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Oscillating D-strings from type IIB matrix theory
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We present a class of BPS solutions of the type [IB matrix theory which preserves 1/4 supersymmetry. The
solutions describd-string configurations with left-moving oscillations. We demonstrate that the one-loop
guantum effective action of matrix theory vanishes for this solution, confirming its BPS nature. We also study
the world-volume gauge theory of oscillating strings and show its connection with dbastrings.
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[. INTRODUCTION string theory is described by the dimensional reduction of the
D=10,N=1 SU(N) guage theory to zero dimension. This

One of the most challenging problems in string theory hagossesses a manifest Lorentz invariance. The emergence of a
been to understand its strong coupling aspgtfg], includ-  D-string from such a matrix theory has also been shown
ing its moduli space structure in full quantum theory at thethrough an analysis of its interactions. A duality among ma-
nonperturbative level. One also hopes that such an investig#rix theories proposed earlier for describiNgtheory and the
tion will lead to an understanding of supersymmetry break-one for type IIB theory has also been argued.
ing in these theories and will give the correct string theory In this paper, we generalize some of the result$1i8]
vacuum describing the real world. As is well known, the and write down an infinite set of classical solutions of type
unravelling of nonperturbative aspects includes an analysiB matrix theory[14] by solving the field equations. These
of the soliton spectruni3] and their moduli dependence. are classical gauge field configurations which correspond to
Investigations along these lines have also led to a better ud-strings with chiral (left-moving) oscillations. The exis-
derstanding of the confinement mechanism in supersymmetence of these solutions follow from oscillating fundamental
ric gauge theories from the string theory point of vig#. string solutiong 15] in type IIB string theory and itSL(2,2)

A useful mechanism in studying the strong coupling as-S duality in ten dimensionE3]. As in the case of fundamen-
pects has been the-brane constructions of string solitons tal strings, we show that the matrix theory solutions preserve
[5]. As a result, one can obtain the soliton spectrum and theit/4 supersymmetry.
interactions using open string conformal field theory. Since The Bogomol'nyi-Prasad-SommerfielPS mass for-
the D-branes preserve a certain amount of supersymmetrynula for type 1B string theory, when compactified to nine
they are stable solitonic superstring vacua, around which dimensions, has been written down earlier. They are param-
guantum field theory of the world-volume degrees of free-etrized by integers ri,n), namely, internal momenta and
dom can be formulatef6]. Many suchD-brane configura- winding in the compactified direction, as well as by the
tions have been obtaingd] and the corresponding effective gauge chargesp(q) corresponding to the Neveu-Schwarz—
world-volume actions have been analyzed. Among them, oNeveu-SchwarZNS-NS and Ramond-Ramon¢RR) anti-
particular interest have been some of the E8{-and two-[9] symmetric tensor fields in ten dimensions. It is also known
dimensional supersymmetric gauge theories. that this BPS formula is invariant under t84.(2,2) U du-

In the matrix theory{10,6,11,12 proposal by Banks, Fis- ality in nine dimensions, which follows from tt&duality of
chler, Shenker, and SusskiBFSS, the SU(N) (N—x) the ten-dimensional type IIB strings. In this paper we mainly
world-volume gauge theory dff D-branes has been conjec- concentrate on the BPS formula for thp0,0=1) case
tured to be a fundamental theory describing both the perturwhich corresponds to a sing[2-string. An explicit form for
bative and nonperturbative aspects of string theory. In théhe BPS formula for this case can be derived by using the
simplest case, this is the dimensional reduction of the SL(2,Z) duality on the mass formula of the fundamental
=10,N=1 Yang-Mills theory to the relevant world-volume type IIB string in nine dimensions and by restricting our-
dimension. In this context, it has been shown that variouselves to the supersymmetric ground states. The mass for-
brane solutions of string theory11,6], including their mula for the fundamental string has the fof#
charges, can be obtained from classical solutions in such

gauge theories. We will concentrate on type IIB matrix MZZ( m 2

+(2mRgNT)?+4mTo(N +Ng), (1.

theory[13] which proposes that the ten-dimensional type 11B Rs
with
*Present address: Department of Physics, Indian Institute of Tech-
nology, Kanpur 208 016, India. Ng—N_=mn, (1.2
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and T, is the string tension of the fundamental string. A matrix theory, for this solution, vanishes. In Sec. IV, we
general formula for thef,q) string involves a generaliza- present the (8,0) supersymmetric gauge theory of oscillating
tion of the definition of T,, written in terms of the ten- strings and show its connection with static strings. Conclu-
dimensional axion-dilaton moduli as sions and discussions are presented in Sec. V.

