is not a physical quantity in th
original theory. In this language the ‘‘moduloN’’ matching
of Ref. @10# is the statement that the contribution of the axi
to an anomaly triangle has to be an integer multiple12 of N.
This statement is true in a simple case when the fundame
fermions acquire mass only due to a Yukawa coupling to
scalar whose vacuum expectation value breaks the gl
U~1! symmetry down to the discrete subgroup in question
is, however, not provable as a general result and there isa
priori reason to believe that it holds in strongly interacti
theories with confining dynamics, like SUSY gluodynamic

For example, let us consider the very same toy mo
~75!, but this time, instead of the vector current~73!, let us
analyze the triangle with two vector currentsQ̄gmQ ~and the
same axial current as above!. For convenience one ca
coupleQ̄gmQ to another auxiliary vector fieldAm , which is
distinct from the fieldA introduced above. (A does not

11We note that the existence of the chirally symmetric phase
questioned recently on different grounds in@36#. It was claimed that
such a chirally symmetric phase would be necessarily supercon
mally invariant and, therefore, have more symmetries than the
grangian of the original theory. Unfortunately this argument is n
substantive. First, the fact of superconformal invariance of
chirally symmetric phase was not established in@36#. It is perfectly
conceivable that the correlators in this phase depend logarithmic
on LQCD. Second, even if the superconformal invariance is the
this is not forbidden by general principles of quantum field theo
For instance, in the realm of models of critical phenomena,
phenomenon of symmetry enhancement at the infrared fixed p
is well known and not at all rare.

12We use the phrase ‘‘integer multiple ofN’’ in a somewhat loose
sense. This contribution depends on what particular anomaly
angle one considers and on some other details, e.g., the existen
massive Majorana fermions in the spectrum. These details are
important for us here. For a thorough discussion see Refs.@29#, @30#
and @10#.



-

y-

a
ns
t
t

th

-

b

a
pl

s

-

al

y
ra
a

al
in
d

ng

a
tru
Y

s
cl
b
in
ti

batic
atic
ses
us-
to
to
e

sed

x-
in
on
the

ture
ve
ome

full
the

aly
ap-
ints

ly-

-

s
D.
a-
figu-
s.
ar-
gh
the
criti-
r
d-

is

t
ass
it

ese

ex-
la-

he
en
he
SY
e
for

m-
pa-

5212 57IAN I. KOGAN, ALEX KOVNER, AND MIKHAIL SHIFMAN
couple toC.! The gauge strength tensor built fromAm will
be denoted byFmn . Now we can match the anomaly be
tween the high energy scaleM@v where the extra quarksQ
are massless and the intermediate scalem (v@m@L). At
this scale the quarksQ do not appear in the spectrum an
more. Note that the truely dynamical quarksC and their
scaleL are irrelevant in this problem.

In this matching the contribution of the massless axion
the scalem must be equal to the contribution of the fermio
Q at the scaleM , since the only nontrivial dynamics tha
happens atv is the spontaneous symmetry breaking due
the Higgs fieldF. SinceQ couple directly toF their axial
charges are necessarily integer multiples of 2N, Eq. ~77!.
The contribution ofQ to the anomalous triangle atM is

24N2
1

16p2
FmnF̃mn ;

the coefficient is multiple integer of 4N. Thus, it is indeed
true that the contribution of the axion to this anomaly at
intermediate scalem is an integer multiple of 4N. This is of
course trivially so, since the axion coupling

a
N

16p2
FmnF̃mn

in conjunction with Eq.~82! automatically guarantee the re
quired proportionality.

We are interested, however, in matching the anomaly
tweenm and a still lower scalem,L. We would have the
statement about ‘‘modulo N’’ matching here if we knew th
the contribution of the axion changes by an integer multi
of 4N when crossing the scaleL. This we cannot know,
however, because of the strong nontrivial interaction atL.
The best we can do is to express this contribution in term
a matrix element ofGG̃; see Eq.~84!. The fact that the axion
couples extremely weakly to the gauge fieldG does not help
here, since it is a finite ‘‘renormalization’’ of this weak cou
pling due the strong interactions of the gauge field andC
that determines the contribution of the axion to the anom

VI. DISCUSSION

In this paper we have analyzed aspects of the supers
metric walls in SUSY gluodynamics and in a more gene
context. We have argued that the linear scaling of the w
tension withN does not contradict the picture where the w
is a classical soliton in an effective Lagrangian describ
low-energy mesons and glueballs. We have also provide
simple qualitative explanation of how the confining stri
can end on a domain wall.

