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Exact solutions in the Yang-Mills-Wong theory
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This paper discusses in a systematical way exact retarded solutions to the classigal Ysng-Mills
equations with the source composed of several colored point particles. A new method of finding such solutions
is reviewed. Relying on features of the solutions, a toy model of quark binding is suggested. According to this
model, quarks forming a hadron are influenced by no confining force in spite of the presence of a linearly rising
term of the potential. The largd-dynamics of quarks conforms well with Witten’s phenomenology. On the
semiclassical level, hadrons are color neutral in the Gauss law sense. Nevertheless, a specific multiplet struc-
ture is observable in the form of the Regge sequences related to infinite-dimensional unitary representations of
SL(4R) which is shown to be the color gauge group of the background field generated by any hadron. The
simultaneous consideration of SN, SO(N), and SplN) as gauge groups offers a plausible explanation of the
fact that clusters containing two or three quarks are more stable than multiquark clusters.
[S0556-282(98)05908-9

PACS numbsgps): 11.15.Kc, 11.15.Pg

I. INTRODUCTION colored point particlé.Alternative methods of “dequantiza-
tion” [4] lead to classical actions of the spinning particle
. . . with Wong's action as a constituent. Thus the classical limit
In this paper, we look into the Yang-Mills-Worl@MW) ¢ the quark dynamics remains to be completed. Wong's
theory, a classical non-Abelian gauge model describingyynamics may provisionally be regarded as the simplest rea-
closed systems of several spinless colored point particles insonaple approximation to the limiting theory. In addition, it
teracting with a gluon field. Emphasis is put on features ofyouid be appropriate to use spinless particles as the starting
exact solutions, some of which were obtained previouslyyoint of the bound quark description, for measurements of
[1,2], and others are discussed for the first time. the polarized proton structure in deep inelastic leptoproduc-
A solvable nonlinear model is of interest by itself. Furthertion indicate that quarks carry only a small fraction of the
still, one may expect that exact solutions of the YMW theoryspin of the nucleofi5]. The Wong particles will hereafter be
will be useful in studying nonperturbative vacua of quantumcalled quarks though this name is rather conventional and
chromodynamic$QCD). We get, at the least, a toy model of should not be confused with the standard QCD term, taking
bound states in QCD. into account that the Wong color charges are in the adjoint
It may appear at first glance that classical particles havavhile quark fields are in the fundamental representation of
nothing to do with real quarks, but closer inspection castdhe gauge group.
doubt on this belief. Indeed, a medium of the normal nuclear As is well known, the classical limit of QCD is related to
density offers a fertile ground for creations and annihilationghe limit of large number of colorg5]. Substituting SU(3)
of quark pairs. Nevertheless, the quark-antiquark sea i8Y SUN) and going to the limit
largely suppressed in hadrons. According to Zweig's rule, a
guark and an antiquark with opposite quantum numbers defy

their annihilation. Such persistence of particles is typical for ) ) o
the classical picture. 't Hooft established that the planar diagrams are dominating

The classicality of constituent quarks is difficult to under- 11 this limit [7]. Witten found[8] that the real hadronic world
stand, but one can describe it explicitly. The bulk of the'S qualitatively (_1|splayed evenin the zeroth approximation of
hadron phenomenology is grasped by planar diagram%he LN expansion. In the limiN—c, the vacuum expecta-

which implies in particular that world lines of valence quarks fon value of the product of gauge invariant operators obeys

. : : . L the so-called factorization relation, and quantum fluctuations
are subjected to neither bifurcation nor termination in thedisappear[B] Thus QCD becomes a classical theoryNas
Feynman path integral, unless hadrons collide or decay. We sug:]gest that the large-YMW theory is intimately
Thus, to a good approximation, the number of bound quark?elat.ed to the classical limit of QCD

remains fixed. '

Starting from the QCD Lagrangian, Wong was able to————
show([3] that the behaylor of a quark In th? limit— 0 ',S The present model is not quite that obtained in the original Wong
governed by the classical equation of motion of a Splnles%pproa(:h. We deal with arbitrary number of color particles while
Wong's procedure is matched with a single particle; the situations
are apparently different if one keeps in mind the nonlinear field

*Electronic address: boris_0903@spd.vniief.ru dynamics.

N—o, g?N=const,
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Note, however, that the confinement problem is out of thesolutions is traced by the simplest example of the single-
guestion now. Indeed, it is conceivable that quarks constitutquark source, Sec. IV. Properties of the background gener-
ing a hadron experience an attractive constant force originagted by two-quark sources are reviewed in Sec. V. Fields
ing from a term of the potentia,, which linearly rises with ~ generated by arbitrary number of color particles, and their
distance between the quarkS, and such a behaviAL(@g to features are considered in Sec. VI. We show that bound
provide the area law for the Wilson loop functiori@l. Are ~ quarks are affected by no external forceNas: . The equa-
we correct in interpreting the area law as the evidence of théon of motion of a dressed quark is discussed, and its exact
constant attractive force? As will be shown, an exact classiSolution in the absence of external forces is given. The large-
cal solutionA,, with the linearly rising term actually exists. N dynamics of quarks is shown to conform with Witten's
Although this term contributes to the field strength, it pro-Phenomenology. Moreover, a step forward can be made by
duces no force. The general reason for such a surprising€ simultaneous consideration of 3U( SO(N), and
result is the conformal invariance. The linearly rising termSP(N) as gauge groups, which offers a plausible explanation
violates the scale invariance. While such a violation being?f the fact that clusters composed of two or three quarks are
allowable for the gauge quantiti% and FMV’ it cannot be more stable than multhuark clusters. The Stabl“ty of the
tolerated for observables. One may expect a dimensional pgolutions is the subject of Sec. VII. We conclude that free
rameter, measuring a gap in the energy spectrum and violagiuarks are ruled out by a consistency reasoning. Issues con-
ing the scale symmetry, to emerge only upon quantizatiof€rning the semiclassical quantization and the resulting pic-
leading to anomalies. Meanwhile exact classical solutiongure are considered in Sec. VIII. The fulfilment of the Wilson
are crucial in |earning the symmetry of the vacuum. criterion has been confirmed. We show that any hadron is

One believes two phases of the strong interacting matt@O'Of neutral in the sense of the Gauss law. Nevertheless, a
to exist, hot and cold, which must be distinguished by theircertain multiplet structure is observable. These multiplets are
symmetry. At high temperatures, the asymptotical freedon#lescribed by infinite-dimensional unitary representations of
dominates, hence the conventional SU(3ymmetry is in- SL(4R), the gauge group of the background field generated
herent in the hot phase. On the other hand, Ne’'eman an@y any hadron.

Sijacki [10] developed an exhaustive phenomenological clas-

sification of hadrons on the basis of infinite-dimensional uni- Il. GENERAL FORMALISM

tary representations of SL{), which hints that SL(R) is
the cold phase symmetry. Where does this SRf4come
from?

Coleman[11] argued that the symmetry of the vacuum is " . _
the symmetry of vg\;/orld. Given th)é vacua/m invariant underWIII be calleq quarks and labeled by indéx =1, . o K.
SL(4R), excitations about it possess the same symmetryEaCh quark is assigned a color cha@p [transforming as
Since the symmetry of the gluon vacuum is nothing but théh€ adjoint rzepresentatlon of SNJ, tf|1e color indexa runs
symmetry of the background field, the responsibility for from 1 toN°—1], and a bare mass,. Any other specifi- -
SL(4R) rests with the background described by a certaircation is o_mltted, so that quarks and antiquarks are |nd|s'F|n-
solution of the QCD equations in the classical limit. It is the 9uishable in the present context. Let every quark be moving
background generated by quarks in hadrons that provides trdong a timelike world linez{*(w) parametrized by the
SL(4R) relief for gluon excitations. proper timer, . This gives rise to the current

We will find two classes of exact retarded solutions to the
classical Yang-Mills(YM) equations. Solutions of the first
class, invariant under SU), appear to be related to the
background in the hot phase. Solutions of the second class
might be treated as the background generated by bounghere Q,=QfT,, T, are generators of SBY), v, =z,
guarks in the cold phase. These solutions are complex valuepiddzlﬂ/dq-I is the four-velocity oflth quark. The action is
with respect to the Lie algebra S\, but one can convert \yritten [13] as
them to the real form to yield the invariance under BIR)

We work in Minkowski space with the metriey,,
=diag(+,—,—,—). Let us consider classical point particles
interacting with the SU{) Yang-Mills field. The particles

K
ju(x)zzl jd7'|Q|(T|)UIM(T|)54[X_Z|(T|)]: (1)

or its subgroups. In particular, the background generated by K L e
any three-quark cluster is invariant under SIR},and that S= —lzl j dr(Mgyouof'+tr ZiA 7N)
generated by any two-quark cluster is invariant under N
SL(3R). 3 1
Notice that SL(4R) of Ne’eman and Backi operates in —f d*x tf(iMA“ﬁL Teq wF" |- (2

spacetime while the present SLR},acts in the color space.
However, we attempt to interweave two arenas by referencBere, \,=\,(7,) are time-dependent elements of $L)(
to that color degrees of freedom may be convertible into spiry, =e®T,, e being some constants whereby the color
degrees of freedom, the fact discovered by Jackiw an@narge is specifiedQ, =\, Z,\ L. The field strength is
Rebbi, and Hasenfratz and 't Hogft2].

