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Exact solutions in the Yang-Mills-Wong theory

B. P. Kosyakov*
Theoretical Division, Russian Federal Nuclear Center, Sarov 607190, Russia

~Received 11 March 1997; published 27 March 1998!

This paper discusses in a systematical way exact retarded solutions to the classical SU(N) Yang-Mills
equations with the source composed of several colored point particles. A new method of finding such solutions
is reviewed. Relying on features of the solutions, a toy model of quark binding is suggested. According to this
model, quarks forming a hadron are influenced by no confining force in spite of the presence of a linearly rising
term of the potential. The large-N dynamics of quarks conforms well with Witten’s phenomenology. On the
semiclassical level, hadrons are color neutral in the Gauss law sense. Nevertheless, a specific multiplet struc-
ture is observable in the form of the Regge sequences related to infinite-dimensional unitary representations of
SL(4,R) which is shown to be the color gauge group of the background field generated by any hadron. The
simultaneous consideration of SU(N), SO(N), and Sp(N) as gauge groups offers a plausible explanation of the
fact that clusters containing two or three quarks are more stable than multiquark clusters.
@S0556-2821~98!05908-6#
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I. INTRODUCTION

In this paper, we look into the Yang-Mills-Wong~YMW !
theory, a classical non-Abelian gauge model describ
closed systems of several spinless colored point particles
teracting with a gluon field. Emphasis is put on features
exact solutions, some of which were obtained previou
@1,2#, and others are discussed for the first time.

A solvable nonlinear model is of interest by itself. Furth
still, one may expect that exact solutions of the YMW theo
will be useful in studying nonperturbative vacua of quantu
chromodynamics~QCD!. We get, at the least, a toy model o
bound states in QCD.

It may appear at first glance that classical particles h
nothing to do with real quarks, but closer inspection ca
doubt on this belief. Indeed, a medium of the normal nucl
density offers a fertile ground for creations and annihilatio
of quark pairs. Nevertheless, the quark-antiquark sea
largely suppressed in hadrons. According to Zweig’s rule
quark and an antiquark with opposite quantum numbers d
their annihilation. Such persistence of particles is typical
the classical picture.

The classicality of constituent quarks is difficult to unde
stand, but one can describe it explicitly. The bulk of t
hadron phenomenology is grasped by planar diagra
which implies in particular that world lines of valence quar
are subjected to neither bifurcation nor termination in
Feynman path integral, unless hadrons collide or dec
Thus, to a good approximation, the number of bound qua
remains fixed.

Starting from the QCD Lagrangian, Wong was able
show @3# that the behavior of a quark in the limit\→0 is
governed by the classical equation of motion of a spinl
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colored point particle.1 Alternative methods of ‘‘dequantiza
tion’’ @4# lead to classical actions of the spinning partic
with Wong’s action as a constituent. Thus the classical lim
of the quark dynamics remains to be completed. Won
dynamics may provisionally be regarded as the simplest
sonable approximation to the limiting theory. In addition,
would be appropriate to use spinless particles as the sta
point of the bound quark description, for measurements
the polarized proton structure in deep inelastic leptoprod
tion indicate that quarks carry only a small fraction of t
spin of the nucleon@5#. The Wong particles will hereafter b
called quarks though this name is rather conventional
should not be confused with the standard QCD term, tak
into account that the Wong color charges are in the adjo
while quark fields are in the fundamental representation
the gauge group.

As is well known, the classical limit of QCD is related t
the limit of large number of colors@6#. Substituting SU(3)c
by SU(N) and going to the limit

N→`, g2N5const,

’t Hooft established that the planar diagrams are domina
in this limit @7#. Witten found@8# that the real hadronic world
is qualitatively displayed even in the zeroth approximation
the 1/N expansion. In the limitN→`, the vacuum expecta
tion value of the product of gauge invariant operators ob
the so-called factorization relation, and quantum fluctuatio
disappear@8#. Thus QCD becomes a classical theory asN
→`. We suggest that the large-N YMW theory is intimately
related to the classical limit of QCD.

1The present model is not quite that obtained in the original Wo
approach. We deal with arbitrary number of color particles wh
Wong’s procedure is matched with a single particle; the situati
are apparently different if one keeps in mind the nonlinear fi
dynamics.
5032 © 1998 The American Physical Society
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57 5033EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY
Note, however, that the confinement problem is out of
question now. Indeed, it is conceivable that quarks const
ing a hadron experience an attractive constant force origi
ing from a term of the potentialAm which linearly rises with
distance between the quarks, and such a behavior ofAm is to
provide the area law for the Wilson loop functional@9#. Are
we correct in interpreting the area law as the evidence of
constant attractive force? As will be shown, an exact cla
cal solutionAm with the linearly rising term actually exists
Although this term contributes to the field strength, it pr
duces no force. The general reason for such a surpri
result is the conformal invariance. The linearly rising te
violates the scale invariance. While such a violation be
allowable for the gauge quantitiesAm andFmn , it cannot be
tolerated for observables. One may expect a dimensiona
rameter, measuring a gap in the energy spectrum and vi
ing the scale symmetry, to emerge only upon quantiza
leading to anomalies. Meanwhile exact classical soluti
are crucial in learning the symmetry of the vacuum.

One believes two phases of the strong interacting ma
to exist, hot and cold, which must be distinguished by th
symmetry. At high temperatures, the asymptotical freed
dominates, hence the conventional SU(3)c symmetry is in-
herent in the hot phase. On the other hand, Ne’eman
Šijački @10# developed an exhaustive phenomenological c
sification of hadrons on the basis of infinite-dimensional u
tary representations of SL(4,R), which hints that SL(4,R) is
the cold phase symmetry. Where does this SL(4,R) come
from?

Coleman@11# argued that the symmetry of the vacuum
the symmetry of world. Given the vacuum invariant und
SL(4,R), excitations about it possess the same symme
Since the symmetry of the gluon vacuum is nothing but
symmetry of the background field, the responsibility f
SL(4,R) rests with the background described by a cert
solution of the QCD equations in the classical limit. It is t
background generated by quarks in hadrons that provides
SL(4,R) relief for gluon excitations.

We will find two classes of exact retarded solutions to
classical Yang-Mills~YM ! equations. Solutions of the firs
class, invariant under SU(N), appear to be related to th
background in the hot phase. Solutions of the second c
might be treated as the background generated by bo
quarks in the cold phase. These solutions are complex va
with respect to the Lie algebra su(N), but one can conver
them to the real form to yield the invariance under SL(N,R)
or its subgroups. In particular, the background generated
any three-quark cluster is invariant under SL(4,R), and that
generated by any two-quark cluster is invariant un
SL(3,R).

Notice that SL(4,R) of Ne’eman and Sˇ ijački operates in
spacetime while the present SL(4,R) acts in the color space
However, we attempt to interweave two arenas by refere
to that color degrees of freedom may be convertible into s
degrees of freedom, the fact discovered by Jackiw
Rebbi, and Hasenfratz and ’t Hooft@12#.

The paper is organized as follows. Section II outlines
general formalism of the YMW theory. The next section
devoted to a justification of the Ansatz whereby we se
exact retarded solutions of the YM equations with the sou
composed of several arbitrarily moving quarks. Finding su
e
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solutions is traced by the simplest example of the sing
quark source, Sec. IV. Properties of the background ge
ated by two-quark sources are reviewed in Sec. V. Fie
generated by arbitrary number of color particles, and th
features are considered in Sec. VI. We show that bo
quarks are affected by no external force asN→`. The equa-
tion of motion of a dressed quark is discussed, and its ex
solution in the absence of external forces is given. The lar
N dynamics of quarks is shown to conform with Witten
phenomenology. Moreover, a step forward can be made
the simultaneous consideration of SU(N), SO(N), and
Sp(N) as gauge groups, which offers a plausible explanat
of the fact that clusters composed of two or three quarks
more stable than multiquark clusters. The stability of t
solutions is the subject of Sec. VII. We conclude that fr
quarks are ruled out by a consistency reasoning. Issues
cerning the semiclassical quantization and the resulting
ture are considered in Sec. VIII. The fulfilment of the Wilso
criterion has been confirmed. We show that any hadron
color neutral in the sense of the Gauss law. Nevertheles
certain multiplet structure is observable. These multiplets
described by infinite-dimensional unitary representations
SL(4,R), the gauge group of the background field genera
by any hadron.

II. GENERAL FORMALISM

We work in Minkowski space with the metrichmn

5diag(1,2,2,2). Let us consider classical point particle
interacting with the SU(N) Yang-Mills field. The particles
will be called quarks and labeled by indexI ,I 51, . . . ,K.
Each quark is assigned a color chargeQI

a @transforming as
the adjoint representation of SU(N), the color indexa runs
from 1 to N221#, and a bare massm0

I . Any other specifi-
cation is omitted, so that quarks and antiquarks are indis
guishable in the present context. Let every quark be mov
along a timelike world linezI

m(t I) parametrized by the
proper timet I . This gives rise to the current

j m~x!5(
I 51

K E dt IQI~t I !vm
I ~t I !d

4@x2zI~t I !#, ~1!

where QI5QI
aTa , Ta are generators of SU(N), vm

I [ żm
I

[dzm
I /dt I is the four-velocity ofI th quark. The action is

written @13# as

S52(
I 51

K E dt I~m0
I Avm

I v I
m1tr ZIl I

21l̇ I !

2E d4x trS j mAm1
1

16p
FmnFmnD . ~2!