A key part of our analysis is related to the issue wh
happens when the low-energy Lagrangian has a glued s
ture. The Veneziano-Yankielowicz description of SUS
gluodynamics belongs to this class.

We have tried to answer the question whether the wall
SUSY gluodynamics are indeed BPS saturated. Our con
sion is that the knowledge of the effective Lagrangian
itself is not sufficient to answer this question if the wall
question crosses boundaries of distinct sectors. The effec
t
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Lagrangian has a cusp structure which arises due to adia
integration of the heavy degrees of freedom. The adiab
approximation breaks down when the wall trajectory cros
the cusp. We have considered a simple model which ill
trates this feature in detail. In this toy model we were able
calculate the extra term, which gives the cusp contribution
the wall energy. Unfortunately in SUSY gluodynamics w
are unaware of a well-defined procedure which could be u
to obtain the missing term, since the~amended! Veneziano-
Yankielowicz effective Lagrangian was not obtained by e
plicitly integrating out heavy fields, but, rather, from certa
Ward identities of the theory. It is an interesting questi
whether these same Ward identities could also determine
cusp contribution.

We then made some observations of the general na
pertinent to the theory of the domain walls in the effecti
low-energy theories. Supersymmetric walls possess s
unique features. Namely, if we find the BPS wall tension~for
a wall which does not cross the sector boundary! in the ef-
fective theory, the very same tension takes place in the
theory. There are no corrections inversely proportional to
masses of the heavy fields which were integrated out.

Finally, we worked out the issue of the discrete anom
matching in SUSY gluodynamics. This procedure, when
propriately implemented, is shown to impose no constra
on the existence of the chirally symmetric vacuum state@5#.

We would like to make a remark on relation of our ana
sis to the calculations of@8#. The analysis of@8# is performed
in the framework of the effective Taylor-Veneziano
Yankielowicz~TVY ! effective Lagrangian, which in addition
to the ‘‘glueball’’ superfieldS contains matter superfield
corresponding to additional matter fields in the SUSY QC
Due to inclusion of these additional superfields to TVY L
grangian does not have a cusp structure and the wall con
rations considered in@8# therefore do not cross any cusp
The numerical analysis of the simplest TVY Lagrangian c
ried in @8# showed that the BPS saturated wall, althou
present in the weak coupling regime—at small value of
Higgs mass—disappears for masses greater than some
cal massm* . Even more surprisingly at a slightly greate
massm** even the non-BPS solutions that connect two a
jacent vacua but do not pass through the chiral pointS50
disappear altogether. Since the VY effective Lagrangian
obtained from the TVY Lagrangian in the limitm→` the
authors of@8# tentatively conclude that the only walls tha
exist in pure SUSY gluodynamics are the ones that p
through the chirally symmetric vacuum. If this is the case
is indeed very surprising, since the energy density of th
walls in the largeN limit is O(N2). We feel however that it
is premature to draw such definite conclusions from the
isting calculations for two main reasons. First, the calcu
tions have only been performed atN52,3. It is not clear
whether the critical mass remains finite at largeN if the
kinetic term in the TVY Lagrangian is taken to reproduce t
correct largeN scaling of meson masses. Secondly, ev
though the introduction of the matter fields eliminates t
cusps in the effective potential we believe that in the SU
gluodynamics limit this effect must be unphysical. Th
heavy degrees of freedom that should be responsible
smoothening of the effective potential in SUSY gluodyna
ics should be glueballs which are heavier than the order
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rameter fieldS but still much lighter than the matter fields
which become infinitely heavy and should completely d
couple in this limit. To our mind it is therefore questionab
that the TVY effective Lagrangian reflects correctly t
physics of heavy modes at large matter fields masses, w
it ceases to be the effective Lagrangian in the Wilson
sense. We think therefore that the existence or nonexiste
of BPS saturated walls in SUSY gluodynamics remains
open question. We also would like to add that after this w
has been finished we learned about the report@37# where the
z,

on

,

-

re
n
ce
n
k

vacuum structure and domain walls in SUSY gluodynam
were studied usingD-brane approach.
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