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Strings in homogeneous background spacetimes
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The string equations of motion for some homogene@@towski-Sachs, Bianchi type | and Bianchi type
IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the
recent developments in string cosmology, where it has been shown that, under certain circumstances, such
spacetimes appear as string vacua. Both tensile and null strings are considered. Generally, it is much simpler
to solve for the null strings since then we deal with the null geodesic equations of general relativity plus some
additional constraints. We consider in detail Ansatzcorresponding to circular strings, and we discuss the
possibility of using an elliptic-shape strifgnsatzin the case of homogeneo(sut anisotropit backgrounds.
[S0556-282(98)03406-1

PACS numbsgs): 11.25.Mj, 04.62+v, 98.80.Hw

I. INTRODUCTION cosmology. It has been shown that Kantowski-Sachs and Bi-

anchi type spacetimes, under certain circumstances, appear

There has been quite a lot of interest during the last fev‘és string vacua, i.e., as solutions to Bdunction equations
years in the evolution of strings in fixed curved backgrounds; N

; . for i . I Kk hat th [4] to some(low) order ina’. Thus, in this paper, we con-
or reviews, see, for instancgl]. It is well known that the  gjger the dynamics of a string moving in a condensate of the
string equations of motion in curved spacetimes form a COMassless string modes.

plicated system of second-order nonlinear coupled partial The paper is organized as follows. In Sec. II, we give the
differential equations which, in general, is nonintegrable.tensile and null string equations of motion and constraints in
However, there are some special string configurations fogeneric curved spacetimes. In Sec. IIl, we specialize to the
which the equations are exactly solvaliéee, for instance, case of positive curvature Kantowski-SachiéS) back-
[1] and references therginMany such explicit solutions grounds, in particular, we consider the KS universe with cos-
have already been found, but they were restricted to just thmological term and the KS universe with stiff-fluid matter.
most symmetric spacetimes such as Minkowski, de Sitterin both cases we solve the equations of motion for tensile
anti—de Sitter, Schwarzschild, and Robertson-Walker ones.and null strings after making appropriafnsadze and we

We shall consider both tensile and nuliensionless  give the physical interpretation of the solutions. In Sec. IV
strings. Generally, it is much simpler to solve for the null we turn to the Bianchi universes. We first discuss some of
strings[2], since then we deal with the null geodesic equa-the problems concerning finding explicit tensile string solu-
tions of general relativity plus some additional constraints. Ittions in spacetimes of Kasner type, and secondly, we give
might seem then, that the dynamics of null strings is quitesome explicit null string solutions. Finally in Sec. V, we
trivial. However, this is not true. Although each individual consider circular strings in axisymmetric Bianchi type IX
point along the null string follows a null geodesic, the null universes, and in Sec. VI we give our conclusions.
string as a whole may experience highly nontrivial dynamics
[3]. The situation is qualitatively similar to that of congru-
ences in general relativity, that is, “bundles of rays”: each
ray in the bundle is just following a geodesic, but the propa-
gation of the bundle as a whole can be highly nontrivial due Let us consider the tensile and the null string equations of
to tidal forces, as described by the Raychaudhuri equation.motion in a compact formula

In this paper we extend the discussion of the tensile and
null string evolution to the homogeneous, but anisotropic,
spacetimes of Kantowski-Sachs, Bianchi types | and IX. In
fact, Kantowski-Sachs solutions with negative and zero cur-
vature are just axisymmetric Bianchi type | and Il universes Where an overdot means a derivative with respect to the
This means that only positive curvature Kantowski-Sach$tring coordinater and a prime means a derivative with re-
models are different from Bianchi-type universes. spect to the string coordinate. The constraints read as

Our main motivation is the recent development in string

II. STRING EQUATIONS OF MOTION
AND CONSTRAINTS

XEATH XIXP=N(X"#4+ T4 X VXP), (2.0

9, XMX = =N\g, X #X"?, (2.2
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For A =1 we have the tensile strings whike=0 applies for . Ay

the null strings. Notice that in Ref5], expansion schemes r+2-tr=0, (3.4
were considered, essentially using(A ~1/a’, wherea' is

the inverse string tensigpm@ms a continuous expansion param-

eter; in this paper we simply use as a discrete parameter D+ Zﬂibﬂ sin 6 cos =0, (3.5
discriminating between tensile and null strings. B

