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Applying the linear d expansion to thei f3 interaction
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The lineard expansion~LDE! is applied to the HamiltonianH5
1
2 (p21m2x2)1 igx3, which arises in the

study of Lee-Yang zeros in statistical mechanics. Despite being non-Hermitian, this Hamiltonian appears to
possess a real, positive spectrum. In the LDE, as in perturbation theory, the eigenvalues are naturally real, so
a proof of this property devolves on the convergence of the expansion. A proof of convergence of a modified
version of the LDE is provided for theix3 potential in zero dimensions. The methods developed in zero
dimensions are then extended to quantum mechanics, where we provide numerical evidence for convergence.
@S0556-2821~98!05208-4#

PACS number~s!: 11.15.Tk, 03.65.Ge, 11.10.Jj
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I. INTRODUCTION

In a recent paper@1#, Bender and Milton carried out a
investigation of the following non-Hermitian Hamiltonian:

H5
1

2
~p21m2x2!1 igx3. ~1!

Among other results, they provided analytical evidence
the remarkable property that its eigenvalues are real
positive. This Hamiltonian and its field theory counterpa
arise in the study of the zeros of the Ising model partit
function as a function of complex magnetic field, the s
called Lee-Yang zeros~see, e.g., Ref.@2# and references
therein!. The distribution of zeros in the complex parame
plane of the partition function of a given system can yie
useful information concerning its phase transitions. For
Ising model, the zeros lie on the imaginary magnetic fi
axis and, for imaginary field, the effective theory is an int
acting scalar field theory with dominant interactionif3 for
small fluctuations@3#.

In order to give a proper analytical demonstration of t
reality of the eigenvalues of Hamiltonian~1!, as well as in-
vestigate the higher dimensional quantum field theory a
logues, we require an expansion method which converge
finite, but otherwise arbitrary values of the couplingg and
massm. The method must therefore be necessarily nonp
turbative in these parameters. Bender and Milton employe
variant of their previousd expansion method@4#, in which
the interactionif3 is replaced by (if)21d. A Taylor expan-
sion ind of the desired quantity~N-point Green function,nth
energy eigenvalue, etc.! is obtained and thend is set equal to
one. The terms of the resulting series are nonperturbativ
m andg. However, in this method it is extremely difficult t
go beyond first order ind and hence test for convergence

In the present paper we employ an alternative expan
method, the so-called lineard expansion~LDE!. The LDE
has been employed as a non-perturbative approxima
method to study problems in, for example,f4 theory@5–7#,
quantum chromodynamics@8,9#, relativistic nuclear models
@10#, and electron dynamics in disordered systems@11#. The
method involves constructing a modified action which
570556-2821/98/57~8!/5092~8!/$15.00
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volves the original action of the theory,S, and a soluble trial
action, S0 , containing one or more variational paramete
l i :

Sd5S01d~S2S0!. ~2!

The Green function of interest is evaluated as a power se
in d, which is then set equal to 1. For the success of
method the trial actionS0 needs to be simple, so that one c
perform high order calculations, but also as close to the t
action as possible, so that expanding aroundS0 is a reason-
able procedure with a good chance of converging. Althou
Sd515S is independent of thel i , there is nonetheless
residual dependence onl i in the truncated series evaluated
d51, and it is therefore necessary to choose these par
eters according to some well-defined criterion. Perhaps
most commonly used criterion is the principle of minim
sensitivity~PMS!, according to which thel i are chosen to be
stationary points of the truncated expansion, where the
pendence is minimal. Whatever criterion is adopted, it is
be applied at each orderN in the expansion, so that thel i
becomeN dependent. This feature of the method is cruc
for the convergence of the LDE, which can be characteri
as an order-dependent split between the bare and the i
action terms in the action. In many cases where the fi
split of conventional perturbation theory leads to a diverg
series, the LDE can be proved to lead to a convergent
quence of approximants.