Here, l I5l I(t I) are time-dependent elements of SU(N),
ZI5eI

aTa , eI
a being some constants whereby the co

charge is specified,QI5l IZIl I
21 . The field strength is

Fmn5]mAn2]nAm2 ig@Am ,An#,

with g being the coupling constant. The middle two terms
Eq. ~2! can be combined into2(tr ZIl I

21Dtl I with the
covariant derivativeDt[d/dt I1v I

mAm(zI). Since l I re-
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5034 57B. P. KOSYAKOV
sponds to a local gauge transformation byl I→l I8
5V21l I , the gauge invariance of the action is quite cle
ElementsTa of the Lie algebra su(N) satisfy the commuta-
tion relations

@Ta ,Tb#5 i f abcT
c ~3!

with the structure constantsf abc of SU(N), and the orthonor-
malization condition

tr ~TaTb!5dab . ~4!

Note that the invariance of the action under SU(N) automati-
cally entails the invariance under SL(N,C) unless a con-
straint is imposed so as to preserve the real valueness o
gauge field variables. If we have no prior knowledge of t
symmetry, it can be identified by the structure consta
which are present in the action. The specific values off abc
entering into Eq.~3! imply that S is invariant under SU(N).
However, for any simple complex Lie algebra, there exist
basis, referred to as the Cartan basis, such that the stru
constants are found to be real, antisymmetric, and iden
to the structure constants of the real compact form of this
algebra@14#. The basis of su(N) is simultaneously the Carta
basis of its complexification sl(N,C). Thus the presence o
the structure constants of SU(N) in Eq. ~3! need not be the
evidence for that the symmetry ofS is SU(N); allowing for
the complex-valued field variables, we enlarge the symm
up to SL(N,C).

The Euler-Lagrange equations for the action~2! are the
Yang-Mills equations

Em[DnFmn14p j m50 ~5!

with Dn5]n2 ig@An,#, the equation of motion ofI th bare
quark

« I
l[m0

I aI
l2vm

I tr@QIF
lm~zI !#50, ~6!

whereaI
l[ v̇ I

l is the four-acceleration of this quark, and th
Wong equation

Q̇I52 ig@QI ,vm
I Am~zI !# ~7!

describing the evolution of the color charge ofI th quark.
It follows from Eq. ~7! that

d

dt I
tr QI

2522ig tr~QI@QI ,vm
I Am#!50,

i.e., the magnitude ofQI remains unchanged, specifically,QI
may be constant.

The total color charge of aK-quark system is defined b

Q5E
S
dsm j m , ~8!

where the integral is taken over an arbitrary spacelike hyp
surfaceS, and the domain of integration covers allK points
of intersection ofS with the world lines. However, it would
be more convenient to do with somewhat narrow class
hypersurfaces with a rigidly fixed mutual arrangement of a
hypersurface and the worldlines in the vicinities of their
.
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tersections. Consider, for example, the intersection of a
perplane by a timelike curve at a right angle. Such an
rangement can be achieved for any hypersurfaceS by
replacing a small fragment ofS in the vicinity of every
intersection pointzm

I by a fragment of a hyperplane orthogo
nal to the worldline atzm

I and smoothing off this piecewis
hypersurface. The resulting hypersurface will be calledlo-

cally adjustedand denoted byS̃.
Since j m is not a conserved current, the total color char

Q is in general hypersurface dependent. ButQ ceases to

depend onS̃ if the color charge of each quark is constant

Q̇I50, ~9!

which imposes certain restrictions on the form ofAm . We
will discuss just this case.

In view of Eq. ~5!, the definition ofQ can also be rewrit-
ten in terms of the field variables:

Q5
1

4pES̃
dsnDmFmn. ~10!

Under the local gauge transformations

Am→V21AmV2
i

g
V21]mV,

the covariant derivatives of the field strength transform a

DmFmn→V21DmFmnV,

so that Eq.~5! is covariant providingj m transforms as

j m→V21 j mV.

One could always find such unitary matrixV as to diagonal-
ize Hermitean matrixj m . Since the Lie algebra su(N) is of
rank N21, there existN21 diagonal elementsHi . Thus,
without loss of generality, one can set

QI~t I !5 (
i 51

N21

eI
i ~t I !Hi . ~11!

We will find eI
i to be constants fixed exactly by the solutio

itself.
PickingQI in the form~11! reduces the gauge freedom

Am . The color chargesQI may thereon be rotated within th
Cartan subgroup, in particular, through discrete angles a
ciated with permutations ofHi . We will see that the diago-
nalization ofQI leads to

@QI ,vm
I Am#50 ~12!

which can be treated as a gauge fixing condition.
The symmetric energy-momentum tensor is

Tmn5Qmn1tmn ,

where

Qmn5
1

4p
tr S FmaFn

a1
1

4
hmnFabFabD , ~13!
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57 5035EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY
tmn~x!5(
I 51

K

m0
I E dt Ivm

I ~t I !vn
I ~t I !d

4@x2zI~t I !#.

~14!

One can readily verify the Noether identity

]mTlm5
1

4p
tr~EmFlm!1(

I 51

K E dt I« I
ld4@x2zI~t I !#,

~15!

whereEm and« I
l are the left-hand sides~LHS’s! of Eqs.~5!

and ~6!, respectively.
As is well known~see, e.g.,@15#!, the conformal invari-

ance is ensured by the condition

Tm
m50.

Leaving aside sophistications regarding the modification
the energy-momentum tensor on the quantum level@16#, we
merely remark that the YM sector is conformally invaria
for

Qm
m50.

Equation ~13! shows that this condition is met forD54.
Thus, in the four-dimensional~4D! case, the spacetime sym
metry of the YM equations is enlarged to include the conf
mal transformations.

The regularized total four-momentum can be defined

Pm5E
S̃
dsnTmn , ~16!

where the integration ofQmn is taken over an adjusted hy

persurfaceS̃ with small invariant holes cut out by the futur
light cones drawn from points on the worldlines slightly b

low their intersections withS̃.
To gain insight into the YMW dynamics, one should fin

simultaneous solutions of Eqs.~5!, ~6!, and~7!. At first, one
solves Eq.~5!, i.e.,Am is expressed in terms ofzI

m . Since the
resulting field is singular on the worldlines, its insertion in
Eqs.~6! and ~7! brings to ultraviolet divergences. There a
two means of tackling this difficulty, the mass renormaliz
tion and the restriction to such situations that Eq.~7! can be
put in its trivial formQ̇I50. Upon the mass renormalizatio
one derives an equation of motion of the dressed quark
lowing for finite self-action. Finally, if one succeeds in sol
ing this equation, then the set of dynamical equations is
tirely integrated.

A more refined approach is to use the Noether iden
~15!, implying that the equation of motion of the dress
quark is due to substituting a solution of the YM equatio
into the equation of motion of the bare quark, accompan
by the mass renormalization. On the other hand, Eq.~15!
expresses the local energy-momentum balance of the w
system.

III. ANSATZ

It is easily seen that the coefficients for highest deri
tives in Eq. ~5! coincide with those in Maxwell equations
f

-

-

l-

n-

y

s
d

le

-

Thus the characteristic cones are identical in both theori
The retarded signal is of primary importance for every 4

classical field theory because it is associated with the ide
causality. Let us turn first to the single-quark case. With
given point of observationxm , such a signal carries informa
tion on a single point of the world line,zm

ret. Indeed, the
support of the retarded function of the wave equation

D ret~x!52u~x0!d~x2! ~17!

is localized on the boundary of the future light cone, w
expression~17! containing no derivatives. The advance
function Dadv(x) reveals similar properties but its physic
meaning is less clear. Other Green functions carry sign
from several points or even from some region of the wo
line.

Thus the retarded YM potentialAm generated by a single
quark may depend on two kinematic quantities, the fo
velocity vm at the retarded instantt ret and the lightlike vector
Rm5xm2zm

ret drawn from the point of emission,zm
ret to the

point of observationxm .
We recall elements of technique of covariant retard

quantities@17–19#. Consider a plane built out ofRm andvm.
A normalized vectorum orthogonal tovm and the lightlike
vector

cm[vm1um ~18!

can be drawn here. All this is expressible analytically as

v252u251, v•u50, c250, c•v52c•u51,

Rm5rcm,

where the scalar

r52u•R5v•R ~19!

represents the distance betweenzm
ret and xm in the reference

frame with the arrow of timevm.
From the conditionR250, one readily derives the follow

ing rules of differentiation:

]mt5cm , ~20!

]mr5vm1@r~a•u!21#cm . ~21!

This enables us to find derivatives of any kinematic qua
ties, for example,]mvn5ancm .

Let us further turn to theK-quark case. Define the re
tarded invariants

r I[RI
•v I , b IJ[v I~RI2RJ!, g IJ[v I

•vJ,

D IJ[~RI2RJ!2522RI
•RJ, ~22!

whereI ,J51, . . . ,K, andvm
I is taken att I

ret. We have

]mb IJ5@aI
•~RI2RJ!21#cm

I 1g IJcm
J ,

]mg IJ5~aI
•vJ!cm

I 1~aJ
•v I !cm

J ,

]mD IJ522~b IJcm
I 1bJIcm

J !. ~23!



te

of

lf-
s

le
a

-

s
n

ee
he
It
o

h

o
to
l
ed
rc
r-

to

b

-

he

of

liar

ur-

g it
n.
e

in-

ase

ur-

5036 57B. P. KOSYAKOV
Thereafter the generic retarded solution to Eq.~5! is

Am~x!5(
I 51

K

(
a51

N2-1

Ta~vm
I f aI1Rm

I haI!, ~24!

where the sought functionsf aI and haI may depend onr I ,
b IJ , g IJ , andD IJ @2#.

