
PHYSICAL REVIEW D 1 JANUARY 1998VOLUME 57, NUMBER 1
Minijets and the two-body parton correlation

G. Calucci and D. Treleani
Dipartimento di Fisica Teorica dell’Universita` and INFN, Trieste, I 34014, Italy

~Received 21 July 1997; published 8 December 1997!

A large number of double parton scatterings have been recently observed by the CDF collaboration. The
double parton scattering process measuresseff , a nonperturbative quantity related to the hadronic transverse
size and with the dimensions of a cross section. The actual value measured by the CDF collaboration is
considerably smaller as compared with the naive expectation, namely, the value of the inelastic nondiffractive
cross section. The small value ofseff may be an effect of the hadron structure in the transverse plane. We
discuss the problem by taking into account, at all orders, the two-body parton correlations in the many-body
parton distributions.@S0556-2821~98!00601-8#

PACS number~s!: 13.85.Hd, 11.80.La, 12.38.Bx
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I. INTRODUCTION

The Collider Detector at Fermilab~CDF! collaboration
has recently shown evidence of a large number of dou
parton collisions@1#, namely, events where, in the same i
elastic interaction, two different pairs of partons scatter in
pendently with large momentum transfer. The inclusive cr
section for a double parton scattering is written as@2#

sD5E
pt

c
D2~xA ,xA8 ;b!ŝ~xA ,xB!ŝ~xA8 ,xB8 !

3D2~xB ,xB8 ;b!dbdxAdxBdxA8dxB8 , ~1.1!

whereŝ(xA ,xB) is the parton-parton cross section integra
with the cutoff pt

c , which is the lower threshold to observ
final state partons as minijets,x is the momentum fraction
and A and B are labels to identify the two interacting ha
rons. sD is a function of the productŝ(xA ,xB)ŝ(xA8 ,xB8 ).
Actually the two different partonic interactions are localiz
in two regions in transverse space with a size of or
(1/pt

c)2 and at a relative distance of the order of the hadro
radiusr , in such a way that the two partonic interactions a
incoherently in the double scattering cross section. The n
perturbative input in Eq.~1.1! is the two-body parton distri-
bution D2(x,x8;b), which depends on the fractional mo
menta of the two partons taking part to the interaction and
their relative transverse distanceb. The transverse distanceb
has to be the same for the two partons of hadronA and the
two partons of hadronB, in order to have the alinemen
which is needed for a double collision to occur.D2 is a
dimensional quantity and therefore the process introduc
non perturbative scale factor which is related to the hadro
transverse size.

The simplest possibility to consider is the one where
dependence ofD2 on the different variables is factorized:

D2~x,x8;b!5 f eff~x! f eff~x8!F~b!. ~1.2!

f eff is the effective parton distribution, namely, the glu
plus 4

9 of the quark and antiquark distributions andF(b) is
normalized to one. Multiparton distribution are then unc
related andD2 does not contain further information wit
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respect to the one-body parton distribution~actually f eff!
apart form the dependence onb, whose origin is the dimen-
sionality of D2 and which gives rise to the scale factorseff .
In fact in this case one may write

sD5
sS

2

seff
~1.3!

with

1

seff
5E F2~b!d2b ~1.4!

and

sS5E
pt

c
f eff~xA! f eff~xB!ŝ~xA ,xB!dxAdxB , ~1.5!

the single scattering expression of the perturbative QCD p
ton model.

Equation~1.2! is the basic hypothesis underlying the si
nature of a double parton collision which one has been lo
ing for in the experimental search@1,3#. The expected char
acteristic feature of a double collision is in fact that it shou
produce a final state analogous to the one obtained by su
posing two single scattering processes. CDF measures

seff514.561.722.3
11.7 mb.

By looking at the dependence ofseff on x CDF has been
able to verify the correctness of the factorization hypothe
in Eq. ~1.2!. The range of values ofx available is limited to
x<0.2, for the interaction producing a pair of minijets, an
to x<0.4 for the interaction giving rise to a minijet and
photon. In the limited range of values ofx available, the
factorization hypothesis has shown to be consistent with
experimental evidence.

Since the uncorrelation hypothesis, as expressed in
~1.2!, is not inconsistent with experiment, one can work o
the case where all multiparton distributions are uncorrela
and one may look for the sum of all multiparton interactio
to the hadronic inelastic cross section. The subset where
multiple parton collisions are disconnected can be ea
503 © 1997 The American Physical Society
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504 57G. CALUCCI AND D. TRELEANI
summed up in the uncorrelated case@4#. The result is the
semihard hadronic cross sectionsH , which represents the
contribution to the hadronic inelastic cross section fro
events with at least one semihard partonic interaction.
actual expression is

sH5E d2b@12e2sSF~b!#

5 (
n51

` E d2b
@sSF~b!#n

n!
e2sSF~b!. ~1.6!

