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Applying the linear & expansion to thei ¢* interaction
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The linears expansion(LDE) is applied to the Hamiltoniahi = 3(p?+m?x?) +igx3, which arises in the
study of Lee-Yang zeros in statistical mechanics. Despite being non-Hermitian, this Hamiltonian appears to
possess a real, positive spectrum. In the LDE, as in perturbation theory, the eigenvalues are naturally real, so
a proof of this property devolves on the convergence of the expansion. A proof of convergence of a modified
version of the LDE is provided for thex® potential in zero dimensions. The methods developed in zero
dimensions are then extended to quantum mechanics, where we provide numerical evidence for convergence.
[S0556-282(98)05208-4
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[. INTRODUCTION volves the original action of the theor$, and a soluble trial
action, Sy, containing one or more variational parameters
In a recent paperl], Bender and Milton carried out an \;:
investigation of the following non-Hermitian Hamiltonian:

Ss=Sp+ 8(S—Sp). 2

H= E(p2+ m2x?) +igx3. ) The Green function of interest is evaluated as a power series
2 in 8, which is then set equal to 1. For the success of the
method the trial actio®, needs to be simple, so that one can
Among other results, they provided analytical evidence foperform high order calculations, but also as close to the true
the remarkable property that its eigenvalues are real andction as possible, so that expanding aroSgds a reason-
positive. This Hamiltonian and its field theory counterpartsable procedure with a good chance of converging. Although
arise in the study of the zeros of the Ising model partitionSs—; =S is independent of thé,;, there is nonetheless a
function as a function of complex magnetic field, the so-residual dependence anin the truncated series evaluated at
called Lee-Yang zerosgsee, e.g., Ref[2] and references &6=1, and it is therefore necessary to choose these param-
therein. The distribution of zeros in the complex parametereters according to some well-defined criterion. Perhaps the
plane of the partition function of a given system can yieldmost commonly used criterion is the principle of minimal
useful information concerning its phase transitions. For thesensitivity(PMS), according to which th&; are chosen to be
Ising model, the zeros lie on the imaginary magnetic fieldstationary points of the truncated expansion, where the de-
axis and, for imaginary field, the effective theory is an inter-pendence is minimal. Whatever criterion is adopted, it is to
acting scalar field theory with dominant interactiop® for ~ be applied at each ordét in the expansion, so that the
small fluctuationg3]. becomeN dependent. This feature of the method is crucial
In order to give a proper analytical demonstration of thefor the convergence of the LDE, which can be characterized
reality of the eigenvalues of Hamiltonigi), as well as in- as an order-dependent split between the bare and the inter-
vestigate the higher dimensional quantum field theory anaaction terms in the action. In many cases where the fixed
logues, we require an expansion method which converges faplit of conventional perturbation theory leads to a divergent
finite, but otherwise arbitrary values of the coupliggand  series, the LDE can be proved to lead to a convergent se-
massm. The method must therefore be necessarily nonperguence of approximants.
turbative in these parameters. Bender and Milton employed a In this paper we apply different variants of the LDE to the
variant of their previouss expansion metho@], in which  ix® potential in zero dimensions, where we give a proof of
the interactiori ¢° is replaced byi($)?*°. A Taylor expan- convergence of the expansion for the analogue of the
sion in § of the desired quantitfN-point Green functionpth ~ vacuum persistence amplitude We then go on to consider
energy eigenvalue, ejds obtained and thedAis set equal to the one-dimensional problem and provide numerical evi-
one. The terms of the resulting series are nonperturbative idence of convergence of the LDE for the finite-temperature
m andg. However, in this method it is extremely difficult to partition function and the ground-state energy.
go beyond first order i and hence test for convergence. In Sec. Il, which deals with the zero-dimensional prob-
In the present paper we employ an alternative expansiolem, we first describe how the conventional LDE converges,
method, the so-called lineat expansion(LDE). The LDE  but to the wrong answer. One possible resolution is to split
has been employed as a non-perturbative approximatiothe integral up for positive and negatixend apply the PMS
method to study problems in, for examplg? theory[5-7], separately to each integrfl2]. Numerically, this gives a
guantum chromodynamid$8,9], relativistic nuclear models sequence of approximants converging to the correct answer,
[10], and electron dynamics in disordered syst¢fld. The and we provide a proof of convergence of this procedure.
method involves constructing a modified action which in-This LDE variant can be generalized to the path integral
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expression of the 1D finite-temperature partition function. I
However, difficulties are encountered when applied to the L i
ground-state energy, owing to the non-analyticity of the Zse | i
splitting procedure. We resolve this problem by using a 25 | .
modified § expansion which involves a shift parameter. This - .
retains the essential features of the integration splitting pro- - 1
cedure, but has the advantage of being analytic, thus makini r 7
the calculations straightforward to carry out and allowing the r ]
possibility of generalization to higher dimensions. In the last 2 [
part of Sec. Il, a numerical study of the shift method is car-
ried out, and a proof of convergence provided using saddle-
point techniques.