From the above we can see that for the null strings, we
have the null geodesic equation of general relativity supple- t2— A2r2—B292— B2 sir? §=0. (3.6)

mented by the constrain2.3). For both null and tensile
strings the invariant string size is defined (@osed string Equation(3.4) easily integrates to give

2
S(T):f S(r,0)do, (2.4 _dr_k @7
0 dr a2’
where with k= const. The other equations, in general, cannot be
S(r.o)= =g, XEX? 2.5 integrated, thus we must either consider special Kantowski-
TO)=NT O ' ' Sachs spacetimes or make further restrictions forAthsatz
Notice, however, that for both casas=0,1, the invariant
Ill. STRINGS IN KANTOWSKI-SACHS BACKGROUND string size is given by
In this section, we will consider the string equations of S(r)=2m|B(7)sin (7| 3.9

motion in homogeneous Kantowski-Sachs spacetimes. The
validity of the Kantowski-Sachs spacetime as being consis-

tent string vacuun{solution to theg-function equations to A. Tensile strings
the lowest order inx") is discussed elsewhef6]. Here we For the tensile strings\=1, and Eq.(3.5 is fulfilled
just concentrate on the motion of a test string in KamOWSKi'automaticaIIy under the assumption tht const= /2 in
Sachs backgrounds. o Eqg. (3.2. In the rest of Sec. lll A, we restrict ourselves to

The Kantowski-Sachs spacetime is given by the méffic  this case. Then after inserting E€@.7) into Eq. (3.6), we

obtain
ds?=dt?— A%(t)dr?—B3(t)dQ2, (3.1
L, K

where the “angular” metric is t2:E+BZ, (3.9

dQ2=d@?+ S?(6)de?,
or, explicitly in terms of the string time coordinate,

sin § for k=+1,

t |Aldt
S()=4 6 for k=0, )= | —. (3.10
sinh 6 for k=—1, VK°+A'B
andA,B are the expansion scale factors. Hare,] — o, o[, while from Eq.(3.7) we get
while the range ot depends on the particular cosmology.
For k=+1 the coordinate® and ¢ describe, as usual, the r(t)=kft dt (3.11
angles on the two-sphere. Onlkly= +1 models fall outside |A| JkZ2+AZRZ’ '

the Bianchi classification, but usually one refers to all three
curvature models as Kantowski-Sachs universes. In this payotice also that Eq(3.3) is automatically fulfilled now.
per, we mainly considek=+1 models.

As a first example of a string configuration, we apply the 1. A-term solutions

following string Ansatz . . . .
g g First we refer to one of the simplest solutions given for

X0=t(7), Xl=r(7), X2=0(7), X3=o=0, (3.2 the scale factors, which is the= + 1 Kantowski-Sachs uni-
(7) (7) (7) p=0. (32 verse with only the cosmological terfB8]. These are

which describes a circular string winding around the two-

—H-1 g
sphere. The function&(7),r(7),6(7)), which describe the A(t)=Hg " sinh Ht, 312
dynamics of the string, are to be determined from the equa-
tions of motion. B(t)=H,* coshHt, (3.13

For the metric(3.1), we start with the string equations of
motion (2.1) and constraint$2.2) and (2.3), which now re-  with Hy= const, and we consider only the expanding phase
duce to (t=0) of the universe. After inserting Eq&.12 and(3.13
_ _ into (3.10 we have[choosing boundary conditions such that
t+AA r?2+BB#>—\BB,_ sir? §=0, (3.3 t(0)=0]
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t sinh(Ht) k
T(t)=Hof dt. ()= 5o, (3.22

0\/k2H4 + sintP(Hot) cost(Hot)
(3.14)

and from Eq.(3.11) we obtain

t dt

r(t)=kH3 .
OJ‘osinI"(Hot)\/k2H6‘+sinr?(Hot)cost‘?(Hot)

(3.19

By inverting Eq.(3.14), giving t(7), Eq. (3.195 then gives
explicitly r(7). Equations(3.14 and (3.15 can be trans-

formed to the form of the standard elliptic integrals. For

instance, by making the substitution cddjtj=\z, Eq.
(3.14 becomes

1z dz
)= EL Vz2(z—2))(z—2,) (319
with
21,2:%(1i V1—4Kk2Hy), (3.17

and can thus be evaluated explicitly eventually yielditg) .

