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Self-dual Maxwell Chern-Simons solitons in 111 dimensions

Prasanta K. Tripathy*

Institute of Physics, Bhubaneswar 751005, India
~Received 1 October 1997; revised manuscript received 18 December 1997; published 24 March 1998!

We study the domain wall soliton solutions in the relativistic self-dual Maxwell Chern-Simons model in
111 dimensions obtained by the dimensional reduction of the 211 model. Both topological and nontopo-
logical self-dual solutions are found in this case. In the manner of BPS dyons here the Bogomol’nyi bound on
the energy is expressed in terms of two conserved quantities. We discuss the underlying supersymmetry. The
nonrelativistic limit of this model is also considered and static, nonrelativistic self-dual soliton solutions are
obtained.@S0556-2821~98!03408-0#

PACS number~s!: 11.27.1d, 11.10.Kk
e

b
ca
l
e

a
in

so
be

s
rn
in

a
o

n
ns

to
e-
so
Se
2
a

s.

tio
ua
d
th
he
a
ec

is

l
ng a
-

rees

ith

n

I. INTRODUCTION

The (211)-dimensional Maxwell Chern-Simons~MCS!
system has already been studied, and the existenc
charged vortices of finite energy has been shown@1#. Self-
dual topological and nontopological soliton solutions can
obtained in this case provided one also adds a neutral s
field to the theory@2#. The nonrelativistic limit of this mode
was also considered and self-dual soliton solutions have b
obtained@3#.

Some time ago the (111)-dimensional nonlinear sigm
model @4# was obtained by dimensional reduction of certa
(211)-dimensional nonlinear sigma models and soliton
lutions in the (111)-dimensional case were shown to
similar to the Bogomol’nyi-Prasad-Sommerfield~BPS! dy-
ons of (311)-dimensional Yang-Mills Higgs theory. Thi
work was extended further by the inclusion of the Che
Simons term@5# and self-dual soliton solutions were aga
obtained. Recently the (111)-dimensional reduction of the
Abelian Higgs model with a pure Chern-Simons term w
considered and explicit topological and nontopological d
main wall solutions were obtained.

The purpose of this paper is to consider the dimensio
reduction of the Abelian Higgs model with a Chern-Simo
~as well as Maxwell! term ~and a neutral scalar field!. We
show the existence of self-dual topological as well as non
pological domain wall solutions in this dimensionally r
duced theory. The nonrelativistic limit of this model is al
considered and soliton solutions are again obtained. In
II we obtain the model by dimensional reduction of the
11 MCS model. Here we study the invariance of the L
grangian and the corresponding two conserved charge
Sec. III we obtain the BPS-type bound@6# on the energy and
show that the bound is saturated when the self-dual equa
are satisfied by the fields. In Sec. IV we study the self-d
equations and obtain both topological and nontopological
main wall solutions for the system. In Sec. V we consider
underlyingN52 supersymmetry. In Sec. VI we consider t
nonrelativistic limit of the model and again obtain self-du
soliton solutions and study their properties. Finally in S
VII we conclude the results.

*Email address: prasanta@iopb.stpbh.soft.net
570556-2821/98/57~8!/5166~8!/$15.00
of

e
lar

en

-

-

s
-

al

-

c.

-
In

ns
l

o-
e

l
.

II. MODEL

The Lagrangian for the Maxwell-Chern Simons system
given by @2,3#

L211
MCS52

1

4e2
FrnFrn1

m

2e2
ehnrAh]nAr1~Drf!* ~Drf!

1
1

2e2
]rN]rN2

1

c2
ufu2S N2

e2v2

mc D 2

2
e2

2c2S ufu22
mc

e2
ND 2

. ~1!