In this paper we apply different variants of the LDE to th
ix3 potential in zero dimensions, where we give a proof
convergence of the expansion for the analogue of
vacuum persistence amplitudeZ. We then go on to conside
the one-dimensional problem and provide numerical e
dence of convergence of the LDE for the finite-temperat
partition function and the ground-state energy.

In Sec. II, which deals with the zero-dimensional pro
lem, we first describe how the conventional LDE converg
but to the wrong answer. One possible resolution is to s
the integral up for positive and negativex and apply the PMS
separately to each integral@12#. Numerically, this gives a
sequence of approximants converging to the correct ans
and we provide a proof of convergence of this procedu
This LDE variant can be generalized to the path integ
5092 © 1998 The American Physical Society
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57 5093APPLYING THE LINEAR d EXPANSION TO THEif3 INTERACTION
expression of the 1D finite-temperature partition functio
However, difficulties are encountered when applied to
ground-state energy, owing to the non-analyticity of t
splitting procedure. We resolve this problem by using
modifiedd expansion which involves a shift parameter. Th
retains the essential features of the integration splitting p
cedure, but has the advantage of being analytic, thus ma
the calculations straightforward to carry out and allowing
possibility of generalization to higher dimensions. In the l
part of Sec. II, a numerical study of the shift method is c
ried out, and a proof of convergence provided using sad
point techniques.

In Sec. III, where we deal with the quantum mechani
problem, we show that the conventional LDE again fa
Numerical evidence of convergence is given for the p
integral expression of the partition function~using both the
splitting and shift techniques! and especially for the groun
state energy using the shift technique.

In the conclusion we outline further directions, includin
proving convergence for the 1D problem and generaliz
the shift method to the higher dimensional field theory a
logues.

II. ZERO DIMENSIONS

The zero-dimensional analogue of the finite-temperat
partition function in quantum mechanics, or the vacuum p
sistence amplitude in field theory, is the ordinary integra

Z5E
2`

`

dxe2m2x21 igx3
. ~3!

For simplicity we will takem50. In that caseZ}g21/3 and
we can setg51 without loss of generality. In spite of th
absence of the convergence factor the integral is still w
defined, and can be calculated by splitting up the integra
range intox,0 andx.0, and then rotating the contour b
6p/6. The exact result, obtained in this way, isZ
5G(1/3)/)51.54668588415598, to 15 significant figure

A. Naive application of the LDE

In evaluatingZ using the LDE, the standard approach
to modify the exponent simply by adding and subtracting
quadratic term, to give

Z~d!5E
2`

`

dxe2lx21d~lx21 ix3!. ~4!

The procedure is then to expandZd to orderdN, setd51 and
then choosel5lN by some criterion or other. In the absen
of any additional information the most reasonable criterion
the principle of minimal sensitivity~PMS!, namely to choose
lN as a stationary point ofZN .

The truncated series is(n50
N cn , with

cn5
1

Al
(
r 50

@n/2#
G~n1r 11/2!

~2r !! ~n22r !! S 2
1

l3D r

. ~5!

Using ~5!, ZN can be calculated to high order. However, t
residual dependence onl turns out to be radically differen
.
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from thex4 case discussed in@5#, where, for oddN there was
a single maximum, and the value ofZ at that maximum
steadily approached the exact value asN increased. As
shown in Fig. 1, whereZN(l) is plotted againstl for N
530, the situation here is that there are extremely viol
oscillations for smalll, which gradually decrease in ampl
tude asl increases, with a final, very broad maximum lyin
above the exact value ofZ.

