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Self-dual Maxwell Chern-Simons solitons in #1 dimensions
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We study the domain wall soliton solutions in the relativistic self-dual Maxwell Chern-Simons model in
1+1 dimensions obtained by the dimensional reduction of thel 2nodel. Both topological and nontopo-
logical self-dual solutions are found in this case. In the manner of BPS dyons here the Bogomol'nyi bound on
the energy is expressed in terms of two conserved quantities. We discuss the underlying supersymmetry. The
nonrelativistic limit of this model is also considered and static, nonrelativistic self-dual soliton solutions are
obtained[S0556-282(98)03408-0

PACS numbes): 11.274d, 11.10.Kk

I. INTRODUCTION Il. MODEL

The Lagrangian for the Maxwell-Chern Simons system is

The (2+1)-dimensional Maxwell Chern-Simor$1CS) }ven by[2.3]

system has already been studied, and the existence 8
charged vortices of finite energy has been shtin Self- 1
dual topological and nontopological soliton solutions can be £}'C5= — —F  Frv+ ieﬂVPA”ayAp+(Dp¢)*(DP¢)
obtained in this case provided one also adds a neutral scalar 4e? e’

field to the theony|2]. The nonrelativistic limit of this model

was also considered and self-dual soliton solutions have been I i& No°N — i| ¢>|2< N— ﬁ)z
obtained[3]. 22 * c2 uC
Some time ago the (t1)-dimensional nonlinear sigma
model[4] was obtained by dimensional reduction of certain e? , MC 2
(2+1)-dimensional nonlinear sigma models and soliton so- - 2_(:2 |¢°~ gN @

lutions in the (I+1)-dimensional case were shown to be

similar to the Bogomol'nyi-Prasad-SommerfielBPS dy-  HereN is a real scalar fieldg is complex scalar fieldg is

ons of (3+1)-dimensional Yang-Mills Higgs theory. This the velocity of light, andA s are gauge fields. This model
work was extended further by the inclusion of the Chern-has two degenerate vacua. The symmetric phase, having a
Simons term[5] and self-dual soliton solutions were again yacuum expection valuép)=0, (N)=0 and the asymmet-
obtained. Recently the {1)-dimensional reduction of the jc phase having#)=v, (N)=eZ? uc. In the symmetric
Abelian Higgs model with a pure Chern-Simons term Wasphase the complex scalar fiell has mase®v?/ uc? . The
considered and explicit topological and nontopological doy,eytral scalar fieldN and the gauge fields have massIn

main wall solutions were obtained. . _the asymmetric phase there are two massive gauge degrees
The purpose of this paper is to consider the dimensionab freedom with masses given 1]

reduction of the Abelian Higgs model with a Chern-Simons

(as well as Maxwe)l term (and a neutral scalar fieldWe 2622 u? u 8e2y2
show the existence of self-dual topological as well as nonto- m3 = o+ > iE w?+ 7 2
pological domain wall solutions in this dimensionally re- c c

duced theory. The nonrelativistic limit of this model is also

considered and soliton solutions are again obtained. In Sec-!—.he scalar field_s also Combi”e intq two r_nassive modes with
Il we obtain the model by dimensional reduction of the 2 Massesn. . This model(in 2+ 1 dimensions possesses a
+1 MCS model. Here we study the invariance of the La-Bogomol'nyi-type bound8] and has static self-dual soliton
grangian and the corresponding two conserved charges. fPiutions. L o

Sec. Il we obtain the BPS-type boufié] on the energy and After compagt|f|gat|on of_they o!lrect|on we get the fol-
show that the bound is saturated when the self-dual equatio@Ving Lagrangian in i1 dimensions:

are satisfied by the fields. In Sec. IV we study the self-dual 1

equations and obtain both topological and nontopological do- ~ -mcs_ = g2 ﬁR XEa(X)+ (D . b)* (DP

main wall solutions for the system. In Sec. V we consider the 117 og2 017 o2 (X)FoiX)+(D,4)"(D¢)
underlyingN=2 supersymmetry. In Sec. VI we consider the
nonrelativistic limit of the model and again obtain self-dual 1 ) 1 )

soliton solutions and study their properties. Finally in Sec. + E’%N‘Q N+ gﬁpRﬁ R=U(R,¢,N), (3
VIl we conclude the results.

where
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o ) ) e? ) 2 x and now we will takex for X unless otherwise specified.
U(R, ¢, N)=R(x)||*+||*| N— ;U Then the dimensionless Lagrangian becomes
e? i 2 u? 1
2~ P AMCS_ | _ T g2
+? |¢] e2N 4 e4v6£1+1_|-_ Zkf01(X)+r(X)f01(X)+(dp<p)*(d"go)

