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Strings in homogeneous background spacetimes
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The string equations of motion for some homogeneous~Kantowski-Sachs, Bianchi type I and Bianchi type
IX ! background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the
recent developments in string cosmology, where it has been shown that, under certain circumstances, such
spacetimes appear as string vacua. Both tensile and null strings are considered. Generally, it is much simpler
to solve for the null strings since then we deal with the null geodesic equations of general relativity plus some
additional constraints. We consider in detail anAnsatzcorresponding to circular strings, and we discuss the
possibility of using an elliptic-shape stringAnsatzin the case of homogeneous~but anisotropic! backgrounds.
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I. INTRODUCTION

There has been quite a lot of interest during the last
years in the evolution of strings in fixed curved backgroun
for reviews, see, for instance,@1#. It is well known that the
string equations of motion in curved spacetimes form a co
plicated system of second-order nonlinear coupled pa
differential equations which, in general, is nonintegrab
However, there are some special string configurations
which the equations are exactly solvable~see, for instance
@1# and references therein!. Many such explicit solutions
have already been found, but they were restricted to just
most symmetric spacetimes such as Minkowski, de Sit
anti–de Sitter, Schwarzschild, and Robertson-Walker on

We shall consider both tensile and null~tensionless!
strings. Generally, it is much simpler to solve for the n
strings@2#, since then we deal with the null geodesic equ
tions of general relativity plus some additional constraints
might seem then, that the dynamics of null strings is qu
trivial. However, this is not true. Although each individu
point along the null string follows a null geodesic, the n
string as a whole may experience highly nontrivial dynam
@3#. The situation is qualitatively similar to that of congru
ences in general relativity, that is, ‘‘bundles of rays’’: ea
ray in the bundle is just following a geodesic, but the prop
gation of the bundle as a whole can be highly nontrivial d
to tidal forces, as described by the Raychaudhuri equatio

In this paper we extend the discussion of the tensile
null string evolution to the homogeneous, but anisotrop
spacetimes of Kantowski-Sachs, Bianchi types I and IX.
fact, Kantowski-Sachs solutions with negative and zero c
vature are just axisymmetric Bianchi type I and III univers
This means that only positive curvature Kantowski-Sa
models are different from Bianchi-type universes.

Our main motivation is the recent development in stri

*Email address: mpdabfz@uoo.univ.szczecin.pl
†Email address: all@fysik.ou.dk
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cosmology. It has been shown that Kantowski-Sachs and
anchi type spacetimes, under certain circumstances, ap
as string vacua, i.e., as solutions to theb-function equations
@4# to some~low! order ina8. Thus, in this paper, we con
sider the dynamics of a string moving in a condensate of
massless string modes.

The paper is organized as follows. In Sec. II, we give t
tensile and null string equations of motion and constraints
generic curved spacetimes. In Sec. III, we specialize to
case of positive curvature Kantowski-Sachs~KS! back-
grounds, in particular, we consider the KS universe with c
mological term and the KS universe with stiff-fluid matte
In both cases we solve the equations of motion for ten
and null strings after making appropriateAnsätze, and we
give the physical interpretation of the solutions. In Sec.
we turn to the Bianchi universes. We first discuss some
the problems concerning finding explicit tensile string so
tions in spacetimes of Kasner type, and secondly, we g
some explicit null string solutions. Finally in Sec. V, w
consider circular strings in axisymmetric Bianchi type I
universes, and in Sec. VI we give our conclusions.

II. STRING EQUATIONS OF MOTION
AND CONSTRAINTS

Let us consider the tensile and the null string equations
motion in a compact formula

Ẍm1Gnr
m ẊnẊr5l~X9m1Gnr

m X8nX8r!, ~2.1!

where an overdot means a derivative with respect to
string coordinatet and a prime means a derivative with r
spect to the string coordinates. The constraints read as

gmnẊmẊn52lgmnX8mX8n, ~2.2!

gmnẊmX8n50. ~2.3!
5108 © 1998 The American Physical Society
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57 5109STRINGS IN HOMOGENEOUS BACKGROUND SPACETIMES
For l51 we have the tensile strings whilel50 applies for
the null strings. Notice that in Ref.@5#, expansion scheme
were considered, essentially usingl (l;1/a8, wherea8 is
the inverse string tension! as a continuous expansion param
eter; in this paper we simply usel as a discrete paramete
discriminating between tensile and null strings.