In Sec. lll, where we deal with the quantum mechanical
problem, we show that the conventional LDE again fails.
Numerical evidence of convergence is given for the path L
integral expression of the partition functignsing both the L
splitting and shift techniquésand especially for the ground L
state energy using the shift technique. 1+

In the conclusion we outline further directions, including -
proving convergence for the 1D problem and generalizing L
the shift method to the higher dimensional field theory ana-
logues.

|
10 20 30 40 50
A

FIG. 1. Zy for N=30 as a function oh in the naive LDE in
Il. ZERO DIMENSIONS zero dimensions. The dotted line shows the exact answer.

The zero-dimensional analogue of the finite-temperature

partition function in quantum mechanics, or the vacuum perfrom thex* case discussed [5], where, for odcN there was

sistence amplitude in field theory, is the ordinary integral @ single maximum, and the value & at that maximum
steadily approached the exact value Msincreased. As

f“’ dxe MEHOE 3 s_hown in F_ig. 1 WhereZ_N()\) is plotted againsi for N
=30, the situation here is that there are extremely violent
oscillations for small\, which gradually decrease in ampli-

For simplicity we will takem=0. In that casexg 3 and  tude as\ increases, with a final, very broad maximum lying

we can seg=1 without loss of generality. In spite of the above the exact value a. _

absence of the convergence factor the integral is still well ©One’s natural choice of a PMS point farwould be the
defined, and can be calculated by splitting up the integratioosition of this last maximum: the residual dependenczof
range intox<0 andx>0, and then rotating the contour by ON A around this point is much less than anywhere else on
+ /6. The exact result, obtained in this way, & the graph. However, it turns out that the sequeAge\y),

=T'(1/3)V3=1.54668588415598, to 15 significant figures. With Ay so chosen, indeed converges, but to the wrong an-
swer. The same is true of the previous minimum, and indeed

none of the stationary points converges to the correct answer.
This is a stark warning, in this admittedly somewhat patho-

In evaluatingZ using the LDE, the standard approach is|ogical case, of the shortcomings of the PMS. It is worth
to modify the exponent simply by adding and subtracting amentioning that the scaling behavior with of thesel is

7=

— o0

A. Naive application of the LDE

quadratic term, to give anomalous: for largdl they grow likeN, rather than théN*/®
which would be expected from a saddle-point analysis and
2(5)=f°° dxe N3 0uE+ix®). (4) which indeed is obtained in the variants of the LDE dis-
— cussed in the following two subsections. In an estimation of

the errorZ—Zy on the lines of the double saddle-point pro-
The procedure is then to expagto orders™, seté=1 and  cedure of Ref[6], the interaction ternix® would then be
then choosé =\ by some criterion or other. In the absence sub-dominant, a clear signal that one is on the wrong track.
of any additional information the most reasonable criterion is
the principle of minimal sensitivityPMS), namely to choose B. The splitting procedure
Ay as a stationary point oty .