2__ 2 2 27— 2

Ta=[p*+e*e(pxota)*Je” %oT". 3 Il. OSCILLATING STRING SOLUTION
For a (0,1) string we then have, = e?0”T. We now start with a review of oscillating string solutions

The BPS states which preserve 1/2 supersymmetry ang} string theory[15]. They were obtained as a generalization
their interactions have already been analyzed in the matrigf the static fundamental strings found earljég] and are
theory contex{13]. They correspond to the supersymmetricthe solutions of the supergravity equations of motion. The
ground stateN; =Ng=0. We will examine the BPS con- sjngularity of the field configuration represents the position
figurations of the matrix theory preserving 1/4 supersymmeps the string. However, unlike the static case, they corre-
try. They are the supersymmetric ground states with eithegpond to the states preserving only 1/4 supersymmetry.
N_ =0 orNg=0 and provide a rich spectra parametrized by |t js also known that the static fundamental string solu-
the integersif,n). The BPS mass then satisfies the relationtions can be identified with charged extremal black holes in

one lower dimension. Similarly, the oscillating string solu-
Mgps=(27RgN T+ M Rp). 149 tions, after compactification algng its length, (?an asgmptoti—

The mass formuld1.4) is an exact expression which does _caIIy be identified with the supersymmetric, statio_nary, (otalt—
not receive quantum corrections. In matrix theory we verifyiNd, charged black holes. In the context of our discussion in
this by showing that the one-loop quantum effective actiorfn® 1ast section, the static string is a supersymmetric ground
for our solution vanishes. state and the oscillator numbers are fixed to their minimum
As an application of type 1IB matrix theory, we then ob- ValuesN =Ng=0. On the other hand, in the oscillating
tain the world-volume gauge theory in the classical backString configuration onlNg=0 andN_ is an arbitrary oscil-
ground of an oscillating-string solution. It is known that lator numb(_er. The_ oscnla_ttmg string solutions require, from
the world-volume theory for a statid-string configuration ~the Space-time point of view, the presence dfeage com-
of type I1B matrix theory is a two-dimensional gauge theoryp‘?‘Ct'f'ed direction on wh_lch th_e string is wrapped, as_other—
with (8,8) supersymmetr§6,16]. In this paper, we obtain an WiS€ the only BPS configurations are thos.e preserving 1/2
explicit expression for the supersymmetric world-volumeSUPErsymmetry in ten noncompact dimensions. We tetke
gauge theory action with (8,0) supersymmetry from the ma@S the compactified coordinate of radRs o
trix theory action. We show its Lorentz, gauge, and super- The supergra_wty_ solgtlon corresponding to the oscillating
symmetry invariance. The gauge and supersymmetry invarfuindamental string is given as
ance are the residual symmetries of the orginal type IIB _
theory. The supersymmetry is a global symmetry in this case, ds’= —e**dudv +[e*?p(v)r ~°**~(e**~ 1)F(v)*]dv?
as it originates from the global supersymmetry of the Green- 26 .
Schwarz superstring action, in the Schild gauge, or from the +2(e”?—1)F(v)-dxdv +dx-dx,
supersymmetry oN=1 Yang-Mills theory in ten dimen-
sions. The gauge invariance of the (8,0) world-volume ac- B =1(e2¢—1)
tion also follows from that of the gauge invariance of the w2 '
ten-dimensional super Yang-Mills theory. Although the final
- ! (2.9)
model does not possess an explicit left-right symmetry, we
will argue in Sec. IV, from a matrix theory point of view,
that the particle spectrum is anomaly free. We also argue that
the world-sheet actions for the static and oscillating strings
define equivalent quantum field theories. This is demon- e 26—-1+ Q
strated through a mapping of operators in the two cases. Ix—F[P~%
Physically this also implies that the static string is a quantum
state of the world-volume theory in the classical backgroundvhere, for a fundamental string solutioB,,, is the NS-NS
we have studied. antisymmetric tensor field an#;(v) are functions of the
This work has been partly motivated by an analysis oflight-cone coordinate =x°+ x* only. u=x°—x? is the other
BPS states in compactifidd theory using the BFSS model light-cone coordinate. Overdots denote the derivative with
[17]. We have carried out this analysis in the framework ofrespect to the argument and boldfaced letters denote a
S compactified type 1I1B matrix theorj13]. The rest of the  vector in the transverse directions labeled by indicesTo
paper is organized as follows. In Sec. Il, we review the osimatch properly with a string source, one also requpés)
cillating fundamental string solutions from a supergravity =0. The field configurations in Eq$2.1) define an asymp-
point of view and mention how the correspondiDgstrings  totically flat space. As a result, one can properly define the
can be obtained using ti&duality of ten-dimensional type Arnowitt-Deser-MisnefADM) mass and charge for the su-
IIB string theory. In Sec. Ill, we obtain these solutions from pergravity background. It has also been pointed out that the
the 1IB matrix theory. We also show that the matrix theory supergravity solution as well as the ADM energy properly
solution preserves 1/4 supersymmetry. In this section, wenatches with a string source, written in terms of the world-
also point out that the one-loop quantum effective action ofheet coordinates and o as