HereN is a real scalar field,f is complex scalar field,c is
the velocity of light, andAms are gauge fields. This mode
has two degenerate vacua. The symmetric phase, havi
vacuum expection valuêf&50, ^N&50 and the asymmet
ric phase havinĝf&5v, ^N&5e2v2/mc. In the symmetric
phase the complex scalar fieldf has masse2v2/mc2 . The
neutral scalar fieldN and the gauge fields have massm. In
the asymmetric phase there are two massive gauge deg
of freedom with masses given by@7#

m6
2 5

2e2v2

c2
1

m2

2
6

m

2
Am21

8e2v2

c2
. ~2!

The scalar fields also combine into two massive modes w
massesm6 . This model~in 211 dimensions! possesses a
Bogomol’nyi-type bound@8# and has static self-dual solito
solutions.

After compactification of they direction we get the fol-
lowing Lagrangian in 111 dimensions:

L111
MCS5

1

2e2
F01

2 1
m

e2
R~x!F01~x!1~Drf!* ~Drf!

1
1

2e2
]rN]rN1

1

2e2
]rR]rR2U~R,f,N!, ~3!

where

Dr5]r2 iAr ,
5166 © 1998 The American Physical Society
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57 5167SELF-DUAL MAXWELL CHERN-SIMONS SOLITONS IN . . .
U~R,f,N!5R2~x!ufu21ufu2S N2
e2

m
v2D 2

1
e2

2 S ufu22
m

e2
ND 2

. ~4!

Here for simplicity we put c51. We identify the
y-independent component ofAy(t,x,y) as R(x). The sym-
metric phase is again given bŷf&50, ^N&50, but now
^R&5R0, whereR0 is arbitrary. In this case the gauge field
as well as theR field are massless while theN field has mass
m and the Higgs field has massAR0

21e4v4/m2. In the bro-
ken phasê N&5e2v2/m, ^f&5v, ^R&50. In this case the
gauge fields and the scalar fieldR become massive, havin
masses equal toA2e2v2, while the scalar fieldN and Higgs
field combine to give two massive modes with massesm6

given by Eq.~2! with c51.
We express the Lagrangian in terms of dimensionl

fields n( x̃ ),r ( x̃ ), f 01( x̃ ), andw( x̃ ) where

N~x!5
e2v2

m
n~ x̃ !, R~x!5

e2v2

m
r ~ x̃ !,

f~x!5vw~ x̃ !, Ar~x!5
e2v2

m
ar~ x̃ !, ~5!

xm5
m

e2v2
x̃m. ~6!

From now on we do the calculations with the new field va
ables which are functions ofx̃m. We shall omit the tilde from
a
ve
in
s

-

x and now we will takex for x̃ unless otherwise specified
Then the dimensionless Lagrangian becomes

m2

e4v6
L111

MCS5L5
1

2k
f 01

2 ~x!1r ~x! f 01~x!1~drw!* ~drw!

1
1

2k
]rn]rn1

1

2k
]rr ]rr 2V~ f ,n,r !, ~7!

where

V~ f ,n,r !5 f ~x!r 2~x!1 f ~x!@n~x!21#21
k

2
@ f ~x!2n~x!#2,

f ~x!5uwu2, k5
m2

e2v2
, dr5]r2 iar~x!. ~8!

In the limit k→` the Lagrangian reduces to@9#

L5r ~x! f 01~x!1~drw!* ~drw!

2 f ~x!r 2~x!2 f ~x!@ f ~x!21#2, ~9!

which is the pure Chern-Simons Higgs Lagrangian. This s
tem admits known topological and nontopological soliton s
lutions. The theory is invariant underU(1) gauge transfor-
mations and the corresponding current is

j r5 i $~drw!* w2w* drw%. ~10!

The theory has another invariance. In particular there ex
another set of transformations of fields,
dw~x!5 iwS r ~x!1
1

k
f 01~x! D , da1~x!5 j 01

~n21r 2!8

2S r ~x!1
1

k
f 01~x! D ,

da0~x!5 j 11
C0

2r ~x!1
f 01~x!

k

, dn~x!50, dr ~x!50, ~11!
where a prime denotes a derivative with respect to sp
coordinates. HereC0 is some arbitrary constant. The abo
transformations leave the theory invariant only after us
the equations of motion. The corresponding charge is

S m

e2v4D Y5E dxH ~d0w!* dw1dw* d0w

1S r ~x!1
f 01~x!

k D da1~x!J . ~12!