However, the detailed form will not be important here. The

invariant string size in this case is simply

where we took boundary conditions such th@)=0. Hav-
ing this, one can expres in terms ofr, i.e.,

N K2+ M M
B(r)=—"\/ 1- sir?| r—arcsin
b K2+ M

M
(3.23
which in the limitk=0 (r= cons} gives
M
B(7)=——sin . (3.29

b

According to Eq.(3.8), the invariant string size is simply
S(7)=2wB(7), which means that the string trivially starts
with zero size, then expands to a maximum size and finally
contracts to zero size again together with the universe, i.e., at
=2 arcsin/M/(k?+M). This again comes from the fact
that the string simply winds around the equatorial plane of
the two-sphere.

In the next subsection, we shall consider more compli-
cated(null) string solutions with nontrivial dynamics.

B. Null strings

The above solutions for tensile strings were all obtained
for 6= /2. However, for the null stringsy=0, we can eas-
ily integrate Eq.(3.5), still keeping the general form of

S(7)=2mHy "t cosiH,t(7)), (3.1  =6(7) in the Ansatz(3.2), to obtain
i.e., the string size follows the expansion of the universe. b= %z '_ (3.25
This is easily understood, since the string is simply winding dr g2’ |
around the equatorial plane of the two-sphere.
with | = const. Equatior{3.6) now becomes
2. Time-symmetric stiff-fluid solutions
2 2
The solutions for the scale factors for the time-symmetric 'tzzk_ + l_ (3.26
k=+1 (recollapsing stiff-fluid Kantowski-Sachs model is A% B?
given by[9]
or, explicitly
A(t)=b, (3.19
(t) ft |AB|dt (3.27
()= | /—7—, .
M b? JI?A%+Kk?B?
B(t)=g\/1—m(t—to)2, (3.20
while Eq. (3.7) becomes
with (b,M,ty) constants. The constakt appears in the den- |Bdt
sity of stiff-fluid matter conservation lawA?B*=M. The rit)y=k| ———v. (3.28
Kantowski-Sachs model described by scale fact@&49 |A[VI?A®+Kk*B?

and (3.20 begins and ends at “barrel” singularitieA &
const, B=0) [10]. For simplicity we will takety,=\M/b
from now on, so that the range bfs t e [0,2/M/b]. For the
exact solution(3.19 and (3.20, Egs.(3.7) and(3.10 inte-
grate to give

VM K2+ M , M
t(7)= —+ ——— sin| 7—arcsin ,
b b k2+M

(3.21

1. A-term solutions

Inserting Egs(3.12 and (3.13 into Eq. (3.27), we have
an exact relation between the spacetime and the string time
coordinates

12+ [HE(K2+12) 7+ k]2
Hot(r)zarccosh\/ Sl lad |],
k?+12

(3.29
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where we choose again boundary conditions such tittgt

=0. Having given EQq.(3.29, one can write down Egs.

(3.12 and(3.13 in terms of ther coordinate as

1 —
A(T)=iq;'\/

k2+[H3(K>+12) 7+ K| ]2

k2+12 - 339
12+ [H3(k?+12 T+|k|]2
Bln= 0\/ K2+12
(3.3

This allows us to integrate Eg€3.7) and(3.25 to give
2

k Ho
r(r)= K |arcct)‘( |k|(k2+lz)r +ro, (3.32

0(r)= |I|arctg{||l|| |||(k2+I) +6,, (3.33

with ry, 8= const. The invariant string siZ8.8) is given by

S(7)=2m|B(7)sin 6(7)]|

27
= ————|[|K| + H3(k?+12) 7]sin Go—1 cos /.