The paper is organized as follows. Section Il outlines the Fu=0d,A,—d,A,—ig[A, Al
general formalism of the YMW theory. The next section is
devoted to a justification of the Ansatz whereby we seekvith g being the coupling constant. The middle two terms of
exact retarded solutions of the YM equations with the sourc&d. (2) can be combined into- =tr Z\; 'D A, with the
composed of several arbitrarily moving quarks. Finding suctcovariant derivativeD ,.=d/d7+v{°A,(z). Since \, re-
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sponds to a local gauge transformation by—\| tersections. Consider, for example, the intersection of a hy-
=01\, the gauge invariance of the action is quite clear.perplane by a timelike curve at a right angle. Such an ar-
ElementsT, of the Lie algebra siy) satisfy the commuta- rangement can be achieved for any hypersurfaceby
tion relations replacing a small fragment o in the vicinity of every
. . intersection poinz'M by a fragment of a hyperplane orthogo-
[Ta,To]=iTancT 3 nal to the worldline a1z'M and smoothing off this piecewise

with the structure constantg,. of SU(N), and the orthonor- hypersurface. The resulting Dypersurface will be called
malization condition cally adjustedand denoted b..
Sincej , is not a conserved current, the total color charge
tr (TaTp) = Sap- (4  Q is in general hypersurface dependent. Butceases to

Note that the invariance of the action under Sly@utomati-  depend or if the color charge of each quark is constant,

cally entails the invariance under S\(C) unless a con- N0 9
straint is imposed so as to preserve the real valueness of the Q=0 ©)
gauge field variables. If we have no prior knowledge of the

. . - which imposes certain restrictions on the formAf. We
symmetry, it can be identified by the structure constants, .\ dischs)s just this case it

which are present in the action. The specific value$_.gf In view of Ea.(5). the definition o an also be rewrit-
entering into Eq(3) imply thatS is invariant under SWN). ., invle\;vms ofqt.h(e)l,‘ield varilatIJIIeS' Qe S rewn
However, for any simple complex Lie algebra, there exists a '

basis, referred to as the Cartan basis, such that the structure 1

constants are found to be real, antisymmetric, and identical Q= 4—f~davDﬂF‘“’. (10
to the structure constants of the real compact form of this Lie Tz

algebre 14]. The basis of si) is simultaneously the Cartan ynder the local gauge transformations

basis of its complexification 9N,C). Thus the presence of

the structure constants of SN in Eq. (3) need not be the

_ P
evidence for that the symmetry &is SU(N); allowing for Au—Q 1A#Q_ 59 13#91
the complex-valued field variables, we enlarge the symmetry
up to SLN,C). the covariant derivatives of the field strength transform as
The Euler-Lagrange equations for the acti@ are the
Yang-Mills equations D, F**—Q~'D F*Q,
&,=D'F,,+4mj,=0 (5) so that Eq(5) is covariant providing , transforms as
with D”=¢9"—ig[A",], the equation of motion ofth bare jMHQ‘lj ROx
quark

One could always find such unitary matfikx as to diagonal-
e =mpal — v}, t[Q;F*(z)]=0, (6)  ize Hermitean matri) ,. Since the Lie algebra s is of
_ rank N—1, there existN—1 diagonal elementsi;. Thus,
wherea]'=v| is the four-acceleration of this quark, and the without loss of generality, one can set
Wong equation N_1

Q= —ig[QI v, A (z)] @) Qi(m)=2, e(m)H;. (11
describing the evolution of the color chargeldf quark.

We will find eiI to be constants fixed exactly by the solution
It follows from Eq. (7) that

itself.

d Picking Q, in the form(11) reduces the gauge freedom of
an tr Q?=—2ig tr(Q,[Q, ,U'MA“])zo, A, . The color charge®, may thereon be rotated within the

7 Cartan subgroup, in particular, through discrete angles asso-
ciated with permutations dfl;. We will see that the diago-

i.e., the magnitude remains unchanged, specifical o
g o) ged, sp % naiization ofQ, leads to

may be constant.

The total color charge of K-quark system is defined by [Q ,leA'“]=0 (12)
Q:f do*j,, (8) which can be treated as a gauge fixing condition.
b} a The symmetric energy-momentum tensor is

where the integral is taken over an arbitrary spacelike hyper- T,=0,,+t,,,

surfacel,, and the domain of integration covers Kllpoints

of intersection of2, with the world lines. However, it would where

be more convenient to do with somewhat narrow class of

hypersurfaces with a rigidly f_ixed _mutual arrangement qf any ) :i tr| F Fa+£n = BFQB ’ (13)
hypersurface and the worldlines in the vicinities of their in- Y Aqr O



57 EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY 5035

K Thus the characteristic cones are identical in both theories.
t,,(0=2, m'of drl,(r)v(m) 8 x—2z(7)]. The retarded signal is of primary importance for every 4D
=1 classical field theory because it is associated with the idea of
(14) causality. Let us turn first to the single-quark case. With a
given point of observatior,, , such a signal carries informa-
tion on a single point of the world linez'®'. Indeed, the

o
support of the retarded function of the wave equation

One can readily verify the Noether identity

1 K
9,1 =g P+ 3, [ dnetsx-a(n)],

15 Dred X) =26(X0) 5(X?) 17

N ) , is localized on the boundary of the future light cone, with
where&,, andey are the left-hand sidedHS's) of Egs.(5)  expression(17) containing no derivatives. The advanced

and(6), respectively. ~_ function D,4(x) reveals similar properties but its physical
As is well known(see, e.g.[15]), the conformal invari-  meaning is less clear. Other Green functions carry signals
ance is ensured by the condition from several points or even from some region of the world
line.
TH=0.

Thus the retarded YM potenti&l,, generated by a single

Leaving aside sophistications regarding the modification Oguark may depend on two kinematic quantities, the four-

the energy-momentum tensor on the quantum IgV@), we velocity v, at the retarded instant.; and the lightlike vector
! — _ Sret H H H ret
merely remark that the YM sector is conformally invariant Ru=X.~2, drawn from the point of emissiorz,” to the
for point of observatiorx,, .
We recall elements of technique of covariant retarded
04=0. quantitieg 17—19. Consider a plane built out &&* andv*.

A normalized vectou* orthogonal tov* and the lightlike
Equation (13) shows that this condition is met fdb=4.  vector
Thus, in the four-dimension&#D) case, the spacetime sym-
metry of the YM equations is enlarged to include the confor- ch=vH+ur (18
mal transformations. . . .
The regularized total four-momentum can be defined as can be drawn here. All this is expressible analytically as

v’=—-u?=1, v-u=0, c?’=0, c.v=-c-u=1,

P,= dea”TM,,, (16
> R/'L:pcl’-,
where the integration 0® ,, is taken over an adjusted hy- | o6 the scalar

persurfaceg with small invariant holes cut out by the future
light cones drawn from points on the worldlines slightly be- p=—u-R=v-R (19

low their intersections witfE.

To gain insight into the YMW dynamics, one should find
simultaneous solutions of Eg&), (6), and(7). At first, one
solves Eq(5), i.e.,A, is expressed in terms af* . Since the
resulting field is singular on the worldlines, its insertion into

represents the distance betwe:{?ﬁ andx,, in the reference
frame with the arrow of time*.

From the conditiorR?=0, one readily derives the follow-
ing rules of differentiation:

Egs.(6) and(7) brings to ultraviolet divergences. There are 9. 1=cC, | (20)
two means of tackling this difficulty, the mass renormaliza- a #
tion and the restriction to such situations that Ef}.can be dp=v,+[p(a-uy—1]c,. (21

put in its trivial formQ,=0. Upon the mass renormalization,
one derives an equation of motion of the dressed quark ailhis enables us to find derivatives of any kinematic quanti-
lowing for finite self-action. Finally, if one succeeds in solv- ties, for exampleg, v ,=a,c, .
ing this equation, then the set of dynamical equations is en- Let us further turn to thek-quark case. Define the re-
tirely integrated. tarded invariants

A more refined approach is to use the Noether identity
(15), implying that the equation of motion of the dressed
guark is due to substituting a solution of the YM equations

p=R-v', By=v'(R-R’), vy;=v'-v’,

— (R _p)2— _op!.pRJ
into the equation of motion of the bare quark, accompanied A=(R—-R)"=-2R"R", (22
by the mass renormalization. On the other hand, @§) Yvherel J=1,... K, ando' is taken atr®. We have
expresses the local energy-momentum balance of the whole u
tem.
system %ﬁu:[al'(Rl_RJ)_l]Clﬂ"‘ ')’IJC;],,!