III. EQUATION OF MOTION AND SELF DUALITY

Now varying the Lagrangian~7! with respect to the fields
we get the equations of motion
ce

g

1

k
f 018 ~x!1r 8~x!2 i @~d0w!* w2w* d0w#50, ~13!

1

k
]r]rr 12r ~x! f ~x!2 f 01~x!50, ~14!

2
1

k2
]r]rn1@ f ~x!2n~x!#2

2

k
f ~x!@n~x!21#50,

~15!

drdrw1$r 2~x!1@n~x!21#21k@ f ~x!2n~x!#%w50,
~16!
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where Eq.~13! is the Gauss law equation. Using the Gau
law equation~and putting appropriate dimensions!, Q andY
as given by Eqs.~10! and ~12! take the form

Q5ev2E
2`

1`

j 0~x!dx, ~17!

Y5S e2v4

m D E
2`

1`

dx
1

2
$n2~x!1r 2~x!%8. ~18!

The dimensionless energy densityE(x) is given by
he

n
n

q
as
s m2

v6e4
Ẽ~x!5E~x!5

1

2k
@ f 01

2 ~x!1r 82~x!1n82~x!1 ṙ 2~x!

1ṅ2~x!#1ud0wu21ud1wu21V~ f ,n,r !. ~19!

Here an overdot denotes a derivative with respect to tim
We study the system in the static ansatz where we h
ṅ(x)505 ṙ (x). Integrating by parts and using the Gauss la
equation the energy density can be expressed as
E~x!5ud0w1 i „n~x!21…w~x!cosa2 ir ~x!w~x!sin au21ud1w1@n~x!21#w~x!sin a1r ~x!w~x!cosau21
1

2k
$r 8~x!

1k@ f ~x!2n~x!#cosa2 f 01~x!sin a%21
1

2k
$n8~x!1k@ f ~x!2n~x!#sin a1 f 01cosa%21

1

2
@n2~x!1r 2~x!#8sin a

1$r ~x!@12 f ~x!#%8cosa1S 1

k
f 01~x!$r ~x!sin a1@12n~x!#cosa%1 f ~x!@12n~x!#sin a D 8

. ~20!
s

Here a is an arbitrary angle variable. The last term in t
above expression vanishes after integration asf 01(x)→0 as-
ymptotically. Then we can write the following inequality:

E~x!>
1

2
@n2~x!1r 2~x!#8sin a1$r ~x!@12 f ~x!#%8cosa.

~21!

This is a Bogomol’nyi-type bound. The lower bound on e
ergy is saturated when the following self-dual equatio
hold:

d0w1 i @n~x!21#w~x!cosa2 ir ~x!w~x!sin a50,

d1w1@n~x!21#w~x!sin a1r ~x!w~x!cosa50,

1

k
@r 8~x!2 f 01~x!sin a#1@ f ~x!2n~x!#cosa50,

1

k
@n8~x!1 f 01~x!cosa#1@ f ~x!2n~x!#sin a50. ~22!

These along with the Gauss law, Eq.~13!, are consistent with
the second order static equations of motion as given by E
~14!–~16!. We can rewrite the above self-dual equations
-
s

s.

1

k
f 018 ~x!1r 8~x!12 f ~x!$@n~x!21#cosa2r ~x!sin a%50,

f 8~x!12 f ~x!$@n~x!21#sin a1r ~x!cosa%50,

1

k
@r 8~x!2 f 01~x!sin a#1@ f ~x!2n~x!#cosa50,

1

k
@n8~x!1 f 01~x!cosa#1@ f ~x!2n~x!#sin a50. ~23!