HoVkZr 12
(3.39

It is useful to consider some special cases. IFo0 (i.e., 6
=6y), we have

A(7) = VHEK 7+ 2]k, (339
B(7)=Hglk|7+H,?, (3.36
1
tn)=- arccoskiH3|k| 7+ 1), (3.37)
0
k
r(r)= T arcctiH3|k| 7+ 1) +rq,
(3.39
2 )
S(7)= H—Olsm Ool(HG k| 7+1). (3.39

5111
| 2
9(7):_mar0tgHo|||T)+9o. (3.43
aw 2 .
S(7)= 5~ |Hgl 7 sin 65— cos f|. (3.49
0

Notice that whenr goes from 0 tae, the angled changes by
/2. Therefore we can distinguish a number of different sce-
narios.(1) 8,=0. In this case, the string starts at the equato-
rial plane and then moves towards one of the poles in such a
way that its sizeS(7) is constant, i.e., the contraction of the
string is exactly balanced by the expansion of the two-
sphere(2) 6,# 0. The string starts somewhere on one hemi-
sphere, then crosses the equator and approaches a fixed po-
sition on the other hemisphere. During its evolution, the
string grows indefinitely(3) 6,#0. The string starts some-
where on one hemisphere, then moves towards the nearest
pole where it collapses. It then reappears and approaches a
fixed position on the same hemisphere. After the collapse,
and during its later evolution, its size will grow indefinitely.
Returning to the general expressi@34), it is easy to
see that the dynamics in the general case is qualitatively
similar to thek=0 case, although quantitatively different.
For instance, ifdy=0, the string starts at a fixed angh¢r
=0)=—sgn() arctg(k|/|l|), and can then approach the
nearest pole in such a way that its size is constant. Similarly,
we can also find solutions where the string expands indefi-
nitely, possibly after collapsing once during its early evolu-
tion.

2. Time-symmetric stiff-fluid solutions

Using E@s.(3.19 and (3.20 for the null string case, we
obtain from Eq.(3.27

U‘Jt\/ M —b2(t— M/b)?
"= oV 2p2 koM 1= b2 (= WMD) 2]/b2
(3.49

where we took again boundary conditions such th@j =0.
From Eq.(3.7), we get

(3.49

k
r(r)=§7+ro.

Thusr is expressed directly as a function ef while Eq.
(3.45 must be inverted to give 7). Notice that Eq(3.45) is

That is, the string winds around the two-sphere at the anglan elliptic integral, which can be given in terms of elliptic
6= 6, and expands to infinite size together with the scalefunctions[11]

factor.
Another special case is given in the linkt=0 (i.e., r
=ry), where we have

A(7)=Hyl|l|, (3.40

B(7)= - ! \/1+H4I2 2 (3.41)

t(r)= Hi arccosh/1+ Hgl?72, (3.42
0

b [M |2bZE Mk?
O Vez " @ EL & NV ke 128
12p* F(f [ MK
k2\MKZ+12b% | 7" V Mk2+12p?
b [ JM \/ M/b2— (t—\M/b)2
K| M/b2+12b%/k2— (t—M/b)?’

(3.47
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whereF,E are the elliptic integrals of first and second kind, Then the string size is
respectively, and

2
MK+ 1200 S(7)= T|sin 60| V2|k| VM 7— K272, (3.52
&= arcsi W

that is, the string starts with zero size, then expands and
eventually recollapses together with the universe.
Another special case is whéw=0, and reads as

y \/ M/b2— (t— \M/b)2

. (34
M/b2+12b2/k2— (t—M/b)? (349 bt bt 7
Here we analyze some special cases in which B®#7) ()= 202\ M _(\/_M_l>
becomes elementary. First,liE 0, it gives the simple solu-
tion r( bt ) -
+arcsin —-—-1|+ =/, (3.53
K W 2
t= FT’ (349)
r=rg, (3.59
_k 3 | [ bt
r_QTHO' (3.50 0(t)=mar03| \/_M_l +6,. (3.59
0=10q. (3.5) In this case the string size is given by
|
S(t) 27TJM\/l ( bt 1)2 \/1 ( bt 1)2 in 6= bt 1 6 (3.56
= == | == sin 6yt | —=—1]cos 6| . .
b N N M °