The expression~24! is inserted in Eq.~5! and the differ-
entiations are made by means of Eqs.~20!, ~21!, and ~23!.
One gets the expressions in which it is necessary to equa
zero the coefficients for the linearly independent vectorscm

I ,
vm

I , and am
I , as well as for each color basis elementTa .

Recall that we search for solutions of the YM equations
the quark world lines where the differentiation formulas~20!,
~21!, and ~23! are just valid. If the procedure is to be se
consistent, we must separately equate to zero coefficient
every scalar kinematic quantity of whichf aI and haI are
independent, e.g., scalars containingam

I .
A distinctive feature of this procedure is that any supp

mentary condition onAm is unnecessary. We thus arrive at
class of equivalence of solutionsAm related by gauge trans
formations rather than a particular potential.

One should emphasize that the ansatz~24! rests crucially
on the following points: the field is massless; the dynamic
gauge invariant; the signals are retarded; the dimensio
spacetime is four; the world lines are timelike.

Given a massive field, the support of the retarded Gr
function is the interior of the past light cone. Therefore t
expression~24! is no longer solution of the field equation.
is clear that this scheme is unsuited for the dynamics with
gauge invariance; the case is typified by replacinghhmn

2]m]n by hhmn .
We recall also that, in 2n-dimensional spacetimes wit

n.2, the retarded function is built out of derivatives of thed
function, therefore the retarded signal carries information
vm

ret as well asam
ret, and the like. It would be necessary

supplement the expression~24! by appropriate kinematica
terms. As to (2n11)-dimensional spacetimes, the retard
signal carries information on the entire history of the sou
preceeding the pointzm

ret, and the Huygens principle unde
lying our approach turns out to be invalid.

IV. YANG-MILLS FIELD GENERATED
BY A SINGLE QUARK

If the source is a single quark, then it is sufficient
consider the gauge group SU(2). The extension to SU(N)
offers no significant changes in the final results.

We specify a moving basis of the color space spanned
a triplet G1

a , G2
a , G3

a[Qa/AQ2 ~with Qa precessing around
vmAm

a in the color space! obeying the condition of orientabil
ity

«abcG i
a~t!G j

b~t!5« i jkGc
k~t!, ~25!

where «abc are the structure constants of SU(2), and the
condition of orthonormalization

dabG i
a~t!G j

b~t!5
1

2
d i j . ~26!
to

f

for

-

is
of

n

ut

n

e
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These relations are equivalent to Eqs.~3! and ~4!.
A retarded solution of Eq.~5! is written @1# as

G j
a~t!5const,

Am
a 57

2i

g
G3

a vm

r
1k~G1

a6 iG2
a!Rm , ~27!

wherek is an arbitrary nonzero integration constant with t
dimensionality of (length)22.

The first term ofAm
a is a generalized Lie´nard-Wiechert

part of the potential. The coefficient forG3
a is an imaginary

integration constante3 exactly fixed by the condition

g2e3
2524 ~28!

assuring the compatibility of an overdetermined system
nonlinear equations forhj (r).

From Eq.~27!, one obtains the field strength

F5c`W, ~29!

Wm
a 57

2i

g
G3

a Vm

r2
1k~G1

a6 iG2
a!vm . ~30!

Here, the symbol̀ signifies the exterior product of two
four-vectors, and

Vm5vm1r@am1~a•u!um#. ~31!

Notice that the linearly rising term ofAm
a contributes to the

field strength, hence it cannot be purely gauge.
Now, the Gauss law can be represented in its fami

form: The flux of the generalized Lie´nard-Wiechert part of
the field strength through any two-dimensional surface, s
rounding the source with the color chargeQa, equals 4pQa,
other terms cancel out.2 In combination with Eqs.~27! and
~29!–~31!, this yields the color charge of the quark

Qa56
2i

g
G3

a . ~32!

We draw attention to the non-analytical dependence ofAm
a

on the couplingg. It follows that Am
a involves a nonpertur-

bative information, and this is a good reason for samplin
as a nontrivial background in the semiclassical descriptio

For k50, the condition~28! does not appear, and th
retarded solution is

Am
a 5qG3

a vm

r
, ~33!

with q being an arbitrary constant. Considering the field
variants

2Although this result was established in the single-quark c
@19#, it can be extended to the generalK-quark case proceeding
from Eq. ~10! and taking advantage of a locally adjusted hypers

face S̃.
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57 5037EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY
Fmn
a * Fa

mn50, Fmn
a Fa

mn5
4

g2r4 ,

one recognizes the configuration~27! to be neither self-dua
nor anti-self-dual. Equation~27! describes the field of the
magnetic type while Eq.~33! describes the field of the elec
tric type.

If the retarded condition is replaced by the advanced o
then we arrive at similar expressions for the potential and
field strength, the only modification is the change of sign
iG2

a in Eqs.~27! and~30! as well as for the term in the squa
brackets of Eq.~31!. This implies that the spacetime an
color arguments ofAm

a are correlated in a specific fashio
under time reversal, associated with replacing the retar
condition by the advanced one, the isotropic directions in
color spaceG1

a1 iG2
a andG1

a2 iG2
a interchange.

Setting a new basis of the color space

T1[ iG1 , T2[G2 , T3[ iG3 ,

and considering the parameterk to be imaginary, one rear
ranges Eq.~27! to the form

Am5Am
aTa

with real-valuedAm
a . Elements of the new basis can be re

resented by traceless imaginary-valued 232 matrices satis-
fying the commutation relations of the Lie algebra sl(2,R),
as becomes clear upon specifying the abstract basis by P
matricesG j5s j /2.

It may appear that the doubling of colored degrees
freedom is attributable to opposite color charges, as Eq.~32!
suggests. However, the complex-conjugate potentials~27!,
being represented in the matrix form, are interconvertible
the gauge transformation

Ām5V21AmV

with

V5V215s1 .

Thus the availability of opposite color charges is deceptive
the single quark case.

To sum up, we have the retarded solutions~27! and ~33!
describing the YM field of two different phases. The fir
phase is specified by the noncompact gauge group SL(R)
while the second by the compact group SU(2).

Let us verify that Eqs.~27! and ~33! give an exhaustive
collection of retarded solutions to Eq.~5! in that there are no
other functionsf j (r) and hj (r) representing solutions. Th
potential generated by a single quark is

Am
a 5(

j 51

3

G j
a~t!@ f j~r!vm1hj~r!Rm#. ~34!

Insert it into Eq.~5!. From the requirement of vanishing th
coefficient foram , one obtains

r f j81 f j50

which is readily integrated to yield
e,
e
r

ed
e

-

uli

f

y

n

f j~r!5
ej

r
, ej5const. ~35!

Substituting Eqs.~34! and~35! in Eq. ~7! results in divergent
terms which cannot be removed by the standard renorma
tion procedure since there is no physical parameter of
appropriate dimensionality at our disposal. This difficu
can be circumvented, if one takes all constants of integra
in Eq. ~35! to be zero, with one exception, say,e3. Thus,

Ġ3
a50.

There remains the possibility of arbitrary rotations ofG1
a

andG2
a aroundG3

a . Having regard to the Gauss law applie
to small distances, we impose an additional restriction on
class of sought functions: The behavior ofhj (r) should be
less singular than that off j (r), namely,rhj (r)→0 as r
→0. Then, due to lack of finite parameters whereby th
rotations can be specified, we conclude that

G1
a~t!5G2

a~t!5const.

Let us define two isotropic color vectors

G6
a [G1

a6 iG2
a

which together withG3
a span a new time-independent col

basis. Equation~34! takes the form

Am
a 5e3G3

a vm

r
1~G3

ah31G1
a h11G2

a h2!Rm . ~36!

Substitute Eq.~36! in Eq. ~5! and equate to zero the coeffi
cients forvn andRn . In the latter case, we separately equa
to zero the coefficient fora•u and the sum of remaining
terms. Introducingj[ lnr and denoting the derivative with
respect toj by a prime, we get

h3913h3812h350, ~37!

h19 1~322ige3!h18 1~223ige32g2e3
2!h150, ~38!

h391h3850, ~39!

h19 1~12 ige3!h18 50, ~40!

h1h28 2h2h18 12ige3h1h250, ~41!

e3~h18 12h1!1exp~2j!~h18 h32h38h1!

2 ige3@e31exp~2j!h3#h150, ~42!

and in addition three equations resulting from Eqs.~38!,
~40!, and ~42! by the complex conjugation and the replac
ment ofh1 by h2 .

We have arrived at an apparently overdetermined se
equations: Nine equations are used to determine three so
functions. It can be resolved if some compatibility conditio
are satisfied, and this is accomplished if the constants
integration take certain fixed values.
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Since Eqs.~37!–~40! and their complex-conjugate are lin
ear, we are seeking the simultaneous solution of these e
tions in the form

h3}exp~l3j!, h1}exp~l1j!, h25h̄1 .

We get l3522 or l3521 from Eq. ~37!, and l350 or
l3521 from Eq. ~39!. Thus, Eqs.~37! and ~39! are com-
patible if

h35k3 exp~2j!. ~43!

One can find nextl15221 ige3 or l15211 ige3 from
Eq. ~38!, andl150 or l15211 ige3 from Eq.~40!. Thus
Eqs. ~38! and ~40! are compatible ifl15211 ige3. The
compatibility can also be established in the casel150
which is achievable fore3522i /g or e352 i /g.

Let us examine further the compatibility of Eqs.~38!, ~40!
with Eq. ~41!. Assumingh1h2Þ0, we conclude from Eq
~41! that

l22l112ige350.

This equation is satisfied identically forl15l̄2521
1 ige3, but it has no solution whenl15l250. The com-
patibility of Eqs. ~38!, ~40!, and ~41! is also established fo
l15l250 if

h1h250. ~44!