Ill. ANSATZ (9#)/|J=(a'-UJ)C'M+(aJ-v')CfL,

It is easily seen that the coefficients for highest deriva-
LIS e A . : 9,0;=—2(B,,c" +Byc)). (23
tives in Eq.(5) coincide with those in Maxwell equations. wBi G TLNC,



5036 B. P. KOSYAKOV 57

Thereafter the generic retarded solution to Ej.is These relations are equivalent to E(®. and (4).
, A retarded solution of Eq(5) is written[1] as
K N“-1
AX)=2 D To(u),f+R,h), (24) I'%(7)=const,

I=1 a=1

where the sought functioni&' and h?' may depend omp,, A= :arav_"Jr k(T3+iT'HR (27
0 g 3 P 1 2) Ry

Biss vz, andAy [2].

The expressioni24) is inserted in Eq(5) and the differ-
entiations are made by means of E¢&0), (21), and (23).
One gets the expressions in which it is necessary to equate

. o N .
zero the coefficients for the linearly independent vectyrs The first term ofA, is a generalized Lieard-Wiechert
|

[ ; art of the potential. The coefficient fdi3 is an imaginar
v, andal,, as well as for each color basis elemént. P P 3 ginary

Recall that we search for solutions of the YM equations offntégration constang; exactly fixed by the condition
the quark world lines where the differentiation formu(as), P
(21), and(23) are just valid. If the procedure is to be self- ges=—4 (28)
consistent, we must separately equate to zero coefficients for . . _
every scalar kinematic quantity of whict! and h?' are aSSLljlrIng the cqmpa’;ﬁ:hty of an overdetermined system of
independent, e.g., scalars containalg. nor;:gfnarEeq(uZa?t)logﬁe oé)gcgi)ris the field strength
A distinctive feature of this procedure is that any supple- -t 0, 9
mentary coqdition o\, is unnecessary. We thus arrive at a F=cAW, (29)
class of equivalence of solutios, related by gauge trans-
formations rather than a particular potential. TR,
One should emphasize that the ang@#) rests crucially We=F—T3 L4 (I2+ildv,. (30)
on the following points: the field is massless; the dynamics is a g ~p? a
gauge invariant; the signals are retarded; the dimension of
spacetime is four; the world lines are timelike. Here, the symbol\ signifies the exterior product of two
Given a massive field, the support of the retarded Greefour-vectors, and
function is the interior of the past light cone. Therefore the
expressior(24) is no longer solution of the field equation. It V,=v,+pla,+(a-uu,]. (3D
is clear that this scheme is unsuited for the dynamics without _ o A _
gauge invariance; the case is typified by replaciig,, Notlce that the Imearl_y rising term o0&, contributes to the
~3d,d,bydn,,. field strength, hence it cannot be purely gauge. N
We recall also that, in @-dimensional spacetimes with ~ Now, the Gauss law can be represented in its familiar
n>2, the retarded function is built out of derivatives of the form: The flux of the generalized Lird-Wiechert part of
function, therefore the retarded signal carries information orthe field strength through any two-dimensional surface, sur-
v as well asa’™, and the like. It would be necessary to rounding the source with the color char@é, equals 47Q?
supplement the expressid@4) by appropriate kinematical other terms _canpel odtln combination with Eqs(27) and
terms. As to (2+1)-dimensional spacetimes, the retarded(29—(31), this yields the color charge of the quark
signal carries information on the entire history of the source )
preceeding the poinzt;ft, and the Hgygerjs principle under- Q3= ial“g. (32)
lying our approach turns out to be invalid. g

wherex is an arbitrary nonzero integration constant with the
gimensionality of (length)?.

V. YANG-MILLS FIELD GENERATED We draw att_ention to the non-anglytical dependencé\bf
BY A SINGLE QUARK on 'the.couplmgg. It follovv_s fchatAM involves a nonpertqr- .
bative information, and this is a good reason for sampling it
If the source is a single quark, then it is sufficient to as a nontrivial background in the semiclassical description.
consider the gauge group $). The extension to SUY) For k=0, the condition(28) does not appear, and the
offers no significant changes in the final results. retarded solution is
We specify a moving basis of the color space spanned by
a tripletT'3, T'3, T3=Q%/Q? (with Q? precessing around
U’U“AZ in the color spaceobeying the condition of orientabil-
ity

1%
A;:qrgf, (33

) with g being an arbitrary constant. Considering the field in-
gabd TP (1) =g §(7), (25  variants

where £2°¢ are the structure constants of @), and the

condition of orthonormalization 2Although this result was established in the single-quark case
[19], it can be extended to the genekquark case proceeding
from Eq.(10) and taking advantage of a locally adjusted hypersur-

1
SaplA(T)T}(1)= 56 . 28 s
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4
Fiv* F,LaLVZO, szFgV:W' fJ(p):;J’ ej=Const. (35)

one recognizes the configurati¢??) to be neither self-dual Substituting Eqs(34) and(35) in Eq. (7) results in divergent
nor anti-self-dual. Equationi27) describes the field of the terms which cannot be removed by the standard renormaliza-
magnetic type while Eq(33) describes the field of the elec- tion procedure since there is no physical parameter of an
tric type. appropriate dimensionality at our disposal. This difficulty
If the retarded condition is replaced by the advanced onegan be circumvented, if one takes all constants of integration
then we arrive at similar expressions for the potential and thén Eq. (35) to be zero, with one exception, sas. Thus,
field strength, the only modification is the change of sign for
iT3in Egs.(27) and(30) as well as for the term in the square ri=o.
brackets of Eq.31). This implies that the spacetime and
color arguments oA\, are correlated in a specific fashion;  There remains the possibility of arbitrary rotationsI&f
under time reversal, associated with replacing the retardegng '3 aroundI'3. Having regard to the Gauss law applied
condition by the advanced one, the isotropic directions in thgy small distances, we impose an additional restriction on the
color spacd’]+iI'; andT'{—iI'5 interchange. class of sought functions: The behaviorg{p) should be
Setting a new basis of the color space less singular than that of;(p), namely, ph;(p)—0 asp
. o . —0. Then, due to lack of finite parameters whereby these
h=il, L=l =il rotations can be specified, we conclude that

and considering the parameterto be imaginary, one rear-

a —_Ta _
ranges Eq(27) to the form I'{(7)=I"3(7)=const.

_ 4a Let us define two isotropic color vectors
A=A, P

with real-valued4?, . Elements of the new basis can be rep- ri=ri=irs;

resented by traceless imaginary-valued 2 matrices satis- ) ) o

fying the commutation relations of the Lie algebra SRR, whlc_:h togeth_er withl'§ span a new time-independent color
as becomes clear upon specifying the abstract basis by Paf@sis. Equatiori34) takes the form
matricesl’j= o;/2. )

It may appear that the doubling of colored degrees of a_, palm a a a
freedomyis e?t?ributable to opposite golor charges, asg(EZ). Au=esls "+ (I5he t Ih + TR
suggests. However, the complex-conjugate potentals,
being represented in the matrix form, are interconvertible bySubstitute Eq(36) in Eq. (5) and equate to zero the coeffi-

(36)

e

the gauge transformation cients forv, andR, . In the latter case, we separately equate
o to zero the coefficient fom-u and the sum of remaining
AM=Q‘1AMQ terms. Introducingé=Inp and denoting the derivative with

respect to¢ by a prime, we get
with
Q=0 =g 3+3h5+2h3=0, (37)
- =0,
” . ’ H 2.2 _
Thus the availability of opposite color charges is deceptive in h +(3—2igeg)h’ +(2—3ige;—g“ez)h. =0, (38
the single quark case.

To sum up, we have the retarded solutié@%) and (33) h3+h3=0, (39
describing the YM field of two different phases. The first
phase is specified by the noncompact gauge group B)(2, h', +(1—-igez)h =0, (40)
while the second by the compact group (2Y.
Let us verify that Eqs(27) and (33) give an exhaustive h,h’” —h_h’ +2igesh,.h_=0, (41)
collection of retarded solutions to E¢p) in that there are no
other functionsf;(p) andh;(p) representing solutions. The es(h +2h,)+exp2£)(h! hz—h3zh,)
potential generated by a single quark is
3 —igeg[eg+exp(2§)hslh, =0, (42)
AZZJZl I fi(p)v,+hi(p)R,]. (34 and in addition three equations resulting from E@S8),

(40), and(42) by the complex conjugation and the replace-
Insert it into Eq.(5). From the requirement of vanishing the ment ofh, by h_.

coefficient fora, , one obtains We have arrived at an apparently overdetermined set of
. equations: Nine equations are used to determine three sought
pfj’ +f;=0 functions. It can be resolved if some compatibility conditions

are satisfied, and this is accomplished if the constants of
which is readily integrated to yield integration take certain fixed values.
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So, the compatibility of all the equations is established if

ear, we are seeking the simultaneous solution of these equeelation(44) holds. In the cas@, =h_=0, there is no con-

tions in the form

hsexp\sé), h-=h,.

