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Oscillating D-strings from type IIB matrix theory
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We present a class of BPS solutions of the type IIB matrix theory which preserves 1/4 supersymmetry. The
solutions describeD-string configurations with left-moving oscillations. We demonstrate that the one-loop
quantum effective action of matrix theory vanishes for this solution, confirming its BPS nature. We also study
the world-volume gauge theory of oscillating strings and show its connection with staticD-strings.
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I. INTRODUCTION

One of the most challenging problems in string theory h
been to understand its strong coupling aspects@1,2#, includ-
ing its moduli space structure in full quantum theory at t
nonperturbative level. One also hopes that such an inves
tion will lead to an understanding of supersymmetry bre
ing in these theories and will give the correct string theo
vacuum describing the real world. As is well known, t
unravelling of nonperturbative aspects includes an anal
of the soliton spectrum@3# and their moduli dependence
Investigations along these lines have also led to a better
derstanding of the confinement mechanism in supersymm
ric gauge theories from the string theory point of view@4#.

A useful mechanism in studying the strong coupling
pects has been theD-brane constructions of string soliton
@5#. As a result, one can obtain the soliton spectrum and t
interactions using open string conformal field theory. Sin
the D-branes preserve a certain amount of supersymme
they are stable solitonic superstring vacua, around whic
quantum field theory of the world-volume degrees of fre
dom can be formulated@6#. Many suchD-brane configura-
tions have been obtained@7# and the corresponding effectiv
world-volume actions have been analyzed. Among them
particular interest have been some of the six-@8# and two-@9#
dimensional supersymmetric gauge theories.

In the matrix theory@10,6,11,12# proposal by Banks, Fis
chler, Shenker, and Susskind~BFSS!, the SU(N) (N→`)
world-volume gauge theory ofN D-branes has been conje
tured to be a fundamental theory describing both the per
bative and nonperturbative aspects of string theory. In
simplest case, this is the dimensional reduction of theD
510, N51 Yang-Mills theory to the relevant world-volum
dimension. In this context, it has been shown that vari
brane solutions of string theory@11,6#, including their
charges, can be obtained from classical solutions in s
gauge theories. We will concentrate on type IIB mat
theory@13# which proposes that the ten-dimensional type I

*Present address: Department of Physics, Indian Institute of T
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string theory is described by the dimensional reduction of
D510, N51 SU(N) guage theory to zero dimension. Th
possesses a manifest Lorentz invariance. The emergence
D-string from such a matrix theory has also been sho
through an analysis of its interactions. A duality among m
trix theories proposed earlier for describingM theory and the
one for type IIB theory has also been argued.

In this paper, we generalize some of the results in@13#
and write down an infinite set of classical solutions of ty
IIB matrix theory @14# by solving the field equations. Thes
are classical gauge field configurations which correspon
D-strings with chiral ~left-moving! oscillations. The exis-
tence of these solutions follow from oscillating fundamen
string solutions@15# in type IIB string theory and itsSL(2,Z)
S duality in ten dimensions@3#. As in the case of fundamen
tal strings, we show that the matrix theory solutions prese
1/4 supersymmetry.

The Bogomol’nyi-Prasad-Sommerfield~BPS! mass for-
mula for type IIB string theory, when compactified to nin
dimensions, has been written down earlier. They are par
etrized by integers (m,n), namely, internal momenta an
winding in the compactified direction, as well as by th
gauge charges (p,q) corresponding to the Neveu-Schwarz
Neveu-Schwarz~NS-NS! and Ramond-Ramond~RR! anti-
symmetric tensor fields in ten dimensions. It is also kno
that this BPS formula is invariant under theSL(2,Z) U du-
ality in nine dimensions, which follows from theS duality of
the ten-dimensional type IIB strings. In this paper we main
concentrate on the BPS formula for the (p50,q51) case
which corresponds to a singleD-string. An explicit form for
the BPS formula for this case can be derived by using
SL(2,Z) duality on the mass formula of the fundamen
type IIB string in nine dimensions and by restricting ou
selves to the supersymmetric ground states. The mass
mula for the fundamental string has the form@3#

M 25S m

RB
D 2

1~2pRBnTq!214pTq~NL1NR!, ~1.1!

with

NR2NL5mn, ~1.2!
h-
5141 © 1998 The American Physical Society
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5142 57ANINDYA K. BISWAS, ALOK KUMAR, AND GAUTAM SENGUPTA
and Tq is the string tension of the fundamental string.
general formula for the (p,q) string involves a generaliza
tion of the definition ofTq , written in terms of the ten-
dimensional axion-dilaton moduli as

Tq
25@p21e2f0~px01q!2#e2f0T2. ~1.3!