One’s natural choice of a PMS point forl would be the
position of this last maximum: the residual dependence ofZN
on l around this point is much less than anywhere else
the graph. However, it turns out that the sequenceZN(lN),
with lN so chosen, indeed converges, but to the wrong
swer. The same is true of the previous minimum, and ind
none of the stationary points converges to the correct ans
This is a stark warning, in this admittedly somewhat path
logical case, of the shortcomings of the PMS. It is wo
mentioning that the scaling behavior withN of theselN is
anomalous: for largeN they grow likeN, rather than theN1/3

which would be expected from a saddle-point analysis a
which indeed is obtained in the variants of the LDE d
cussed in the following two subsections. In an estimation
the errorZ2ZN on the lines of the double saddle-point pr
cedure of Ref.@6#, the interaction termix3 would then be
sub-dominant, a clear signal that one is on the wrong tra

B. The splitting procedure

A possible resolution of this problem is to split up th
integration range into positive and negativex. This gives
ZN(l)5ZN

1(l)1ZN
2(l), where

ZN
1~l!5E

0

`

dxe2lx2
$elx21 ix3

%N , ~6!

and similarly forZN
2 , where$ f (z)%N denotes the Taylor ex

FIG. 1. ZN for N530 as a function ofl in the naive LDE in
zero dimensions. The dotted line shows the exact answer.
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5094 57M. P. BLENCOWE, H. F. JONES, AND A. P. KORTE
pansion off to orderzN. If l is taken asl5re2 ip/3, where
r is real, and the integration contour rotated byx→xeip/6,
thenZN

1(l)5eip/6ZN(r ) where

ZN~r !5E
0

`

dxe2rx2
$erx22x3

%N . ~7!

For ZN
2 we need to takel5reip/3 and rotate the contour in

the opposite direction, to obtainZN
25e2 ip/6ZN(r ).

The analysis ofZN is very similar to thex4 case discussed
in Ref. @5#. For oddN there is a single maximum inr , which
steadily converges to the exact result. ForN511 the situa-
tion is depicted in Fig. 2, where we have multipliedZN by
the appropriate factor ofA3. The contrast with Fig. 1 could
hardly be more striking. The crucial difference between t
and the naive application of the LDE is that by splitting t
integral we are in fact using two different~complex conju-
gate! values oflN for the two integrals rather than the sam
value for both.

The proof of convergence of this procedure is similar
that for thex4 case, though different in detail. The remaind
RN is essentially given by the integral for theNth coefficient
in the expansion ofZ, namely

cN5
1

N! E0

`

dxe2rx2
~rx22x3!N, ~8!

which can be estimated by saddle-point methods for largeN.
In this case the PMS value ofr N scales asN1/3. Writing r N
5aN1/3 andx5zN1/3 and using Stirling’s approximation fo
N!, the leading behavior of the integral is

FIG. 2. ZN for N511 as a function ofr using the splitting
method in zero dimensions. The dotted line shows the exact ans
s

r

cN5E
0

`

dzeNw, ~9!

where

w52az21 ln~az22z3!11. ~10!

The saddle-point equationdw/dz50 is

2az322a2z223z12a50, ~11!

which has two positive rootsz6 . What is required for con-
vergence is that both Rew(z1) and Rew(z2) be negative, and
then the rate of convergence is governed by the larger of
two. They become equal at the PMS point, whena is such
that Rew(z1)5Rew(z2). Numerically the solution of this
equation isa51.0272, when Rew(z6)521.2398. Thus the
sequence of approximants converges like exp(21.2398N).

C. The shift method

If we were only concerned with zero dimensions th
would be an entirely satisfactory resolution of the proble
However, in higher dimensions one is dealing with afunc-
tional integral, and the generalization of such a splitting p
cedure is fraught with difficulties, even though som
progress can be made along these lines, as we show in
III B. Fortunately, consideration of the quantum mechani
problem suggests another solution, which is immediat
generalizable to higher dimensions, namely to incorpora
linear term, or shift, into thed-modified action.

The motivation for introducing such a term is discuss
briefly in Sec. III C. In the context of the zero-dimension
model it is worth noting that one of the features of the su
cessful stratagem of splitting the integration range and tr
ing each half separately is that terms odd inx survive the
integration, whereas they cancel in the naive application
the d expansion. Introducing a linear term into thed-
modified action also avoids such a cancellation, but in
simple algebraic way.