We gethz3=—2 or A 1 from Eq.(37), and\3=0 or
A3=—1 from Eq.(39). Thus, Eqs(37) and (39) are com-
patible if

h.ocexp(N . ),

h3: K3 exp(—g). (43)
One can find nexh , = —2+ige; or A\ , = —1+ige; from
Eq.(38), and\ ., =0 or\ , =—1+ige; from Eq.(40). Thus
Egs. (38) and (40) are compatible ifA , =—1+ige;. The
compatibility can also be established in the case=0
which is achievable foe;=—2i/g or e3=—i/g.

Let us examine further the compatibility of E488), (40)
with Eq. (41). Assumingh h_#0, we conclude from Eq.
(41) that

N_—\,.+2ige;=0.

This equation is satisfied identically fox , =x_=-1
+iges, but it has no solution whek , =\ _=0. The com-
patibility of Egs. (38), (40), and(41) is also established for
AN=A_=0If

h,h_=0. (44
We consider lastly the compatibility of E§42) with Egs.
(37)—(41). Taking\ , = —1+iges, in combination with Eq.
(43), we obtainezh, =0, while the complex-conjugate equa-
tion yieldsezh_=0. This implies eithee;=0, with reduc-
ing the potential36) to the form

R.

Al =2 — (45)
WY,

wherev? is an arbitrarily color vector oh, =h_=0 result-

ing in

a&3lput K3R,u

3 .
P

Aa_

"

(46)

Recall thatR,/p=4,7, so that the potential45) is purely
gauge while the expressidd6) differs from Eq.(33) by a
gauge term.

For\,=\_=0, Eq.(42) becomes

[e3(2—iges) +exp(28)hslh, =0. (47)
If e;=—2i/g, then Eq.(47) reduces toh,h;=0, and the
complex-conjugate equation is_h;=0. This provides two
possibilities. Firsth, =h_=0, resulting in a purely gauge
potential, Eq.(45). Second,h;=0, which is allowable for
x3=0, and taking into account E@44), one arrives at the
expression27).

In the casee;=—i/g, Eq. (47) is satisfied only forh
=0. With the corresponding result for the complex-
conjugate equation, namellg, =0, we return to the poten-
tial (45).

straint on the parameter; which yields Eq.(33). On the
assumption of vanishing onllg_ (or only h,), one should
equatee; to —2i/g (or 2i/g), and this results in Eq27).
This completes our justification of the uniqueness of the re-
tarded solutiong27) and (33).

V. YANG-MILLS FIELD GENERATED BY TWO QUARKS

A detailed procedure of obtaining exact retarded solutions
of Eq. (5) with the source composed of two quarks, starting
from the ansat424), was given in[2]. We thus dwell on
analytical and geometrical features of these solutions.

We adopt SY3), theminimal group whereby the retarded
field generated by two bound quarks is constructed. The
point is that the field of a bound quark occupies individually
some SL(R) cell of the color space while SL(B) con-
tains two such cells.

One usually realizes su(3) with the aid of the Gell-Mann
matricesT,=\,/2. It is more convenient, however, for our
purposes to use an overcomplete color basis spanned by the
nonet of 3<3 matrices including three diagonal matrices

L \ 1 2 0 0
0O o0 -1
L \ L -1 0 O
8
Hz___()\a _)_— 0 2 0], (@
2 3
V3 0 0 -1
N -1 0 O
He=—5=3| © 1 9. (50
0 0 2
which are related by
3
> H,=0,
n=1
and six raising and lowering matrices
L 0 1 0
EIZEE()\l'H)\Z): 0 0 0Of,
0 0O
L 0 0
Ep=En=5(\i-irg)=| 1 0 Of, (50
0 0
L 0 0 1
Eig=5\atirg)={ 0 0 OF,
0 0O



57 EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY 5039

0 same source. As for the present case, it is impossible to con-
_oo 1 S _lo o o vert the complex-conjugate solutions to one another since
E1s=Es= 5(7‘4_”‘5)_ ' (52 there exists a nonzero field invariant
00
C3=tr(FMF’V‘F”")
0 0O
£ o E()\ +ing=l0 0 1 which is of different signs for the complex-conjugate solu-
23 9 \'6 7 ' tions. So, we have two different field configurations gener-
0 0O ated by two sources with the total color charg@s. and
Q(-y. It follows from Eq. (58) that no colorless two-quark
1 0 0O cluster is feasible on the classical level.
Eo.=El=_(Aa—ir-)=| O 0 Let us turn to the spacetime dependence of the solutions.
23= B3 2( 6~ 1\7) . i i :
01 0 It was found in[2] that f" andh" are independent g8;,,
(53 and vy, WhereasA,, is shown by the factor &(A,)
= 5(R1 Rz)
Given this color basis, three retarded solutions are SinceR; andR, are lightlike, the equalityr,-R,=0 is
) ensured only for collineaR; andR,. In view of the factor
0 2 vy, vy U A S(R*-R?), this means that the linearly rising term Af, is
Au = +§ HlEJFHZg +k(ER,+EaR,) 8(R™-R), localized on the enveloping surface of two families of rays
(54) 1
) , xﬂzzﬂ(r)+ o(o)n,ao,
2i v v . .
Af>::E<H3p—’l‘+Hlp—’; +k(EgR), +E5RS) (R R?), n,=z.-22, n2=0, ny>0,
(55) and
g_ 2 v;lt /i +5l, mtp2 1 p2 2
AP =5— H2—+H3p— +k(ExR), +E5RS) 8(RM-R?). X,=2Z,(7)+6(c)m,a,
2
(56) m,=z,-z,, m?=0, my>0,

They represent actually the same YM field related by the . . . :
gauge transformations parametrized byr and o. At the intersection of a spacelike

hyperplane with this surface, two fragments of a curve arise.
A= 1AL . Thus the force lines of the YM field corresponding to the
" 1) T 1j . .. X Y
linearly rising term ofA , are squeezed to a string. This is not
with a finite string joining two quarks. What we have now are two
half-infinite strings which begin at the positions of the quarks
010 and go outward at different sides to spatial infinity.
913291—21: 0 0 1. By the constructk_)n of thg enve!oping surface;, they are
10 0 ruled surfaces. Having lightlike rulings and timelike direc-
trices (the world lines, we find warped world sheets of the

Therefore, only one of Eqg54)—(56), say, Eq.(54), will strings. _ _ o _
thereafter be referred to. There exists also an alternative solution identical to Eq.

Taking into account the Gauss law, one finds the coloft®4 in every respect except the linearly rising term that is
charge oflth quark stripped of the factos(R!- R?),

00 1
Q,=|1 00
010

i _2i v,lL g2 vi L2
QI:IEHI- (57) AMI—O—E HlE—FgKEIsRM +E H2g+gKE§3RM .
(59

Thus the solutions suggest the existence of two-quark sys- _ o _ _ o
tems with the total color charges Now the linearly rising terms describe the force lines distrib-

uted over all directions of space.
2i The solution(59) is truly non-Abelian because
Q(+):E(H1+Hz) (583
[A,.A]#0, [A, F#"]#0.
and
How can the nonlinearity of the YM equations be compatible
2i with thatA , is the sum of two single-quark potentials? Equa-
Q-H=- E(H1+H2)- (58D tion (59) does combine two such terms, yet making no hint
about the plausibility to represent the solution as an arbitrary
Therein lies the most outstanding distinction from the single-superposition of them. If either of terms with some coeffi-
guark case where the complex-conjugate potentials, beingent different from 1 is added to another, no new solution
interconvertible by gauge transformations, originate from thearises.
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It should be realized that E¢59) describes the YM fields On the other hand, given S@J or Sp(N) in the two-
generated by a system of tbmundquarks. Would the field quark case, we have other results as opposed ttNEURoth
be generated by two free quarks, the sign of the color chargihe so(4C) and so(5C) color spaces are suitable for an
of any quark might be subjected to variation regardless of theaccommodation of two “elementary” color cells so(3,
sign of the color charge of other quark. In the present case;sl(2,C). But so(4C) is not semisimple, and the Cartan-
however, changing the signs for the first one-quark term anilling metric is singular here. As for so(8), it is isomor-
leaving intact the signs for the second one-quark term, wehic to sp(2C), and we envisage two alternatives in the
arrive at the expression that is no longer solution as it is cleadescription of the color space in the two-quark case, either
from thatE;; andE,; do not commute. One may change the si(3C) or so(5C) ~sp(2C).
signs only simultaneously for both terms. This correlation of
signs is precisely the evidence that we are dealing with
bound quarks.