We consider lastly the compatibility of Eq.~42! with Eqs.
~37!–~41!. Takingl15211 ige3, in combination with Eq.
~43!, we obtaine3h150, while the complex-conjugate equa
tion yieldse3h250. This implies eithere350, with reduc-
ing the potential~36! to the form

Am
a 5ga

Rm

r
, ~45!

wherega is an arbitrarily color vector orh15h250 result-
ing in

Am
a 5G3

a e3vm1k3Rm

r
. ~46!

Recall thatRm /r5]mt, so that the potential~45! is purely
gauge while the expression~46! differs from Eq.~33! by a
gauge term.

For l15l250, Eq. ~42! becomes

@e3~22 ige3!1exp~2j!h3#h150. ~47!

If e3522i /g, then Eq.~47! reduces toh1h350, and the
complex-conjugate equation ish2h350. This provides two
possibilities. First,h15h250, resulting in a purely gauge
potential, Eq.~45!. Second,h350, which is allowable for
k350, and taking into account Eq.~44!, one arrives at the
expression~27!.

In the casee352 i /g, Eq. ~47! is satisfied only forh1

50. With the corresponding result for the comple
conjugate equation, namely,h250, we return to the poten
tial ~45!.
a-
So, the compatibility of all the equations is established

relation~44! holds. In the caseh15h250, there is no con-
straint on the parametere3 which yields Eq.~33!. On the
assumption of vanishing onlyh2 ~or only h1), one should
equatee3 to 22i /g ~or 2i /g), and this results in Eq.~27!.
This completes our justification of the uniqueness of the
tarded solutions~27! and ~33!.

V. YANG-MILLS FIELD GENERATED BY TWO QUARKS

A detailed procedure of obtaining exact retarded solutio
of Eq. ~5! with the source composed of two quarks, starti
from the ansatz~24!, was given in@2#. We thus dwell on
analytical and geometrical features of these solutions.

We adopt SU(3), theminimal group whereby the retarde
field generated by two bound quarks is constructed. T
point is that the field of a bound quark occupies individua
some SL(2,R) cell of the color space while SL(3,C) con-
tains two such cells.

One usually realizes su(3) with the aid of the Gell-Ma
matricesTa5la/2. It is more convenient, however, for ou
purposes to use an overcomplete color basis spanned b
nonet of 333 matrices including three diagonal matrices

H1[
1

2S l31
l8

A3
D 5

1

3S 2 0 0

0 21 0

0 0 21
D , ~48!

H2[2
1

2S l32
l8

A3
D 5

1

3S 21 0 0

0 2 0

0 0 21
D , ~49!

H3[2
l8

A3
5

1

3S 21 0 0

0 21 0

0 0 2
D , ~50!

which are related by

(
n51

3

Hn50,

and six raising and lowering matrices

E12
1 [

1

2
~l11 il2!5S 0 1 0

0 0 0

0 0 0
D ,

E12
2 [E21

1 [
1

2
~l12 il2!5S 0 0 0

1 0 0

0 0 0
D , ~51!

E13
1 [

1

2
~l41 il5!5S 0 0 1

0 0 0

0 0 0
D ,
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E13
2 [E31

1 [
1

2
~l42 il5!5S 0 0 0

0 0 0

1 0 0
D , ~52!

E23
1 [

1

2
~l61 il7!5S 0 0 0

0 0 1

0 0 0
D ,

E23
2 [E32

1 [
1

2
~l62 il7!5S 0 0 0

0 0 0

0 1 0
D .

~53!

Given this color basis, three retarded solutions are

Am
~1!57

2i

g S H1

vm
1

r1
1H2

vm
2

r2
D 1k~E13

6 Rm
1 1E23

6 Rm
2 !d~R1

•R2!,

~54!

Am
~2!57

2i

g S H3

vm
1

r1
1H1

vm
2

r2
D 1k~E32

6 Rm
1 1E12

6 Rm
2 !d~R1

•R2!,

~55!

Am
~3!57

2i

g S H2

vm
1

r1
1H3

vm
2

r2
D 1k~E21

6 Rm
1 1E31

6 Rm
2 !d~R1

•R2!.

~56!

They represent actually the same YM field related by
gauge transformations

Am
~ j !5V1 j

21Am
~1!V1 j

with

V125S 0 0 1

1 0 0

0 1 0
D , V135V12

215S 0 1 0

0 0 1

1 0 0
D .

Therefore, only one of Eqs.~54!–~56!, say, Eq.~54!, will
thereafter be referred to.

Taking into account the Gauss law, one finds the co
charge ofI th quark

QI57
2i

g
HI . ~57!

Thus the solutions suggest the existence of two-quark
tems with the total color charges

Q~1 !5
2i

g
~H11H2! ~58a!

and

Q~2 !52
2i

g
~H11H2!. ~58b!

Therein lies the most outstanding distinction from the sing
quark case where the complex-conjugate potentials, b
interconvertible by gauge transformations, originate from
e

r

s-

-
ng
e

same source. As for the present case, it is impossible to
vert the complex-conjugate solutions to one another si
there exists a nonzero field invariant

C35tr~FlmFn
mFnl!

which is of different signs for the complex-conjugate so
tions. So, we have two different field configurations gen
ated by two sources with the total color chargesQ(1) and
Q(2) . It follows from Eq. ~58! that no colorless two-quark
cluster is feasible on the classical level.

Let us turn to the spacetime dependence of the solutio
It was found in@2# that f iI andhiI are independent ofb12,
and g12, whereasD12 is shown by the factor 2d(D12)
5d(R1•R2).

SinceR1 and R2 are lightlike, the equalityR1•R250 is
ensured only for collinearR1 andR2. In view of the factor
d(R1

•R2), this means that the linearly rising term ofAm is
localized on the enveloping surface of two families of ray

xm5zm
1 ~t!1u~s!nms,

nm5zm
1 2zm

2 , n250, n0.0,

and

xm5zm
2 ~t!1u~s!mms,

mm5zm
2 2zm

1 , m250, m0.0,

parametrized byt ands. At the intersection of a spacelik
hyperplane with this surface, two fragments of a curve ar
Thus the force lines of the YM field corresponding to t
linearly rising term ofAm are squeezed to a string. This is n
a finite string joining two quarks. What we have now are tw
half-infinite strings which begin at the positions of the quar
and go outward at different sides to spatial infinity.

By the construction of the enveloping surfaces, they
ruled surfaces. Having lightlike rulings and timelike dire
trices ~the world lines!, we find warped world sheets of th
strings.

There exists also an alternative solution identical to E
~54! in every respect except the linearly rising term that
stripped of the factord(R1

•R2),

Am57
2i

g S H1

vm
1

r1
1gkE13

6 Rm
1 D 7

2i

g S H2

vm
2

r2
1gkE23

6 Rm
2 D .

~59!

Now the linearly rising terms describe the force lines distr
uted over all directions of space.

The solution~59! is truly non-Abelian because

@Am ,An#Þ0, @Am ,Fmn#Þ0.

How can the nonlinearity of the YM equations be compatib
with thatAm is the sum of two single-quark potentials? Equ
tion ~59! does combine two such terms, yet making no h
about the plausibility to represent the solution as an arbitr
superposition of them. If either of terms with some coef
cient different from 1 is added to another, no new soluti
arises.
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5040 57B. P. KOSYAKOV
It should be realized that Eq.~59! describes the YM fields
generated by a system of twoboundquarks. Would the field
be generated by two free quarks, the sign of the color cha
of any quark might be subjected to variation regardless of
sign of the color charge of other quark. In the present ca
however, changing the signs for the first one-quark term
leaving intact the signs for the second one-quark term,
arrive at the expression that is no longer solution as it is c
from thatE13

6 andE23
7 do not commute. One may change t

signs only simultaneously for both terms. This correlation
signs is precisely the evidence that we are dealing w
bound quarks.

For k50, a retarded solution is a superposition of tw
single-quark potentials~33!,

Am5(
I 51

2

(
n51

3

eI
nHn

vm
I

r I
. ~60!

The solutions~54!–~56! and ~59! become real-valued with
respect to the color basis

T1[ i
l1

2
, T2[

l2

2
, T3[ i

l3

2
, T4[ i

l4

2
,

T5[
l5

2
, T6[ i

l6

2
, T7[

l7

2
, T8[ i

l8

2
,

or else

Hn[ iH n , Emn
6 [ iEmn

6 .

With reference to the explicit form ofHn and Emn
6 , Eqs.

~48!–~53!, one finds thatTn are traceless imaginary 333
matrices satisfying the commutation relations of the Lie
gebra sl(3,R), thus the gauge symmetry of the solutio
~54!–~56! and ~59! is SL(3,R).

When either of two quarks, say, the first, is elimitate
then Eq.~55! acquires the form

Am5Am8 1Am9 ,

Am8 57
i

g
l3

vm

r
1kE6

12Rm , Am9 57
i

g

l8

A3

vm

r
. ~61!

Am8 is the single-quark solution~27! while Am9 is an Abelian
term, decoupled fromAm8 since l8 commutes withl3 and
E12

6 . The adequacy of the gauge group SU(2) in the sing
quark case is thus confirmed; the non-Abelian piece of
solution is built out of color vectors forming the Lie algeb
su(2). Thefield invariantC3 is zero for both Eqs.~27! and
~61!.