Thus, in zero dimensions the relevant modification of E
~4! is

Z~d!5E
2`

`

dxe2lx21d@lx21 ig~x1 ia !3#, ~12!

where we have introduced a shiftia, which will indeed turn
out to be pure imaginary. Notice that whend51 this does
reduce to the original integration, as the shift is then imm
terial.

Truncating the expansion at orderdN and settingd51 we
now have the series(n50

N cn , where

cn5(
r 50

n

(
s50

@3r /2# S 3r
2sD G~n2r 1s11/2!

r ! ~n2r !!ls11/2 ~21!sgra3r 22s.

~13!

One can now search for double PMS points in the t
parametersa, l. For N.2 there are several such points. F
example, at order 16 there are ten solutions, withl lying in
the range 4–6 anda close to 1. There is no very convincin

er.
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57 5095APPLYING THE LINEAR d EXPANSION TO THEif3 INTERACTION
criterion for choosing between these multiple PMS solutio
but they all agree with the exact answer up to the 7th deci
place.

However, the PMS was only a means to an end, namel
obtain a sequence of approximants converging to the e
answer, and in the present case we can instead adopt
latter requirement directly as a criterion for choosinga and
l. This can be done via a saddle-point analysis of the e
RN .

As in the previous subsection, the error is essentia
given by the expression for theNth coefficientcN , which in
the present case reads

cN5
1

N! E2`

`

dxe2lx2
@lx21 ig~x1 ia !3#N. ~14!

The appropriate scaling for a saddle-point approximation
which both parameters play a non-trivial role isl5aN1/3,
a5bN1/3. Then the large-N behavior ofcN is

cN5E
2`

`

dzeNw, ~15!

where now~again settingg51!

w52az21 ln@az21 i ~z1 ib!3#11. ~16!

The saddle-point equation in this case is a quartic:

2az412ia~3b2a!z323~2b2a11!z2

22i ~b3a13b2a!z13b250, ~17!

with four complex roots.
The location of these roots is shown in Fig. 3 for typic

values ofa andb, when they occur as two pairs of the for
6u1 iv. Also shown in that diagram are the paths of s
tionary phase. It is necessary to know the geometry of th
paths in order to determine which saddle points are enco
tered, and in what direction, when the contour is distor
from its original location along the real axis from2` to `.
In fact the required path goes through all four saddle po

FIG. 3. The location of the saddle points and sinks in the in
grand of Eq. ~15!. The required stationary-phase path, pass
through all four saddle points, isAXBYCZD.
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A, B, C, D, in each case at a maximum of the integra
because of the intervening ‘‘sinks’’X, Y, Z where the argu-
ment of the logarithm vanishes.

The values ofw at the mirror pointsA and B are the
complex conjugates of those atD and C respectively. The
criterion for convergence therefore reduces to ensuring
both Rew(zC) and Rew(zD) are negative. Optimal conver
gence occurs when the two are equal.

Thus in the parameter space ofa and b we solve the
equation Rew(zC)5Rew(zD) and then look for points where
this common value is negative. We display the results a
contour plot in Fig. 4, where the outer contour correspon
to Rew(zC)50 and the inner one to Rew(zC)521. Any point
within the outer contour will give convergence, while poin
within the inner contour will give convergence with an err
smaller thane2N. Notice that there is quite a wide range
acceptable values ofb[aN21/3, but of course this does no
include b50, which would correspond to the naive LD
with no shift term.

In Fig. 5 we demonstrate the nature of the numerical c
vergence up toN530 for the optimal valuesa51.79055,
b50.38378. The abolute value of the error is shown, on
logarithmic scale. Although this decrease lies within the p
dicted envelope, the error is periodically significantly smal
than the general trend. A similar pattern of convergence
been seen@15# in the application of variational perturbatio
theory to the calculation of the strong-coupling coefficien
of the quartic oscillator.