Here for simplicity we putc=1. We identify the

y-independent component & (t,x,y) asR(x). The sym- + 2k

metric phase is again given byp)=0, (N)=0, but now

(RYy=Ry, whereRy is arbitrary. In this case the gauge fields where

as well as theR field are massless while tiéfield has mass .
; : 20302, i B

£ e 00 01 eSS 1) 00 -+ 11

gauge fields and the scalar fietRlIbecome massive, having

masses equal tg2e?v?, while the scalar fieldN and Higgs w?

field combine to give two massive modes with masses f)=lel?, k==, d,=d,~ia,(x). (8

given by Eq.(2) with c=1. &v

_ We express the}agranglaj in terms of d|menS|onIe3?n the limit ke the Lagrangian reduces f6]

fieldsn(x),r(x),fqi(x), ande(x) where

1
Ipndn+odprd’r=Vv(f,nr),  (7)

22 e2p2 L=r(x)foux)+(d,@)*(d’¢)
NG)==-n(x),  ROO=—7=r(X), — (012~ F ([ F(x) ~ 112, )
- ev? which is the pure Chern-Simons Higgs Lagrangian. This sys-
d(X)=ve(X), ALX)= Tap(x), (5)  tem admits known topological and nontopological soliton so-

lutions. The theory is invariant undér(1) gauge transfor-
mations and the corresponding current is
XM= > 2x". (6) O 1
e“v jP=i{(d")* p—¢* d’o}. (10

From now on we do the calculations with the new field vari-The theory has another invariance. In particular there exists
ables which are functions of*. We shall omit the tilde from another set of transformations of fields,

1

. " (n?+r2)’
Se(X) =i r(X)+ 1 foru(x) [, dan(x)=]"+

2

1
r(x)+ Efm(x))

Co
foa(x)’
k

Sag(x)=j1+ &n(x)=0, &r(x)=0, (11)

—r(x)+

where a prime denotes a derivative with respect to space

coordinates. Her€, is some arbitrary constant. The above i fol0 41700 ~i[(doe)* o~ ¢ d°e]=0, (13
transformations leave the theory invariant only after using

the equations of motion. The corresponding charge is

1
—=3,0°r+2r (xX)f(x) — fo(X) =0, (19
=] dx[<do¢>*a¢+5¢*do¢ k= N
e%v
fo1(X) 1 2
+Hr0+ = —|sai(x) . (12 —Eﬂ,ﬁ n+[1(x)—n()]= L F(x)[n(x) ~1]=0,
(15)

IIl. EQUATION OF MOTION AND SELF DUALITY

Now varying the Lagrangiafi’) with respect to the fields d,d?e+ {r2(x)+[n(x)—112+Kk[f(x)—n(x) ]} ¢=0,
we get the equations of motion (16
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where Eq.(13) is the Gauss law equation. Using the Gauss 2

~ 1 .
law equation(and putting appropriate dimension® andY %S(X)IE(X)Z ﬂ[fgl(x)Jrr’z(x)+n’2(x)+r2(x)
as given by Eqs(10) and(12) take the form v-e
+oo .
Q=evzf Jo(X)dXx, 17 +n%(x)]+|doel*+|d1e|*+V(f,n,r). (19
e®vt) (+» 1 y Here an overdot denotes a derivative with respect to time.
=|— f_m dxZ{n“ )+ 1)} (18)  we study the system in the static ansatz where we have
n(x)=0=r(x). Integrating by parts and using the Gauss law
The dimensionless energy denséi{x) is given by equation the energy density can be expressed as

EX)=|doe+i(n(x)—1)e(X)cosa—ir (x)e(x)sin a|?+|die+[N(X)—1]e(X)sin a+r(X)e(x)cos a|?+ %{r’(x)

+K[f(x)—n(x)]cos a— fgy(x)sin a}?+ %{n’(xﬂ— K[ f(x)—n(x)]sin a+ fycosa}?+ %[nz(x)+ r2(x)]’sin a

!

+{r(x)[1-f(x)]}' cosa+ %fm(x){r(x)sin a+[1l-n(x)]cosa}t+f(x)[1—n(x)]sin | . (20

Here « is an arbitrary angle variable. The last term in the 1 ’ , _
above expression vanishes after integratiofiggé)—0 as- i fodX) T (X)+2f(){[n(x) —1]cos a—r(x)sin a}=0,
ymptotically. Then we can write the following inequality:

f'(x)+2f(x){[n(x)—1]sin a+r(x)cosa}=0,

&(x)= %[nz(x)+r2(x)]’sin a+{r(x)[1—f(x)]} cosa.