B,i=Fi(v)(e?*-1),



57 OSCILLATING D-STRINGS FROM TYPE IIB MATRIX THEORY 5143

V(r,0)=2Rno ", its properties. We also show the BPS nature ofgq)Opr
multi-D-string solutions of matrix theory from the results of
v, a one-loop effective action.
U(r,0)=(2Rn+ a)0'_+J F2, (2.2
Il. TYPE 1IB MATRIX THEORY

X(r,0)=F(V), We now obtain an infinite set of solutions of type IIB
where ¢ =r*¢ and V,U are the space-time light-cone matrix theory and show that they correspond to the oscillat-
string coordinatesy = X%— X%, V= X0+ X1, andX are once N9 E_)-strings disgussed in the last sect_ion from the_ super-
again the string coordinates along the transverse direction§ravity point of view. The type I1B matrix theory action is
The constant is the zero mode o2 obtained by the dlmer_13|onal reduction of tDeclo N=1 _

' SU(N) super-Yang-Mills theory to zero dimension and is
1 (2mRn. written as[13]
a=— f F?, (2.3
mJo

1 1
o o . S=a|—TIA, AL P— STIYTHLA, ) |+ B T,
andF;’s have no zero modes. The oscillating string is speci- 3.1
fied by the left-moving wave profilé-;(v). In [15] some ‘
specific wave profiles have been used to show the connectiqnere the last term in the action is a “chemical potential.” A
of the oscillating string solution with the charged rotating similar term in the Schild-type string action is necessary to
black_f_ho][es. For our purposes, however, we do not need thedj,qy its equivalence with the Nambu-Goto actienand 3
Specttic form. , . . e are constants witk/a 8 defining theD-string tension. Equa-
. 'r:he Wprld-sheet c?nﬁgurauo(iz.zzj h‘?sd?’ee” identified tion (3.1) without the chemical potential term is also referred
with a string source of momenta and winding to as theD-instanton matrix actiofl4]. The constants and
= (20" "Y2Rn+a — e 24 B can be deter_mlned by comparing th_e string interaction in

p*=(2a") *(2Rn+23,~3,0), n“=(0n0), 24 matrix theory with those from open strings. The final results

along the directionsX®,X*,X"). The internal momenta/R ~ &r€

in the compact direction is then specified by integers
8m2 1 24792 1

m=— "2 (2.5 RNCRACA - 3y 9’

_ _ ~ with y being a numerical constant.
and the oscillator number, obtained by the level-matching |n [13], the target space metric, represented by the indices

condition, is w, has been chosen as Euclidean, whereas the oscillating
string solutions of 15] presented in the last section are in the
_NRa (2. Minkowski metric. We take care of this discrepancy by put-
L 2a" ' ting appropriate factors dfin the solutions of Sec. Il while

o o _ computing the one-loop effective action. For the moment,
An oscillatingD-string in the supergravity context can be however, we continue to work with the Minkowski metric.

obtained by applying a®L(2,2) duality transformation on The field equations of matrix theory are

the fundamental string solution presented above. The general

procedure, as well as the specif&d(2,Z) transformation [A*[A,,A,]]=0,

matrix (A), is similar to the generation of a statip<0,

g=1) string solution from the (1,0) solution as described in [A,.(T'*y),]=0. (3.2

[3]. We do not elaborate on them further, except to note that

the fundamental string tension will be replaced appropriatelyAs fermions do not have a classical background, only the

by the one for aD-string. first equation of Eqs(3.2) is considered for analyzing the
The string sourcé2.2) will play a crucial role in obtain- classical solutions.

ing a matrix theory solution as they, with appropriate modi- The action(3.1) is invariant under supersymmetry trans-

fications of string tension, will specify the gauge field con-formations

figurations, which are the solution of the matrix theory field

equations. So far we have only discussed a single fundamen-

tal (1,0) andD-string (0,1) solution. The existence of mul-

tiple supersymmetric parallel string configurations has also

been shown inM15]. They correspond top,0) and (Og) and

type BPS states, preserving once again 1/4 supersymmetry. It

5 _ | A, AT#e  SYA =iel 3.3
w—i[ W v] €, /.L_Ie ,u.lr// ()

may also be possible to obtain higher dimensional oscillating 8y=¢,  82A,=0. (3.9
braneqd19] and to obtain their parallel and orthogonal super-
symmetric configurations. These are also referred to as the “dynamical” and “kine-