If 6,=0, the string is at the equator and it simply follows the been studied if{12], and in this section we consider the

evolution of the universe, i.e., it starts with zero size, thenevolution of strings based on Eq&.1)—(2.3) in Bianchi

expands and eventually recollapses together with the uniype | background spacetimes with the mefdg]

verse. On the other hand, 6+ 0, the string has the possi-

bility to pass one of the poles of the two-sphere, i.e., it starts ds?=dt?— X3(t)dx2— Y(t)dy?— Z4(t)dZ2, (4.1

with zero size, then expands but recollapses, then expands

again and eventually recollapses together with the universQN
It is straightforward to check that the qualitative behavior

of the string solutions in the general cdsiescribed by Eq.

(3.47] essentially follows th&k=0 case, thus we shall not

go into the quantitative details here.

hereX,Y,Z are the scale factors. The equations of motion
and constraints are given by Eg®.1)—(2.3). Comparing
with Egs.(3.1) and (3.2) in the cased=w/2, a natural first
attempt of anAnsatzis now

X%=t(7), X'=x=f(r)cosa,
IV. STRINGS IN BIANCHI TYPE | BACKGROUND
o . , , X?=y=g(7)sino, X3=z=const, 4.2
The validity of the low-energy-effective-action equations

for strings in Bianchi type homogeneous spacetimes haand the invariant string size is

S(r)= f;”w( 7)X?[t(7)]sin* o+g*(7)Y*[t(7)]cos’ odo. 4.3

The Ansatz (4.2) describes a closed string of “elliptic fore. This seems to be the most natudaisatzin the space-

shape,” in the sense that times with the line elemen4.1) because of the shear. The
X2 y? equations of motion and constraints read as
—+ =1, (4.4 . 2 2 &
f2 g2 t+ XX (% cog o—\f? sir? o)

i.e., it generalizes the circular strilinsatzconsidered be- +YY(g? sir? o—\g? cog ¢)=0, (4.5



. X, .
feafr23ii=o0, (4.6)
) Y, .
9+Ag+257t9=0, 4.7
as well as
X?tf—Y?gg=0, 4.8
'tZ—XZ(i‘2 co¥ o+ \f2 sir? o)
—Y2(g? sir? o+\g? cog o)=0. (4.9

Notice, however, that Eqg4.5—(4.9) are not all indepen-

STRINGS IN HOMOGENEOUS BACKGROUND SPACETIMES
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with X(t),Y(t) arbitrary. Such solutions, with=const, have
been considered before in other contd:i4|, but since they
do not fulfil the physical requirement of forward propagation

(t>0), we discard them here.
Thus ourAnsatz(4.2) eventually only works in the case
(4.12. Then Eqgs(4.10 reduce to

. Xy .
f+)\f+27’ttf=0, (4.16

12=X2f2+ A X2f2. (4.17

For the null strings X=0), they are immediately solved by

dent. After some algebra, one finds that they reduce to just

four independent equations
Fanfe2utit—0
X — Yy

t?=X2f2+ N Y202,
(4.10

X?tf=Y2gg,
X224+ N Y292 = Y292+ A X2,

The last two equations of expressi¢h10 lead to the fol-
lowing two possibilities:

1 [t

T= HfQX(t)dt, (4.18

f(t)y=c ft at (4.19
! tOXZ(t) . '

For the tensile strings\(=1), they cannot be solved in gen-
eral. However, the same equations appeared in a study of
strings in Friedmann-Robertson-Walker univerfg4], and
some special solutions were found there.