%[r’(x)— for(X)sin a]+[f(X)—n(x)]cos a=0,
(21)

1 .
This is a Bogomol'nyi-type bound. The lower bound on en- 1[N )+ For(x)cos a] +[f(x) —n(x)]sin «=0. (23)

ergy is saturated when the following self-dual equations
hold: Eliminating the fields, f,;, andn from the above equations
we find the fourth order equation

dop+i[n(x)—1]e(x)cos@—ir (x) ¢(x)sin =0, 2f(x)

1+T)(In f)”+§f”(x)

1 nr
_E(In )" +
die+[n(X)—1]e(X)sin a+r(X)e(x)cosa=0, — 4f(X)[f(x)—1]=0. (24)

1 In the self-dual limit the energy
=[r"(x)—foix)sin a]+[f(x) —n(x)]cosa=0,
k e’v? [+=
E= TJ' ng(X) (25)

1
E[n’(x)+f01(x)005a]+[f(x)—n(x)]sin a=0. (22 can be written as

2

Ez{Ysin a+ Q COSa], (26)

These along with the Gauss law, Ef3), are consistent with
the second order static equations of motion as given by Eqgs.
(14)—(16). We can rewrite the above self-dual equations aswhere we have used the fact thaf) vanishes at both- .
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IV. ASYMPTOTIC PROPERTIES

The finiteness of energy requires that the fields have to
satisfy some boundary conditions. From the expression of
the energy density we find that the fields have to take one of

the following two set of values as— *=o. They are

f(x)=1, n(x)=1, fu(x)=0, r(x)=0 (27)

or

f(x)=0, n(x)=0, fu(x)=0, r(x)=rqy, (28

whererg is an arbitrary real constant. For the asymmetric

solutions the fields at-« take one of the above sets of
values and at-« the other. But for symmetric solutions the
fields takes the second set of values both+ab and at

— 00,

A. Asymmetric solution

It is difficult to solve the self-dual equations analytically.

However, we can obtain the asymptotic form of the various

fields. Consider first the asymmetric solution for which the
fields take the value®7) at —« and(28) at«. Then from
the fourth order equation we find that for- — <, the fieldf
behaves as

f(X)—(1—qe*)+---, (29
where
— k 1 2
|——§+§ k=+8Kk. (30

Hereq is some arbitrary constant.

Using the above expression fdérin the self-dual equa-
tions we find that the behavior of the fieldsr, andfy; as
X— —oo are

+ ...

|
n(x)—>(1—q§e'x

| cosa I
r0=951 sina) ®

[%cos « "
fOl(X)_>q 2

(1-sina) (31)

Similarly for x— we find, from the fourth order equation,

f(x)—age ™(1+age ™)+, (32
where
m* a, a, 2
—_—— — 2 — — =
2 a ao+ K +4=0. (33

Then from the self-dual equations we find

n(x)—boe™ ™+ .-,

r(X)—>’ao+ doe_mx+ ey

-SIMONS SOLITONS IN ... 5169
£
0.2
X
-100 -50 50 100
FIG. 1. Asymmetric solution fok=0.01.
f01(X)—>CoeimX+ ceey (34)

where the coefficients,,by,co,dy, andd, satisfy the fol-
lowing relations:

by k+2

ay kZ—m?

Co m(2+m sin a) +k(m+2 sin a)
ao_

(k*—m?)cos a

do_ k(2+m sin @) +m(m+2 sin a)

ap m(m?—k?)cos a
9 m+2 sin o 35
0" 2cosa (39

The charge®Q andY are given in this case bfputting ap-
propriate dimensions

e\ [d3—1
S ! =
Q=ev?dy, (37)

while E is given by Eq.(26). In case one assumes the same
exponent atx«, i.e., m=I, thenY, Q, and E are solely
determined byk and the anglex. Further, ak—o, Y, Q,
andE reduce to their expressions in the pure Chern-Simons
case[9].

We have also found a numerical solution to the fourth
order equatior(24) in the asymmetric case with the bound-
ary values as given by Eq&9) and(32). The profile of the
Higgs field in the cas&=0.01 is given in Fig. 1.