From the above we can see that for the null strings,
have the null geodesic equation of general relativity supp
mented by the constraint~2.3!. For both null and tensile
strings the invariant string size is defined by~closed string!

S~t!5E
0

2p

S~t,s!ds, ~2.4!

where

S~t,s!5A2gmnX8mX8n. ~2.5!

III. STRINGS IN KANTOWSKI-SACHS BACKGROUND

In this section, we will consider the string equations
motion in homogeneous Kantowski-Sachs spacetimes.
validity of the Kantowski-Sachs spacetime as being con
tent string vacuum~solution to theb-function equations to
the lowest order ina8) is discussed elsewhere@6#. Here we
just concentrate on the motion of a test string in Kantows
Sachs backgrounds.

The Kantowski-Sachs spacetime is given by the metric@7#

ds25dt22A2~ t !dr22B2~ t !dVk
2 , ~3.1!

where the ‘‘angular’’ metric is

dVk
25du21S2~u!dw2,

S~u!5H sin u for k511,

u for k50,

sinh u for k521,

andA,B are the expansion scale factors. Here,r P] 2`,`@ ,
while the range oft depends on the particular cosmolog
For k511 the coordinatesu and w describe, as usual, th
angles on the two-sphere. Onlyk511 models fall outside
the Bianchi classification, but usually one refers to all th
curvature models as Kantowski-Sachs universes. In this
per, we mainly considerk511 models.

As a first example of a string configuration, we apply t
following string Ansatz:

X05t~t!, X15r ~t!, X25u~t!, X35w5s, ~3.2!

which describes a circular string winding around the tw
sphere. The functions„t(t),r (t),u(t)…, which describe the
dynamics of the string, are to be determined from the eq
tions of motion.

For the metric~3.1!, we start with the string equations o
motion ~2.1! and constraints~2.2! and ~2.3!, which now re-
duce to

ẗ1AA,t ṙ
21BB,tu̇

22lBB,t sin2 u50, ~3.3!
e
-

f
he
s-

i-

e
a-

-

a-

r̈ 12
A,t

A
ṫ ṙ 50, ~3.4!

ü12
B,t

B
ṫ u̇1l sin u cosu50, ~3.5!

ṫ22A2ṙ 22B2u̇22lB2 sin2 u50. ~3.6!

Equation~3.4! easily integrates to give

ṙ 5
dr

dt
5

k

A2
, ~3.7!

with k5 const. The other equations, in general, cannot
integrated, thus we must either consider special Kantow
Sachs spacetimes or make further restrictions for theAnsatz.
Notice, however, that for both casesl50,1, the invariant
string size is given by

S~t!52puB~t!sin u~t!u. ~3.8!

A. Tensile strings

For the tensile strings,l51, and Eq.~3.5! is fulfilled
automatically under the assumption thatu5 const5p/2 in
Eq. ~3.2!. In the rest of Sec. III A, we restrict ourselves
this case. Then after inserting Eq.~3.7! into Eq. ~3.6!, we
obtain

ṫ25
k2

A2
1B2, ~3.9!

or, explicitly in terms of the string time coordinate,

t~ t !5E t uAudt

Ak21A2B2
, ~3.10!

while from Eq.~3.7! we get

r ~ t !5kE t dt

uAuAk21A2B2
. ~3.11!

Notice also that Eq.~3.3! is automatically fulfilled now.

1. L-term solutions

First we refer to one of the simplest solutions given f
the scale factors, which is thek511 Kantowski-Sachs uni-
verse with only the cosmological term@8#. These are

A~ t !5H0
21 sinh H0t, ~3.12!

B~ t !5H0
21 coshH0t, ~3.13!

with H05 const, and we consider only the expanding pha
(t>0) of the universe. After inserting Eqs.~3.12! and~3.13!
into ~3.10! we have@choosing boundary conditions such th
t(0)50]
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5110 57MARIUSZ P. DA̧BROWSKI AND ARNE L. LARSEN
t~ t !5H0E
0

t sinh~H0t !

Ak2H0
41sinh2~H0t !cosh2~H0t !

dt,

~3.14!

and from Eq.~3.11! we obtain

r ~ t !5kH0
3E

t0

t dt

sinh~H0t !Ak2H0
41sinh2~H0t !cosh2~H0t !

.

~3.15!