The integration on the impact parameter of the hadronic
lision b gives the dimensionality to the cross section. T
argument of the integral has the meaning of a Poisson
distribution of multiple semihard partonic interactions wi
average number depending on the impact parameter. The
pression in Eq.~1.6! can be also obtained by introducing th
semi-hard component in the conventional eikonalization
multiple scatterings@5#.

seff can be obtained fromsH by taking twice the opposite
of the second term of the expansion ofsH in powers of
multiple collisions. The actual value ofsH is related to the
value ofseff through Eq.~1.6!. The relation depends on th
functional form ofF(b). In the simplest case whereF(b)
5exp(2b2/R2)/pR2 one obtains a closed analytic expressi
for sH :

sH52pR2@g1 ln k1E1~k!#, ~1.7!

where g50.5772••• is Euler’s constant,k5sS /(2pR2),
and E1(x) is the exponential integral. In this example th
relation with the hadronic radiusr is R5r&. For smallk
one obtainssH→2pR2k5sS , for largek, namely,sS→`,
one obtainssH→2pR2(g1 ln k). In this simplest example
seff52pR2. The value ofsH is therefore proportional to the
measured value ofseff , the proportionality factor is slightly
dependent on energy and on the cutoff. Sensible value
the hadron-hadron c.m. energy and of the cutoff give val
for sH which are some 30–40 % larger with respect to
value ofseff . Different analytic forms forF(b) give quali-
tatively similar results. AlthoughsH has no reason in prin
ciple to be close tos inel , a value ofsH as small ass inel/2,
which would result from such considerations, seems ne
theless too small. IndeedsH , as given in Eq.~1.6!, has a
smooth dependence on the infrared cutoff. If one could re
have the interaction under control also at small values opt

c

one would say thatsH has to be the same as the inelastic n
diffractive cross sections inel . It would therefore be rathe
natural to expect forsH a value not much smaller as com
pared to the value ofs inel . The large difference betweensH
and s inel could therefore be an indication that the simple
assumptions underlying the derivation of the expression
Eq. ~1.6! have to be revised.

The main hypothesis which has been done to obtain
expression forsH in Eq. ~1.6! is the Poissonian multiparto
distribution. On the other hand, one has to expect corr
tions between partons as a consequence of the binding f
While most probably correlations will affect thex depen-
dence of the multiparton distribution only for finite values
x, and therefore at large rapidities, correlations in the tra
e
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verse parton coordinates are present in every kinematica
gime. Indeed the main reason of interest in multiple par
collisions, besides the identification of the process itself
precisely the measure of the many-body parton correlatio
which is an information on the hadron structure independ
on the one-body parton distributions usually considered
hard processes.

In the present paper we work out the most general exp
sion for the semihard cross sectionsH , which one obtains
by assuming that only two-body parton correlations a
present in the many-body parton distributions and by su
ming all disconnected multiple parton interactions. The t
body parton correlation in transverse plane is then wor
out in great detail in a few cases by considering differe
explicit shapes.

II. GENERAL FORMALISM AND SEMIHARD CROSS
SECTION

At a given resolution, provided by the cutoffpt
min that

defines the lower threshold for the production of minije
one can find the hadron in various partonic configuratio
The probability of an exclusiven-parton distribution,
namely, the probability to find the hadron in a configurati
with n-partons, is denoted byWn(u1•••un). ui[(bi ,xi) rep-
resents the transverse partonic coordinatebi and longitudinal
fractional momentumxi while color and flavor variables ar
not considered explicitly. The distributions are symmetric
the variablesui . One defines the generating functional of t
multiparton distributions as

Z@J#5(
n

1

n! E J~u1!•••J~un!Wn~u1•••un!du1•••dun ,

~2.1!

where the dependence on the infrared cutoffpt
min is implic-

itly understood, and one may introduce also the logarithm
the generating functionalF@J#5 ln(Z@J#). The conservation
of the probability yields the overall normalization conditio

Z@1#51. ~2.2!