In conclusion, the shift method described in this subs
tion involves a simple algebraic modification of the origin
integrand and an unambiguous choice of the two variatio
parameters according to the requirement of convergence.
method may be straightforwardly generalized to higher
mensions, where the calculations involved in thed expansion

-
g

FIG. 4. Contours of Rew in the parameter space ofa and b.
Convergence with the shift method is assured for all points wit
the outer contour. For points within the inner contour the conv
gence is faster thane2N.
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5096 57M. P. BLENCOWE, H. F. JONES, AND A. P. KORTE
are not significantly more complicated than in ordinary p
turbation theory. In the case of quantum mechanics the a
lytic nature of thed-modified Hamiltonian allows one to g
to very high orders, as we show in Sec. III C.

III. ONE DIMENSION

We now return to the quantum mechanical problem arm
with the insights gained from the zero-dimensional analog

The initial evidence for the reality and positivity of th
spectrum comes from a numerical analysis using the ma
method, whereby the Hamiltonian is rewritten in terms of t
raising and lowering operators of the bare Hamiltonian a
then regarded as a matrixHmn in the infinite-dimensional
space labelled by the occupation numbersn. If this matrix is
truncated at some finite orderN the resulting spectrum o
eigenvalues can easily be calculated numerically, up toN of
the order of 100. The pattern which emerges from suc
calculation is that asN increases more and more of the low
eigenvalues emerge as real numbers from the amalgam
of complex conjugate pairs. After emergence they each t
to a definite positive limit. The ground-state energy is alwa
present fromN53 onwards, and form5g51 is stable at
E050.797342612 to the 9th decimal place beyondN540.

Since theEi appear to be real, so also will be the finit
temperature partition functionZ(b)5( iexp(2bEi), which
can be calculated to the desired accuracy by including a
ficient number of energy levels in the sum.

To our knowledge there is no proof of the convergence
the matrix method, and our ultimate goal will be to provi
such a proof for a suitable generalization of the LDE. In t
section we discuss in turn the three variants of thed expan-
sion which were used in the zero-dimensional analogue.

A. Naive application of the LDE

The standardd modification of Eq.~1! amounts basically
to expanding around a SHO of a different, order-depend
frequency according to

FIG. 5. Convergence of the LDE for the shift method in ze
dimensions for the optimal values ofa andb. The absolute value o
the error is plotted on a logarithmic scale againstN.
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H5
1

2
@p21~m212l!x2#1d~ igx32lx2!. ~18!

The new effective interaction isigx32lx2, a polynomial.
For a polynomialV(x) one has the possibility of expandin
to very high orders via the use of recursion relations rat
than the much more cumbersome Rayleigh-Schro¨dinger per-
turbation theory.

These recursion relations are derived by first factoring
the asymptotic behavior of the wave function according
c5e2 (1/2)y2

x, wherey5xAv andv5(m212l)1/2. Thenx
and the ground-state energy are both expanded as powe
ries in d, with x511(n51

` dnxn and E51/2v(1
1(n51

` dnen). The crucial observation is that with a polyno
mial interaction of order 3, the functionsxn are polynomials
of order 3n, so that we can writexn5(p51

3n An,p( iy)p. Sub-
stituting these expressions into the Schro¨dinger equation
gives coupled recursion relations for theen and An,p , with
en52An,2 .

Using MACSYMA we have evaluatedE up to orderN
520. The results are similar to those obtained forZ in zero
dimensions, namely there are very large oscillations
smalll, while for largerl there are a number of PMS point
with l scaling likeN, where the values ofE tend to a con-
stant different from the exact value.

B. The splitting procedure

In Sec. II B, we saw how applying LDE separately toZ1

andZ2 gave a sequence which converged to the correct
swer. A natural generalization of the splitting procedure
the path integral formulation of the quantum-mechanical p
tition function is given byZd5Zd

11Zd
2 , where

Zd
65E @dx#uS 6E

2b/2

b/2

xdtD expS 2E
2b/2

b/2

dtH 1

2
@ ẋ21~m2

12l6!x2#1d~ igx32l6x2!J D . ~19!