For a (0,1) string we then haveTq5ef0/2T.
The BPS states which preserve 1/2 supersymmetry

their interactions have already been analyzed in the ma
theory context@13#. They correspond to the supersymmet
ground statesNL5NR50. We will examine the BPS con
figurations of the matrix theory preserving 1/4 supersymm
try. They are the supersymmetric ground states with eit
NL50 or NR50 and provide a rich spectra parametrized
the integers (m,n). The BPS mass then satisfies the relat

MBPS5~2pRBnTq1m/RB!. ~1.4!

The mass formula~1.4! is an exact expression which doe
not receive quantum corrections. In matrix theory we ver
this by showing that the one-loop quantum effective act
for our solution vanishes.

As an application of type IIB matrix theory, we then o
tain the world-volume gauge theory in the classical ba
ground of an oscillatingD-string solution. It is known that
the world-volume theory for a staticD-string configuration
of type IIB matrix theory is a two-dimensional gauge theo
with (8,8) supersymmetry@6,16#. In this paper, we obtain an
explicit expression for the supersymmetric world-volum
gauge theory action with (8,0) supersymmetry from the m
trix theory action. We show its Lorentz, gauge, and sup
symmetry invariance. The gauge and supersymmetry inv
ance are the residual symmetries of the orginal type
theory. The supersymmetry is a global symmetry in this ca
as it originates from the global supersymmetry of the Gre
Schwarz superstring action, in the Schild gauge, or from
supersymmetry ofN51 Yang-Mills theory in ten dimen-
sions. The gauge invariance of the (8,0) world-volume
tion also follows from that of the gauge invariance of t
ten-dimensional super Yang-Mills theory. Although the fin
model does not possess an explicit left-right symmetry,
will argue in Sec. IV, from a matrix theory point of view
that the particle spectrum is anomaly free. We also argue
the world-sheet actions for the static and oscillating strin
define equivalent quantum field theories. This is dem
strated through a mapping of operators in the two ca
Physically this also implies that the static string is a quant
state of the world-volume theory in the classical backgrou
we have studied.

This work has been partly motivated by an analysis
BPS states in compactifiedM theory using the BFSS mode
@17#. We have carried out this analysis in the framework
S1 compactified type IIB matrix theory@13#. The rest of the
paper is organized as follows. In Sec. II, we review the
cillating fundamental string solutions from a supergrav
point of view and mention how the correspondingD-strings
can be obtained using theS duality of ten-dimensional type
IIB string theory. In Sec. III, we obtain these solutions fro
the IIB matrix theory. We also show that the matrix theo
solution preserves 1/4 supersymmetry. In this section,
also point out that the one-loop quantum effective action
nd
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matrix theory, for this solution, vanishes. In Sec. IV, w
present the (8,0) supersymmetric gauge theory of oscilla
strings and show its connection with static strings. Conc
sions and discussions are presented in Sec. V.

II. OSCILLATING STRING SOLUTION

We now start with a review of oscillating string solution
in string theory@15#. They were obtained as a generalizati
of the static fundamental strings found earlier@18# and are
the solutions of the supergravity equations of motion. T
singularity of the field configuration represents the posit
of the string. However, unlike the static case, they cor
spond to the states preserving only 1/4 supersymmetry.

It is also known that the static fundamental string so
tions can be identified with charged extremal black holes
one lower dimension. Similarly, the oscillating string sol
tions, after compactification along its length, can asympt
cally be identified with the supersymmetric, stationary, rot
ing, charged black holes. In the context of our discussion
the last section, the static string is a supersymmetric gro
state and the oscillator numbers are fixed to their minim
values NL5NR50. On the other hand, in the oscillatin
string configuration onlyNR50 andNL is an arbitrary oscil-
lator number. The oscillating string solutions require, fro
the space-time point of view, the presence of a~large! com-
pactified direction on which the string is wrapped, as oth
wise the only BPS configurations are those preserving
supersymmetry in ten noncompact dimensions. We takex1

as the compactified coordinate of radiusR.
The supergravity solution corresponding to the oscillat

fundamental string is given as

ds252e2fdudv1@e2fp~v !r 2D142~e2f21!Ḟ~v !2#dv2

12~e2f21!Ḟ~v !•dxdv1dx•dx,

Buv5
1

2
~e2f21!,

~2.1!

Bv i5Ḟ i~v !~e2f21!,

e22f511
Q

ux2FuD24 ,

where, for a fundamental string solution,Bmn is the NS-NS
antisymmetric tensor field andFi(v) are functions of the
light-cone coordinatev5x01x1 only. u5x02x1 is the other
light-cone coordinate. Overdots denote the derivative w
respect to the argumentv and boldfaced letters denote
vector in the transverse directions labeled by indicesi ’s. To
match properly with a string source, one also requiresp(v)
50. The field configurations in Eqs.~2.1! define an asymp-
totically flat space. As a result, one can properly define
Arnowitt-Deser-Misner~ADM ! mass and charge for the su
pergravity background. It has also been pointed out that
supergravity solution as well as the ADM energy prope
matches with a string source, written in terms of the wor
sheet coordinatest ands as
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57 5143OSCILLATING D-STRINGS FROM TYPE IIB MATRIX THEORY
V~t,s!52Rns1,

U~t,s!5~2Rn1a!s21EV

Ḟ2, ~2.2!