It is no great surprise that SL(2,C) stands out agains
SL(N,C),N.2, in the single-quark case. The metrical stru
ture of the base embodied in the Lorentz group SL(2,C) is
all that should be mapped by the future light cone into
fiber, so that the color space SL(2,C) is the only exact im-
age. Based on SO(N) or Sp(N) as the starting point, one
reaches the same solution since su(2);so(3);sp(1), and
sl(2,R);su(1,1);so(2,1);sp(1,R) @14#.
ge
e
e,
d
e

ar

f
h

-

,

-
e

-

e

On the other hand, given SO(N) or Sp(N) in the two-
quark case, we have other results as opposed to SU(N). Both
the so(4,C) and so(5,C) color spaces are suitable for a
accommodation of two ‘‘elementary’’ color cells so(3,C)
;sl(2,C). But so(4,C) is not semisimple, and the Cartan
Killing metric is singular here. As for so(5,C), it is isomor-
phic to sp(2,C), and we envisage two alternatives in th
description of the color space in the two-quark case, eit
sl(3,C) or so(5,C);sp(2,C).

VI. YANG-MILLS FIELD GENERATED
BY SEVERAL QUARKS

The discussion of solutions of the YM equations with t
source composed ofK quarks echoes in many respects th
in the two-quark case. We adopt now the gauge gro
SU(N) with sufficiently largeN, at leastN>K11, to allow
an accommodation of allK quarks.

A. Solutions

We use the Cartan-Weyl basis of the Lie algebra su(N)
spanned by the set ofN2 matrices which includesN diagonal
elementsHn , the Cartan subalgebra,

~Hn!AB[dAndBn2N21dAB ,

satisfying

(
n51

N

Hn50,

and N22N raising and lowering elementsEmn
1 and Emn

2 ,
with n.m,

~Emn
1 !AB[dAmdBn , ~Emn

2 !AB[dBmdAn .

Here,m,n,A,B51, . . . ,N. The nontrivial commutators are a
follows:

@Hm ,Emn
6 #56Emn

6 , ~62!

@Emn
1 ,Emn

2 #5Hm2Hn , ~63!

@Ekl
6 ,Elm

6 #56Ekm
6 . ~64!

With these commutation relations, one can ascertain that
~5! is satisfied by

Am57
2i

g (
I 51

K FHI

vm
I

r I
1gkEIK 11

6 Rm
I )

I 51

K21

d~RK
•RI !G .

~65!

There existCN
K solutions of this type. Consider the transfo

mationAm→V21AmV with
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V5E1N
2 1 (

I 51

N21

EII 11
1 5S 0 . . . 0 1

1 0

1 0

. .

. .

. .

D
and

V215E1N
1 1 (

I 51

N21

EII 11
2 5S 0 1

0 1

. .

. .

. .

0 1

1 0 . . . 0

D .

It increases each index ofHI and EIK 11
6 by one, and the

transformedAm turns out to be a new solution. Other sol
tions can be obtained by repetitions of this gauge trans
mation.@A similar situation already encountered in the tw
quark case where the solutions~54!–~56! were shown to
convert to each other by transformations of this sort.#

The solution~65! describes a background field generat
by K quarks which form someK-quark cluster. The color
charge ofI th quark@cf. Eq. ~57!# is

QI57
2i

g
HI .

The total color charge of such a cluster@cf. Eq.~58!# is either

Q~1 !5
2i

g (
I 51

K

HI

or

Q~2 !52
2i

g (
I 51

K

HI .

There are also solutions describing background fields g
erated by several clusters. Each cluster is defined by the
dition that the signs of the color charges are simultaneou
either1 or 2 for every quark of the cluster whereas relati
signs of the total color charges of the clusters are arbitr
For example, the potential generated by two two-quark c
ters isAm5Am

1 6Am
2 , whereAm

j is the potential generated b
the j th cluster,

Am
1 56

2i

g (
I 52

3 FHI

vm
I

r I
1gkE1I

6Rm
I d~R2

•R3!G ,
Am

2 56
2i

g (
I 55

6 FHI

vm
I

r I
1gkE4I

6Rm
I d~R5

•R6!G . ~66!
r-

n-
n-
ly

y.
s-

Omitting d(RI
•RJ) in Eqs. ~65! and ~66! gives alternative

solutions@cf. Eq. ~59!#.
At last, there exist solutions describing YM fields of fre

quarks with the color charges

QI56
i

g
~HI 112HI !.

For example, the YM field of two free quarks~labeled by
numbers 1 and 3! is

Am56F i

g
~H22H1!

vm
1

r1
1kE12

6 Rm
1 G

6F i

g
~H42H3!

vm
3

r3
1kE34

6 Rm
3 G . ~67!

The gauge transformationAm→V21AmV with

V5V215
N22

N
11(

I 53

N

HI1E12
1 1E12

2

5S 0 1

1 0

1

1

.

.

.

D
changes the6 signs of the first square bracket of Eq.~67!
while the signs of the second remains invariable. It is eas
recognize this gauge transformation as that rendering the
tential complex-conjugate in the single-quark case. Thus
color charge of the free quark is determined modu
exp(ipn).

There is a number of ways to separate a givenK-quark
system into groups of clusters of a certain quark content
free quarks. We interpret them asscenarios of hadronization.

We now look at the symmetry of these solutions. One c
define (K11)2 traceless imaginary matricesHn andEmn

6 as
follows:

Hn[ iH n , Emn
6 [ iEmn

6

which are elements of the Lie algebra sl(K11,R). Thereaf-
ter, every solution above becomes real valued with respec
this basis. The solutions constructed fromM2 such elements
obeying the closed set of commutation relations are invar
under SL(M ,R), M<K11.

In particular, the YM field generated by a two-quark clu
ter ~meson! is invariant under SL(3,R) and that of a three-
quark cluster~barion! is invariant under SL(4,R). Since
SL(3,R) is a subgroup of SL(4,R), the YM field of every
hadron is specified by the gauge group SL(4,R). This sym-
metry is independent ofN and is retained in the limitN
→`.

For k50, the YM equations linearize, and one gets
Abelian solution
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Am5(
I 51

K

(
n51

N

eI
nHn

vm
I

r I
, ~68!

whereeI
n are arbitrary parameters. The gauge symmetry

this solution is SU(N).
We have obtained two types of solutions corresponding

two phases of matter. The YM background of the first ph
is invariant under the noncompact gauge group SLK
11,R) while that of the second phase is invariant under
compact gauge group SU(N).

B. Energetical considerations

It follows from the trace relations

tr~HlEmn
6 !50 ~69!

that the linearly rising term ofAm does not contribute to the
color force

f I
m5vn

I tr@QIF
mn~zI !#. ~70!

Thus, the well-known mechanism of quark binding by a co
stant force lacks support from the exact solutions of the c
sical YM equations.

A surprising thing is that the linearly rising term ofAm ,
while ensuring nonzero contribution to the field streng
Fmn , results in no force. An explanation is simple. Equati
~70! includes the scalar product of two color vectorsFmn and
QI which are not arbitrary; they come from the exact so
tions and turn out to be orthogonal to each other.

One can find from Eq.~69! and

tr~Emn
6 Emn

6 !50 ~71!

that the linearly rising term ofAm does not contribute to
color singlets altogether. This is because it depends on e
Emn

1 or Emn
2 , not both. A more fundamental reason is t

conformal invariance of the 4D classical YM theory whic
implies that the parameterk violating the scale symmetry
cannot manifest itself in observables.

The energy-momentum tensor can be split into

Qmn5(
I 51

K

Qmn
I 1Qmn

int ,

whereQmn
I is the self-action term containing the contributio

of the YM field generated byI th quark andQmn
int is the inter-

action part comprised of mixed contributions.
The four-momentumPm defined by Eq.~16! contains di-

vergent terms due toQmn
I ’s. If the solution is invariant unde

SL(K11,R), the self-energy of each quark is negative de
nite. This suggests that such backgrounds are most favor
at zero temperature. It is the energetical advantage tha
ables attributing them to the gluon vacuum in the cold wor

The self-energy is positive-definite for the solutions
variant under SU(N). These solutions seem to be related
the hot phase.„One should mention also the configuratio
@20# invariant under SU(N) with an energy lower than tha
of the Coulomb solution.…
f

o
e

e

-
s-

-

er

-
ble
n-
.

However, it is beyond the scope of this work to review
temperature-dependent version of the YMW theory. W
merely drew a parallel to the Yang-Mills-Higgs~YMH !
theory where two classical solutions with different symm
tries also exist. The solution with broken symmetry bei
stable and energetically favorable corresponds to the c
phase. Although the solution with unbroken symmetry is u
stable~thus bearing no relation to physical world!, its avail-
ability on the fundamental level motives the quest of a ph
with such a symmetry.

The present situation contrasts with that of the YM
theory in three aspects. First, there is no spontaneous s
metry breakdown. We deal with solutions invariant und
two different real forms of the complex group SL(N,C). The
occurrence of the solution invariant under a noncomp
group different from the initial one is a new field-theoret
phenomenon referred to as thespontaneous symmetry defo
mation@2#. The epithet spontaneous emphasizes that the
nario of hadronization is accomplished quite accidentally

Second, both solutions are now stable against small
turbances~see Sec. VII!.

Third, the critical pointk50 is independent of param
eters appearing in the action, as opposed to the YMH the
where the spontaneous symmetry breakdown is directly
lated to parameters controlling the convexity of the Hig
potential.

Let us turn to the self-action problem. We follow the b
sic Teitelboim pattern@21# developed in the Maxwell-
Lorentz theory. The SU(N) phase is treated with no notice
able distinctions from electrodynamics; one needs simply
substitute everywheree2 by QI

2 .
A completely different situation arises in the cold phas

After the mass renormalization, the negative definitenes
the field energy does not disappear without leaving a trac
reveals itself in the ‘‘wrong’’ sign of the radiation energy o
accelerated quarks@1,19#,

dEI

dt I
5

2

3
utr QI

2uaI
2,0. ~72!