Here we are interested in strings in Bianchi universes.

a):
@ Usually, one starts with the Kasner-type vacuum power-law
f g solutions[15], which are given by
f g
X(t)=tP1, (4.20
and
X2ff=Y3gg, (4.12) Y(t)=tP? (4.21
which are solved by
Z(t)=tPs, (4.22
X(t)==*c.Y(1), g(7)=c,f(7), (4.12
wherec, is a constant. After a trivial coordinate redefinition, and
this corresponds to a circular string in an axially symmetric
ba‘(’t‘;gm“”d- Pi+P2+Ps=1, pi+p3+pi=1, (4.23
f where
L,
f g
1 2 2
and —§$pl$0, O$p2$ §, §$p3$l (424)
X2ff=Y?gg, (4.13
However, as we saw before, our striAgsatzonly works in
from which it follows that axially symmetric cases. Furthermore, we shall usually also
) allow the presence of matter.
—AX?f2=Y2g?, (4.14 A special case of the modéd.1) is an axially symmetric

This equation has no real solutions for tensile strings (
=1), while for null strings £ =0), we find

f=const=c,, g=constc,, t=constcs, (4.19

Kasner model in which the matter is that of the stiff fluid.
The metric reads

ds?=dt?— A2(t)(dx?+dy?) —Z3(t)dZ%, (4.2
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and it is just Kantowski-Sachs meti(i8.1) of zero curvature. 1+pa
For the stiff fluid p=p the conservation law is given by f(T):Cl(l_ )[|Cl|(1
pZ2A%= pt2=K?/16m, which gives the solutions for the Pa
scale factors in the forrfi 6] +pa) 7] PAAEPA), (4.37
A(t) =tPA, (4.26 In this case the invariant string size is
Z(t)=t1"2Pn (4.27)
S(7)=2m]c,] el pA) [|cal(1+pa) 7]HEFPA),
where 1-pa
(4.38
1
Pa=3ll* V1-3Kk%12], (4.28  which blows up forr—o. This is also the case for the co-
moving string size.
that is, Osp,<2/3. We close this section with some comments on the possi-
Under theAnsatz(4.2) with f =g, the equations of motion bility of having elliptic-shaped strings in anisotropic Bianchi
(4.16 and (4.17) become backgrounds. As we saw, tiiesatz(4.2) led to inconsisten-
cies unlesd (7)=g(7) andX(t)=Y(t). However, this does
. 2pa. - not mean that we must completely rule out the possibility of
f+af+ th =0, (4.29 having elliptic-shaped string configurations. In fact, it is pos-
sible to make a\nsatzmore general than E@4.2), but still
£2—12Pa(F2+ N f2)=0. (4.30 describing an elliptic-shaped string. This can be done along

the lines of the procedure used in REE7] (in a somewhat
_ ) different context We discard the orthonormal gauge and
A. Tensile strings work directly with the Nambu-Goto action. In that case, the
For the tensile strings\(=1), Eqs.(4.29 and(4.30 were Ansatz(4.2) leaves us more freedom than before. Unfortu-
considered in14]. They do not seem to be integrable, but hately, the equations of motion now become more compli-

some special solutions were found: cated than before, but at least they are not explicitly incon-
sistent, and there is some hope that one can find special
t(r)=A exp(c;7), f(r)=B exp(co7), (4.3)  solutions or at least solve the equations numerically.
_ In the orthonormal gaugé.2) and(2.3), as used in this
where the constant$\(B,c,,c,) are given by paper, this more generahsatzcorresponds to replacing Eq.
(4.2) with
*1 pa—1
C1= y Co=E 7\ ) 0_ 1oy
(pa—1)(pat1) pat1 X"=t(7), X*=x=f(7r)cos¢(7,0),
Al=Pa X?=y=g(7)sin ¢(7,0), X3=z=const, (4.39
B (4.3
V2Pa(Pa—1) and the functionp(r,a) gives us the extra freedom as men-

tioned above. However, we leave the implications of using

However, this solution is not real for the values allowed in : "
the Ansatz(4.39 for investigations elsewhere.