The truncated series BY_,c,,, with A possible resolution of this problem is to split up the

integration range into positive and negatixe This gives

[n/2 Zy(N)=Z (N) +Zy(N), where

ool E] T(n+r+1/2) ( 1),

1
\/Xr=0 m _F (5)

zﬁ()\):f dxe—)\xz{e)\x2+ix3}N’ 6)

0

Using (5), Zy can be calculated to high order. However, the

residual dependence onturns out to be radically different and similarly forZy , where{f(z)}\ denotes the Taylor ex-
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Z, Cn= f:dzé\“P, 9

1.545
where

I 1 o=—az’+In(az’-2%)+1. (10
The saddle-point equaticthg/dz=0 is
154 - n 2a7%—20%7°—3z+2a=0, (13)

L . which has two positive roots.. . What is required for con-
vergence is that both Rg(z, ) and Rep(z_) be negative, and
then the rate of convergence is governed by the larger of the
two. They become equal at the PMS point, wheis such
1.535 |- . that Reg(z,)=Re¢(z_). Numerically the solution of this

L - equation ise=1.0272, when Re(z.)=-1.2398. Thus the
sequence of approximants converges like exp@398N).

2 2.5 3 3.5 4 C. The shift method
r

If we were only concerned with zero dimensions this
FIG. 2. Zy for N=11 as a function of using the splitting \yould be an entirely satisfactory resolution of the problem.
method in zero dimensions. The dotted line shows the exact answetjowever, in higher dimensions one is dealing witfuac-
tional integral, and the generalization of such a splitting pro-
A cedure is fraught with difficulties, even though some
pansion off to orderz". If \ is taken as\=re”'™3, where  progress can be made along these lines, as we show in Sec.
r is real, and the integration contour rotated »y-x€ ™8, |1l B. Fortunately, consideration of the quantum mechanical
thenZ;(\)=¢€ ™62y (r) where problem suggests another solution, which is immediately
generalizable to higher dimensions, namely to incorporate a
linear term, or shift, into the&~modified action.
o s o s The motivation for introducing such a term is discussed
ZN(r)zf dxe ™ {e™ 71y (7)  briefly in Sec. lll C. In the context of the zero-dimensional
0 model it is worth noting that one of the features of the suc-
cessful stratagem of splitting the integration range and treat-
For Zy we need to take. =re! ™3 and rotate the contour in ing each half separately is that terms oddxirsurvive the
the opposite direction, to obtay, =e ™ "0 Zy(r). integration, Whereas they qancel ir) the naive a_lpplication of
The analysis ofy is very similar to thec* case discussed the & expansion. Introducing a linear term into the
in Ref.[5]. For oddN there is a single maximum in which ~ modified action also avoids such a cancellation, but in a
steadily converges to the exact result. Roe 11 the situa- Simple algebraic way. o
tion is depicted in Fig. 2, where we have multipligg, by Thus, in zero dimensions the relevant modification of Eq.
the appropriate factor of3. The contrast with Fig. 1 could (4) S
hardly be more striking. The crucial difference between this -
and the naive application of the LDE is that by splitting the Z( 5):f dxe M+ A rigicria)®] (12)
integral we are in fact using two differeftomplex conju- %

gate values of\y for the two integrals rather than the same ) ) ) o
value for both. where we have introduced a shiét, which will indeed turn

The proof of convergence of this procedure is similar toOUt to be pure imaginary. Notice that whér1 this does
that for thex* case, though different in detail. The remainder"€duce to the original integration, as the shift is then imma-

Ry is essentially given by the integral for théh coefficient ~ terial. _ _ _
in the expansion of, namely Truncating the expansion at ordél and setting=1 we

now have the serieS)\_,c,, where

. no[32 4 T'(n—r+s+1/2 ST A30—25
cum b [ dxe " rx?_xa (8) Cph= > os] Tz (—1)g'a .
NTNE o ) 0 e o