By inverting Eq.~3.14!, giving t(t), Eq. ~3.15! then gives
explicitly r (t). Equations~3.14! and ~3.15! can be trans-
formed to the form of the standard elliptic integrals. F
instance, by making the substitution cosh(H0t)5Az, Eq.
~3.14! becomes

t~z!5
1

2E1

z dz

Az~z2z1!~z2z2!
, ~3.16!

with

z1,25
1

2
~16A124k2H0

4!, ~3.17!

and can thus be evaluated explicitly eventually yieldingt(t).
However, the detailed form will not be important here. T
invariant string size in this case is simply

S~t!52pH0
21 cosh„H0t~t!…, ~3.18!

i.e., the string size follows the expansion of the univer
This is easily understood, since the string is simply wind
around the equatorial plane of the two-sphere.

2. Time-symmetric stiff-fluid solutions

The solutions for the scale factors for the time-symme
k511 ~recollapsing! stiff-fluid Kantowski-Sachs model is
given by @9#

A~ t !5b, ~3.19!

B~ t !5
AM

b
A12

b2

M
~ t2t0!2, ~3.20!

with (b,M ,t0) constants. The constantM appears in the den
sity of stiff-fluid matter conservation lawrA2B45M . The
Kantowski-Sachs model described by scale factors~3.19!
and ~3.20! begins and ends at ‘‘barrel’’ singularities (A5
const, B50) @10#. For simplicity we will take t05AM /b
from now on, so that the range oft is tP@0,2AM /b#. For the
exact solution~3.19! and ~3.20!, Eqs.~3.7! and ~3.10! inte-
grate to give

t~t!5
AM

b
1

Ak21M

b
sinS t2arcsinA M

k21M
D ,

~3.21!
r

.
g

c

r ~t!5
k

b2
t1r 0 , ~3.22!

where we took boundary conditions such thatt(0)50. Hav-
ing this, one can expressB in terms oft, i.e.,

B~t!5
AM

b
A12

k21M

M
sin2S t2arcsinA M

k21M
D ,

~3.23!

which in the limit k50 (r 5 const! gives

B~t!5
AM

b
sin t. ~3.24!

According to Eq.~3.8!, the invariant string size is simply
S(t)52pB(t), which means that the string trivially start
with zero size, then expands to a maximum size and fin
contracts to zero size again together with the universe, i.e
t52 arcsinAM /(k21M ). This again comes from the fac
that the string simply winds around the equatorial plane
the two-sphere.

In the next subsection, we shall consider more com
cated~null! string solutions with nontrivial dynamics.

B. Null strings

The above solutions for tensile strings were all obtain
for u5p/2. However, for the null strings,l50, we can eas-
ily integrate Eq.~3.5!, still keeping the general form ofu
5u(t) in the Ansatz~3.2!, to obtain

u̇5
du

dt
5

l

B2
, ~3.25!

with l 5 const. Equation~3.6! now becomes

ṫ25
k2

A2
1

l 2

B2
~3.26!

or, explicitly

t~ t !5E t uABudt

Al 2A21k2B2
, ~3.27!

while Eq. ~3.7! becomes

r ~ t !5kE t uBudt

uAuAl 2A21k2B2
. ~3.28!

1. L-term solutions

Inserting Eqs.~3.12! and ~3.13! into Eq. ~3.27!, we have
an exact relation between the spacetime and the string
coordinates

H0t~t!5arccoshAl 21@H0
2~k21 l 2!t1uku#2

k21 l 2
,

~3.29!
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57 5111STRINGS IN HOMOGENEOUS BACKGROUND SPACETIMES
where we choose again boundary conditions such thatt(0)
50. Having given Eq.~3.29!, one can write down Eqs
~3.12! and ~3.13! in terms of thet coordinate as

A~t!5
1

H0
A2k21@H0

2~k21 l 2!t1uku#2

k21 l 2
, ~3.30!

B~t!5
1

H0
Al 21@H0

2~k21 l 2!t1uku#2

k21 l 2
.

~3.31!

This allows us to integrate Eqs.~3.7! and ~3.25! to give

r ~t!52
k

uku
arccthS 11

H0
2

uku ~k21 l 2!t D 1r 0 , ~3.32!

u~t!52
l

u l u
arctgS uku

u l u
1

H0
2

u l u ~k21 l 2!t D 1u0 , ~3.33!

with r 0 ,u05 const. The invariant string size~3.8! is given by

S~t!52puB~t!sin u~t!u

5
2p

H0Ak21 l 2
u@ uku1H0

2~k21 l 2!t#sin u02 l cosu0u.