Eliminating the fieldsr , f 01, andn from the above equation
we find the fourth order equation

2
1

k2
~ ln f !-81S 11

2 f ~x!

k D ~ ln f !91
2

k
f 9~x!

24 f ~x!@ f ~x!21#50. ~24!

In the self-dual limit the energy

E5
e2v4

m E
2`

1`

dxE~x! ~25!

can be written as

E5H Y sin a1S ev2

m DQ cosaJ , ~26!

where we have used the fact that (r f ) vanishes at both6`.
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IV. ASYMPTOTIC PROPERTIES

The finiteness of energy requires that the fields have
satisfy some boundary conditions. From the expression
the energy density we find that the fields have to take on
the following two set of values asx→6`. They are

f ~x!51, n~x!51, f 01~x!50, r ~x!50 ~27!

or

f ~x!50, n~x!50, f 01~x!50, r ~x!5r 0 , ~28!

where r 0 is an arbitrary real constant. For the asymmet
solutions the fields at1` take one of the above sets o
values and at2` the other. But for symmetric solutions th
fields takes the second set of values both at1` and at
2`.

A. Asymmetric solution

It is difficult to solve the self-dual equations analyticall
However, we can obtain the asymptotic form of the vario
fields. Consider first the asymmetric solution for which t
fields take the values~27! at 2` and ~28! at `. Then from
the fourth order equation we find that forx→2`, the fieldf
behaves as

f ~x!→~12qelx!1•••, ~29!

where

l 52
k

2
1

1

2
Ak218k. ~30!

Hereq is some arbitrary constant.
Using the above expression forf in the self-dual equa-

tions we find that the behavior of the fieldsn, r , and f 01 as
x→2` are

n~x!→S 12q
l

2
elxD1•••,

r ~x!→q
l cosa

2~12sin a!
elx1•••,

f 01~x!→q
l 2cosa

2~12sin a!
elx1•••. ~31!

Similarly for x→` we find, from the fourth order equation

f ~x!→a0e2mx~11 ã0e2mx!1•••, ~32!

where

2
m4

k2

ã0

a0
1m2S ã0

a0
1

2

k
D 1450. ~33!

Then from the self-dual equations we find

n~x!→b0e2mx1•••,

r ~x!→ d̃01d0e2mx1•••,
to
of
of

c

s

f 01~x!→c0e2mx1•••, ~34!

where the coefficientsa0 ,b0 ,c0 ,d0, and d̃0 satisfy the fol-
lowing relations:

b0

a0
5

k12

k22m2
,

c0

a0
5

m~21m sin a!1k~m12 sin a!

~k22m2!cosa
,

d0

a0
5

k~21m sin a!1m~m12 sin a!

m~m22k2!cosa
,

d̃05
m12 sin a

2 cosa
. ~35!

The chargesQ andY are given in this case by~putting ap-
propriate dimensions!

Y5S e2v4

m D S d̃ 0
221

2
D , ~36!

Q5ev2d̃0 , ~37!

while E is given by Eq.~26!. In case one assumes the sam
exponent at6`, i.e., m5 l , then Y, Q, and E are solely
determined byk and the anglea. Further, ask→`, Y, Q,
andE reduce to their expressions in the pure Chern-Sim
case@9#.

We have also found a numerical solution to the fou
order equation~24! in the asymmetric case with the boun
ary values as given by Eqs.~29! and~32!. The profile of the
Higgs field in the casek50.01 is given in Fig. 1.

B. Symmetric solution

For the symmetric case, we assume that the profile of
field f is symmetric aroundx50. To know the behavior off
aroundx50, we expand the fieldf as

f ~x!5a1bx21cx41•••. ~38!

On substituting the above expression in Eq.~24! we get

FIG. 1. Asymmetric solution fork50.01.
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26c1S k

2
12aD kb2a2k2~a21!50. ~39!

For x→` we find from the fourth order equation thatf (x) is
similar to that given in Eq.~32!, and hence the fieldsn, r ,
and f 01 are similar to those given in Eq.~34!.