X~t,s!5F~V!,

where s65t6s and V,U are the space-time light-con
string coordinates:U5X02X1, V5X01X1, andXi are once
again the string coordinates along the transverse directi
The constanta is the zero mode ofḞ2,

a5
1

pE0

2pRn

Ḟ2, ~2.3!

andFi ’s have no zero modes. The oscillating string is spe
fied by the left-moving wave profileFi(v). In @15# some
specific wave profiles have been used to show the connec
of the oscillating string solution with the charged rotati
black holes. For our purposes, however, we do not need t
specific form.

The world-sheet configuration~2.2! has been identified
with a string source of momenta and winding

pm5~2a8!21~2Rn1a,2a,0!, nm5~0,n,0!, ~2.4!

along the directions (X0,X1,Xi). The internal momentam/R
in the compact direction is then specified by integers

m52
Ra

2a8
, ~2.5!

and the oscillator number, obtained by the level-match
condition, is

NL5
nRa

2a8
. ~2.6!

An oscillatingD-string in the supergravity context can b
obtained by applying anSL(2,Z) duality transformation on
the fundamental string solution presented above. The gen
procedure, as well as the specificSL(2,Z) transformation
matrix (l), is similar to the generation of a static (p50,
q51) string solution from the (1,0) solution as described
@3#. We do not elaborate on them further, except to note
the fundamental string tension will be replaced appropria
by the one for aD-string.

The string source~2.2! will play a crucial role in obtain-
ing a matrix theory solution as they, with appropriate mo
fications of string tension, will specify the gauge field co
figurations, which are the solution of the matrix theory fie
equations. So far we have only discussed a single fundam
tal (1,0) andD-string (0,1) solution. The existence of mu
tiple supersymmetric parallel string configurations has a
been shown in@15#. They correspond to (p,0) and (0,q)
type BPS states, preserving once again 1/4 supersymmet
may also be possible to obtain higher dimensional oscilla
branes@19# and to obtain their parallel and orthogonal sup
symmetric configurations.

In the next section we obtain the oscillating string as
solution to the field equation in matrix theory and exam
s.
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its properties. We also show the BPS nature of (0,q) or
multi-D-string solutions of matrix theory from the results
a one-loop effective action.

III. TYPE IIB MATRIX THEORY

We now obtain an infinite set of solutions of type II
matrix theory and show that they correspond to the oscil
ing D-strings discussed in the last section from the sup
gravity point of view. The type IIB matrix theory action i
obtained by the dimensional reduction of theD510, N51
SU(N) super-Yang-Mills theory to zero dimension and
written as@13#

S5aS 2
1

4
Tr@Am ,An#22

1

2
Tr~ c̄Gm@Am ,c#! D1b Tr1,

~3.1!

where the last term in the action is a ‘‘chemical potential.’’
similar term in the Schild-type string action is necessary
show its equivalence with the Nambu-Goto action.a andb
are constants withAab defining theD-string tension. Equa-
tion ~3.1! without the chemical potential term is also referr
to as theD-instanton matrix action@14#. The constantsa and
b can be determined by comparing the string interaction
matrix theory with those from open strings. The final resu
are

a5
8p5/2

A3g

1

a82gs
, b5

24p9/2

A3g

1

gs
,

with g being a numerical constant.
In @13#, the target space metric, represented by the ind

m, has been chosen as Euclidean, whereas the oscilla
string solutions of@15# presented in the last section are in t
Minkowski metric. We take care of this discrepancy by pu
ting appropriate factors ofi in the solutions of Sec. II while
computing the one-loop effective action. For the mome
however, we continue to work with the Minkowski metric

The field equations of matrix theory are

@Am,@Am ,An##50,

@Am ,~Gmc!a#50. ~3.2!

As fermions do not have a classical background, only
first equation of Eqs.~3.2! is considered for analyzing th
classical solutions.

The action~3.1! is invariant under supersymmetry tran
formations

d~1!c5
i

2
@Am ,An#Gmne, d~1!Am5 i ēGmc ~3.3!

and

d~2!c5j, d~2!Am50. ~3.4!

These are also referred to as the ‘‘dynamical’’ and ‘‘kin
matic’’ supersymmetry transformations@6# and follow from
the dimensional reduction of the world-sheet Green-Schw



.
r-

r

or
or

tio

o

e-

in

ne

fied.
trix

ties
g
ion

er-
ns-

/2

al

etry,
the

q.

t

-

e
al’’
ur

are
nly
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superstring action in the Schild gauge to zero dimension
addition, the action~3.1! is invariant under a gauge transfo
mation:

dgaugeAm5 i @Am ,a#, dgaugec5 i @c,a#. ~3.5!