(13

which can be estimated by saddle-point methods for large One can now search for double PMS points in the two
In this case the PMS value of, scales adN*3. Writing ry parameters, \. ForN>2 there are several such points. For
= aN¥3 andx=zN"3 and using Stirling’s approximation for example, at order 16 there are ten solutions, witlying in

N!, the leading behavior of the integral is the range 4—6 and close to 1. There is no very convincing
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FIG. 3. The location of the saddle points and sinks in the inte- !
grand of Eq.(15). The required stationary-phase path, passing [
through all four saddle points, BXBY CZD

criterion for choosing between these multiple PMS solutions, 0.2 0.4 06 g 0.8
but they all agree with the exact answer up to the 7th decimal

plal:iWever the PMS was onlv a means to an end. namel tConvergence with the shift method is assured for all points within
’ y ’ Y %he outer contour. For points within the inner contour the conver-

obtain a sequence of approximants converging to the exag(‘;itence is faster thae—N.

answer, and in the present case we can instead adopt this

latter requirement directly as a criterion for choosen@nd . ) )

\. This can be done via a saddle-point analysis of the errofs B, C, D, in each case at a maximum of the integrand

Ry. because of the intervening “sinksX, Y, Z where the argu-
As in the previous subsection, the error is essentially"€nt of the logarithm vanishes.

given by the expression for théth coefficientcy, which in The values ofe at the mirror pointsA and B are the
the present case reads complex conjugates of those Bt and C respectively. The

criterion for convergence therefore reduces to ensuring that
1 (= 2 ) ) both Re¢(z:) and Reg(z;) are negative. Optimal conver-
CNENT ﬁxdxe MINC+ig(x+ia)®)IN. (14 gence occurs when the two are equal.
Thus in the parameter space afand 8 we solve the
The appropriate scaling for a saddle-point approximation irequation Repx(zc)=Re ¢(zp) and then look for points where

which both parameters play a non-trivial roleNs= aN'/3, this common value is negative. We display the results as a
a= BN, Then the largeN behavior ofcy is contour plot in Fig. 4, where the outer contour corresponds

to Re¢(Z-)=0 and the inner one to Rg(z;)=—1. Any point

FIG. 4. Contours of Re in the parameter space of and B.

* within the outer contour will give convergence, while points
CN= f_deéw' (19 within the inner contour will give convergence with an error

smaller thare™N. Notice that there is quite a wide range of

where now(again settingy=1) acceptable values gg=aN~3 but of course this does not
include =0, which would correspond to the naive LDE

o=—az?+In[aZ?+i(z+iB)%]+1. (16)  with no shift term.
] o ) ) ) In Fig. 5 we demonstrate the nature of the numerical con-
The saddle-point equation in this case is a quartic: vergence up tdN=30 for the optimal valuesy=1.79055,

B=0.38378. The abolute value of the error is shown, on a

4 H _ 3_ 2 2
202+ 21a(3f~ )" 3(2f%at 1)z logarithmic scale. Although this decrease lies within the pre-

—2i(B%a+3B—a)z+3B%=0, (17 dicted envelope, the error is periodically significantly smaller
than the general trend. A similar pattern of convergence has
with four complex roots. been seenl5] in the application of variational perturbation