In the next section we obtain the oscillating string as amatic” supersymmetry transformatiofi§] and follow from
solution to the field equation in matrix theory and examinethe dimensional reduction of the world-sheet Green-Schwarz
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superstring action in the Schild gauge to zero dimension. In v orU 2i
addition, the actior§3.1) is invariant under a gauge transfor- [AY,AT]=—  (2Rn(2Rn+a),
mation:
. . 2i
Sgaugd,=i[Au @], Sgaugeh=il4,a]. (3.5 [AY, A= — r (2RM)(2Rn+ a)F'. (3.12

The field equationg3.2) are now solved by infinite di-
mensional Hermitian matrices,’s. In turn, using the famil-
iarity with quantum mechanrcs these matrices are repre
sented by the canonically conjugate varialdgs and p;’s .
The relationship of these solutions with those in string theory We now examine the BPS and supersymmetry properties

is established through an identification of the commutatoré)f the solytion(s.l@. In t_he background of a static string
with the Poisson brackets for the Schild act[di3]: _contrguratron, the dynamical supersymmetry transformation
is given as

These imply that the field equations are once again satisfied.
We have therefore found a class of solutions of the matrix
theory field equations specified by the wave profi(&/).

1 TL
{X,Y}= Taeab&axabY, (3.6 sV y=— 2_1"01 . oWA,=0. (3.12

wherea, b denote the world-sheet coordinatese. More-  As a result, the only way to preserve some amount of super-
over, one also identifies symmetry is to cancel the dynamical supersymmetry trans-
formation with the kinematic one by definingt=

. , +(TL/2wN)I'%%e. We then have §*+6%)¢=0 and (&*
=i, 1={.} Tr—>f d2o g, +5%A,=0, which implies that the solution preserves 1/2
supersymmetry.
Now, for the oscillating string background, the dynamical
p supersymmetry transformation can be written as
T— , Oo— , (3.7
27N 27N

1 . .
: . _ _ My= —(2Rn)(2Rn+a)[TVVe+F)I'Vi¢],
with the commutatofq,p]=2i. The staticD-string 2N

L . sYA =0. (3.13
X0=Tr, X1=ZU, X'=0 (3.9 ®
Since the transformatioa® is still given by Eq.(3.4), and

hence to make sure that a certain amount of supersymmetry,

can then be represented by the gauge field configuration : .
P y e galg g namely, 6+ 52) is preserved, one also has to impose the

condition
Al= ! q, Al= L p, A=0 (3.9 o
2N V2mN FiI'Vie=0. (3.149

and satisfies the fields equatio{@2). Similarly the oscillat- Before solving this equation explicitly, we notice that Eq.
ing string can be represented by a gauge field configuratiof.14) is a chirality condition one in the light-cone direc-
which is obtained through the identifications in E¢3.7).  tions, namely, (¥ I'’T'Ye=0. Since the string world sheet
Continuing to work in light-cone coordinates, the compo-is identified with light-cone coordinates, E@.14) implies a

nentsA*’s are given as chirality condition in the world-volume directions. More ex-
plicitly, by choosing ten-dimensiondl matrices in the Ma-
AV=2Rne" jorana representation as
. 0 -l 0 1 (Y0
e ' I i R ]
A"=(2Rn+a)c + | F~, (3.10 lg O lg O 0 —-vy
(3.19
Al=F\(V), and by decomposing the ten-dimensional spior terms of

the eight-dimensional ones a;(EL) the condition(3.14

whereo* =q=p/27N andV denotes an operator replace- implies ex=0. To summarize this part of the discussion, we
ment in the functionV: V(r,0)—V(q/y27N,p/\27N).  have shown that a cancellation between the “dynamical”
Once again, the gauge field configuration for a static stringand “kinematic” supersymmetry transformations can occur
(3.8) corresponds t&'=0 andT=L/27=2Rn. in the matrix background3.10 provided half the compo-

Now, to verify thatA,’s in Egs.(3.10 are solutions of nents of the dynamical supersymmetry transformations are
Egs.(3.2), we evaluate their commutators. The nonzero onegero. This, in turn, implies that our solution preserves only
are 1/4 supersymmetry, as expected of an oscillating string.
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To further identify the solution of matrix theor{8.10  the absence of an anomaly in the world-volume action. This
with the oscillating string solution we evaluate the classicaholds in our case, providdg; =0 for this indexi. However,
action for this configuration. We have it is likely that IMW=0 in generic cases as well.