The field equations~3.2! are now solved by infinite di-
mensional Hermitian matricesAm’s. In turn, using the famil-
iarity with quantum mechanics, these matrices are rep
sented by the canonically conjugate variablesqi ’s and pi ’s.
The relationship of these solutions with those in string the
is established through an identification of the commutat
with the Poisson brackets for the Schild action@13#:

$X,Y%5
1

Ag
eab]aX]bY, ~3.6!

wherea, b denote the world-sheet coordinatest, s. More-
over, one also identifies

2 i @ , #→$ , %, Tr→E d2sAg,

t→
q

A2pN
, s→

p

A2pN
, ~3.7!

with the commutator@q,p#52p i . The staticD-string

X05Tt, X15
L

2p
s, Xi50 ~3.8!

can then be represented by the gauge field configuration

A05
T

A2pN
q, A15

L

A2pN
p, Ai50 ~3.9!

and satisfies the fields equations~3.2!. Similarly the oscillat-
ing string can be represented by a gauge field configura
which is obtained through the identifications in Eqs.~3.7!.
Continuing to work in light-cone coordinates, the comp
nentsAm’s are given as

AV52Rnŝ1,

AU5~2Rn1a!ŝ21E V̂
Ḟ2, ~3.10!

Ai5Fi~V̂!,

whereŝ65q6p/A2pN andV̂ denotes an operator replac
ment in the functionV: V̂(t,s)→V(q/A2pN,p/A2pN).
Once again, the gauge field configuration for a static str
~3.8! corresponds toFi50 andT5L/2p52Rn.

Now, to verify thatAm’s in Eqs. ~3.10! are solutions of
Eqs.~3.2!, we evaluate their commutators. The nonzero o
are
In

e-

y
s

n

-

g

s

@AV,AU#52
2i

N
~2Rn!~2Rn1a!,

@AU,Ai #5
2i

N
~2Rn!~2Rn1a!Ḟ i . ~3.11!

These imply that the field equations are once again satis
We have therefore found a class of solutions of the ma
theory field equations specified by the wave profileF(V).

We now examine the BPS and supersymmetry proper
of the solution~3.10!. In the background of a static strin
configuration, the dynamical supersymmetry transformat
is given as

d~1!c52
TL

2pN
G01e, d~1!Am50. ~3.12!

As a result, the only way to preserve some amount of sup
symmetry is to cancel the dynamical supersymmetry tra
formation with the kinematic one by definingj5
6(TL/2pN)G01e. We then have (d16d2)c50 and (d1

6d2)Am50, which implies that the solution preserves 1
supersymmetry.

Now, for the oscillating string background, the dynamic
supersymmetry transformation can be written as

d~1!c5
1

2N
~2Rn!~2Rn1a!@GUVe1Ḟ i&GVie],

d~1!Am50. ~3.13!

Since the transformationd (2) is still given by Eq.~3.4!, and
hence to make sure that a certain amount of supersymm
namely,d (1)6d (2), is preserved, one also has to impose
condition

Ḟ iG
Vie50. ~3.14!

Before solving this equation explicitly, we notice that E
~3.14! is a chirality condition one in the light-cone direc-
tions, namely, (11G0G1)e50. Since the string world shee
is identified with light-cone coordinates, Eq.~3.14! implies a
chirality condition in the world-volume directions. More ex
plicitly, by choosing ten-dimensionalG matrices in the Ma-
jorana representation as

G05 i S 0 2I 8

I 8 0 D , G152 i S 0 I 8

I 8 0 D , G i5S g i 0

0 2g i D ,

~3.15!

and by decomposing the ten-dimensional spinore in terms of
the eight-dimensional ones ase5(eR

eL), the condition~3.14!

implies eR50. To summarize this part of the discussion, w
have shown that a cancellation between the ‘‘dynamic
and ‘‘kinematic’’ supersymmetry transformations can occ
in the matrix background~3.10! provided half the compo-
nents of the dynamical supersymmetry transformations
zero. This, in turn, implies that our solution preserves o
1/4 supersymmetry, as expected of an oscillating string.
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57 5145OSCILLATING D-STRINGS FROM TYPE IIB MATRIX THEORY
To further identify the solution of matrix theory~3.10!
with the oscillating string solution we evaluate the classi
action for this configuration. We have

SB5
a

2S ~2Rn!~2Rn1a!

N D 2

N1bN. ~3.16!

An extremization with respect toN and the identification
Aab52pr, with r being the string tension, now gives

SB52pr~2Rn!~2Rn1a!. ~3.17!