B. Symmetric solution

For the symmetric case, we assume that the profile of the
field f is symmetric arounat=0. To know the behavior of

aroundx=0, we expand the field as
f(x)=a+bx®+cx*+---. (39

On substituting the above expression in E2f)) we get
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k f
—6c+(§+2a kb—a?k*(a—1)=0. (39) 0.8
For x— o we find from the fourth order equation thix) is 0.6
similar to that given in Eq(32), and hence the fields, r,
andf; are similar to those given in E434). 0.4
The expressions for,Z, andE for the symmetric domain
wall soliton are found to béputting appropriate dimensions 0.2
Y:i(ag—a§)=ezv4 m sin a) “0) 5 10 15 20"
2 # o\ cosa FIG. 2. Symmetric solution fok=0.01.
55 e’ 1 1 1
Q=ev?(d,~dy)= ! @) = = p2 4 PRE,+ 0 RPR+ — 0, NN
COS o 282 01 e2 01 2e2 p 292 p
2 4 2 2
e m e
= : (42) +(D,$)* (D)~ R ¢|*~ 5| |4|*+ %N—vz)
K\ coda 2 e
~ ~ _ _ i _
where d_1 andd, are the values of (x) _at —o and at+ oo, — N2|¢|2+i¢prp¢_i¢75R¢+ —2)(7”%)(— %XX
respectively. From the above expressions it can be seen that e e

ev +iV2(gxd—xd* )~ Nyy. (47)
E=/Y*+ TQ) 43

The bosonic part of this Lagrangian is equal to E&).after
a redefinition of the fieldN by (—N+e%v?/u). The La-
andY=E sina, (ev¥1)Q=E cosa . Then the ratio of en- grangian has the followingl=2 supersymmetry:

ergy to charge is given by

O A= (Y X —XYp1)s

E_ ev? (a4)
Q pcosa 8,R=(xv"1—17°x),
1 — e4v4 677¢:\E;X1
=—\/R*+—-, (45)
e w? L
o,N=i(xn—nx),
whereR=tane is the average value &®. The mass of the _ ; . 5
L . . S y=~\2(—ivy*nD d+iy>’nRd— nN@),
elementary excitation in the unbroken phase ns, " v Y'nD, ¢ty nRE= NS
_ 4 Ay 2 ; -D ; .
= \/R02+e v ue. TakingRg=R we find S X= —i(y°9,R+ yL9oR) 7+ YF g7+ ¥3,N7
E_me co 2l 2y M 2
—=— —ine +—=N-v°|. 48
5= o (46) 7e?| [¢lF+ SN—v (49)
which means that the symmetric solution is at the thresholdHere we have chosen®’=o,, y'=ioy, y°=9’y'=0s,
of stability. n,0=diag(1-1). The supercharge which generates this

We have also found numerical solutions to the fourth or-transformation is given by
der equation24) in the symmetric case with the boundary
value as given by Eqs40) and (32). The profile of the .
Higgs field f(x) in the casek=0.01 is given in Fig. Jwe QZJ dX V2(D,¢)* ¥*y°— J2Re* y i+ \2IN ¢* Oy
have chosera=0.8p=0.08, wherea,b are given by Eq.

(39].

i 0 i 1 1 5 1
- gﬁpNypv X~ gFm X= 27 doRx + gﬁle
V. SUPERSYMMETRY

We have obtained the supersymmetric model by dimen-
sional reduction of the three-dimensional supersymmetric
Maxwell Chern-Simons moddl10,11. The Lagrangian in
two dimensions is found to be The superalgebra is found to be

. (49

M
|12+ ;N—vz) Y°x
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1 _ s fore, let us express the Lagrangian in terms of the dimension-
51Qa:Qpt=(¥")apPpt SapZ +i1(¥)apY, (50 |ess fields which are functions af, and omit the tilde:

where the central chargé&&andZ are given by ’

M 1
e%y 27 e4 6£T+Rl LNR 2k Ol+r(x)f01(x)+ Zké)pra r
fdx— R2+(N——> ,
72
+ ﬂﬁpné"’n-FZiX*do)(—(dx)()*(dx)()
Z=fdx[R(|¢|2—v2>]'. (51) ’

+2n(X)f(X)—E[f(X)—n(X)]Z—rZ(X)f(X),
It can be easily verified that the central charlyeandZ are
equal to the Noether and topological charges after a field (55)

redefinition.

where y=(1/ev) yu/2¢ is dimensionless. The dimension-

VI. NONRELATIVISTIC MODEL less energy densit§(x) is

To get the nonrelativistic Lagrangian we substitute
2

C3 ) ) _ ,LL_,., — :i 2 ' 2 ’ 2, 2
¢: 2'“2 Z(eflmczlw_i_elmcztl//) (52) eﬁv4g(x) E(X) zk{fol(x)+[r (X)] +[n (X)] +r (X)
ev
) k
in Lagrangian(1). Neglecting higher order terms ofclive +n2(x)}+ =[n(x) = F(X) ]2+ (dyx)* (dyx)
have the nonrelativistic Lagrangi@8] 2
1 u 1 +r2(x)f(x)—2n(x)f(x). (56)
£2+1 4 ZFPVFPV—{_EGWVPA J A + — 282 (9PN{9PN