To evaluate the effective action in our case, we rewrite
(3.16 the gauge fieId_commutators in EG.11) in the Euclidean
metric and notice that only nonzero componentsFof,,

o _ _ o namely,Fq andF,;, satisfy the relatiorFo=—iF;. The
An extremization with respect tl and the identification form of the matrixP25,,— 2iF ,,,

VaB=2mp, with p being the string tension, now gives

2

_g((ZRn)(ZRnJra) BN

BT 2 N

P2 0 —2iFg
Sg=2mp(2Rn)(2Rn+a). (3.17 ) )
) . 0 P —2iF 5
To verify that the action{3.17) _is proportional to the area of P65, —2iF ,,= 2iFg, 2iFy, p2 ol
the world sheet, we have directly evaluated the Polyakov
action, acting as the source for the supergravity background ‘ ) 0
and for the oscillating string solution and shown that it again (3.21)

gives the same value as in E§.17). Since the solutions in .
[15] also satisfy the Virasoro condition, the evaluation of theamzj the piroperty O,f the operat(?t%f, Fuy, In our case
Nambu-Goto action in this background also gives the sam&Px F.»]=0, then imply thatF,,'s cancel out in the ex-
value. These results once again confirm that the Yang-Mill®ression of the determinant of the matrix. To show this in
field configurations do indeed represent the oscillating?nother way, we expand

strings and, in turn, the infinite hierarchy of BPS states. In 2 . _ 2 . 2

this context, we notice that the BPS mass formfdla) also 1" 109(Px3u,=2iF ;) =Tr logPyd,,,+ Tr(2iF ,,/Py)

follows from the time component of the target space momen- 1

tum for these strings written in Eq&.4). It is also interest- + E(Zi)ZTr[FMFﬁ/(Pf)Z]Jr N

ing to note that the matrix solution represents a string with

well-defined string tension for generic oscillatioRs(v). (3.22

The change in the value of the action with respect to the

static string is by an amount and use the fact that the only nonvanishing components of
8,,,F,, In the u,v coordinates ares"’=1 and F"'=

—2F,; . It can then be shown that all the higher-order terms
vanish, as one cannot form invariants out of the above non-
vanishing components. A similar property of certain classical
where the last equality follows from the relatioa= field configurations, namely, chiral-null models, has been
—(2m2p) "'m/R for a D-string which is analogous to Eq. used to show that they are an exact solution of first quantized
(2.5 for a fundamental string through a replacementstring theory[21]. We interestingly observe the appearance
1/2wa’—2mp. Solutions(3.10 can then be interpreted as of this property in the context of matrix theory.
an excitation over the static string state by an amaduint The terms in the trace of the matrﬁ)Per(i/Z)F o Rl
from this point of view as well. cancel out similarly. Various other terms in the effective ac-
We now analyze the one-loop effective action of matrixtion (3.19 then cancel out as in the static case and imply that
theory for the classical backgrourtd.10 and show that the the one-loop contribution to the effective action for the os-
effective action vanishes. The effective action in a generatillating case vanishes as well. This confirms the exactness

ASB=27Tp(2Rn)a=%N|_, (3.18

backgroundA ,=p,, has the forn{13] of the BPS formula1.4) argued on the basis of supersym-
metric grounds earlier.
REW= ETr log(P25,,— 2iF ) One can also examine the status of the multistring solu-
2 Nowy my tion. The parallel configuration of oscillating strings from

matrix theory can be obtained as block-diagonal matrices.

- lTr log | P2+ '_|: F/”) (1+_Fll” Then the cancellations i@ occur within each block in an
4 2 2 identical fashion and they once again vanish, showing that
Ty Iog(Pf), (3.19 they are BPS configurations as well.
whereP, andF ,, are operators acting on the space of ma- IV. WORLD-VOLUME ACTION

trices as . : .
In this section we obtain the world-volume gauge theory

X], (3.20  from type 1IB matrix theory for the classical configuration
corresponding to an oscillating string. We also analyze this
with f ,,=i[p,.p,], p, being the operator replacement for world-volume gauge theory action in some detail and show
variablesA,, . The terms in Eq(3.19 correspond to the con- its connection with static strings upon quantization.
tributions from the boson#\,, the fermionsy, and the It is known that the zero modes of a stallestring give
Faddeev-Popov ghosts, repectively. It has also been noticatse to anN=8 U(1) vector multiplet in two dimensions.
in [13] that the imaginary part diV vanishes whef®; is zero  We will now see that the zero modes of an oscillating string
along at least one of the transverse directiormsd implies  are the (8,0)U(1) vector multiplets together with eight sca-