To verify that the action~3.17! is proportional to the area o
the world sheet, we have directly evaluated the Polya
action, acting as the source for the supergravity backgro
and for the oscillating string solution and shown that it ag
gives the same value as in Eq.~3.17!. Since the solutions in
@15# also satisfy the Virasoro condition, the evaluation of t
Nambu-Goto action in this background also gives the sa
value. These results once again confirm that the Yang-M
field configurations do indeed represent the oscillat
strings and, in turn, the infinite hierarchy of BPS states.
this context, we notice that the BPS mass formula~1.4! also
follows from the time component of the target space mom
tum for these strings written in Eqs.~2.4!. It is also interest-
ing to note that the matrix solution represents a string w
well-defined string tension for generic oscillationsFi(v).
The change in the value of the action with respect to
static string is by an amount

DSB52pr~2Rn!a5
2

p
NL , ~3.18!

where the last equality follows from the relationa5
2(2p2r)21m/R for a D-string which is analogous to Eq
~2.5! for a fundamental string through a replaceme
1/2pa8→2pr. Solutions~3.10! can then be interpreted a
an excitation over the static string state by an amountNL
from this point of view as well.

We now analyze the one-loop effective action of mat
theory for the classical background~3.10! and show that the
effective action vanishes. The effective action in a gene
backgroundAm5pm has the form@13#

ReW5
1

2
Tr log~Pl

2dmn22iF mn!

2
1

4
Tr logF S Pl

21
i

2
FmnGmnD S 11G11

2 D G
2Tr log~Pl

2!, ~3.19!

wherePm andFmn are operators acting on the space of m
trices as

PmX5@pm ,X#, FmnX5@ f mn ,X#, ~3.20!

with f mn5 i @pm ,pn#, pm being the operator replacement f
variablesAm . The terms in Eq.~3.19! correspond to the con
tributions from the bosonsAm , the fermionsc, and the
Faddeev-Popov ghosts, repectively. It has also been no
in @13# that the imaginary part ofW vanishes whenPi is zero
along at least one of the transverse directionsi and implies
l

v
d

n

e
ls
g
n

-

h

e

t

al

-

ed

the absence of an anomaly in the world-volume action. T
holds in our case, providedFi50 for this indexi . However,
it is likely that ImW50 in generic cases as well.

To evaluate the effective action in our case, we rewr
the gauge field commutators in Eq.~3.11! in the Euclidean
metric and notice that only nonzero components ofFmn ,
namely,F0i and F1i , satisfy the relationF0i52 iF 1i . The
form of the matrixP2dmn22iF mn ,

P2dmn22iF mn5S P2 0 22iF 02 •

0 P2 22iF 12 •

2iF 02 2iF 12 P2 0

• • 0 •

D ,

~3.21!

and the property of the operatorsPl
2 , Fmn , in our case

@Pl
2 ,Fmn#50, then imply thatFmn’s cancel out in the ex-

pression of the determinant of the matrix. To show this
another way, we expand

Tr log~Pl
2dmn22iF mn!5Tr logPl

2dmn1Tr~2iF mn /Pl
2!

1
1

2
~2i !2Tr@FmaFn

a/~Pl
2!2#1•••

~3.22!

and use the fact that the only nonvanishing component
dmn ,Fmn in the u,v coordinates areduv51 and Fui5
22Fv i . It can then be shown that all the higher-order ter
vanish, as one cannot form invariants out of the above n
vanishing components. A similar property of certain classi
field configurations, namely, chiral-null models, has be
used to show that they are an exact solution of first quanti
string theory@21#. We interestingly observe the appearan
of this property in the context of matrix theory.

The terms in the trace of the matrix@Pl
21( i /2)FmnGmn#

cancel out similarly. Various other terms in the effective a
tion ~3.19! then cancel out as in the static case and imply t
the one-loop contribution to the effective action for the o
cillating case vanishes as well. This confirms the exactn
of the BPS formula~1.4! argued on the basis of supersym
metric grounds earlier.

One can also examine the status of the multistring so
tion. The parallel configuration of oscillating strings fro
matrix theory can be obtained as block-diagonal matric
Then the cancellations inW occur within each block in an
identical fashion and they once again vanish, showing t
they are BPS configurations as well.

IV. WORLD-VOLUME ACTION

In this section we obtain the world-volume gauge theo
from type IIB matrix theory for the classical configuratio
corresponding to an oscillating string. We also analyze t
world-volume gauge theory action in some detail and sh
its connection with static strings upon quantization.

It is known that the zero modes of a staticD-string give
rise to anN58 U(1) vector multiplet in two dimensions
We will now see that the zero modes of an oscillating str
are the (8,0)U(1) vector multiplets together with eight sca
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lar multiplets containing the world-sheet fermions of opp
site chirality. Similarly the zero modes ofN coinciding
D-branes@6# are now expected to give rise to an (8,0
SU(N) gauge theory. Two-dimensional world-sheet actio
with (8,0) and (4,0) supersymmetry have been written
other contexts@20,12# earlier and it may be interesting t
show the exact connection among these actions.