For k=0, a retarded solution is a superposition of two

single-quark potentialt33), The discussion of solutions of the YM equations with the
| source composed df quarks echoes in many respects that
2 oy Uk (60) in the tv_vo—qua_rk_ case. We adopt now the gauge group
1= " SU(N) with sufficiently largeN, at leastiN=K + 1, to allow
an accommodation of aK quarks.

VI. YANG-MILLS FIELD GENERATED
BY SEVERAL QUARKS

The solutions(54)—(56) and (59) become real-valued with
respect to the color basis

A. Solutions
R A, A3 N4 We use the Cartan-Weyl basis of the Lie algebraNgu(

h=is, L=, Ly, L=isg, spanned by the set &2 matrices which includeN diagonal

elementsH,, the Cartan subalgebra,
_2s I _M _i e (Hn)ag=Sanden—N""ap

=7, T=iy, T=%5. T=iy,

satisfyin
or else fying

. + — N
Ho=iHn, Enn=1Eqn.
H,=0,

With reference to the explicit form oH, and E,,,, Egs.
(48)—(53), one finds that7,, are traceless imaginary>33 ) o ] N N
matrices satisfying the commutation relations of the Lie al-2nd N°—N raising and lowering element&,, and Ep,,,
gebra sl(R), thus the gauge symmetry of the solutionsWith n>m,
(54)—(56) and (59) is SL(3R).

When either of two quarks, say, the first, is elimitated, (E:m)ABE Samden:  (Emn) A= OamOan-
then Eq.(55) acquires the form

A=AL+A, Here,m,n,A,B=1,... N. The nontrivial commutators are as
meoo R follows:
A’—_i—)\ Ye 4 cEVR A”——i—ﬁv—“ (62) [Hy,Ex ]=*+E (62
,u_"‘g 3p KE Ry, ,/,_+g\/§p- m:Emnl = = Emn»
A, is the single-quark solutio(27) while A’ is an Abelian [EmnEmal=Hm—Hn, (63
term, decoupled fromA) since g commutes withx; and
Ei». The adequacy of the gauge group SU(2) in the single- [Ef Ef]=*EL,. (64)

qguark case is thus confirmed; the non-Abelian piece of the
solution is built out of color vectors forming the Lie algebra _ ) )
su(2). Thefield invariantCs is zero for both Eqs(27) and ~ With these commutation relations, one can ascertain that Eq.

(61). (5) is satisfied by
It is no great surprise that SL(@) stands out against
SL(N,C),N>2, in the single-quark case. The metrical struc- 2i K v K-1
ture of the base embodied in the Lorentz group SCf2is A,=7—2 |HZ+gxEy 4R, [] 8RR
all that should be mapped by the future light cone into the 9i=1 P =1

fiber, so that the color space SL(?, is the only exact im- (65)

age. Based on S®) or Sp(N) as the starting point, one
reaches the same solution since su¢ap(3)~sp(1), and There existCL solutions of this type. Consider the transfor-
sl(2R)~su(1,1)~so(2,1)~sp(1R) [14]. mationA,—Q A, Q with
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0 1 Omitting 8(R'-R’) in Egs. (65 and (66) gives alternative
solutions[cf. Eqg. (59)].
At last, there exist solutions describing YM fields of free
N-1 1 0 quarks with the color charges
Q=E\+ 21 Eil 1= i
Q|:i§(H|+1_H|)-

For example, the YM field of two free quarkiabeled by
numbers 1 and)3is

and
i 1
0 1 A,=% a(Hz 1) +KElzRl
0 1 )3
N-1 (H4 H3> ~RESR, - (67)
Q I=Efy+ 2 Ejyq= _ _
=1 The gauge transformatioh,—Q ~'A ,Q with
0 1 N-2
10 0 0=0" 1=—N 1+2H+E12+E12
It increases each index ¢, and Ej,, by one, and the
transformedA,, turns out to be a new solution. Other solu- 1
tions can be obtained by repetitions of this gauge transfor-
mation.[A similar situation already encountered in the two- 1
qguark case where the solutiori§4)—(56) were shown to _ 1
convert to each other by transformations of this gort.
The solution(65) describes a background field generated
by K quarks which form som&-quark cluster. The color
charge oflth quark[cf. Eq. (57)] is
Q= ;Z_iHI _ changes thet signs of the first square bracket of E§7)

while the signs of the second remains invariable. It is easy to
recognize this gauge transformation as that rendering the po-
The total color charge of such a clusfef. Eq.(58)] is either  tential complex-conjugate in the single-quark case. Thus the
K color charge of the free quark is determined modulo
2i exp(mn).
QH)ZEE H There is a number of ways to separate a giequark
system into groups of clusters of a certain quark content and
or free quarks. We interpret them ssenarios of hadronization
We now look at the symmetry of these solutions. One can
2i define (K+1)? traceless imaginary matricé, and&,,,,, as
Q)= _Euzl H, . follows:

. . . Ho=iHn, En=iEmy
There are also solutions describing background fields gen-
erated by several clusters. Each cluster is defined by the covhich are elements of the Lie algebraléi 1,R). Thereaf-
dition that the signs of the color charges are simultaneouslyer, every solution above becomes real valued with respect to
either+ or — for every quark of the cluster whereas relative this basis. The solutions constructed fréff such elements
signs of the total color charges of the clusters are arbitrarypbeying the closed set of commutation relations are invariant
For example, the potent|al generated by two two-quark clusunder SLM,R), M<K +1.

ters isA,, A1 +A whereA' is the potential generated by  In particular, the YM field generated by a two-quark clus-

thejth cluster ter (meson is invariant under SL(R) and that of a three-
quark cluster(barion is invariant under SL(4R). Since

2i v' | 5 3 SL(3R) is a subgroup of SL(®R), the YM field of every

A==+ 522 p—+9KE1|R (R R%) |, hadron is specified by the gauge group SR¥,This sym-

metry is independent oN and is retained in the limiN

. 6 | —®©.
=t2—2 { +gKE4,R' S(RS- Ra)} (66) For k=0, the YM equations linearize, and one gets an
gi=s Abelian solution
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However, it is beyond the scope of this work to review a
E e'H,—, (68  temperature-dependent version of the YMW theory. We
n=1 ! merely drew a parallel to the Yang-Mills-Higge¥MH)
n _ theory where two classical solutions with different symme-
wheree; are arbitrary parameters. The gauge symmetry Ofres also exist. The solution with broken symmetry being
this solution is SUR). _ _ stable and energetically favorable corresponds to the cold
We have obtained two types of solutions corresponding t¢)hase. Although the solution with unbroken symmetry is un-
two phases of matter. The YM background of the first phasgaple(thus bearing no relation to physical worldts avail-

is invariant under the noncompact gauge group KSL( apjlity on the fundamental level motives the quest of a phase
+1,R) while that of the second phase is invariant under theyjth such a symmetry.

compact gauge group SN. The present situation contrasts with that of the YMH
theory in three aspects. First, there is no spontaneous sym-
B. Energetical considerations metry breakdown. We deal with solutions invariant under

two different real forms of the complex group (C). The
occurrence of the solution invariant under a noncompact
tr(HEZ )=0 (69)  9group different from the initial one is a new field-theoretic
phenomenon referred to as thpontaneous symmetry defor-
that the linearly rising term oA, does not contribute to the Mation[2]. The epithet spontaneous emphasizes that the sce-
color force nario of hadronization is accomplished quite accidentally.
Second, both solutions are now stable against small dis-
=0}, t[QF*"(2)] (70 lubancessee Sec. Vil .
Third, the critical point«=0 is independent of param-
Thus, the well-known mechanism of quark binding by a con-8t€rs appearing in the action, as opposed to the YMH theory
stant force lacks support from the exact solutions of the clas’here the spontaneous symmetry breakdown is directly re-
sical YM equations. lated t.o parameters controlling the convexity of the Higgs
A surprising thing is that the linearly rising term 8, , potential. ,
while ensuring nonzero contribution to the field strength L€t us turn to the self-action problem. We follow the ba-
F,,, results in no force. An explanation is simple. EquationSi¢ Teitelboim pattern[21] developed in the Maxwell-
(70) includes the scalar product of two color vectsis, and ~ -0rentz theory. The SUY) phase is treated with no notice-
Q, which are not arbitrary; they come from the exact soly-able distinctions from electrodynamics; one needs simply to

It follows from the trace relations

; 2
tions and turn out to be orthogonal to each other. substitute everywherez by Q7. o
One can find from Eq(69) and A completely different situation arises in the cold phase.
After the mass renormalization, the negative definiteness of
tr(EX EX)=0 (72) the field energy does not disappear without leaving a trace. It

reveals itself in the “wrong” sign of the radiation energy of

that the linearly rising term oA\, does not contribute to accelerated quard,19,
color singlets altogether. This is because it depends on either dE. 2
Epn OF Enp, NOt both. A more fundamental reason is the — = Z|tr Q?|a2<0. (72)
conformal invariance of the 4D classical YM theory which dr, 3
implies that the parametet violating the scale symmetry
cannot manifest itself in observables.