~3.34!

It is useful to consider some special cases. Forl 50 ~i.e., u
5u0), we have

A~t!5AH0
2k2t212ukut, ~3.35!

B~t!5H0ukut1H0
21 , ~3.36!

t~t!5
1

H0
arccosh~H0

2ukut11!, ~3.37!

r ~t!52
k

uku
arccth~H0

2ukut11!1r 0 ,

~3.38!

S~t!5
2p

H0
usin u0u~H0

2ukut11!. ~3.39!

That is, the string winds around the two-sphere at the an
u5u0 and expands to infinite size together with the sc
factor.

Another special case is given in the limitk50 ~i.e., r
5r 0), where we have

A~t!5H0u l ut, ~3.40!

B~t!5
1

H0
A11H0

4l 2t2, ~3.41!

t~t!5
1

H0
arccoshA11H0

4l 2t2, ~3.42!
le
e

u~t!52
l

u l u
arctg~H0

2u l ut!1u0 , ~3.43!

S~t!5
2p

H0
uH0

2l t sin u02cosu0u. ~3.44!

Notice that whent goes from 0 tò , the angleu changes by
p/2. Therefore we can distinguish a number of different s
narios.~1! u050. In this case, the string starts at the equa
rial plane and then moves towards one of the poles in su
way that its sizeS(t) is constant, i.e., the contraction of th
string is exactly balanced by the expansion of the tw
sphere.~2! u0Þ0. The string starts somewhere on one hem
sphere, then crosses the equator and approaches a fixe
sition on the other hemisphere. During its evolution, t
string grows indefinitely.~3! u0Þ0. The string starts some
where on one hemisphere, then moves towards the ne
pole where it collapses. It then reappears and approach
fixed position on the same hemisphere. After the collap
and during its later evolution, its size will grow indefinitely

Returning to the general expression~3.34!, it is easy to
see that the dynamics in the general case is qualitativ
similar to thek50 case, although quantitatively differen
For instance, ifu050, the string starts at a fixed angleu(t
50)52sgn(l ) arctg(uku/u l u), and can then approach th
nearest pole in such a way that its size is constant. Simila
we can also find solutions where the string expands ind
nitely, possibly after collapsing once during its early evo
tion.

2. Time-symmetric stiff-fluid solutions

Using Eqs.~3.19! and ~3.20! for the null string case, we
obtain from Eq.~3.27!

t~ t !5E
0

tA M2b2~ t2AM /b!2

l 2b21k2M @12b2~ t2AM /b!2#/b2
dt,

~3.45!

where we took again boundary conditions such thatt(0) 50.
From Eq.~3.7!, we get

r ~t!5
k

b2
t1r 0 . ~3.46!

Thus r is expressed directly as a function oft, while Eq.
~3.45! must be inverted to givet(t). Notice that Eq.~3.45! is
an elliptic integral, which can be given in terms of ellipt
functions@11#

t~ t !5
b

ukuAM

b2
1

l 2b2

k2
ES j,A Mk2

Mk21 l 2b4D
2

l 2b4

k2AMk21 l 2b4
FS j,A Mk2

Mk21 l 2b4D
2

b

uku S AM

b
2t DA M /b22~ t2AM /b!2

M /b21 l 2b2/k22~ t2AM /b!2
,

~3.47!
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whereF,E are the elliptic integrals of first and second kin
respectively, and

j5 arcsinFAMk21 l 2b4

Mk2

3A M /b22~ t2AM /b!2

M /b21 l 2b2/k22~ t2AM /b!2G . ~3.48!

Here we analyze some special cases in which Eq.~3.47!
becomes elementary. First, ifl 50, it gives the simple solu-
tion

t5
uku
b

t, ~3.49!

r 5
k

b2
t1r 0 , ~3.50!

u5u0 . ~3.51!
he
e
un
i-
r

an
rs
io

t

ns
ha
Then the string size is

S~t!5
2p

b
usin u0uA2ukuAMt2k2t2, ~3.52!

that is, the string starts with zero size, then expands
eventually recollapses together with the universe.

Another special case is whenk50, and reads as

t~ t !5
M

2u l ub2 F S bt

AM
21DA12S bt

AM
21D 2

1arcsinS bt

AM
21D 1

p

2 G , ~3.53!

r 5r 0 , ~3.54!

u~ t !5
l

u l ub
arcsinS bt

AM
21D 1u0 . ~3.55!