The equations of motion are

2
_,LL_ 2. * Ry R >
2 T ICV Dodricy (Gt 1A Y 2idox+ A2y + (24 K)N(X) x(X) = [KF() + 2 1x (X) =0,

3

uc
T oezgz DD = oo z(D #*(0) %apa”nJrk[n(x)—f(x)]—2f(x)=0,
2-4 202
— B ([ | 14+ £ )
2.4 2.2
8e‘y 2e’v %apapr—f01(x)+2r(x)f(x)=0, (57
X ([g12+[gN. (53)

(Here all the fields are functions & and not ofx*.) After , )
dimensional reduction and restricting ourselves only to the i for()+1" () +2f(x)=0. (58)
zero antiparticle sector we get the following nonrelativistic
Lagrangian in % 1 dimensions: ) )
For static fields we have(x)=0=n(x). Using the Gauss

1 1 1 law equation(55) we express the energy density as
LR = F01+ RF01+ —3,RI"R+ —,No"N a P i Y
2e? 2e? 2e?

_2_2N2<X)+|¢ (X)Doy— - S (D)* (D) 5(X):|dxx_r(x)’((x)|2+; %r'(x””(x)‘f(” 2
z u? + %{n’(x)—f01(X)}2+{f(X)f(X)}’
Lt o |PNGO = ol )
+ AN For(x)}" (59
- 2e?y? 9

In the case of static fields we have the following coupled first
This is same as the nonrelativistic limit of the dimensionallyorder self-dual equations which can be shown to be consis-
reduced relativistic (* 1)-dimensional Lagrangian. As be- tent with the above field equations:
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This solution is expected to be symmetric arowd0. To

K O=[fx)=n(x)], know the behavior around=0 we can expand the fields
around it as
n’(x)=fou(x),
=A+Bx?+Cx*+---.
1, , Then from Eq.(58) we find
Ef01(x)+r (x)+2f(x)=0. (60)
2R A 2 AR )~ —
The energy has a lower bound of zero which is saturated k(B+2A%)+2kAB—12C=0. (67)

when the fields satisfy the above self-dual equations. Elimi-
nating the fields,r, fo, from the above equations we get the The charge in this case is found to be
uncoupled fourth order equation for the fidid

(00) — B
f(x), (61) def(x )r( )=§, (68)

(—92+k?)é2n f——4k( 92+k

which is analogous to the Liouville equation. The finiteness

of energy requires that the fiefdvanish at botht . It can

in case one assumes the same behavior of the fields<at

be easily shown that the falloff is not a power law but an
exponential and ags— —o we have

VIl. CONCLUSION

B B
f)—Ae™(1+Ce™) + (62 In this paper we have studied domain wall soliton solu-
; ; tions in the self-dual Maxwell Chern-Simons systems in 1
whereA, B, andC satisfy the relation +1 dimensions. Here we found a BPS-type bound which is
B4 C cC 2 saturated when the self-dual equations hold. Numerical solu-
~ =% + B2 a + K +4=0. (63)  tions for both the topological and the nontopological soliton
k

Using this in the self-dual equatioriS7) and (55) we find

n(x)—Age®+- - -,

B
r(x)—>§+AleBX+--~,

for(X)—AeB*+ - -,

where the coefficientd,, A;, Ay, B, andA are related as

(64)

equations were obtained. Further the asymptotic properties
of the fields are also studied. We considered the underlying
N=2 supersymmetry of this model by dimensional reduction
of the (2+1)-dimensional model. Finally we have studied
the nonrelativistic limit of the model. This work raises a few
guestions which need to be looked into. For example, can
one generalize the model to the non-Abelian case? There
may be a gauged version of the nonlinear sigma models with
Maxwell and Chern-Simons terms with a higher gauge group
which could lead to a richer variety of two-dimensional mod-
els with a BPS-type energy bound. Further, in three dimen-
sions, the maximal supersymmetry for the Maxwell Chern-

A Simons system i?N=3 [12]. In two dimensions it may be
Ag=— 77— a7z worth enquiring as to what maximal supersymmetry is al-
2k+B . . ) g,
1+ —— lowed. Also it would be interesting to study the fermionic
k(k+2) and bosonic zero modes and to check whether the energy
bound is saturated at the quantum level or if there are quan-
A KA tum corrections.
! k(k+2)
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