our case (B=p,=2/3), so it must be discarded.
All we can do then is to determine the asymptotics of the
solutions to Eqs(4.29 and (4.30. One finds, forr—, V. STRINGS IN AXISYMMETRIC BIANCHI TYPE IX
BACKGROUND

t(r)=Ar, 4.3 . .
()=Ar (433 Another interesting example of a curved background for

f(r)=Al"Par~PA cos 7, strings we consider is the Bianchi type IX background. It
(4.34  generalizes th&k=+1 isotropic Friedmann model to the
case of anisotropic spacetimes. In order to show the relation,
whereA is an arbitrary positive constant. The invariant stringit has been shown, among others, that all Bianchi type IX

size reads asr{—x) models recollapse similarly ak=+1 Friedmann models
[18]. The general case cannot be solved analytically for the
S(7)=2mA|cos 7], (4.39  scale factors and they subject to chaotic behavior. It would

. icall i ith litud dbe interesting to find out whether the test strings in such a
so it asymptotically oscillates with constant amplitude andyenera| hackground also behave chaotically, but for the mo-
unit frequency, while the comoving string size goes to zero

ment we leave this question for a separate paper, and con-
_ sider just an axially symmetric Bianchi type 1X model which
B. Null strings can be solved analytically. The metric of such a model in a

For the null strings X=0) in axially symmetric Kasner holonomic frame, is given b{19,2q

spacetime, Eq94.18 and(4.19 are integrated to give
P g 9 g ds?=dt?—c?(t)(dy+ cos 8de)?—a?(t)(d 6>+ sir? 6de?),
t(7)=[lcq|(1+pa) T]VTPA), (4.39 (5.9
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where, 6, ¢ are the Euler angles @¢<47,0< < and
0=<¢p=<2m). We use the followingAnsatzfor the spacetime
coordinates

X0=t(7), Xt=uy(7), X?=0(7), X3=¢=0, (5.2

and the equations of motiaf2.1) then read

t+ccy?+aa 8>~ \(cc, cod f+aa, sir? /)=0, (5.3
. Cy. C? .
Y+2—ty+ — cothy6=0,

Cc a2
(5.9
. ap. c’-a’
0+2—t6—\ sin 6 cos =0,
a a2
(5.9
¢ 1. 6=0
2sing’
(5.6

The last of these equatiofs.6) says that eitheg= const or
= const (@#0). The constraint$2.2) and(2.3) read

t2—c2y?—a?6?—\(a? sir? 6+c? cof 6)=0, (5.7)

c? cos 6y=0,
(5.8

from which it follows that eithery must be constant of

= /2. We will consider both cases. For each of these cases

the invariant string size is given by

S(7)=2m\a[t(7)]sir? 6(7)+c’[t(7)]cos 6(7).
(5.9

The well-known stiff fluid solutions of the Einstein equations

for Bianchi type X axisymmetric model are given b30]

2. A 5.1
¢ ~ coshAp’ (5.10
2
a2 B“ coshA7n ’
4A cosht [(B/2) 7]
(5.11
M2
=p=——7, 51
P=p= iz (5.12
whereA,B,M are constants|A|>|B|) with
B2=A%—M?, (5.13
7
t=J a?|c|d7. (5.14

One can easily see that the vacuum solufibs0 is given
by
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2o A (5.19
¢ = CoshAz’ '
AcoshA
a’ U (5.16

4 cosR[(A2) 7]

Notice that the scale facta( ) increases front(—)=0

to c(0)=C ma= VA and then decreases tg)=0 again.
On the other hand, the scale factify) decreases froma
(—»)=/A2 to a(0)=a ,;,= VA/4 and then increases to
a(») = /A2 again. However, the volume essentially follows
the scale factorc(7), i.e., the universe is of recollapsing
type.

A. 0= /2 solutions

If we assumed=7/2 andy+#0, then we can easily inte-
grate Eq.(5.4) to give

..m
b=, (5.17
c
with m= const. Then we have
(= [ elat (5.18
(1) = , .
0y/m?+\a?c?
() ft at
=m| ———.
to]c|m?+ Na®c?
(5.19

For the null stringsX=0), we can easily get the solution for
the vacuum casd =0 in terms of parametric timey, by
using Egs(5.15 and(5.16), i.e.,

dy= m d 5.2
7= 5297 (5.20
which is integrated to
2 2|m| -
n(r)—zarct redk (5.21)

where we took boundary conditions such thg0)=0. The
solutions for the scale factorg r) anda(r) are given by