The expressions forY,Z, andE for the symmetric domain
wall soliton are found to be~putting appropriate dimensions!

Y5
1

2
~ d̃ 2

22 d̃ 1
2!5

e2v4

m S m sin a

cos2a
D , ~40!

Q5ev2~ d̃22 d̃1!5
mev2

cosa
, ~41!

E5
e2v4

m S m

cos2a
D , ~42!

where d̃1 and d̃2 are the values ofr (x) at 2` and at1`,
respectively. From the above expressions it can be seen

E5AY21S ev2

m
QD 2

~43!

andY5E sina, (ev2/m)Q5E cosa . Then the ratio of en-
ergy to charge is given by

E

Q
5

ev2

m cosa
~44!

5
1

e
AR̄21

e4v4

m2
, ~45!

whereR̄5tana is the average value ofR. The mass of the
elementary excitation in the unbroken phase isme

5AR0
21e4v4/m2. TakingR05R̄ we find

E

Q
5

me

e
, ~46!

which means that the symmetric solution is at the thresh
of stability.

We have also found numerical solutions to the fourth
der equation~24! in the symmetric case with the bounda
value as given by Eqs.~40! and ~32!. The profile of the
Higgs field f (x) in the casek50.01 is given in Fig. 2@we
have chosena50.8,b50.08, wherea,b are given by Eq.
~39!#.

V. SUPERSYMMETRY

We have obtained the supersymmetric model by dim
sional reduction of the three-dimensional supersymme
Maxwell Chern-Simons model@10,11#. The Lagrangian in
two dimensions is found to be
hat

ld

-

-
ic

L5
1

2e2
F01

2 1
m

e2
RF011

1

2e2
]rR]rR1

1

2e2
]rN]rN

1~Drf!* ~Drf!2R2ufu22
e2

2 S ufu21
m

e2
N2v2D 2

2N2ufu21 i c̄grDrc2 i c̄g5Rc1
i

e2
x̄gr]rx2

m

e2
x̄x

1 iA2~ c̄xf2x̄cf* !2Nc̄c. ~47!

The bosonic part of this Lagrangian is equal to Eq.~3! after
a redefinition of the fieldN by (2N1e2v2/m). The La-
grangian has the followingN52 supersymmetry:

dhAr5 i ~ h̄grx2x̄grh!,

dhR5~ x̄g5h2h̄g5x!,

dhf5A2h̄x,

dhN5 i ~ x̄h2h̄x!,

dhc5A2~2 igrhDrf1 ig5hRf2hNf!,

dhx52 i ~g0]1R1g1]0R!h1g5F01h1gr]rNh

2 ihe2S ufu21
m

e2
N2v2D . ~48!

Here we have choseng05s2, g15 is1, g55g0g15s3,
hrs5diag(1,21). The supercharge which generates t
transformation is given by

Q5E dxFA2~Drf!* grg0c2A2Rf* g1c1A2iNf* g0c

2
i

e2
]rNgrg0x2

i

e2
F01g

1x2
1

e2
g5]0Rx1

1

e2
]1Rx

1S ufu21
m

e2
N2v2D g0xG . ~49!

The superalgebra is found to be

FIG. 2. Symmetric solution fork50.01.
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1

2
$Qa ,Q̄b%5~gr!abPr1dabZ1 i ~g5!abY, ~50!

where the central chargesY andZ are given by

Y5 E dx
m

2e2FR21S N2
e2v2

m D 2G8,
Z5E dx@R~ ufu22v2!#8. ~51!

It can be easily verified that the central chargesY andZ are
equal to the Noether and topological charges after a fi
redefinition.