The world-volume action describing the dynamics
these fields@6# can also be obtained by adding the quant
fluctuations to the classical backgrounds and then by exp
ing the matrix theory action. The one-loop effective action
matrix theory~3.19! is in fact the quantum effective action o
these gauge theories. Thus in the static case we have@16#

A052s1a8Ã0~t,s!, A15t1a8Ã1~t,s!, ~4.1!

Ai5a8f i~t,s!, c5a8c~t,s!, ~4.2!

where Ãa (a50,1) now are the gauge fields on the wor
volume whereas the transverse components (f i ’s! are the
scalar fluctuations.c[(cR

cL) are the world-sheet fermion

which also transform as a spinor under an internalSO(8)
symmetry. These are, as expected, the degrees of freedo
an N58 vector multiplet in two dimensions and are iden
fied as the bosonic and fermionic zero modes of a st
string.

The commutators of matrix variables, including the flu
tuations~in the static case!, have the form@16#:

@A0 ,A1#5 ia8~11a8F01!, @Aa ,Ai #5 ia8Daf i ,

@Aa ,c#5 ia8Dac, ~4.3!

where we have used the identification~3.7! to replace the
commutators with Poisson brackets andF015]0Ã12]1Ã0

1a8$Ã0 ,Ã1% and Daf i5]af i1a8$Ãa ,f i%. Then, for a
single D-string, the action~3.1! reduces to aU(1) gauge
theory in two dimensions withN58 supersymmetry. The
bosonic part of the gauge theory action for theU(1) case has
the form

SB5
1

2pa8gs
E d2s~11a82F01

2 2a82Daf iDaf i !.

~4.4!

The first~constant! term in Eq.~4.4! is the contribution of the
classical background. In the Born-Infeld action, they cor
spond to the term involving the induced world-volume m
ric. The forms ofF01 andDaf i also imply the existence o
higher ~than two! derivative terms in the action. These ha
been identified with the higher-order terms in the expans
of the Born-Infeld action@16#. The two derivative terms are
the standard gauge theory action of the bosonic part o
N58 Abelian gauge theory.

We now obtain the world-volume gauge theory action
the oscillating configuration from matrix theory and sho
that they correspond to an (8,0) supersymmetric ga
theory in two dimensions. The fact that the solution p
-

s
n

f

d-
f

for

ic

-

-
-

n

n

r

e
-

serves 1/4 supersymmetry has already been pointed
However, this leaves us with two possibilities for the worl
volume supersymmetry. One can either have a (4,4) or
(8,0) supersymmetric gauge theory in two dimensions. T
latter possibility is more natural in our case, as the oscillat
string solution discussed above is left-right asymmetric. W
have, however, already shown the breaking ofN58 or (8,8)
supersymmetric gauge theory in two dimensions to an (8
theory explicitly in Eq.~3.14!.

Once again, for writing down the action in two dimen
sions, we expand the matrix theory fields around the class
background mentioned above in Eqs.~3.10!. We now have

AV52Rnŝ11a8ÃV,

AU5~2Rn1a!ŝ21EV

Ḟ21a8ÃU, ~4.5!

Ai5Fi~V̂!1a8f i .

The supersymmetry breaking fromN58 or (8,8) gauge
theory to an (8,0) gauge theory can now also be seen f
the background configuration in Eqs.~4.5!. It is known that
the R symmetry for anN58 supersymmetric theory is a
SO(8)L3SO(8)R global symmetry group which transform
the supercharges as (8v ,1)1(1,8v). Then, as a result of the
background configuration for the scalars in Eqs.~4.5!, the
left-moving part of the world-volume scalars acquires
vacuum expectation value. This breaks theSO(8)L
3SO(8)R R symmetry to SO(8)L and the final world-
volume theory has an (8,0) supersymmetry only.

We now derive this world-volume action and show
invariance under gauge and supersymmetry transformati
To write down the world-volume action, we once again co
pute the commutators appearing in the action~3.1! and make
the identifications~3.7!. The nonzero ones are

@AU,AV#→2~2Rn!~2Rn1a!12a8~2Rn!]2ÃU

12a8@~2Rn1a!]1ÃV2~2Rn!Ḟ2]2ÃV#

1a82$ÃU,ÃV%

[2~2Rn!~2Rn1a!1a8FUV, ~4.6!

@AU,Ai #→2~2Rn!~2Rn1a!Ḟ i12a8@~2Rn1a!]1f i

2~2Rn!Ḟ2]2f i1~2Rn!Ḟ i]2ÃU#1a82$ÃU,f i%

[2~2Rn!~2Rn1a!Ḟ i1a8D1f i , ~4.7!