The location of these roots is shown in Fig. 3 for typical theory to the calculation of the strong-coupling coefficients
values ofa and B, when they occur as two pairs of the form of the quartic oscillator.
*u+iv. Also shown in that diagram are the paths of sta- In conclusion, the shift method described in this subsec-
tionary phase. It is necessary to know the geometry of thesgon involves a simple algebraic modification of the original
paths in order to determine which saddle points are encourintegrand and an unambiguous choice of the two variational
tered, and in what direction, when the contour is distortecparameters according to the requirement of convergence. The
from its original location along the real axis frome to oo, method may be straightforwardly generalized to higher di-
In fact the required path goes through all four saddle pointsnensions, where the calculations involved in fhexpansion
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o F 3 H=%[p2+(m2+2)\)x2]+ sigx3—ax?). (19
0.1 . =
i 1 The new effective interaction iggx®—Ax?, a polynomial.
0.01 « E For a polynomial(x) one has the possibility of expanding
) ] to very high orders via the use of recursion relations rather
0.001 L x x i than the much more cumbersome Rayleigh-Sdimger per-
£ turbation theory.
r " ] These recursion relations are derived by first factoring off
0.0001 | = the asymptotic behavior of the wave function according to
i . I y=e W2V wherey=xyo andw=(m?+2\)Y2 Theny
105 ) i and the ground-state energy are both expanded as power se-
: ries in 5 with x=1+3;_,8", and E=1/20(1
- . 1 +37_,8"¢,). The crucial observation is that with a polyno-
10 e 3 mial interaction of order 3, the functiong, are polynomials
] of order 3, so that we can write(angllAn,p(iy)p. Sub-
107 b . - stituting these expressions into the Sdlinger equation
L) = gives coupled recursion relations for tlkg and A with

L N
20 25 N P

W
[=]

€n= 2An‘2 .

FIG. 5. Convergence of the LDE for the shift method in zero  USINg MACSYMA we have evaluated up to orderN
dimensions for the optimal values afand. The absolute value of = 20. The results are similar to those obtainedZan zero
the error is plotted on a logarithmic scale agaiNst dimensions, namely there are very large oscillations for
small\, while for larger\ there are a number of PMS points,

o ] ] ) with \ scaling likeN, where the values dE tend to a con-
are not significantly more complicated than in ordinary per-gtant different from the exact value.

turbation theory. In the case of quantum mechanics the ana-
lytic nature of thes-modified Hamiltonian allows one to go o
to very high orders, as we show in Sec. Ill C. B. The splitting procedure

In Sec. Il B, we saw how applying LDE separatelyZ6

andZ~ gave a sequence which converged to the correct an-
We now return to the quantum mechanical problem armegwer. A natural generalization of the splitting procedure to

with the insights gained from the zero-dimensional analoguethe path integral formulation of the quantum-mechanical par-
The initial evidence for the reality and positivity of the tition function is given byZ,=2Z5+Z , where

spectrum comes from a numerical analysis using the matrix

method, whereby the Hamiltonian is rewritten in terms of the

raising and lowering operators of the bare Hamiltonian and _ BI2 BI2 1., 5

then regarded as a matrki,,, in the infinite-dimensional ZEZJ [dx]6 if xdt)ex —f dt) 5 [x™+(m

space labelled by the occupation numhberdf this matrix is Rac ~ A2

truncated at some finite ord@& the resulting spectrum of

eigenvalues can easily be calculated numerically, u tif +2N2)XP]+ 5(i9X3—)\+X2)} ) 19

the order of 100. The pattern which emerges from such a

calculation is that abl increases more and more of the lower

eigenvalues emerge as real numbers from the amalgamatigs,

of complex conjugate pairs. After emergence they each tensg

to a definite positive limit. The ground-state energy is alway

present fromN=3 onwards, and fom=g=1 is stable at

Ey=0.797342612 to the 9th decimal place beydh 40.
Since theE; appear to be real, so also will be the finite-

temperature partition functioZ(B)==;exp(-BE;), which _

can be calculated to the desired accuracy by including a suf- 1 (= e'd”

ficient number of energy levels in the sum. 0(2)=5—= fﬁwdq q—ie (20)
To our knowledge there is no proof of the convergence of

the matrix method, and our ultimate goal will be to provide

such a proof for a suitable generalization of the LDE. In thisWhich leads to

section we discuss in turn the three variants of drexpan-

sion which were used in the zero-dimensional analogue.