In this case the string size is given by
S~ t !5
2pAM

b
A12S bt

AM
21D 2UA12S bt

AM
21D 2

sin u06S bt

AM
21D cosu0U . ~3.56!
e

on
If u050, the string is at the equator and it simply follows t
evolution of the universe, i.e., it starts with zero size, th
expands and eventually recollapses together with the
verse. On the other hand, ifu0Þ0, the string has the poss
bility to pass one of the poles of the two-sphere, i.e., it sta
with zero size, then expands but recollapses, then exp
again and eventually recollapses together with the unive

It is straightforward to check that the qualitative behav
of the string solutions in the general case@described by Eq.
~3.47!# essentially follows thek50 case, thus we shall no
go into the quantitative details here.

IV. STRINGS IN BIANCHI TYPE I BACKGROUND

The validity of the low-energy-effective-action equatio
for strings in Bianchi type homogeneous spacetimes
n
i-

ts
ds
e.
r

s

been studied in@12#, and in this section we consider th
evolution of strings based on Eqs.~2.1!–~2.3! in Bianchi
type I background spacetimes with the metric@13#

ds25dt22X2~ t !dx22Y2~ t !dy22Z2~ t !dz2, ~4.1!

whereX,Y,Z are the scale factors. The equations of moti
and constraints are given by Eqs.~2.1!–~2.3!. Comparing
with Eqs. ~3.1! and ~3.2! in the caseu5p/2, a natural first
attempt of anAnsatzis now

X05t~t!, X15x5 f ~t!coss,

X25y5g~t!sin s, X35z5const, ~4.2!

and the invariant string size is
S~t!5E
0

2p
Af 2~t!X2@ t~t!#sin2 s1g2~t!Y2@ t~t!#cos2 sds. ~4.3!
e

The Ansatz ~4.2! describes a closed string of ‘‘elliptic
shape,’’ in the sense that

x2

f 2
1

y2

g2
51, ~4.4!

i.e., it generalizes the circular stringAnsatzconsidered be-
fore. This seems to be the most naturalAnsatzin the space-
times with the line element~4.1! because of the shear. Th
equations of motion and constraints read as

ẗ1XX,t~ ḟ 2 cos2 s2l f 2 sin2 s!

1YY,t~ ġ2 sin2 s2lg2 cos2 s!50, ~4.5!
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f̈ 1l f 12
X,t

X
ṫ ḟ 50, ~4.6!

g̈1lg12
Y,t

Y
ṫ ġ50, ~4.7!

as well as

X2 ḟ f 2Y2ġg50, ~4.8!

ṫ22X2~ ḟ 2 cos2 s1l f 2 sin2 s!

2Y2~ ġ2 sin2 s1lg2 cos2 s!50. ~4.9!

Notice, however, that Eqs.~4.5!–~4.9! are not all indepen-
dent. After some algebra, one finds that they reduce to
four independent equations

f̈ 1l f 12
X,t

X
ṫ ḟ 50,

ṫ25X2 ḟ 21lY2g2,
~4.10!

X2f ḟ 5Y2gġ,

X2 ḟ 21lY2g25Y2ġ21lX2f 2.

The last two equations of expression~4.10! lead to the fol-
lowing two possibilities:

~a!:

ḟ

f
5

ġ

g

and

X2f ḟ 5Y2gġ, ~4.11!

which are solved by

X~ t !56c1Y~ t !, g~t!5c1f ~t!, ~4.12!

wherec1 is a constant. After a trivial coordinate redefinitio
this corresponds to a circular string in an axially symme
background.

~b!:

ḟ

f
52l

g

ġ

and

X2f ḟ 5Y2gġ, ~4.13!

from which it follows that

2lX2f 25Y2ġ2. ~4.14!

This equation has no real solutions for tensile stringsl
51), while for null strings (l50), we find

f 5const[c1 , g5const[c2 , t5const[c3 , ~4.15!
st

c

with X(t),Y(t) arbitrary. Such solutions, witht5const, have
been considered before in other contexts@14#, but since they
do not fulfil the physical requirement of forward propagati
( ṫ.0), we discard them here.

Thus ourAnsatz~4.2! eventually only works in the cas
~4.12!. Then Eqs.~4.10! reduce to

f̈ 1l f 12
X,t

X
ṫ ḟ 50, ~4.16!

ṫ25X2 ḟ 21lX2f 2. ~4.17!