The energy-momentum tensor can be split into

Thus the self-action of a quark in the cold phase is such that
the flux of energy is directed inward the source. This feature
of the self-action is unrelated to the boundary condition; re-
K placing the retarded condition by the advanced one leaves
@W:E G)'IMV+ (9';22 the direction of the flux intact.
=1 To gain better understanding of this point, one should
derive the equation of motion of a dressed quark. Taking into
Where®'lw is the self-action term containing the contribution account Eqs(13)—(15), one can find 1,19
of the YM field generated bjth quark an@';“v is the inter- _
action part comprised of mixed contributions. mi[a),+ 7o(a, +vlad) ]=v] t[Q/F,.(z)]. (73
The four-momentun®,, defined by Eq(16) contains di-
vergent terms due t@'w's. If the solution is invariant under Here,m; is the renormalized mass oth quark,F ,, is the
SL(K+1,R), the self-energy of each quark is negative defi-field of all other quarks at the position oth quarkz{*, and
nite. This suggests that such backgrounds are most favorable
at zero temperature. It is the energetical advantage that en- 2 2
ables attributing them to the gluon vacuum in the cold world. 07 3m, tr Qi
The self-energy is positive-definite for the solutions in-
variant under SUY). These solutions seem to be related to A similar parameter in electrodynamics=2e%/3mc?
the hot phase(One should mention also the configurations~ 1012 cm is related to the classical radius of electron. Ev-
[20] invariant under SUY) with an energy lower than that ery effect of the scaley is neglected there, keeping in mind
of the Coulomb solution. that quantum phenomena come into play already at the range
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of the Compton wavelength of electron=%/mc~10" ! v#={cosi{C+De "), nsinh(C+De ")},

cm. On the contrary, the classical radius of quark in the cold

phase far exceeds its wavelengtg> A, since, in the semi-  \hereC andD are constants, and is a fixed unit vector.
classical treatment, the couplirggis held to be much less Thys, in the absence of the external force, the absorption of

than 1, and therefore energy is exponentially decreasing in time, and the motion of
the color complex asymptotically approaches Galileo’s iner-
T P tial regime. The solution describes a straight world line when
tr QF=—|1- = |>1. (74) . ) I
g2 N the asymptotical conditioa,— 0, 7— —c0 is imposed.

We further turn to the interquark forces. In the cold phase,
Equation(73) can be rewritten as like color charges attract and unlike ones repel. However, it
follows from the trace relations

v

L(p=1)=0, (75 tr(Hy 1—Hy)?=2, tr(Hy.1—HyH=0 (78)
where the operator that a free quark, while experiencing the self-action, does not

act on other quarks.
(76) We have seen that, in the cold phase, each quark individu-
v ally occupies some sl(R) cell. Neither of two backgrounds
generated by different quarks may be contained in the same

projects vectors on a hyperplane normal to the four-velocitys|(2R). This is similar to the Pauli blocking principle. Just
v*, and as a cell of volumén® in the phase space might be occupied
by at most one fermion with a definite spin polarization, so
any sl(2R) cell is intended for a background of only one
quark. Choosing SQ{) or Sp(N), instead of SUN), one
singles out the same color cell so(2;43p(1R)~sl(2R).

By contrast, in the hot phase, assuming the total color
charge of quarks in a given plasma lump to be zero, the
parameterg]' in Eq. (68) are to be appropriately fitted. Then
the most energetically advantageous field configuration is
such that the color charges of quarks are lined up into a fixed
color direction, thereby reducing SN to SU(2). This
bears some resemblance to the Bose-Einstein condensation
in the color space.
endows the equation of motion of a bare quark with the Thus the “color Pauli principle” preventing a body of
factor L. The regularization of,, indicated in Sec. Il en- K+1 color cells against shrinkages is an evidence of that the
sures that such an invariance remains valid after the madargeN limit is adequate to the cold phase description,
renormalization. Thus the form of the dynamical equationgvhereas the “color Bose-Einstein condensation” suggests
of bare and dressed quarks is the same, only their fourthe sufficiency of SU(2) for the hot phase.
momentap* are distinct in the dependence on kinematical _ConsideM—c limitin the cold phase, assuming the cou-
variables. pling g to be fixed.(Note that the factorization condition is

The complex is unaffected by thvadiation reaction the ~ therewith assuregiThe relations
Newtonian behavior of this object implies that only external

p#*=m(v*+ mpat). (77

Note that Eq.(75) is Newton's second law governing the
behavior of an object specified by its point of locatihand
four-momentunp* defined by Eq(77). We call this object
the dressed quark, or theolor complex[19], keeping in
mind the field-mechanical origin q¥“.

The invariance of the actiof®2) under the local repara-
metrizations

ot=¢€, Oz¢=vte

force acts on it. The hallmark of the complex is not the tr(H))?=1-N"%,  tr(HH)=—N""1 (79
evolution law, which is not uncommon, but the indefinite-
ness ofp?, as Eq.(77) suggests. show that the color repulsion between bound quarks vanishes

On the other hand, Eq73) expresses the local four- in this limit, unless the number of quarks at the given cluster
momentum balance: The increment of the complex fouris of orderN. ThusK-quark clusters withkkK = O(N) are un-
momentumd p'M originates from the total effect of all other stable while any cluster of finite number of quarks survives
quarks v/ tr[Q,F,,(z)]dr, and the absorbed four- asN—o.
momentum TovLa,dr, [19]. The greater the acceleration  This is in agreement with Witten's phenomenoldd],
(determined by the total effect of other quarkke greater Where mesons made out of quark-antiquark pairs are stable
the absorption. and noninteractingtheir decay and scattering amplitudes are

A more familiar viewpoint is that Eq(73) describes the suppressed respectively as\ylV and 1N), and barions,
evolution of an object with the four-momentupt=muov#, imagined adN-quark clusters, are unstakiiae barion-barion
visualized as a point particle. The behavior of such a particlénd barion-meson vertices are, respectively, of oNlemd
is beyond the control of the Newton second law. Departured).
from the Newtonian behavior are commonly attributed to the In the present context, however, barions being considered
radiation reaction. This is a source of many paraddi€s as three-quark clusters turn out to be stable. The consistency

For a vanishing right-hand sidé&kRHS) of Eq. (73), one  with Witten’s phenomenology is true for both mesons and
gets the solution multiquark clusters with the number of quarks of ordler
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Thus, the classical YMW quarks do not interact Ms has no solution exponentially increasing with time. Any os-
—o, The quark binding is characterized only by the corre-cillatory solution expi,t) determines a positive mods,
lation of signs of the color charges of quarks comprising apcwﬁ. (For a more extended discussion see, ¢2l].)
cluster. Since the color self-action prevents the motion from Let us show that the single-quark soluti@®y) is stable
the runaway regime, the quarks could be conceived as mowagainst small field disturbancg25]. In the static case, when
ing along parallel straight world lines. This accords with any#=(1,0,0,0), z*(7)=z*(0)+v*r, the proper timer is
intuitive idea of the ground state of a cluster with zero orbitalidentified with the laboratory timé, and the retarded dis-
momentunt. tancep with the usual radius.

Switching on electromagnetic forces violates this equilib-  As is well known[23], the classical limit:— 0 is equiva-
rium. It is possible, however, to introduce the electrodynamijent to that of the weak coupling— 0. Taking into account
cal terms of the action in conjunction with choosing the YM that the expressiof27) depends o asg ™, we must retain

couplingg such that only quantities of ordeg® in Eq. (81).
Let us take the gauge conditioﬂ‘bi=0 for any quark
4 1 world_line. Then the color charge of the quark remains con-
|tr Q2= —2( 1- N) =e? (80  stantQ*=0 even with the presence of the excitatidis. In
g the static case, this condition is reduced to

a__
This enables a consistent treatment of orbital motions. It fol- bo=0.

lows from Egs.(79) and (80) that the centrifugal force is A th tial ts bf ¢ ¢
finite while the absorbed YM energy exactly compensates mong the spatial components bY, we must separate
the radiated electromagnetic energy, and helical world Iine§)nIy those which are orthpgonal to the gauge modes. This is
are no longer infrared troublesome. Moreover, the resultinggu""r"’lnteed by the conditidas]
picture is free of ultraviolet divergences. Vbe+gfabegP. he=0
Unfortunately, this attractive possibility may pretend only '
to a toy status. With the actual value of the elementary elecyhich, in the weak coupling limit, becomes
tric chargee?~1/137, Eq.(80) results ing~24 invalidating
the semiclassical tratment. Furthermore, the electric charge Vbha=0. (82)
of real quarks takes two valuese/3 and Z/3 so that the
picture of accelerated quarks emitting no energy can béutting
matched with only either type of quarkand with electro-
neutral two-quark clusteys b=b’T3+b I, +b7T_,

and taking into account E482), we obtain[25]
VIl. STABILITY PROBLEM

Ob3=0, (83
We have found that the YMW bound quarks are balanced
being in the state of indifferent equilibrium. One should then 449 4
examine the spectrum of excitations about the classical back- ( OF— —+ —|b*=0, (84)
ground. In order that a given cluster be stable, the energy of rat r
every mode(the translation mode aparnust be positive; if b*—0 (85)

the balance is upset by some external influence, then excita-
tions responsible for increasing the energy should occur.
For our prime interest is in the ground state of cluster
where the quarks rest relative to each other, we consider t
static background field generated by such quarks. Bget
=A,+b, whereA, is a static configuration, and, is a A
small disturbance abo&,. As can be readily show(see, b‘(t,r)=f do D, {a|m(w)e_i‘°tY|m(0,¢)Kj(wf)
e.g.,[23]), the positivity of the excitation energy about a 0 l.m
given static background, is tantamount to that the equa-
tion of excitations