This expression is rather formal as it stands, since it is
possible to evaluate the partition function directly in t
presence of the step function. A possible resolution@11# is to
use the integral representation of the step function:

u~z!5
1

2p i E2`

`

dq
eiqz

q2 i e
~20!

which leads to

Zd
65

1

2p i E2`

`

dq
Zd

6~q!

q2 i e
, ~21!

where



h
-
x

io

h
t
p
ia
-

is

b

e
e
io
on
n

fo
ia-
rg

na

m-
h
of

cu-

this
an

a
n
na-

is

e

lcu-
c-

os
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Zd
6~q!5E @dx#expS 2E

2b/2

b/2

dtH 1

2
@ ẋ21~m212l6!x2#

7 iqx1d~ igx32l6x2!J D . ~22!

We have checked that the zero-dimensional analogue of~21!
gives the same result as splitting up the integral directly.

To first order ind, Eq. ~21! gives ~cf. @14#!

Z65
1

2
Z̄6H 11bFl6D67

2ig

A~2p!v6
~3D621/v6

2 !G J
~23!

where v6
2 5m212l6 , D65coth(1/2v6b)/2v6 , and Z̄6

51/@2 sinh(1/2v6b)# is the partition function for the simple
harmonic oscillator.

For each ofZ6 there is a single complex PMS point, wit
l25l1* andZ25(Z1)* . A similar calculation can be car
ried out to orderd2, where in each case we find two comple
PMS points. In Fig. 6 we plot the orderd andd2 approxima-
tions to the finite-temperature partition function as a funct
of the couplingg for b52 andm251, and compare them
with the partition function calculated viaZ5( ie

2bEi, with
the energy eigenvalues1 obtained by the matrix method. Bot
possible solutions atO(d2) are given, and it will be seen tha
they do not differ appreciably from each other. The gra
provides some evidence for the convergence of this var
of the LDE method, but it is obviously not conclusive. How
ever, it is difficult to go to significantly higher orders in th
approach.

C. The shift method

While we have seen that the splitting method can
implemented in the calculation ofZ via the integral repre-
sentation of the theta function, calculations to higher ord
become progressively more complicated. Moreover, ther
no obvious way to implement the method for the calculat
of the energy levels themselves. The shift method, in c
trast, can be applied to bothZ and the energy levels, and i
the latter case recursion relations allow one easily to go
high orders ind.

In the context of quantum mechanics, the motivation
introducing a shift arises from a modification of the var
tional approach for the calculation of the ground-state ene
using a trial Gaussian-like wave function

c5N@u~x!e2l1x2
1u~2x!e2l2x2

# ~24!

which distinguishes betweenx,0 andx.0. Because of the
symmetry of the Hamiltonian underx→2x combined with
complex conjugation it is clear thatl15l2* .

In the approach of@13# a delta-modified Hamiltonian is
constructed which coincides with the Gaussian variatio
approximation to lowest order in Rayleigh-Schro¨dinger per-

1For b52 sufficient accuracy was attained by including at m
10 energy levels in the sum.
n

h
nt

e

rs
is
n
-

to

r

y

l

turbation theory, but then allows one systematically to i
prove on the variational approximation. The difficulty wit
this approach in the present problem is the non-analyticity
the Hamiltonian, which considerably complicates the cal
lation of the higher order terms.

The shift method can be regarded as a modification of
approach which retains its essential features but involves
analytic wave function and Hamiltonian. Thus withl15b
1 ia the wave function of Eq.~24! can be written asc
5Ne2(bx21 iaxuxu), with the non-analyticity residing in theuxu
factor in the imaginary part of the exponent, which is, as
consequence, odd inx. The simplest alternative constructio
which retains this feature, while at the same time being a
lytic, is c;e2(bx21 iax). Thus, a~pure imaginary! shift pa-
rameteria has been introduced. A similar shift procedure
in fact described in@13#, and a method given tod modify a
Hamiltonian incorporating a shift. Following this method w
obtain the Hamiltonian

Hd5
1

2
p21lx22

1

2
m2a21ga31dF1

2
m2~x1 ia !22lx2

1
1

2
m2a22ga31 ig~x1 ia !3G . ~25!