@AV,Ai #→a8@22~2Rn!]2f i12~2Rn!Ḟ i]2ÃV#

1a82$ÃV,f i%

[a8D2f i , ~4.8!

@Ai ,Aj #→2a8~2Rn!~ Ḟ j]2f i2Ḟ i]2f j !1a82$f i ,f j%

[a8F i j . ~4.9!
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The bosonic part of the world-volume gauge theory action
then obtained by substituting the above commutators into
bosonic part of the matrix theory action~3.1! and by the
identifications in Eqs.~4.6!–~4.9!. For example, in the vari-
ablesAU , AV , and Ai , the first term in Eq.~3.1! has the
form

SB52
a

4
TrS 2

1

2
@AU,AV#212@AU,Ai #@AV,Ai #1@Ai ,Aj #2D .

~4.10!

By ignoring the constant and total derivative terms, t
bosonic world-volume action is then written as

2
a

4E d2s
a83

2p F2
1

2
FUV2

22D1f iD2f i1F i j 2

24~2Rn!~2Rn1a!Ḟ i$ÃV,f i%G . ~4.11!

The last term in the above action comes from the expres
4(2Rn)(2Rn1a)Ḟ iD2f i , by dropping the total derivative
terms. The gauge transformations, derived from Eqs.~3.5!, in
two-dimensional gauge theory have the form

dgÃU52i ~2Rn1a!]1e22i ~2Rn!Ḟ2]2e1 ia8$ÃU,e%,

dgÃV522i ~2Rn!]2e1 ia8$ÃV,e%, ~4.12!

dgf i522i ~2Rn!Ḟ i]2e1 ia8$f i ,e%,

and imply the following transformations for the quantiti
FUV, D1f i , andD2f i :

dgFUV5 ia8$FUV,e%,

dgD1f i524i ~2Rn!~2Rn1a!]1Ḟ i]2e1 ia8$D1f i ,e%,

~4.13!

dgD2f i5 ia8$D2f i ,e%.

The gauge invariance of the actionSB then follows from
these transformation rules. The fermionic part of the ga
theory action can also be written as

SF52
a

2
Tr~ c̄GU@AU ,c#1c̄GV@AV ,c#1c̄G i@Ai ,c#!.

~4.14!

By using the commutators

@AU,c#52~2Rn1a!]1c22~2Rn!Ḟ2]2c1a8$ÃU,c%,

@AV,c#522~2Rn!]2c1a8$ÃV,c%, ~4.15!

@Ai ,c#522~2Rn!Ḟ i]2c1a8$f i ,c%,

and expanding in terms of the left- and right-moving wor
sheet fermions, we have the explicit form
s
e

e

n

e

SF52
a

2E d2s
a82

2p
@2~2Rn1a!cR

T]1cR

22~2Rn!Ḟ2cR
T]2cR1a8cR

T$ÃU,cR%

22~2Rn!cL
T]2cL1a8cL

T$ÃV,cL%

12i ~2Rn!Ḟ i~cR
Tg i]2cL1cL

Tg i]2cR!

2 ia8~cR
Tg i$f i ,cL%1cL

Tg i$f i ,cR%!#. ~4.16!

To obtain the supersymmetry transformations for the tw
dimensional gauge theory action, given byS5SB1SF , from
matrix theory, we use the conditioneR50 which follows
from Eq. ~3.14!. For the supersymmetry transformationd
5d12d2 we have

dÃU52i eL
TcL , dÃV50, df i52eL

Tg icR ~4.17!

and

dcL5
i

2
~FUV1F i j g i j !eL , dcR5D2f ig

ieL .

~4.18!

The supersymmetry invariance of the action can then be v
fied explicitly. In a compact~covariant! form, the supersym-
metry transformations have the explicit form

dSB52dSF52 i Tr@Aa ,Ab#@Aa, ēGbc#. ~4.19!

A more explicit form of these transformations in terms of t
field variablesÃU, ÃV, f i , and c can be written down by
using Eqs.~4.6!–~4.9! and identifications~3.7!. Finally, Lor-
entz invariance of the world-volume action can be seen fr
the scaling transformations

s1→ls1, s2→l21s2, ~4.20!

together with the transformation of the bosonic fields,

ÃU→l21ÃU, ÃV→lÃV, f i→f i , Ḟ i→l21Ḟ i ,
~4.21!

and those of fermions,

cR→l1/2cR , cL→l21/2cL . ~4.22!