Jtis clear from Eq.(83) that b3 does not violate the stability
ey the background\i. The functionb™, satisfying Eqs(82),
(84), and(85), with oscillatory behavior in time is

+ Bim(@)€“'[Yim(6,#)K;(r)]*}. (86)

Here, A is a frequency cutoff parameter that characterizes a

5%S a boundary of the infrared regiolY, (8, ¢) is a spherical vec-
W&mbﬂ(XFO (81)  tor harmonic,K;(s) is expressed in terms of the confluent

hypergeometric function

X Ki(s)=sle F(j—1,2j +2,2is), (87)
A similar situation occurs in the monopole dynamics. As was
shown by Mantori22], the monopoles forming a static multimono- and j runs through values which are positive roots of the
pole are influenced by no intermonopole forces; they are balancegquation
due to exact cancellation of the repulsive magnetic YM force and
the attractive Higgs force. jG+L=1{1+1)+4, 1=1.2,.... (88)
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We are looking for solutions in the class of functions with an
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We restrict ourselves to the situation of static quarks. We

appropriate behavior at spatial infinity and singular points ofadopt the gauge condition
the background. Every solution corresponding to a negative

root of Eq.(88) is more singular than the backgrou(®¥) at
r=0, and should be excluded.

The solutionb* is obtained from Eq(86) by replacingt
by —t. K;(s) is regular ats=0 while, in the limits—, it
has the asymptotic

Kj(wr)={cjwr+d;+O[(wr) texpior), (89
wherec; andd; are certain known constants.

Note that the simultaneous presencébdfandb™ ensures
a nonvanishing contribution to the energy-momentum tenso
From the behavior ob™ at spatial infinity, Eq.(89), it fol-
lows that the four-momenturR , is infrared divergent, and

the semiclassical treatment of the cold phase turns out to be
inconsistent. Therefore, scenarios of hadronization with the

presence of free quarks must be ruled out.
Let us turn to the problem of stability of the soluti¢8B).

which ensures the constancy of the color charges of both
guarks. Let us consider the background poteritd). Now,

by repeating what was done in the single-quark case, we find
thatb" satisfy Eqs(82) and(83) while b>** andb*3* satisfy
Egs. (82), (84), and (85 with r playing the role ofp, for

b?* and p, for b**. From this identification, one checks
the stability of these components. Note thdt* and b*3*

are associated with the position of corresponding quarks

While b" does not relate to either quark specifically.

As for b'?* | it obeys Eq.(82) and

4

1 1

o Iy

J
ot

1 1

r, N

2
DI4< }b12+=0, (95)

We restrict ourselves to the static case which though is hardhere the operatar] acts on the variables and x, andr,
justified now if one remembers the runaway problem. Thus=|x—z]|. One can see thdi'** fluctuates with respect to

we consider only necessafyot sufficienj conditions of sta-
bility.

Equation(33) is independent ofj, hence* (2i/g) must
be replaced by in each foregoing relation. Equatiqg4)
converts to the form

xz'rﬂ%—g b*=0. (90)
Equations(87)—(89) are modified appropriately,
Kj(s)=sle SF(—igq+j+1,2j +2,2is), (92
iG+1=1(1+1)—g%q? 1=12,..., (92
Ki(s)=0(s'99%€"), s—w. (93

It is clear from Eq.(93) thatq must bereal for b* to de-
crease as t/at spatial infinity, similar to the background
(33). Let us compare their behaviorsrat 0. From Eq.(91)

it follows that K;(s) is regular ats=0 if j=0. Write the
positive solution of Eq(92),

1
j=5[V(2I+1)?-4g%q?~ 1]
and takel =1, the minimal allowable value, then one finds
thatj is positive for

g%g?<2. (94)

A similar result was obtained by Mandu[27]. Thus the
solution(27) is stable whereas the soluti¢®83) would be so
provided thaty is a real quantity less thagi2/g.

We next go to the two-quark case. Decomptseinto
vectors of the color basigt8)—(53),

3
kn—p— k
b;Hn+k21 (b Ep b ES) |

3
b'u:ngl

both quarks, hence quark binding is ensured by just this com-
ponent of excitations. It is essential to gain insight into the
behavior of solutions of Eq95) at spatial infinity.

If the quarks are separated by distaicghen, forr,>d,
Eq. (95) is reduced to the wave equation, and its asymptoti-
cal solutions are either

b>* ~const (96)
or
02— 3 Ji(kDGin(K)Yim( 6,8
+din(K) Yim(6, )% €], 97)
wherej,(kr) are the spherical Bessel functions
j,(kr)~%sin(kr—%l), kr>1. (98

The solution(97) poses no infrared problem. By contrast, the
solution (96) gives rise to the infrared divergence Bf, and
should therefore be consideredraslundant

The analysis of stability of the backgrou@b) generated
by K-quark clusters is identical to that in the two-quark case,
with b'$*1 1=1, ... K playing the role ob?** andb*>*,
while b'** being represented bl-, J,L=1,... K. The
last field fluctuates with respect to the pair of quarks labeled
by the numberg andL, which ensures their binding.

The existence of excitations* !, 1=1,... K entails
the infrared divergences &, due to their asymptotical be-
havior, Eqg.(89), and the situation cannot be remedied by
mere selecting scenarios of hadronization. How to exclude
such excitations, is not yet understood. A possible direction
in which one might search is studying a nonlinear problem of
stability with the requirement that every excitation becomes
purely gauge at spatial infinity.
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VIIl. SEMICLASSICAL TREATMENT terpreted as an evidence of the classical attractive constant
force between quarks composing a cluster.

Note also that the area law stems from the excitations
described by the redundant solution renderig infrared
divergent. This resembles the situation with the energetical

+ + e + criterion valid for the prerenormalization stage whep is
t Emp=tr Ho=t(EqmoEmp) =(HnEmp) =0, still ultraviolet divergeﬁt. ; 7

We learned from the exact YM solutions that every clas-
sical cluster has a certain nonzero color charge. The situation
reverses on the semiclassical level where the color neutral-
ness of clusters is attained on the average of the gluon
vacuum.

Given a K-quark cluster, one may define the gluon
vacuum as a state with no excitation about the background
generated by this cluster. This state is represented by a vector
of Hilbert space¥ such that the expectation value of every
color-invariant quantity coincides with its classical value.

We have seen that the linearly rising termAf produces
no confining force. This brings up a question: Is Wilson'’s
criterion fulfilled? From the trace relations

it follows that the loop operator

W(C)=tr P ex;{ig 3€Cdzf‘AM(z)

with the background\,, develops the perimeter law for both
phases.

Consider the effect of gluon excitatioms, aboutA,, in
the cold phase. Substitution &,=A,+b, to the YM ac-

tion gives However, there are invariants which are finite and of differ-
1 S2S(A) ent signs for the complex-conjugate potentiAI,“; and A; ,
S(B)~S(A)+ Ef d*x d*y bZ(x)Wb—bE(y). as exemplified byCs;=tr(F, ,F4F"™) with the complex-
n(X)OAL(Y) conjugate solutiong65). Requiring the uniqueness of the

- . . . . _vacuum expectation value @f;, one has inevitably to assign
Although S(A) is divergent it should be discarded, just as m(\If,C3\If)=O. LetW, and¥ . be vectors of Hilbert space

electrodynamics. Due to the gauge invariance, the differen* . . . .
tial operator®S/ 5A% A" is irreversible, and a gauge-fixing associated witht and — terms of Eq(65). Belr?g elgenvec-
term of the Lagrangian is called fafit would be reasonable (OrS_of the total color charge operatq [defined by Eq.
for the present purposes to use some linear gauge-fixing coﬁlo)]'

dition to avoid complications associated with the Faddeev- N

Popov ghost$.Thereafter a certain nonsingular Lagrangian QY-.=Q)¥=,

of gluon excitations results,
they are mutually orthogonal,

—_pha HVLA - b
L=b7(X) A5 (A;9)b(x), (¥ W,)=0.
where ALy (A;d) is a background-dependent reversible dif-
ferential operator.