Thus the self-action of a quark in the cold phase is such
the flux of energy is directed inward the source. This feat
of the self-action is unrelated to the boundary condition;
placing the retarded condition by the advanced one lea
the direction of the flux intact.

To gain better understanding of this point, one sho
derive the equation of motion of a dressed quark. Taking i
account Eqs.~13!–~15!, one can find@1,19#

mI@am
I 1t0~ ȧm

I 1vm
I aI

2!#5v I
n tr@QIFmn~zI !#. ~73!

Here,mI is the renormalized mass ofI th quark,Fmn is the
field of all other quarks at the position ofI th quarkzI

m , and

t0[
2

3mI
utr QI

2u.

A similar parameter in electrodynamicst052e2/3mc2

'10213 cm is related to the classical radius of electron. E
ery effect of the scalet0 is neglected there, keeping in min
that quantum phenomena come into play already at the ra
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57 5043EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY
of the Compton wavelength of electronl5\/mc'10211

cm. On the contrary, the classical radius of quark in the c
phase far exceeds its wavelength,t0@l, since, in the semi-
classical treatment, the couplingg is held to be much less
than 1, and therefore

utr QI
2u5

4

g2S 12
1

ND@1. ~74!

Equation~73! can be rewritten as

'
v

~ ṗ2 f !50, ~75!

where the operator

'
v

[12
v ^ v

v2
~76!

projects vectors on a hyperplane normal to the four-velo
vm, and

pm5m~vm1t0am!. ~77!

Note that Eq.~75! is Newton’s second law governing th
behavior of an object specified by its point of locationzm and
four-momentumpm defined by Eq.~77!. We call this object
the dressed quark, or thecolor complex@19#, keeping in
mind the field-mechanical origin ofpm.

The invariance of the action~2! under the local repara
metrizations

dt5e, dzm5vme

endows the equation of motion of a bare quark with
factor'. The regularization ofPm indicated in Sec. II en-
sures that such an invariance remains valid after the m
renormalization. Thus the form of the dynamical equatio
of bare and dressed quarks is the same, only their fo
momentapm are distinct in the dependence on kinemati
variables.

The complex is unaffected by theradiation reaction; the
Newtonian behavior of this object implies that only extern
force acts on it. The hallmark of the complex is not t
evolution law, which is not uncommon, but the indefinit
ness ofp0, as Eq.~77! suggests.

On the other hand, Eq.~73! expresses the local four
momentum balance: The increment of the complex fo
momentumdpm

I originates from the total effect of all othe
quarks v I

n tr@QIFmn(zI)#dt I and the absorbed four
momentumt0vm

I aI
2dt I @19#. The greater the acceleratio

~determined by the total effect of other quarks! the greater
the absorption.

A more familiar viewpoint is that Eq.~73! describes the
evolution of an object with the four-momentumpm5mvm,
visualized as a point particle. The behavior of such a part
is beyond the control of the Newton second law. Departu
from the Newtonian behavior are commonly attributed to
radiation reaction. This is a source of many paradoxes@19#.

For a vanishing right-hand side~RHS! of Eq. ~73!, one
gets the solution
d

y

e

ss
s
r-
l

l

-

le
s

e

vm5$cosh~C1De2t /t0!,nsinh~C1De2t /t0!%,

whereC and D are constants, andn is a fixed unit vector.
Thus, in the absence of the external force, the absorptio
energy is exponentially decreasing in time, and the motion
the color complex asymptotically approaches Galileo’s in
tial regime. The solution describes a straight world line wh
the asymptotical conditionam→0, t→2` is imposed.

We further turn to the interquark forces. In the cold pha
like color charges attract and unlike ones repel. Howeve
follows from the trace relations

tr~HJ112HJ!
252, tr~HJ112HJ!HI50 ~78!

that a free quark, while experiencing the self-action, does
act on other quarks.

We have seen that, in the cold phase, each quark indiv
ally occupies some sl(2,R) cell. Neither of two backgrounds
generated by different quarks may be contained in the s
sl(2,R). This is similar to the Pauli blocking principle. Ju
as a cell of volumeh3 in the phase space might be occupi
by at most one fermion with a definite spin polarization,
any sl(2,R) cell is intended for a background of only on
quark. Choosing SO(N) or Sp(N), instead of SU(N), one
singles out the same color cell so(2,1);sp(1,R);sl(2,R).

By contrast, in the hot phase, assuming the total co
charge of quarks in a given plasma lump to be zero,
parameterseI

n in Eq. ~68! are to be appropriately fitted. The
the most energetically advantageous field configuration
such that the color charges of quarks are lined up into a fi
color direction, thereby reducing SU(N) to SU(2). This
bears some resemblance to the Bose-Einstein condens
in the color space.

Thus the ‘‘color Pauli principle’’ preventing a body o
K11 color cells against shrinkages is an evidence of that
large-N limit is adequate to the cold phase descriptio
whereas the ‘‘color Bose-Einstein condensation’’ sugge
the sufficiency of SU(2) for the hot phase.

ConsiderN→` limit in the cold phase, assuming the co
pling g to be fixed.~Note that the factorization condition i
therewith assured.! The relations

tr~HI !
2512N21, tr~HIHJ!52N21 ~79!

show that the color repulsion between bound quarks vanis
in this limit, unless the number of quarks at the given clus
is of orderN. ThusK-quark clusters withK5O(N) are un-
stable while any cluster of finite number of quarks surviv
asN→`.

This is in agreement with Witten’s phenomenology@8#,
where mesons made out of quark-antiquark pairs are st
and noninteracting~their decay and scattering amplitudes a
suppressed respectively as 1/AN and 1/N), and barions,
imagined asN-quark clusters, are unstable~the barion-barion
and barion-meson vertices are, respectively, of orderN and
1!.

In the present context, however, barions being conside
as three-quark clusters turn out to be stable. The consiste
with Witten’s phenomenology is true for both mesons a
multiquark clusters with the number of quarks of orderN.
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5044 57B. P. KOSYAKOV
Thus, the classical YMW quarks do not interact asN
→`. The quark binding is characterized only by the cor
lation of signs of the color charges of quarks comprising
cluster. Since the color self-action prevents the motion fr
the runaway regime, the quarks could be conceived as m
ing along parallel straight world lines. This accords with
intuitive idea of the ground state of a cluster with zero orb
momentum.3

Switching on electromagnetic forces violates this equil
rium. It is possible, however, to introduce the electrodyna
cal terms of the action in conjunction with choosing the Y
couplingg such that

utr QI
2u5

4

g2S 12
1

ND5e2. ~80!

This enables a consistent treatment of orbital motions. It
lows from Eqs.~79! and ~80! that the centrifugal force is
finite while the absorbed YM energy exactly compensa
the radiated electromagnetic energy, and helical world li
are no longer infrared troublesome. Moreover, the resul
picture is free of ultraviolet divergences.

Unfortunately, this attractive possibility may pretend on
to a toy status. With the actual value of the elementary e
tric chargee2'1/137, Eq.~80! results ing'24 invalidating
the semiclassical tratment. Furthermore, the electric cha
of real quarks takes two values2e/3 and 2e/3 so that the
picture of accelerated quarks emitting no energy can
matched with only either type of quarks~and with electro-
neutral two-quark clusters!.

VII. STABILITY PROBLEM

We have found that the YMW bound quarks are balan
being in the state of indifferent equilibrium. One should th
examine the spectrum of excitations about the classical b
ground. In order that a given cluster be stable, the energ
every mode~the translation mode apart! must be positive; if
the balance is upset by some external influence, then ex
tions responsible for increasing the energy should occur

For our prime interest is in the ground state of clust
where the quarks rest relative to each other, we conside
static background field generated by such quarks. SetBm
5Am1bm where Am is a static configuration, andbm is a
small disturbance aboutAm . As can be readily shown~see,
e.g., @23#!, the positivity of the excitation energy about
given static backgroundAm is tantamount to that the equa
tion of excitations

d2S

dAm
a ~x!dAn

b~y!
bm

a ~x!50 ~81!

3A similar situation occurs in the monopole dynamics. As w
shown by Manton@22#, the monopoles forming a static multimono
pole are influenced by no intermonopole forces; they are balan
due to exact cancellation of the repulsive magnetic YM force a
the attractive Higgs force.
-
a

v-

l

-
i-

l-

s
s
g

c-

ge

e

d

k-
of

ta-

s
he

has no solution exponentially increasing with time. Any o
cillatory solution exp (ivkt) determines a positive mode«k

}vk
2 . ~For a more extended discussion see, e.g.,@24#.!

Let us show that the single-quark solution~27! is stable
against small field disturbances@25#. In the static case, when
vm5(1,0,0,0), zm(t)5zm(0)1vmt, the proper timet is
identified with the laboratory timet, and the retarded dis
tancer with the usual radiusr .

As is well known@23#, the classical limit\→0 is equiva-
lent to that of the weak couplingg→0. Taking into account
that the expression~27! depends ong asg21, we must retain
only quantities of orderg0 in Eq. ~81!.

Let us take the gauge conditionvmbm
a 50 for any quark

world line. Then the color charge of the quark remains co
stantQ̇a50 even with the presence of the excitationsbm

a . In
the static case, this condition is reduced to

b0
a50.

Among the spatial components ofba, we must separate
only those which are orthogonal to the gauge modes. Th
guaranteed by the condition@26#

¹ba1g fabcBb
•bc50,

which, in the weak coupling limit, becomes

¹ba50. ~82!