For the null strings (l50), they are immediately solved b

t5
1

uc1u E0

t

X~ t !dt, ~4.18!

f ~ t !5c1E
t0

t dt

X2~ t !
. ~4.19!

For the tensile strings (l51), they cannot be solved in gen
eral. However, the same equations appeared in a stud
strings in Friedmann-Robertson-Walker universes@14#, and
some special solutions were found there.

Here we are interested in strings in Bianchi univers
Usually, one starts with the Kasner-type vacuum power-l
solutions@15#, which are given by

X~ t !5tp1, ~4.20!

Y~ t !5tp2, ~4.21!

Z~ t !5tp3, ~4.22!

and

p11p21p351, p1
21p2

21p3
251, ~4.23!

where

2
1

3
<p1<0, 0<p2<

2

3
,

2

3
<p3<1. ~4.24!

However, as we saw before, our stringAnsatzonly works in
axially symmetric cases. Furthermore, we shall usually a
allow the presence of matter.

A special case of the model~4.1! is an axially symmetric
Kasner model in which the matter is that of the stiff flui
The metric reads

ds25dt22A2~ t !~dx21dy2!2Z2~ t !dz2, ~4.25!
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and it is just Kantowski-Sachs metric~3.1! of zero curvature.
For the stiff fluid p5r the conservation law is given b
rZ2A45rt25k2/16p, which gives the solutions for the
scale factors in the form@16#

A~ t !5tpA, ~4.26!

Z~ t !5t122pA, ~4.27!

where

pA5
1

3
@16A123k2/2#, ~4.28!

that is, 0<pA<2/3.
Under theAnsatz~4.2! with f 5g, the equations of motion

~4.16! and ~4.17! become

f̈ 1l f 1
2pA

t
ṫ ḟ 50, ~4.29!

ṫ22t2pA~ ḟ 21l f 2!50. ~4.30!

A. Tensile strings

For the tensile strings (l51), Eqs.~4.29! and~4.30! were
considered in@14#. They do not seem to be integrable, b
some special solutions were found:

t~t!5A exp~c1t!, f ~t!5B exp~c2t!, ~4.31!

where the constants (A,B,c1 ,c2) are given by

c15
71

A~pA21!~pA11!
, c256ApA21

pA11
,

B5
A12pA

A2pA~pA21!
. ~4.32!

However, this solution is not real for the values allowed
our case (0<pA<2/3), so it must be discarded.

All we can do then is to determine the asymptotics of
solutions to Eqs.~4.29! and ~4.30!. One finds, fort→`,

t~t!5At, ~4.33!

f ~t!5A12pAt2pA cost,
~4.34!

whereA is an arbitrary positive constant. The invariant stri
size reads as (t→`)

S~t!52pAucostu, ~4.35!

so it asymptotically oscillates with constant amplitude a
unit frequency, while the comoving string size goes to ze

B. Null strings

For the null strings (l50) in axially symmetric Kasner
spacetime, Eqs.~4.18! and ~4.19! are integrated to give

t~t!5@ uc1u~11pA!t#1/~11pA!, ~4.36!
e

d
.

f ~t!5c1S 11pA

12pA
D @ uc1u~1

1pA!t#~12pA!/~11pA!. ~4.37!

In this case the invariant string size is

S~t!52puc1uS 11pA

12pA
D @ uc1u~11pA!t#1/~11pA!,

~4.38!

which blows up fort→`. This is also the case for the co
moving string size.

We close this section with some comments on the po
bility of having elliptic-shaped strings in anisotropic Bianc
backgrounds. As we saw, theAnsatz~4.2! led to inconsisten-
cies unlessf (t)5g(t) andX(t)5Y(t). However, this does
not mean that we must completely rule out the possibility
having elliptic-shaped string configurations. In fact, it is po
sible to make anAnsatzmore general than Eq.~4.2!, but still
describing an elliptic-shaped string. This can be done al
the lines of the procedure used in Ref.@17# ~in a somewhat
different context!: We discard the orthonormal gauge an
work directly with the Nambu-Goto action. In that case, t
Ansatz~4.2! leaves us more freedom than before. Unfor
nately, the equations of motion now become more com
cated than before, but at least they are not explicitly inc
sistent, and there is some hope that one can find spe
solutions or at least solve the equations numerically.