Ill. ONE DIMENSION

is expression is rather formal as it stands, since it is not
ossible to evaluate the partition function directly in the
presence of the step function. A possible resolufibd] is to

use the integral representation of the step function:

A. Naive application of the LDE Z

1 (=, Zs(q)

e qu a—ie’ @)
The standard® modification of Eq.(1) amounts basically

to expanding around a SHO of a different, order-dependent

frequency according to where
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BI2
Z§(q)=j [dx]ex;(—fﬁ/zdt
——- 0y)

Figx+ 5(igx3—)\ix2)]). (22) wh 0@) |
E r numerical

0.50 T T T T

1.
E[x2+(m2+2)\i)x2]

We have checked that the zero-dimensional analogy21of
gives the same result as splitting up the integral directly.

To first order ing, Eq. (21) gives(cf. [14])
0.30 -

2ig

T I2m e

1+ B[N A

7 =27
"2

(3Ai—1m@)}
(23

where w2 =m?+2\., A.=coth(1/2w.B)/2w. , and Z* 0.20
=112 sinh(1/2w .. B)] is the partition function for the simple
harmonic oscillator.

For each oZ* there is a single complex PMS point, with
A_=\% andZ~=(Z")*. A similar calculation can be car- 0.10 -
ried out to ordes?, where in each case we find two complex
PMS points. In Fig. 6 we plot the ordérand §° approxima-
tions to the finite-temperature partition function as a function
of the couplingg for =2 andm?=1, and compare them
with the partition function calculated vid= e~ %, with 0.00,5 10 20 a0 20 5.0
the energy eigenvaluksbtained by the matrix method. Both 9
possible solutions & (62) are given, and it will be seen that
they do not differ appreciably from each other. The graph FIG. 6. The finite temperature partition function vergyswith
provides some evidence for the convergence of this variarfixed m*=1 and g=2. The solid line is the numerical matrix
of the LDE method, but it is obviously not conclusive. How- method approximation, the dashed line the ord&pproximation
ever, it is difficult to go to significantly higher orders in this @nd the dotted lines the ordéf approximation using the splitting
approach. procedure.

C. The shift method . . .
turbation theory, but then allows one systematically to im-

While we have seen that the splitting method can beyrove on the variational approximation. The difficulty with
implemented in the calculation & via the integral repre- thjs approach in the present problem is the non-analyticity of
sentation of the theta fUnCtion, calculations to hlgher Order$he Ham”tonian, which Considerab|y Compncates the calcu-
become progressively more complicated. Moreover, there ifation of the higher order terms.
no obvious way to implement the method for the calculation  The shift method can be regarded as a modification of this
of the energy levels themselves. The shift method, in congpproach which retains its essential features but involves an
trast, can be applied to bothand the energy levels, and in gnalytic wave function and Hamiltonian. Thus with=b
the latter case recursion relations allow one easily to go to.ja the wave function of Eq(24) can be written asy
high orders ind. =Ne ®¢+iaxx) \ith the non-analyticity residing in thie|

. In thg context of quantum mecham_c;, the motivation .forfactor in the imaginary part of the exponent, which is, as a
introducing a shift arises from a modification of the varia-

. . consequence, odd k1 The simplest alternative construction
tlonal app_roach for Fhe c;alculaﬂon of the ground-state ENer9¥%hich retains this feature, while at the same time being ana-
using a trial Gaussian-like wave function '

lytic, is y~e~ (@) Thyus, a(pure imaginary shift pa-
rameteria has been introduced. A similar shift procedure is
W= N[@(X)e_)‘lxz-i- 0(_X)e—)\2x2] (24) in fact described if13], and a method given t6 modify a
Hamiltonian incorporating a shift. Following this method we

which distinguishes between<0 andx>0. Because of the Obtain the Hamiltonian
symmetry of the Hamiltonian under— —x combined with
complex conjugation it is clear that, =\% .