Putting

b5b3G31b1G11b2G2 ,

and taking into account Eq.~82!, we obtain@25#

hb350, ~83!

S h7
4

r

]

]t
1

4

r 2Db650, ~84!

r•b650. ~85!

It is clear from Eq.~83! thatb3 does not violate the stability
of the backgroundAm

a . The functionb2, satisfying Eqs.~82!,
~84!, and~85!, with oscillatory behavior in time is

b2~ t,r !5E
0

L

dv(
l ,m

$a lm~v!e2 ivtY lm~u,f!K j~vr !

1b lm~v!eivt@Y lm~u,f!K j~vr !#* %. ~86!

Here,L is a frequency cutoff parameter that characterize
boundary of the infrared region,Y lm(u,f) is a spherical vec-
tor harmonic,K j (s) is expressed in terms of the conflue
hypergeometric function

K j~s!5sje2 isF~ j 21,2j 12,2is!, ~87!

and j runs through values which are positive roots of t
equation

j ~ j 11!5 l ~ l 11!14, l 51,2, . . . . ~88!

ed
d
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57 5045EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY
We are looking for solutions in the class of functions with
appropriate behavior at spatial infinity and singular points
the background. Every solution corresponding to a nega
root of Eq.~88! is more singular than the background~27! at
r 50, and should be excluded.

The solutionb1 is obtained from Eq.~86! by replacingt
by 2t. K j (s) is regular ats50 while, in the limit s→`, it
has the asymptotic

K j~vr !5$cjvr 1dj1O@~vr !21#%exp~ ivr !, ~89!

wherecj anddj are certain known constants.
Note that the simultaneous presence ofb1 andb2 ensures

a nonvanishing contribution to the energy-momentum ten
From the behavior ofb6 at spatial infinity, Eq.~89!, it fol-
lows that the four-momentumPm is infrared divergent, and
the semiclassical treatment of the cold phase turns out t
inconsistent. Therefore, scenarios of hadronization with
presence of free quarks must be ruled out.

Let us turn to the problem of stability of the solution~33!.
We restrict ourselves to the static case which though is h
justified now if one remembers the runaway problem. Th
we consider only necessary~not sufficient! conditions of sta-
bility.

Equation~33! is independent ofg, hence6(2i /g) must
be replaced byq in each foregoing relation. Equation~84!
converts to the form

S h7
2igq

r

]

]t
2

g2q2

r 2 Db650. ~90!

Equations~87!–~89! are modified appropriately,

K j~s!5sje2 isF~2 igq1 j 11,2j 12,2is!, ~91!

j ~ j 11!5 l ~ l 11!2g2q2, l 51,2, . . . , ~92!

K j~s!5O~sigq21eis!, s→`. ~93!

It is clear from Eq.~93! that q must bereal for b6 to de-
crease as 1/r at spatial infinity, similar to the backgroun
~33!. Let us compare their behaviors atr 50. From Eq.~91!
it follows that K j (s) is regular ats50 if j >0. Write the
positive solution of Eq.~92!,

j 5
1

2
@A~2l 11!224g2q221#

and takel 51, the minimal allowable value, then one find
that j is positive for

g2q2<2. ~94!

A similar result was obtained by Mandula@27#. Thus the
solution~27! is stable whereas the solution~33! would be so
provided thatq is a real quantity less thanA2/g.

We next go to the two-quark case. Decomposebm into
vectors of the color basis~48!–~53!,

bm5 (
n51

3 Fbm
n Hn1 (

k51

3

~bm
kn2Enk

2 1bm
kn1Ekn

1 !G .
f
e

r.

be
e

rd
s

We restrict ourselves to the situation of static quarks. W
adopt the gauge condition

b050,

which ensures the constancy of the color charges of b
quarks. Let us consider the background potential~54!. Now,
by repeating what was done in the single-quark case, we
thatbn satisfy Eqs.~82! and~83! while b236 andb136 satisfy
Eqs. ~82!, ~84!, and ~85! with r playing the role ofr1 for
b236 and r2 for b136. From this identification, one check
the stability of these components. Note thatb236 and b136

are associated with the position of corresponding qua
while bn does not relate to either quark specifically.

As for b126, it obeys Eq.~82! and

Fh74S 1

r 2
2

1

r 1
D ]

]t
14S 1

r 2
2

1

r 1
D 2Gb12650, ~95!

where the operatorh acts on the variablest and x, and r I
5ux2zI u. One can see thatb126 fluctuates with respect to
both quarks, hence quark binding is ensured by just this c
ponent of excitations. It is essential to gain insight into t
behavior of solutions of Eq.~95! at spatial infinity.

If the quarks are separated by distanced, then, forr I@d,
Eq. ~95! is reduced to the wave equation, and its asympt
cal solutions are either

b126;const ~96!

or

b126; (
k,l ,m

j l~kr !@clm
6 ~k!Ylm~u,f!e2 ikt

1dlm
6 ~k!Ylm~u,f!* eikt#, ~97!

where j l(kr) are the spherical Bessel functions

j l~kr !;
1

kr
sinS kr2

p l

2 D , kr@ l . ~98!

The solution~97! poses no infrared problem. By contrast, t
solution~96! gives rise to the infrared divergence ofPm and
should therefore be considered asredundant.

The analysis of stability of the background~65! generated
by K-quark clusters is identical to that in the two-quark ca
with b6

IK 11, I 51, . . . ,K playing the role ofb236 andb136,
while b126 being represented byb6

JL , J,L51, . . . ,K. The
last field fluctuates with respect to the pair of quarks labe
by the numbersJ andL, which ensures their binding.

The existence of excitationsb6
IK 11, I 51, . . . ,K entails

the infrared divergences ofPm due to their asymptotical be
havior, Eq. ~89!, and the situation cannot be remedied
mere selecting scenarios of hadronization. How to exclu
such excitations, is not yet understood. A possible direct
in which one might search is studying a nonlinear problem
stability with the requirement that every excitation becom
purely gauge at spatial infinity.
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5046 57B. P. KOSYAKOV
VIII. SEMICLASSICAL TREATMENT

We have seen that the linearly rising term ofAm produces
no confining force. This brings up a question: Is Wilson
criterion fulfilled? From the trace relations

tr Emn
6 5tr Hn5tr~Emn

6 Emn
6 !5tr~HnEmn

6 !50,

it follows that the loop operator

W~C!5tr P expF ig R
C
dzmAm~z!G

with the backgroundAm develops the perimeter law for bot
phases.

Consider the effect of gluon excitationsbm aboutAm in
the cold phase. Substitution ofBm5Am1bm to the YM ac-
tion gives

S~B!'S~A!1
1

2E d4x d4y bm
a ~x!

d2S~A!

dAm
a ~x!dAn

b~y!
bn

b~y!.

AlthoughS(A) is divergent it should be discarded, just as
electrodynamics. Due to the gauge invariance, the differ
tial operatord2S/dAm

a dAn
b is irreversible, and a gauge-fixin

term of the Lagrangian is called for.~It would be reasonable
for the present purposes to use some linear gauge-fixing
dition to avoid complications associated with the Fadde
Popov ghosts.! Thereafter a certain nonsingular Lagrangi
of gluon excitations results,

L5bm
a ~x!Lab

mn~A;]!bn
b~x!,

whereLab
mn(A;]) is a background-dependent reversible d

ferential operator.
We averageW(C) over either of two complex-conjugat

backgroundsAm
1 or Am

2 ,

E Dbm
c expF2E d4x bm

a ~x!Lab
mn~A;]!bn

b~x!

1 i R
C
dzmbm

b ~z!G .
This integral can be readily worked out to yield

expF2 R
C
dym R

C
dznGmn

ab~y,z!G , ~99!

whereGmn
ab(y,z) is the gluon propagator obeying the equati

Lab
lm~A;]!~y!Gmn

bc ~y,z!52da
cdn

ld4~z!.

The area law for Eq.~99! would be the case ifGmn
ab(y,z)

tends to a constant as (y2z)2→2`. Since the behavior o
the propagator at spacelike infinity is the same as tha
excitationsbm

a which obey the corresponding homogeneo
equations, the responsibility for the area law rests with
excitationsb6

JL approaching asymptotically a constant asr
→`, the redundant solution of Eq.~95!. Thus Wilson’s cri-
terion is fulfilled, though the area law cannot already be
n-

n-
-

of
s
e

-

terpreted as an evidence of the classical attractive cons
force between quarks composing a cluster.

Note also that the area law stems from the excitatio
described by the redundant solution renderingPm infrared
divergent. This resembles the situation with the energet
criterion valid for the prerenormalization stage whenPm is
still ultraviolet divergent.

We learned from the exact YM solutions that every cla
sical cluster has a certain nonzero color charge. The situa
reverses on the semiclassical level where the color neu
ness of clusters is attained on the average of the gl
vacuum.

Given a K-quark cluster, one may define the gluo
vacuum as a state with no excitation about the backgro
generated by this cluster. This state is represented by a ve
of Hilbert spaceC such that the expectation value of eve
color-invariant quantity coincides with its classical valu
However, there are invariants which are finite and of diffe
ent signs for the complex-conjugate potentialsAm

1 andAm
2 ,

as exemplified byC35tr(FlmFn
mFnl) with the complex-

conjugate solutions~65!. Requiring the uniqueness of th
vacuum expectation value ofC3, one has inevitably to assig
(C,C3C)50. Let C1 andC2 be vectors of Hilbert space
associated with1 and2 terms of Eq.~65!. Being eigenvec-
tors of the total color charge operatorQ̂ @defined by Eq.
~10!#,

Q̂C65Q~6 !C6 ,

they are mutually orthogonal,

~C2 ,C1!50.