P.X=[p, . X], F,X=[f

uvs
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lar multiplets containing the world-sheet fermions of oppo-serves 1/4 supersymmetry has already been pointed out.
site chirality. Similarly the zero modes dfl coinciding However, this leaves us with two possibilities for the world-
D-branes[6] are now expected to give rise to an (8,0) volume supersymmetry. One can either have a (4,4) or an
SU(N) gauge theory. Two-dimensional world-sheet actiong(8,0) supersymmetric gauge theory in two dimensions. The
with (8,0) and (4,0) supersymmetry have been written inlatter possibility is more natural in our case, as the oscillating
other contextd20,17 earlier and it may be interesting to string solution discussed above is left-right asymmetric. We
show the exact connection among these actions. have, however, already shown the breakingNef8 or (8,8)

The world-volume action describing the dynamics of supersymmetric gauge theory in two dimensions to an (8,0)
these field§6] can also be obtained by adding the quantumtheory explicitly in Eq.(3.14).
fluctuations to the classical backgrounds and then by expand- Once again, for writing down the action in two dimen-
ing the matrix theory action. The one-loop effective action ofsions, we expand the matrix theory fields around the classical
matrix theory(3.19 is in fact the quantum effective action of background mentioned above in E43.10. We now have
these gauge theories. Thus in the static case we [H#8le

AV=2Rno*+a'AY,

Ag=—0o+ a’:&o( 7,0), Aj=1+ a";&l( T,0), (4.1

~ \ ~
A=a' ¢i(7,0), Y=a Y(r0), 4.2 AU:(ZRn+a)0'7+J' F+a’AY, (4.9

whereA, (a=0,1) now are the gauge fields on the world

volume whereas the transverse componemiss{ are the
scalar fluctuationsipz(ﬁg) are the world-sheet fermions
which also transform as a spinor under an inter@€8)

symmetry. These are, as expected, the degrees of freedom
an N=8 vector multiplet in two dimensions and are identi-

A=F'(V)+a'¢'.

The supersymmetry breaking frold=8 or (8,8) gauge

heory to an (8,0) gauge theory can now also be seen from
e background configuration in Eqgl.5). It is known that

the R symmetry for anN=8 supersymmetric theory is an

fied as the bosonic and fermionic zero modes of a stati
string.

The commutators of matrix variables, including the fluc-
tuations(in the static case have the forn{16]:

%O(S)Lx SO(8)g global symmetry group which transforms
the supercharges as(8)+(1,8,). Then, as a result of the
background configuration for the scalars in E¢&5), the
left-moving part of the world-volume scalars acquires a
vacuum expectation value. This breaks tH&Q(8),
XSO(8)g R symmetry to SO(8), and the final world-
volume theory has an (8,0) supersymmetry only.

We now derive this world-volume action and show its
invariance under gauge and supersymmetry transformations.
To write down the world-volume action, we once again com-
pute the commutators appearing in the acti@rl) and make
the identificationg3.7). The nonzero ones are

[Ao.Ar]=ia'(1+a'Fo1), [As.Al=ia’D,d;,

[Aa ]=ia'D i, (4.3

where we have used the identificati¢B.7) to replace the
commutators with Poisson brackets aRgh=doA;— d1Aq
+a'{Ay,A;} and D,¢'=d,¢'+a’{A,,$'}. Then, for a
single D-string, the action(3.1) reduces to dJ(1) gauge
theory in two dimensions witiN=8 supersymmetry. The
bosonic part of the gauge theory action for thel) case has
the form

[AY,AV]—2(2Rn)(2Rn+a)+2a’ (2Rn)d_AY
+2a'[(2Rn+a)d,AY— (2RN)F29_AY]
+a'HAY,AV}

=2(2Rn)(2Rn+a)+a’FYY, (4.9

!

SB:ZTra

] f d?o(1+a’?F§;— a'?D,¢'D ).
S

(44 AU A= 2(2RN)(2Rn+a)F +24'[(2RN+a)d, &'
The first(constantterm in Eq.(4.4) is the contribution of the

_ —2 i —i AU 12§ AU i
classical background. In the Born-Infeld action, they corre- (2RMFZ9_¢'+(2RMFI_AT]+a ™A, ¢}

spond to the term involving the induced world-volume met- =2(2Rn)(2Rn+a)F +a’'D, ¢, (4.7)
ric. The forms ofFy, andD ,¢; also imply the existence of

higher (than twg derivative terms in the action. These have ; , ; L~

begen identified with the higher-order terms in the expansion [AYA]—a'[~2(2RMJ-¢'+2(2RN)F'9_A"]

of the Born-Infeld actiorf16]. The two derivative terms are T a’Z{KV P

the standard gauge theory action of the bosonic part of an '