In the orthonormal gauge~2.2! and ~2.3!, as used in this
paper, this more generalAnsatzcorresponds to replacing Eq
~4.2! with

X05t~t!, X15x5 f ~t!cosf~t,s!,

X25y5g~t!sin f~t,s!, X35z5const, ~4.39!

and the functionf(t,s) gives us the extra freedom as me
tioned above. However, we leave the implications of us
the Ansatz~4.39! for investigations elsewhere.

V. STRINGS IN AXISYMMETRIC BIANCHI TYPE IX
BACKGROUND

Another interesting example of a curved background
strings we consider is the Bianchi type IX background.
generalizes thek511 isotropic Friedmann model to th
case of anisotropic spacetimes. In order to show the relat
it has been shown, among others, that all Bianchi type
models recollapse similarly ask511 Friedmann models
@18#. The general case cannot be solved analytically for
scale factors and they subject to chaotic behavior. It wo
be interesting to find out whether the test strings in suc
general background also behave chaotically, but for the m
ment we leave this question for a separate paper, and
sider just an axially symmetric Bianchi type IX model whic
can be solved analytically. The metric of such a model in
holonomic frame, is given by@19,20#

ds25dt22c2~ t !~dc1cosudw!22a2~ t !~du21sin2 udw2!,
~5.1!



s

ns

o
s

g

-

r

57 5115STRINGS IN HOMOGENEOUS BACKGROUND SPACETIMES
wherec,u,w are the Euler angles (0<c<4p,0<u<p and
0<w<2p). We use the followingAnsatzfor the spacetime
coordinates

X05t~t!, X15c~t!, X25u~t!, X35w5s, ~5.2!

and the equations of motion~2.1! then read

ẗ1cc,tċ
21aa,tu̇

22l~cc,t cos2 u1aa,t sin2 u!50, ~5.3!

c̈12
c,t

c
ṫ ċ1

c2

a2
cotuċu̇50,

~5.4!

ü12
a,t

a
ṫ u̇2l

c22a2

a2
sin u cosu50,

~5.5!

c2

a2

1

sin u
ċu̇50.

~5.6!

The last of these equations~5.6! says that eitherc5 const or
u5 const (uÞ0). The constraints~2.2! and ~2.3! read

ṫ22c2ċ22a2u̇22l~a2 sin2 u1c2 cos2 u!50, ~5.7!

c2 cosuċ50,
~5.8!

from which it follows that eitherc must be constant oru
5p/2. We will consider both cases. For each of these ca
the invariant string size is given by

S~t!52pAa2@ t~t!#sin2 u~t!1c2@ t~t!#cos2 u~t!.
~5.9!

The well-known stiff fluid solutions of the Einstein equatio
for Bianchi type IX axisymmetric model are given by@20#

c25
A

coshAh
, ~5.10!

a25
B2 coshAh

4A cosh2 @~B/2! h#
,

~5.11!

p5r5
M2

4a4c2
, ~5.12!

whereA,B,M are constants (uAu.uBu) with

B25A22M2, ~5.13!

t5Eh
a2ucudh. ~5.14!

One can easily see that the vacuum solutionM50 is given
by
es

c25
A

coshAh
, ~5.15!

a25
AcoshAh

4 cosh2@~A/2! h#
. ~5.16!

Notice that the scale factorc(h) increases fromc(2`)50
to c(0)5c max5AA and then decreases toc(`)50 again.
On the other hand, the scale factora(h) decreases froma
(2`)5AA/2 to a(0)5a min5AA/4 and then increases t
a(`)5AA/2 again. However, the volume essentially follow
the scale factorc(h), i.e., the universe is of recollapsin
type.

A. u5p/2 solutions

If we assumeu5p/2 andċÞ0, then we can easily inte
grate Eq.~5.4! to give

ċ5
m

c2
, ~5.17!

with m5 const. Then we have

t~ t !5E
0

t ucudt

Am21la2c2
, ~5.18!

c~ t !5mE
t0

t dt

ucuAm21la2c2
.

~5.19!

For the null strings (l50), we can easily get the solution fo
the vacuum caseM50 in terms of parametric timeh, by
using Eqs.~5.15! and ~5.16!, i.e.,

dh5
umu

a2c2
dt, ~5.20!

which is integrated to

h~t!5
2

A
arcthS 2umu

A
t D , ~5.21!

where we took boundary conditions such thath(0)50. The
solutions for the scale factorsc(t) anda(t) are given by

c2~t!5AS A224m2t2

A214m2t2D , ~5.22!

a2~t!5
1

4A
~A214m2t2!, ~5.23!

andt2<A2/4m2. Then we find

t~t!5
umu

AA
E

0

t

dtAA214m2t2

A224m2t2
, ~5.24!
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c~t!5c01
m

AE0

t

dtS A214m2t2

A224m2t2D .