If the gluon vacuum is defined as

C5
1

2
~C11hC2!, ~100!

whereh5expid is an arbitrary phase factor, then one get

~C,Q̂C!50.

Thus the condition of the color-neutralness ofK-quark clus-
ters is met on the average of the gluon vacuum; the clu
finds itself partly at the stateC1 with the color charge
Q(1)52i /g( I 51

KHI and partly at the stateC2 with the
color chargeQ(2)522i /g( I 51

K HI .
In the case of several clusters, the gluon vacuum is

fined in a similar way. For example, given two two-qua
clusters, the construction

C5
1

4
@C~11,21!1h21C~12,21!1h12C~11,22!

1h22C~12,22!# ~101!

ensures the color neutralness of both clusters. H
C(1s1,2s2) are vectors of Hilbert space associated with fo
solutions Am given by Eq. ~66!, sJ the sign of the color
charge of theJth quark, andhs1s2 are arbitrary phase fac
tors.
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57 5047EXACT SOLUTIONS IN THE YANG-MILLS-WONG THEORY
WereAm
2 to be convertible toAm

1 by a gauge transforma
tion, any superposition ofC1 andC2 such as that of Eqs
~100! or ~101! would be forbidden from realization as
physical state due to the availability of some superselec
rule @28#. Only the potential generated by free quarks can
converted to the complex conjugate by a gauge transfor
tion. There is no such transformation forAm generated by
bound quarks, hence the superselection rule does not o
and every cluster remains color neutral.

We regard everyK-quark cluster on the equal footin
since the existence of multiquark clusters was revealed
perimentally@29#. It is well known, however, that hadron
are much more stable than multiquark clusters. One m
wonder what a plausible explanation of this fact may be.

We can envision consecutive constructions of the YM
systems with the color spaces SL(N,C), SO(N,C), and
Sp(N,C). There is nothing to decide between these alter
tives, hence all should persist and interfere. Is there the l
est color cell outside of which three pictures become qu
different? Such a cell does correspond to the three-qu
case. Forn.4, there are no isomorphisms between memb
of the series sl(n,C), so(2n21,C), sp(n,C), and so(2n,C).
The interference of distinct color backgrounds is respons
for the splitting of energetical levels, which leads to the d
cay of clusters. No interference occurs in the single-qu
case because sl(2,C);so(3,C);sp(1,C). In the two-quark
and three-quark cases, two alternatives interfere, res
tively, sl(3,R) and so(3,2);sp(2,R), and sp(3,R) and
sl(4,R);so(3,3). Thus clusters with two or three quarks a
moderately stable. The interference of three alternati
keeps multiquark clusters away from stability.

The color neutralness of hadrons in the Gauss law se
may well be compatible with the observability of some sp
cific color multiplet structure which reveals itself by infinite
dimensional unitary multiplets of SL(4,R). Dothan, Gell-
Mann, and Ne’eman@30# suggested that unitary multiplets o
SL(3,R) are related to the Regge trajectories of mesons. T
group is generated by the angular momentum operatorLi
and the quadrupole operatorsTi j with the commutation rela-
tions

@Li ,L j #5 i e i jkLk , ~102!

@Li ,Tjk#5 i e i j l Tlk1 i e iklTjl , ~103!

@Ti j ,Tkl#52 i ~d ike j lm1d i l e jkm1d j l e ikm!Lm . ~104!

The algebra sl(3,R) represents the minimal scheme capa
to explain two features of Regge trajectories: TheDJ52
rule and the apparently infinite sequence of hadronic sta

It was found in@30# that two infinite unitary representa
tions belonging to the ladder series

DSL~3,R!
ladd ~0;R!: $J%5$0,2,4, . . . %,

DSL~3,R!
ladd ~1;R!: $J%5$1,3,5, . . . %,

are associated with thep and r trajectories. Besides, ther
exists@31# a unique spinorial ladder representation related
the N trajectory
n
e
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ur,
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DSL~3,R!
ladd S 1

2
;RD : $J%5H 1

2
,

5

2
,

9

2
, . . . J ,

while the spinorial representation starting withJ5 3
2 belongs

to the discrete series@32#

DSL~3,R!
disc S 3

2
;RD : $J%5H 3

2
,
5

2
,
72

2
,
92

2
,
112

2
, . . . J .

Thus the SL(3,R) scheme of Dothan, Gell-Mann, an
Ne’eman, being usefully applied to the Regge trajectories
mesons, turns out to be inadequate to account for thos
baryons.

Ne’eman and Sˇ ijački @10# assumed that matters can b
improved by a simultaneous application of sl(3,R) and
so(1,3). The commutation relations can be closed by emb
ding two algebras in sl(4,R), a relativistic generalization o
sl(3,R).

With adopting this SL(4,R), one can classify the SU(3)f

octet states acording to theDSL(4,R)
disc ( 1

2 ,0)% DSL(4,R)
disc (0,1

2 ) rep-
resentation while the symmetrized product of this reduci
representation and the finite-dimensional SL(4,R) represen-

tation (1
2 , 1

2 ) is used for the decuplet states. Although th
scheme is quite restrictive, it is in a good agreement w
known data of hadronic spectroscopy and predicts sev
new states@10#. The present exact solutions show that t
gauge symmetry of the background generated by clus
composed of two or three quarks is just SL(4,R).4

A basis of sl(4,R) contains six antisymmetric elemen
Mmn and nine symmetric elementsTmn , m,n51 . . . 3,
which can be regrouped in the subsetsLi5

1
2 e i jkM jk , Ki

5M0i , Ti j , Ni5T0i , T00, satisfying the commutation rela
tions ~102!–~104! together with

@Ki ,K j #52 i e i jkKk , @Ni ,Nj #5 i e i jkNk ; ~105!

@Li ,K j #5 i e i jkKk , @Li ,Nj #5 i e i jkNk , ~106!

@Ki ,Nj #52 i ~Ti j 1d i j T00!; ~107!

@Ki ,Tjk#52 i ~d i j Nk1d ikNj !, ~108!

@Ni ,Tjk#52 i ~d i j Kk1d ikK j !, ~109!

@Li ,T00#5@Ti j ,T00#50, @Ki ,T00#522iNi ,

@Ni ,T00#522iK i . ~110!

SL(4,R) is thus split into several subgroups: SO(4
5SO(3)3SO(3) the maximal compact subgroup genera
by Li and Ni , SO(1,3) the Lorentz group generated byLi

4The isomorphism sl(4,C);so(6,C) renders selected this gaug
symmetry. Indeed, if the conformal extension of Minkowski spa
M# is to be mapped in a topologically nontrivial way into the col
space, then the color space SL(4,C) is favored over other image
since it has a real form SL(4,R);SO(3,3) isomorphic to the con
formal group of the pseudo-Euclidean spaceE2,2.



-
p

e-
t
la

p

di
th

un
a
pi
re

is
u

tion
the
pin-
ec-
is
the

-

n-

n

nd
the
ys-
ions

us
ati-
lo-
A.
.

o,
.
.
k
nol-

5048 57B. P. KOSYAKOV
andKi , SL(3,R) the ‘‘three-volume-preserving’’ group gen
erated byLi and Ti j , R1 the noncompact Abelian grou
generated byT00.

The subgroup SO(4) is utilized as a basis withJP content
of some (j 1 , j 2) representation:

JP5~ j 11 j 2!P,~ j 11 j 221!2P, . . . ,~ u j 12 j 2u!6P.

The operatorTi j shifts SO(4) multiplets in (j 1 , j 2) by
D j 1,252 @see Eq.~103!#, and the structure of Regge s
quences is reproduced by such shifting. A remarkable fac
that we have arrived at hadrons with different total angu
momentaJ, including the half-integer.

However, in the present context, quarks have neither s
nor orbital momentum. In the limitN→`, we deal with
bound quarks moving along straight world lines. Where
these higher angular momenta come from? We suppose
to be built out of gluon degrees of freedom. Indeed,Mmn and
Tmn are related to our color basis as follows:

Mi j [2 i ~Ei j
12Ei j

2!, K j[ i ~E0 j
1 2E0 j

2 !, ~111!

Ti j [2 i ~Ei j
11Ei j

2!, Nj[ i ~E0 j
1 1E0 j

2 !, ~112!

T00[2iH 0 , Tj j [22iH j . ~113!

It is conceivable that gluon excitations about the backgro
with the SL(4,R) color symmetry can manifest themselves
if their color degrees of freedom were converted into s
degrees of freedom described by irreducible unitary rep
sentations of SO(1,3).

A conversion of isospin into spin in gauge theories d
covered in@12# seems to be of the direct relevance to o
s
,

is
r

in

d
em

d
s
n
-

-
r

discussion. This phenomenon has its origin in a combina
of some singular gauge field of magnetic type, such as
magnetic field generated by a monopole, and an isos
degenerate field which is the source of a Coulomb-like el
tric field. The Liénard-Wiechert term of the background
analogous to the field of the magnetic monopole while
components of excitationsbIJ6, I ,J51, . . . ,3 with the as-
ymptotical behavior~96! play the role of the long-range elec
tric field. The rotation generatorsMi j related toEi j

6 by Eq.
~111! occur in the term of the angular momentum indepe
dent of the radius of gyration.

Unfortunately, this similarity is not quite complete. A
external color field with an appropriate SL(4,R) degeneracy
generating a long-range counterpart of the initial backgrou
field can hardly be conceived in the present context. On
other hand, restricting the consideration to a pure YM s
tem, one faces infrared divergences due to the excitat
bI46.
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