We have already pointed out in Sec. III that the worl
volume action is anomaly free. This is essentially due to
fact that the spectrum contains an equal number of left-
right-moving fermions. Moreover, as in the case of gau
theory with (8,8) supersymmetry and the correspond
Abelian Born-Infeld action, all the fermions as well as mat
scalars are neutral under gauge symmetry on the world
ume for the oscillatingD-string as well. As a result they do
not contribute to the anomaly. In Sec. III we have argued t
more concretely by pointing out that ImW50 whenever the
transverse oscillation is absent along one of the direction

We now discuss the connection of our solution with sta
D-strings by arguing that one can obtain the particle sp
trum of static strings, from that of the classical configurati
discussed above, after quantization. In two dimensions,
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implies the quantum equivalence of the world-volume act
~4.4! for the static case with the oscillating one~4.10! and
~4.16!. This is true in spite of the fact that the manifest sy
metries of the two actions are quite different. However, t
is expected from a different angle, namely, the absence
spontaneous symmetry breaking in two dimensions. Our
sults of this part therefore imply that the collective modes
oscillating strings have, in their spectrum, the static string
well.

To analyze the quantum spectrum corresponding to
action~4.10! and~4.16!, we set the gauge field fluctuations
zero and make the choiceFi50, for iÞ1, andF15F. Fur-
thermore, we restrict the analysis to the bosonic sector o
as the fermionic part can also be analyzed in a similar m
ner. After these simplifying assumptions, the bosonic act
for fields f i ( i 52, . . . ,8) arethose of a free field. The field
f[f1 is described by the action

SB
15S 2

a

4 D ~2Rn!E d2s@~2Rn1a!]1f]2f

2~2Rn!Ḟ2~]2f!2#. ~4.23!

The equation of motion corresponding to the action~4.23!
can be written as]2J250, where

J25~2Rn1a!]1f2~2Rn!Ḟ2]2f. ~4.24!

J2 is a chiral conserved current in the theory. The equat
of motion for closed strings can be solved as

f5pLs11pRS s21
1

~2Rn1a!
EV

Ḟ2D
1 (

mÞ0
S a2m

m De2ims1
1 (

mÞ0
S ã2m

m
D expF22i

m

~2Rn!

3S ~2Rn1a!s21EV

Ḟ2D G . ~4.25!

The canonical formulation can be applied to the time- a
space-dependent Lagrangian~4.23! in a standard way and
leads to a Hamiltonian density of the form

H5S 2
a

4 D ~2Rn!

2~2Rn1a!
$J221@~2Rn1a!22~2Rn!2Ḟ4#

3~]2f!2%. ~4.26!

In writing down Eq.~4.26!, we have replaced the canonic
momentum by the space and time derivatives, to prese
simple form.

To show the mapping of the spectrum of oscillati
strings, specified by the oscillatorsa and ã with that of the

static stings, specified byā, ã̄ , we choose a specific wav
profile F(v) of the classical oscillating sting solution
namely,

F~v !5Aa~2Rn!S @sin~V/2Rn!1cos~V/2Rn!#1
2

2pRnD .
n

-
s
of
e-
f
s

e

y,
n-
n

n

d

a

This choice satisfies the condition thatF(v) have no zero
mode, namely,*2pRnF(v)50. Then, by representing the os
cillators a and ã as Fourier components of two commutin
operatorsJ2 and ]2f, respectively, and comparing them
with the Fourier components of similar operators in the sta
case,F50, it can be shown that, att50, the oscillators are
mapped as

ām5
~2Rn1a!

~2Rn!
am , ã̄m5

~2Rn1a!

~2Rn! (
q

Jm2qS 2aq

Rn D ãq ,

~4.27!

whereJm(x) are the Bessel functions. Equation~4.27! gives
a mapping between operators in the spectrum of oscilla
and static strings. Using the above relationship between
operatorsJ2 and ]2f in the two cases, the solutions fo
fields themselves can be shown to be related to each o
The mapping attÞ0 is given by the time evolution of thes
operators with respect to the corresponding Hamiltonians
similar mapping should be possible for the fermionic osc
lators as well.

V. CONCLUSIONS

We have presented a class of solutions of type IIB ma
theory and shown that the solutions preserve 1/4 supers
metry. The supersymmetry that is preserved is chiral in
ture in terms of the wave motion on theD-string. We have
confirmed the BPS nature of these solutions by compu
the one-loop effective action and derived world-volum
gauge theory. It was also shown that the world-volume
tion in the classical background of oscillating strings
anomaly free for a large class of models. However, it sho
be possible to show this property without making any
sumption about the form of the transverse oscillations.

There can be several applications and generalization
these results. First, it will be interesting to extend the res
of this paper to other extended objects with oscillations.
membrane solution of this type is already known@19# and
implies that a similar analysis in BFSS matrix theory shou
be possible. Another interesting aspect of this analysis m
be to examine gauge theories that might arise through o
oscillatingD-brane configurations. The BPS states of strin
have been analyzed using the results in four-dimensio
gauge theories@17# in the context of BFSS matrix theory
However, it should be possible to carry out our analysis
similar circumstances. One may also be able to apply
results of this paper to study black holes in the type I
matrix theory picture. This can be done through the ident
cation of compactified oscillating strings with extremal bla
holes.
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