N=8 Abelian gauge theory. =a'D_¢, 4.9

We now obtain the world-volume gauge theory action for
the oscillating configuration from matrix theory and show
that they correspond to an (8,0) supersymmetric gauge
theory in two dimensions. The fact that the solution pre-

[ALAl—2a’ (2RN)(Fla_¢' —Flo_¢h)+a'?f, i}
=a' ®N, 4.9
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2

The bosonic part of the world-volume gauge theory action is afl ., a’ T

then obtained by substituting the above commutators into the Sp=— §f d UE[Z(ZR N+a)yYrd+ Yr
bosonic part of the matrix theory actidi3.1) and by the

identifications in Eqs(4.6—(4.9). For example, in the vari- —2(2RN)F2yd_ i+ o’ yi{AY
ablesAy, Ay, andA,;, the first term in Eq(3.1) has the ( Vri-Ir VRIAT Ur)
form —2(2Rn) g d_ip + o Ay }

: ST T
Sg=-— %Tr( —~ %[AU,AV]Z—F2[AU,A‘][AV,Ai]+[Ai,Ai]Z)_ +2'(2Rf‘)_F (YrY am+_m J-yr)
4.10 —ia (pry'{di v+ WA {S ur)]. (416

By ignoring the constant and total derivative terms, the . To o_btain the supersymme?ry tra_nsformations for the two-
bosonic world-volume action is then written as dimensional gauge theory action, given®y Sg+ S¢, from
matrix theory, we use the conditioeg=0 which follows
13
o o
- _ 25—
4J’ d 0277

1 _ o, from Eq. (3.14. For the supersymmetry transformatién
—EFUV —2D,.¢'D_¢' + P = §'— 5% we have
—4(2Rn)(2Rn+a)F{AY, ¢} |. (4.11

SAY=2iel ., OAV=0, Sd'=—¢€lyyr (4.17)
and

The last term in the above action comes from the expression i o _
4(2Rn)(2Rn+a)F'D_¢', by dropping the total derivative 5‘/’L:§(FUV+ ®y)e, SyYr=D_¢iv'e .
terms. The gauge transformations, derived from Eg$), in (4.189
two-dimensional gauge theory have the form
The supersymmetry invariance of the action can then be veri-
8,AY=2i(2Rn+a)d, e—2i(2RN)F27_e+ia'{AY €}, fied explicitly. In a compactcovarianj form, the supersym-
metry transformations have the explicit form

SAY=—2i(2Rn)J_e+ia'{A" e}, (412 5S5= — 05— i THA, AGIA® TPyl (4.19

Syd'=—2i(2RNFd_e+ia'{' €, A more explicit form of these transformations in terms of the

. ] ) _ field variablesAY, AY, ¢', and ¢ can be written down by
and imply the following transformations for the quantities using Eqs(4.6—(4.9) and identification$3.7). Finally, Lor-

uv i i ) =4S, .
FYY,D.¢', andD_¢'" entz invariance of the world-volume action can be seen from
the scaling transformations
SgFVV=ia'{FYV, e}
g ) y

ot T, o =N loT, (4.20
84D ¢'=—4i(2RN)(2RN+a)d. F'd_e+ia'{D  ¢; €},

(4.13
Co . RU_>)\—1’AU, KV_))\KV, ¢i_)¢i, I':i_>)\—l|':i,
5gD7¢|:|a{D,¢|,E}. (421)

The gauge invariance of the actid@ then follows from  and those of fermions,
these transformation rules. The fermionic part of the gauge
theory action can also be written as S Y S S (4.22

together with the transformation of the bosonic fields,

a _ . We have already pointed out in Sec. lll that the world-
Se=—5Tr( YT LAy, 1+ yT V[ Ay, ]+ yT A §]). volume action is anomaly free. This is essentially due to the
(4.14 fact that the spectrum contains an equal number of left- and

right-moving fermions. Moreover, as in the case of gauge

By using the commutators theory with (8,8) supersymmetry and the corresponding
Abelian Born-Infeld action, all the fermions as well as matter
[AY,y]=2(2Rn+a)a ¢—2(2Rn)|':2a o+ a,{ﬂu ¥ scalars are neutral under gauge symmetry on the world vol-
] + - ! '