~5.25!

The integral fort(t) is of elliptic type, while the one for
c(t) is elementary. However, we shall not need the expl
results here.

The invariant string size reads

S~t!5
p

AA
AA214m2t2. ~5.26!

From the above, we conclude that for the admissible val
of the parametert, the string starts with the sizeS5pA2A
for t52A/2umu, then contracts to the sizeS5pAA for
t50, and expands again toS5pA2A for t5A/2umu. This
can be easily understood physically since, foru5p/2, the
string is winding in thew direction with scale factora.

B. The caseċ50,u̇Þ0

In this case, Eqs.~5.3!–~5.8! become

ẗ1aa,tu̇
22l~cc,t cos2 u1aa,t sin2 u!50, ~5.27!

ü12
a,t

a
ṫ u̇2l

c22a2

a2
sin u cosu50,

~5.28!

ṫ22a2u̇22l~a2 sin2 u1c2 cos2 u!50.
~5.29!

Notice that the first equation can be obtained from the t
others. Thus we have just two coupled equations: one of
order and one of second order. For the tensile strings,
general solution does not seem to be available. For the
strings, we can integrate foru(t) and t(t)

u̇5
s

a2
, ~5.30!

ṫ25
s2

a2
, ~5.31!

with s5 const. Then using the exact vacuum solutions~5.15!
and ~5.16!, we can integrate this further since (dh/dt)2

5s2/a6c2. One finds

usudt5
A2

8

coshAh

cosh3@~A/2! h#
dh, ~5.32!

which can be integrated explicitly in terms of elementa
functions. In principle we can then also obtain expressi
it

s

o
st
e

ull

s

for t(t) and u(t). However, it turns out to be somewha
simpler to express everything in terms of the parametric ti
h. For instance

du5
s

usu
uacudh, ~5.33!

which leads to

u~h!2u052
s

usu
arctg~eAh/2!. ~5.34!

It is then straightforward to write down an explicit expre
sion for the invariant string size similar to Eq.~5.9!, but with
S as a function ofh, since the scale factors are already giv
in terms ofh.

It follows from the above results that during the who
evolution of the universe, the polar angleu changes byp.
Thus there are two scenarios: Ifu050, then the string starts
with zero size at one of the poles, then expands and eve
ally collapses to zero size again at the other pole. On
other hand, ifu0Þ0, then the string starts with finite size
passes one of the poles~still with finite size!, and eventually
ends up with a finite size. Thus the behavior is qualitativ
similar to that of strings in Kantowski-Sachs spacetimes
described in Sec. III.

VI. SUMMARY

In this paper we have considered the tensile and n
string evolution and propagation in some homogeneous
anisotropic spacetimes of Kantowski-Sachs and Bian
type. This generalizes and completes earlier investigation
strings in more symmetric backgrounds.

Our results demonstrate the richness of different evolut
schemes for extended objects, here strings, in curved b
grounds. For the tensile strings, this is due to the ‘‘comp
tion’’ between the string tension and the gravitational fie
which together determine the evolution of the string. For
null strings, it is simply due to the fact that we are deali
with an extended object in a gravitational field, i.e., the o
ject subjects to tidal forces. In both cases, the situat
should be compared with the conceptually much simp
problems of point particle propagation in curved spacetim
and string evolution and propagation in flat Minkows
spacetime.

We mainly considered closed circular strings, which
lowed us to obtain simple exact analytical results in m
cases. We essentially saw three qualitatively different kin
of circular string evolution:~a! the string simply follows the
expansion or contraction of the universe,~b! the string makes
a finite or infinite number of oscillations during the evolutio
of the universe,~c! the contraction of the string is exactl
balanced by the expansion of the universe, such that
physical string size is constant.

We also discussed the problems of obtaining consis
equations of motion describing an elliptic-shaped string c
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figuration. The use of the simplest, anda priori most natural
Ansatz, describing an elliptic-shaped string, led to incons
tent equations of motion. At this point, we leave for futu
work the question of whether a more complicatedAnsatz, as
described at the end of Sec. IV, with its more complica
equations of motion, can solve these problems.
n

s.
s.
-

d
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