VI. NONRELATIVISTIC MODEL

To get the nonrelativistic Lagrangian we substitute

f5A mc3

2e2v2
~e2 imc2tc1eimc2tc̃ ! ~52!

in Lagrangian~1!. Neglecting higher order terms of 1/c we
have the nonrelativistic Lagrangian@3#

L211
NR 52

1

4e2
FrnFrn1

m

2e2
ehnrAh]nAr1

1

2e2
]rN]rN

2
m2

2e2
N21 icc* D0c1 icc̃* ~]01 iA0!c̃

2
mc3

2e2v2
~Dic!* ~Dic!2

mc3

2e2v2
~Di c̃ !* ~Di c̃ !

2
m2c4

8e2v4
~ ucu21uc̃ u2!21S 11

m2c2

2e2v2D
3~ ucu21uc̃ u2!N. ~53!

~Here all the fields are functions ofxm and not ofx̃m.! After
dimensional reduction and restricting ourselves only to
zero antiparticle sector we get the following nonrelativis
Lagrangian in 111 dimensions:

L111
NR 5

1

2e2
F01

2 1
m

e2
RF011

1

2e2
]rR]rR1

1

2e2
]rN]rN

2
m2

2e2
N2~x!1 ic* ~x!D0c2

m

2e2v2
~Dxc!* ~Dxc!

1S 11
m2

2e2v2D ucu2N~x!2
m2

8e2v4
ucu4

2
m

2e2v2
R2~x!ucu2. ~54!

This is same as the nonrelativistic limit of the dimensiona
reduced relativistic (111)-dimensional Lagrangian. As be
ld

e

fore, let us express the Lagrangian in terms of the dimens
less fields which are functions ofx̃ , and omit the tilde:

m2

e4v6
L111

NR 5LNR5
1

2k
f 01

2 1r ~x! f 01~x!1
1

2k
]rr ]rr

1
1

2k
]rn]rn12ix* d0x2~dxx!* ~dxx!

12n~x! f ~x!2
k

2
@ f ~x!2n~x!#22r 2~x! f ~x!,

~55!

where x5(1/ev)Am/2c is dimensionless. The dimension
less energy densityE(x) is

m2

e6v4
Ẽ~x!5E~x!5

1

2k
$ f 01

2 ~x!1@r 8~x!#21@n8~x!#21 ṙ 2~x!

1ṅ2~x!%1
k

2
@n~x!2 f ~x!#21~dxx!* ~dxx!

1r 2~x! f ~x!22n~x! f ~x!. ~56!

The equations of motion are

2id0x1dx
2x1~21k!n~x!x~x!2@k f~x!1r 2~x!#x~x!50,

1

k
]r]rn1k@n~x!2 f ~x!#22 f ~x!50,

1

k
]r]rr 2 f 01~x!12r ~x! f ~x!50, ~57!

1

k
f 018 ~x!1r 8~x!12 f ~x!50. ~58!

For static fields we haveṙ (x)505ṅ(x). Using the Gauss
law equation~55! we express the energy density as

E~x!5udxx2r ~x!x~x!u21
k

2S 1

k
r 8~x!1n~x!2 f ~x! D 2

1
1

2k
$n8~x!2 f 01~x!%21$r ~x! f ~x!%8

1
1

k
$n~x! f 01~x!%8. ~59!

In the case of static fields we have the following coupled fi
order self-dual equations which can be shown to be con
tent with the above field equations:
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1

k
r 8~x!5@ f ~x!2n~x!#,

n8~x!5 f 01~x!,

f 8~x!52r ~x! f ~x!,

1

k
f 018 ~x!1r 8~x!12 f ~x!50. ~60!

The energy has a lower bound of zero which is satura
when the fields satisfy the above self-dual equations. Eli
nating the fieldsn,r , f 01 from the above equations we get th
uncoupled fourth order equation for the fieldf ,

~2]x
21k2!]x

2ln f 524kS 1

2
]x

21kD f ~x!, ~61!

which is analogous to the Liouville equation. The finitene
of energy requires that the fieldf vanish at both6`. It can
be easily shown that the falloff is not a power law but
exponential and asx→2` we have

f ~x!→AeBx~11CeBx!1•••, ~62!

whereA, B, andC satisfy the relation

2
B4

k2

C

A
1B2S C

A
1

2

kD1450. ~63!