ume for the oscillatind>-string as well. As a result they do
v v not contribute to the anomaly. In Sec. Ill we have argued this
[AY,¢]=—2(2Rn)d_¢+ a'{A", 41}, (4.19 more concretely by pointing out that Ww=0 whenever the
. transverse oscillation is absent along one of the directions.
[A,y]=—22RnNFo_y+a'{¢ ¢}, We now discuss the connection of our solution with static
D-strings by arguing that one can obtain the particle spec-
and expanding in terms of the left- and right-moving world- trum of static strings, from that of the classical configuration
sheet fermions, we have the explicit form discussed above, after quantization. In two dimensions, this
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implies the quantum equivalence of the world-volume actionThis choice satisfies the condition thaf{v) have no zero
(4.4) for the static case with the oscillating o4.10 and  mode, namelyf?™R"F(v)=0. Then, by representing the os-
(4.16. This is true in spite of the fact that the manifest sym-cillators « and@ as Fourier components of two commuting
metries of the two actions are quite different. However, thispperatorsJ~ and 9_ ¢, respectively, and comparing them
is expected from a different angle, namely, the absence Qfjith the Fourier components of similar operators in the static

spontaneous symmetry breaking in two dimensions. Our recase F=0, it can be shown that, at=0, the oscillators are
sults of this part therefore imply that the collective modes ofapped as

oscillating strings have, in their spectrum, the static string as

well. —  (2Rn+a) ~ (2Rn+a) 2aq
To analyze the quantum spectrum corresponding to theanFWam, am:(ZTn)E Im—gq Rn

action(4.10 and(4.16), we set the gauge field fluctuations to 4

zero and make the choid€ =0, fori#1, andF*=F. Fur- (4.27

thermore, we restrict the analysis to the bosonic sector onl)(,\lhere 3

as the fermionic part can also be analyzed in a similar man; m(x) are the Bessel functions. Equatich27 gives
ner. After these simplifying assumptions, the bosonic actio & mapping between operators in the spectrum of oscillating

. o - . "hnd static strings. Using the above relationship between the
for flelld_s ¢ (i :.2’ - .8) arahpse of a free field. The field operatorsd™ angd d_¢ iﬁ the two cases, the sF())Iutions for
¢=¢" is described by the action fields themselves can be shown to be related to each other.
The mapping at-+# 0 is given by the time evolution of these

aq,

Sé:( - 3) (2R n)f d20[(2RN+a)d, pd_ operators Wit_h respect to the cor_responding Ham_ilto_nians._ A
4 similar mapping should be possible for the fermionic oscil-
: lators as well.
—(2RNE2(5_¢)2]. 4.23 W
The equation of motion corresponding to the actidr23d V. CONCLUSIONS

can be written ag_J~ =0, where We have presented a class of solutions of type 11B matrix

) theory and shown that the solutions preserve 1/4 supersym-
J"=(2Rn+a)d, ¢~ (2RNF?J_¢. (4.24  metry. The supersymmetry that is preserved is chiral in na-
ture in terms of the wave motion on ttie-string. We have
J~ is a chiral conserved current in the theory. The equatiortonfirmed the BPS nature of these solutions by computing
of motion for closed strings can be solved as the one-loop effective action and derived world-volume
gauge theory. It was also shown that the world-volume ac-

n _ 1 V., tion in the classical background of oscillating strings is
¢p=pLo’+prl o+ e | F -
(2Rn+a) anomaly free for a large class of models. However, it should
_ be possible to show this property without making any as-
D Am| i D a_m .om sumption about the form of the transverse oscillations.
Tl |8 T Ty |em 2 (2Rn) There can be several applications and generalizations of

these results. First, it will be interesting to extend the results

of this paper to other extended objects with oscillations. A
: (4.29 membrane solution of this type is already kno{d®] and

implies that a similar analysis in BFSS matrix theory should
The canonical formulation can be applied to the time- and?@ Possible. Another interesting aspect of this analysis may
space-dependent Lagrangi&h23 in a standard way and be to examine gauge theories that might arise through other

V.,
x((2Rn+a)a+f F2

leads to a Hamiltonian density of the form oscillatingD-brane configurations. The BPS states of strings
have been analyzed using the results in four-dimensional
a\ (2Rn) . gauge theorie$l7] in the context of BFSS matrix theory.
H=|~— Z)M{J_ZH(ZRM a)®—(2Rn)*F*] However, it should be possible to carry out our analysis in
similar circumstances. One may also be able to apply the
X(d_¢)?}. (4.26 results of this paper to study black holes in the type IIB

matrix theory picture. This can be done through the identifi-
In writing down Eq.(4.26), we have replaced the canonical cation of compactified oscillating strings with extremal black
momentum by the space and time derivatives, to present oles.
simple form.
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F(v)=+va(2Rn)| [sin(V/2Rn)+cogV/2Rn)]+
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