The corresponding Lagrangian can be used for the ca
lation of the finite-temperature partition function as a fun

t

FIG. 6. The finite temperature partition function versusg, with
fixed m251 and b52. The solid line is the numerical matrix
method approximation, the dashed line the orderd approximation
and the dotted lines the orderd2 approximation using the splitting
procedure.
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tional integral rather than as( ie
2bEi. The first–order ap-

proximation toZ obtained in this way@14# is

Z5Z̄eb~1/2m2a22ga3!F11bD0S 3ga1l2
1

2
m2D G , ~26!

where D05coth(A2lb/2)/2A2l and Z̄
51/@2 sinh(A2lb)/2#. We have also calculated the secon
order approximation. In Fig. 7 we plot both the orderd and
d2 approximations toZ as a function of the couplingg,
where we have again takenm251 andb52. On the scale of
the diagram theO(d2) approximation is almost indistin
guishable from that obtained from the matrix method, wh
provides strong evidence for the rapid convergence of
variant of the LDE for the partition function.

However, the most convincing numerical evidence for
numerical convergence of the shift method comes from
calculation of the ground state energy. This can be done
generating recursion relations for Eq.~25! in a similar man-
ner to that described in Sec. III A.

We have applied the recursion relation method to eig
order ind, taking m51 for definiteness. In Fig. 8 we show
the results of theO(d) andO(d2) calculations for a range o
g, while in Table I we illustrate the nature of the numeric
convergence up toO(d8) for g51. In the latter case we
consistently chose the largest PMS value ofl. The numerical
evidence is strong and encourages us to seek a proof of
vergence for the one-dimensional case.

FIG. 7. The finite temperature partition function versusg, with
fixed m251 and b52. The solid line is the numerical matri
method approximation, the dashed line the orderd approximation
and the dotted line the orderd2 approximation using the shift pro
cedure.
-
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IV. CONCLUSION

We have applied the LDE approximation method to t
ix3 potential in zero and in one dimension. A proof of co
vergence was given for the massless case in zero dimens
The methods employed in zero dimensions were then
tended to one dimension where numerical evidence of c
vergence for the partition function and the ground state
ergy was obtained. This evidence was particularly strong
the ground-state energy within the shift method.

The next step is to extend the proof of convergence fr
zero to one dimension. ForZ one would need to apply tech
niques similar to those used in@6#, while for the energy
levels an extension of the methods of Guidaet al. @16# would
be necessary.

FIG. 8. The ground state energy versusg, with fixed m251.
The solid line is the numerical matrix method approximation, t
dashed line the orderd approximation and the two dotted lines th
orderd2 approximation with two different PMS values forl, using
the shift method.

TABLE I. Results of the shift method forE0 ~to be compared
with 0.797342612 . . .!.

N l 2a E0

1 1.651 0.2847 0.7785
2 2.352 0.3018 0.7957
3 2.648 0.3038 0.7967
4 2.942 0.3077 0.79720
5 3.188 0.3102 0.79729
6 3.4079 0.3121 0.79732
7 3.6088 0.3133 0.797334
8 3.79431 0.31418 0.797339
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In higher dimensions one has to tackle the problems
regularization and renormalization within the LDE. A po
sible way of doing this has been outlined by the last-quo
authors in the context of the calculation of the critical exp
nents of f3

4 using the order-dependent mapping meth
which is equivalent to the conventional LDE without a shi
It would be interesting to generalize their methods to tr
.

.

f

d
-
,

l

actions including a shift, and to apply these techniques to
study of Lee-Yang zeros in statistical mechanics.
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