Using this in the self-dual equations~57! and ~55! we find

n~x!→A0eBx1•••,

r ~x!→
B

2
1A1eBx1•••,

f 01~x!→A2eBx1•••, ~64!

where the coefficientsA0, A1, A2, B, andA are related as

A052
A

S 11
2k1B2

k~k12! D
,

A15
kA

BS 11
k~k12!

2k1B2 D ,

A252
AB

S 11
2k1B2

k~k12! D
. ~65!
d
i-

s

This solution is expected to be symmetric aroundx50. To
know the behavior aroundx50 we can expand the field
around it as

f ~x!5Ã1B̃x21C̃x41•••. ~66!

Then from Eq.~58! we find

k2~ B̃12Ã 2!12kÃB̃212C̃50. ~67!

The charge in this case is found to be

Q52E
2`

`

dx f~x!5
r ~`!2r ~2`!

2
5

B

2
, ~68!

in case one assumes the same behavior of the fields at6`.

VII. CONCLUSION

In this paper we have studied domain wall soliton so
tions in the self-dual Maxwell Chern-Simons systems in
11 dimensions. Here we found a BPS-type bound which
saturated when the self-dual equations hold. Numerical s
tions for both the topological and the nontopological solit
equations were obtained. Further the asymptotic proper
of the fields are also studied. We considered the underly
N52 supersymmetry of this model by dimensional reduct
of the (211)-dimensional model. Finally we have studie
the nonrelativistic limit of the model. This work raises a fe
questions which need to be looked into. For example,
one generalize the model to the non-Abelian case? Th
may be a gauged version of the nonlinear sigma models w
Maxwell and Chern-Simons terms with a higher gauge gro
which could lead to a richer variety of two-dimensional mo
els with a BPS-type energy bound. Further, in three dim
sions, the maximal supersymmetry for the Maxwell Che
Simons system isN53 @12#. In two dimensions it may be
worth enquiring as to what maximal supersymmetry is
lowed. Also it would be interesting to study the fermion
and bosonic zero modes and to check whether the en
bound is saturated at the quantum level or if there are qu
tum corrections.

ACKNOWLEDGMENTS

I am grateful to Avinash Khare for suggesting this pro
lem and for discussions as well as for a careful reading of
manuscript. Also I thank Pijush K. Ghosh and Sanatan Di
for discussions.



er-

57 5173SELF-DUAL MAXWELL CHERN-SIMONS SOLITONS IN . . .
@1# S. K. Paul and A. Khare, Phys. Lett. B174, 420 ~1986!.
@2# C. Lee, K. Lee, and H. Min, Phys. Lett. B252, 79 ~1990!.
@3# G. V. Dunne and C. A. Trugenberger, Phys. Rev. D43, 1323

~1991!.
@4# E. R. C. Abrahm and P. K. Townsend, Phys. Lett. B291, 85

~1992!; 295, 225 ~1992!.
@5# P. K. Ghosh, Phys. Rev. D56, 5153~1997!.
@6# M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett.35, 760
~1975!; S. Coleman, S. Parke, A. Neveu, and C. M. Somm
field, Phys. Rev. D15, 544 ~1977!.

@7# S. K. Paul and A. Khare, Phys. Lett. B171, 244 ~1986!.
@8# E. Bogomol’ny, Sov. J. Nucl. Phys.24, 449 ~1976!.
@9# H. Kao, K. Lee, and T. Lee, Phys. Rev. D55, 6447~1997!.

@10# B.-H. Lee and H. Min, Phys. Rev. D51, 4458~1995!.
@11# B.-H. Lee, C. Lee, and H. Min, Phys. Rev. D45, 4588~1992!.
@12# H.-C. Kao, Phys. Rev. D50, 2881~1994!.