We averagaVN(C) over either of two complex-conjugate

If the gluon vacuum is defined as

1
backgroundsA; or A V= E(\P++ 7¥_), (100
f Dby, ex;{ —f d*x b7, (x) EY(A;9)bB(X) where n=exp § is an arbitrary phase factor, then one gets
(¥,Q¥)=0.

+i jgcdz#bz(z)

Thus the condition of the color-neutralnesskofjuark clus-
- . . ters is met on the average of the gluon vacuum; the cluster
This integral can be readily worked out to yield finds itself partly at the stateV, with the color charge
Q(+)=2i/gZ,_,“H, and partly at the stat&_ with the
exp{— fﬁ dy* 4; dz”gzbv(y,z) , (99  color chargeQ(,)=—2i/gE{<=1H,.
c c In the case of several clusters, the gluon vacuum is de-

ab ) ) . fined in a similar way. For example, given two two-quark
whereg,;(y,2) is the gluon propagator obeying the equationgsters, the construction

AM(A D (Y)GS(Y,2) =~ 858,8%(2). 1
V= Z[‘P(1+12+)+ 7+ V(1.,2,)+»n, V(1,,2))
The area law for Eq(99) would be the case iszlf,(y,z)

tends to a constant ay { z)°>— —o. Since the behavior of +y__W(1_,2))] (102

the propagator at spacelike infinity is the same as that of

excitationsbz which obey the corresponding homogeneousensures the color neutralness of both clusters. Here,
equations, the responsibility for the area law rests with thel'(1,,,2,,) are vectors of Hilbert space associated with four
excitationsb’" approaching asymptotically a constantras solutionsA, given by Eq.(66), o; the sign of the color
—oo, the redundant solution of E¢95). Thus Wilson's cri-  charge of theJth quark, andy,,,, are arbitrary phase fac-
terion is fulfilled, though the area law cannot already be in-tors.
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WereA , to be convertible td\; by a gauge transforma- 1 1509
tion, any superposition o¥ , and¥ _ such as that of Egs. E?R)i {‘J}:[E’ 5190 ]
(100 or (101) would be forbidden from realization as a
physical state due to the availability of some superselectiogpile the spinorial representation starting witk 2 belongs
rule [28]. Only the potential generated by free quarks can bg, ne discrete serigg?]
converted to the complex conjugate by a gauge transforma-
tion. There is no such transformation fér, generated by . 3 35 72 92 112
bound quarks, hence the superselection rule does not occur, Dds'f(cgm(z;R): {‘]}:[E’E’?’f e ]
and every cluster remains color neutral.
We regard evenK-quark cluster on the equal footing

since the existence of multiquark clusters was revealed ex- | . . i ;
perimentally[29]. It is well known, however, that hadrons )Ne eman, being usefully applied to the Regge trajectories of

are much more stable than multiquark clusters. One maljesons, turns out to be inadequate to account for those of

. . . %aryons.
wonder what a plausible explanation of this fact may be. , AR
We can envision consecutive constructions of the YMW. Ne'eman and Backi [10] assumed that matters can be

. improved by a simultaneous application of sRp, and
systems with the color spaces 3LC), SON,C), and . .
S)l/)(N,C). There is nothing I{t)o decide gt)etweerg\lthe)se alterna§9(1’3)‘ The commutatlon reIaﬂon; can be close.d by embeq-
tives, hence all should persist and interfere. Is there the Iarﬁ;?gé\)’\’o algebras in sl(R), a relativistic generalization of

est color cell outside of which three pictures become quit . . . :
different? Such a cell does correspond to the three-quark With adopting this SL(%;).’ oneé can cIa:jssﬁy the SU(3)
case. Fon>4, there are no isomorphisms between membergCtet states acording to the§, ) (7,0)® Dgi(ag)(0,3) rep-
of the series slf,C), so(n—1,C), sp(n,C), and so(&,C). resentation while the symmetrized product of this reducible
The interference of distinct color backgrounds is responsiblgepresentation and the finite-dimensional SR@represen-
for the splitting of energetical levels, which leads to the de-tation (3,3) is used for the decuplet states. Although this
cay of clusters. No interference occurs in the single-quarkscheme is quite restrictive, it is in a good agreement with
case because sl@)~so(3C)~sp(1€). In the two-quark  known data of hadronic spectroscopy and predicts several
and three-quark cases, two alternatives interfere, respegew stateg10]. The present exact solutions show that the
tively, sl(3R) and so(3,2)-sp(2R), and sp(R) and gauge symmetry of the background generated by clusters
sl(4R)~s0(3,3). Thus clusters with two or three quarks arecomposed of two or three quarks is just SIR}?
moderately stable. The interference of three alternatives A basis of sl(4R) contains six antisymmetric elements
keeps multiquark clusters away from stability. M,, and nine symmetric elements,,, w,»=1...3,

The color neutralness of hadrons in the Gauss law sensghich can be regrouped in the subséts= 1 €ikMik, K
may well be compatible with the observability of some spe-= v, , Tij, Ni=Toi, Too, satisfying the commutation rela-
cific color multiplet structure which reveals itself by infinite- tions (102)—(104) together with
dimensional unitary multiplets of SL(R). Dothan, Gell-

ladd
Dsiar)

Thus the SL(®R) scheme of Dothan, Gell-Mann, and

Mann, and Ne’emaf30] suggested that unitary multiplets of [Ki Kj]=—i€exKe, [Ni,NjJ=i€;Ne; (105
SL(3R) are related to the Regge trajectories of mesons. This
group is generated by the angular momentum operatprs [Li K I=iepwKi, [Li,N;1=i€jNy, (106)
and the quadrupole operatdrg with the commutation rela-
tions [Ki Nj1=—i(Tj+ 8 Too); (107)
bl = e, (102 [K; Tl =~ 18Nyt 8N, (108
[Li,Tpl=i€TtienT;, (103 [N Tyl = —i(8; Kt 8K, (109
[Tij . Tl= —1(i€jim+ il €jkm ™t Gji €ikm)Lm- (104 [Li,Too=[Tij Tod =0, [Ki,Tool=—2iN;,
The algebra sl(&) represents the minimal scheme capable [N: Tool= — 2iK (110
i»tool™— i-

to explain two features of Regge trajectories: Thé=2
rule and the apparently infinite sequence of hadronic state

It was found in[30] that two infinite unitary representa-
tions belonging to the ladder series

SSL(4,R) is thus split into several subgroups: SO(4)
=S0(3)X SO(3) the maximal compact subgroup generated
by L; andN;, SO(1,3) the Lorentz group generated lby

DEX L (0:R):  {3}={024...},

ladd “The isomorphism sl(&)~so(6C) renders selected this gauge
DSL(s,R)(liR)3 {I={135...} symmetry. Indeed, if the conformal extension of Minkowski space
M# is to be mapped in a topologically nontrivial way into the color
are associated with the and p trajectories. Besides, there space, then the color space SIG¥,is favored over other images
exists[31] a unique spinorial ladder representation related tasince it has a real form SL(R)~ SO(3,3) isomorphic to the con-
the N trajectory formal group of the pseudo-Euclidean sp&ss,.
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andK;, SL(3R) the “three-volume-preserving” group gen- discussion. This phenomenon has its origin in a combination
erated byL; and T;;, R* the noncompact Abelian group ©f some singular gauge field of magnetic type, such as the
generated byl gp. magnetic fle!d gengratgd by a monopole, and an isospin-
The subgroup SO(4) is utilized as a basis withcontent degenerate fleld, which is the source of a Coulomb-like elec-
of some (4,j,) representation: tric field. The Lienard-Wiechert term of the background is
analogous to the field of the magnetic monopole while the
IP=(j1+i % (iti—) 7P (= ih P

components of excitations™V*, I,J=1, ... ,3with the as-

ymptotical behaviof96) play the role of the long-range elec-
The operatorT;; shifts SO(4) multiplets in ji.j2) DY tric field. The rotation generatoid;; related toE;; by Eq.
Aj1,=2 [see Eq.(103], and the structure of Regge se- (111) occur in the term of the angular momentum indepen-
guences is reproduced by such shifting. A remarkable fact igent of the radius of gyration.
that we have arrived at hadrons with different total angular Unfortunately, this similarity is not quite complete. An
momental, including the half-integer. _ ‘external color field with an appropriate SLRY, degeneracy

However, in the present context, quarks have neither spigenerating a long-range counterpart of the initial background

nor orbital momentum. In the limiN—c, we deal with fie|d can hardly be conceived in the present context. On the
bound quarks moving along straight world lines. Where didpther hand, restricting the consideration to a pure YM sys-

these higher angular momenta come from? We suppose the@m, one faces infrared divergences due to the excitations
to be built out of gluon degrees of freedom. Indeld,, and  pl4=

T,, are related to our color basis as follows:

jo
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