In the approach of13] a delta-modified Hamiltonian is
constructed which coincides with the Gaussian variational
approximation to lowest order in Rayleigh-Sctimger per- 1

+ §m2a2—9a3+ig(x+ia)3

1
Emz(eria)Z—)\x2

1 1
H§:§p2+ AXZ— §m2a2+ gad+s

. (25

For g=2 sufficient accuracy was attained by including at most  The corresponding Lagrangian can be used for the calcu-
10 energy levels in the sum. lation of the finite-temperature partition function as a func-
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— 0(8;
............ 0(%")
numerical

0.40

0.30

0.20 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

g9

FIG. 7. The finite temperature partition function vergyswith
fixed m®>=1 and 8=2. The solid line is the numerical matrix
method approximation, the dashed line the ordepproximation
and the dotted line the ordéf approximation using the shift pro-
cedure.

tional integral rather than as;e”#%i. The first—order ap-
proximation toZ obtained in this way14] is

_ 1
Z:Zeﬁ(l/2m2a2—9a3) l+ﬂA0 39a+)\_ sz)}, (26)
where Ag=coth(\2\ B/2)/2\2x and z

0.90 T T T T

0.80 |

E, o070}

0.60 -

—— numerical

0.50
0.0 0.2 0.4 0.6 0.8 1.0

9

FIG. 8. The ground state energy versmiswith fixed m?=1.
The solid line is the numerical matrix method approximation, the
dashed line the ordef approximation and the two dotted lines the
order 6% approximation with two different PMS values far using
the shift method.

IV. CONCLUSION

We have applied the LDE approximation method to the
ix3 potential in zero and in one dimension. A proof of con-
vergence was given for the massless case in zero dimensions.
The methods employed in zero dimensions were then ex-
tended to one dimension where numerical evidence of con-
vergence for the partition function and the ground state en-
ergy was obtained. This evidence was particularly strong for

=1/2 sinh/2xB)/2]. We have also calculated the second-the ground-state energy within the shift method.

order approximation. In Fig. 7 we plot both the ordeand
5% approximations toZ as a function of the coupling,
where we have again taken’=1 andB=2. On the scale of
the diagram theO(§%) approximation is almost indistin-

The next step is to extend the proof of convergence from
zero to one dimension. Fa@ one would need to apply tech-
niques similar to those used ], while for the energy
levels an extension of the methods of Guelal.[16] would

guishable from that obtained from the matrix method, whichbe necessary.
provides strong evidence for the rapid convergence of this

variant of the LDE for the partition function.

TABLE I. Results of the shift method fdE, (to be compared

However, the most convincing numerical evidence for the, .. 0.79734262 .. ).

numerical convergence of the shift method comes from a

calculation of the ground state energy. This can be done by N —a E,
generating recursion relations for E&5) in a similar man-
ner to that described in Sec. IIl A. 1 1.651 0.2847 0.7785
We have applied the recursion relation method to eightt®2 2.352 0.3018 0.7957
order in §, takingm=1 for definiteness. In Fig. 8 we show 3 2.648 0.3038 0.7967
the results of th€®(5) andO(8?) calculations for a range of 4 2.942 0.3077 0.79720
g, while in Table | we illustrate the nature of the numerical 5 3.188 0.3102 0.79729
convergence up t@®(s%) for g=1. In the latter case we 6 3.4079 0.3121 0.79732
consistently chose the largest PMS value.ofhe numerical 7 3.6088 0.3133 0.797334
evidence is strong and encourages us to seek a proof of cop- 3.79431 0.31418 0.797339

vergence for the one-dimensional case.
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In higher dimensions one has to tackle the problems ofctions including a shift, and to apply these techniques to the
regularization and renormalization within the LDE. A pos- Study of Lee-Yang zeros in statistical mechanics.
sible way of doing this has been outlined by the last-quoted
authors in the context of the calculation of the critical expo-
nents of % using the order-dependent mapping method, We would like to thank Professor C. M. Bender for bring-

which is equivalent to the conventional LDE without a shift. N9 this problem to our attention and for assistance during
it would be interesting to generalize their methods to tr'althe initial stages of the project. M.B. acknowledges financial
wou : Ing to g 12 : : support from EPSRC.
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