) A?—4m?7?
ci(m)=A am2) (5.22
2 1 .2 2.2
a(T)=ﬂ(A +4m-r9), (5.23
and 72<A?/4m?. Then we find
y )_|m|JTd [AZ+4m? 72 (5.24
7 Ine TN p s ame 2 '
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m e [ A244m272 for t(7) and (7). However, it turns out to be somewhat
W(r)=Yo+—| dr| ————]. simpler to express everything in terms of the parametric time
Alo |\ A2—4m?7? i
n. For instance
(5.25
The integral fort(7) is of elliptic type, while the one for s
#(7) is elementary. However, we shall not need the explicit do= H'addﬂ’ (5.33
results here.
The invariant string size reads
which leads to
S(r) = ——AT+ A7, (5.26
VA s
o 6( ) — 6y=2— arctg e*”?). (5.39
From the above, we conclude that for the admissible values |s|

of the parameter, the string starts with the siZ8= mw2A
for =—A/2|m|, then contracts to the siz6=m\A for
7=0, and expands again ®=m2A for r=A/2|m|. This
can be easily understood physically since, &or 7/2, the
string is winding in thep direction with scale factoa.

B. The casey=0,0+0
In this case, Eq95.3—(5.8) become

t+aa#?—\(cc, cog f+aa, sir? 6)=0, (5.27

c?—a?

2

. ..
0+2—th—\ sin 8 cos 6=0,
a a

(5.28

t2—a2p%—\(a? sir? 6+c? cog 6)=0.
(5.29

It is then straightforward to write down an explicit expres-
sion for the invariant string size similar to E¢.9), but with

S as a function ofy, since the scale factors are already given
in terms of .

It follows from the above results that during the whole
evolution of the universe, the polar anglechanges byr.
Thus there are two scenarios:f4§=0, then the string starts
with zero size at one of the poles, then expands and eventu-
ally collapses to zero size again at the other pole. On the
other hand, if6;# 0, then the string starts with finite size,
passes one of the poléstill with finite sizg, and eventually
ends up with a finite size. Thus the behavior is qualitatively
similar to that of strings in Kantowski-Sachs spacetimes as
described in Sec. IIl.

VI. SUMMARY

In this paper we have considered the tensile and null
string evolution and propagation in some homogeneous but
anisotropic spacetimes of Kantowski-Sachs and Bianchi

Notice that the first equation can be obtained from the twdYPe- This generalizes and completes earlier investigations of
others. Thus we have just two coupled equations: one of firsttrings in more symmetric backgrounds. _
order and one of second order. For the tensile strings, the OUr results demonstrate the richness of different evolution

general solution does not seem to be available. For the nufichemes for extended objects, here strings, in curved back-

strings, we can integrate fa(7) andt(7)

. S

0= ;, (53@
., &
t =;, (53])

with s= const. Then using the exact vacuum solutiha5
and (5.16, we can integrate this further sincel#/dr)?
=s?/ab¢c2. One finds

A% coshAy

dr=— ——— "7
Isldx 8 cosh[(A/2) 7]

dxz, (5.32

grounds. For the tensile strings, this is due to the “competi-
tion” between the string tension and the gravitational field,
which together determine the evolution of the string. For the
null strings, it is simply due to the fact that we are dealing
with an extended object in a gravitational field, i.e., the ob-
ject subjects to tidal forces. In both cases, the situation
should be compared with the conceptually much simpler
problems of point particle propagation in curved spacetimes
and string evolution and propagation in flat Minkowski
spacetime.

We mainly considered closed circular strings, which al-
lowed us to obtain simple exact analytical results in most
cases. We essentially saw three qualitatively different kinds
of circular string evolution(a) the string simply follows the
expansion or contraction of the univerge), the string makes
a finite or infinite number of oscillations during the evolution
of the universe(c) the contraction of the string is exactly
balanced by the expansion of the universe, such that the
physical string size is constant.

which can be integrated explicitly in terms of elementary We also discussed the problems of obtaining consistent
functions. In principle we can then also obtain expressiongquations of motion describing an elliptic-shaped string con-
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