One may use the generating functional to derive the m
body densities, i.e., the inclusive distributionsDn(u1•••un):

D1~u!5W1~u!1E W2~u,u8!du8

1
1

2 E W3~u,u8,u9!du8du91•••

5
dZ

dJ~u!
U

J51

5
dF

dJ~u!
U

J51

,
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57 505MINIJETS AND THE TWO-BODY PARTON CORRELATION
D2~u1 ,u2!5W2~u1 ,u2!1E W3~u1 ,u2 ,u8!du8

1
1

2 E W4~u1 ,u2 ,u8,u9!du8du9•••

5
d2Z

dJ~u1!dJ~u2!
U

J51

5
d2F

dJ~u1!dJ~u2!
U

J51

1
dF

dJ~u1!

dF
dJ~u2!

U
J51

••• . ~2.3!

The many-body parton correlations are defined by expand
F@J# in the vicinity of J51:

F@J#5E D~u!@J~u!21#du1 (
n52

`
1

n! E Cn~u1•••un!

3@J~u1!21#•••@J~un!21#du1•••dun . ~2.4!

HereD5D1 and the correlationsCn describe how much the
distribution deviates from a Poisson distribution, which c
responds in fact toCn[0, n>2.

In the case of hadron-nucleus and nucleus-nucleus c
sions a sistematic use of the Abramovskii-Gribov-Kanch
~AGK! cutting rules@6# allows one to express the total in
elastic cross section as a probabilistic superposition
nucleon-nucleon interaction probabilities@7#. The same fea-
ture holds for the self-shadowing cross sections@8#. When
considering hadron-hadron collisions as interactions betw
objects composed with partons, one can make the assu
tion that similar relations hold with nucleons replacing nuc
and partons replacing nucleons. In this respect semih
parton-parton interactions have to be regarded as a partic
case of self-shadowing interactions@9#. The semihard
nucleon-nucleon cross section is then expressed as the
of all the probabilities of multiple parton collisions:

sH5E d2bsH~b!

with

sH~b!5E (
n

1

n!

d

dJ~u1!
•••

d

dJ~un!
ZA@J#

3(
m

1

m!

d

dJ8~u182b!
•••

d

dJ8~um8 2b!
ZB@J8#

3H 12)
i 51

n

)
j 51

m

@12ŝ i , j~u,u8!#J
3) dudu8U

J5J850
, ~2.5!

whereb is the impact parameter between the two interact
hadronsA and B and ŝ i , j is the elementary probability fo
parton i ~of A! to have a hard interaction with partonj ~of
B!. The semihard cross section is constructed summing o
all possible partonic configurations of the two interacti
hadrons~the sums overn andm! and, for each configuration
g

-

li-
li

f

en
p-

i
rd
lar

um

g

er

with n partons fromA andm partons fromB, summing over
all possible multiple partonic interactions. This last sum
constructed asking for the probability of no interaction b
tween the two configurations~actuallyP i 51

n P j 51
m @12ŝ i , j #!.

One minus the probability of no interaction is equal to su
over all semihard interaction probabilities.

The presence of multiple parton interactions is induced
the large flux of partons which is effective at large energi
The most important contribution to the semihard cross s
tion, as a consequence, is the contribution of the disc
nected partonic collisions, namely, the interactions wh
each parton undergoes at most one semihard collision. T
are, in fact, those multiple partonic interactions that, a
given number of partonic collisions, maximize the part
flux. Indeed the search and the observation of the first e
dence of multiple semihard parton interactions has been
cused to the case of double disconnected parton interac
@1,3#. We simplify therefore the problem by expanding th
interaction probability~the factor in curly brackets! as sums
and by removing all the addenda containing repeated indi

H 12)
i , j

n,m

@12ŝ i j #J ⇒(
i j

ŝ i j 2
1

2! (
i j

(
kÞ i ,lÞ j

ŝ i j ŝkl1•••

~2.6!

as a result the semihard cross section is constructed
multiple disconnected parton collisions only, where disco
nected refers to the perturbative component of the inte
tion. Some features of semihard parton rescatterings are
sented in Appendix A. Because of the symmetry of t
derivative operators in Eq.~2.5! one can replace the expre
sion in Eq.~2.6! with

nmŝ112
1

2!
n~n21!m~m21!ŝ11ŝ221•••

in such a way that the sums overm andn can be performed
explicitly. As a consequence the cross section at fixed imp
parametersH(b) can be expressed by the operatorial form

sH~b!5@12exp~2d•ŝ•d8!#ZA@J11#ZB@J811#uJ5J850 .
~2.7!

We have avoided writing explicitly the variablesu and u8
and the functional derivatived/dJ(ui) has been simply indi-
cated asd i .

The form ofsH(b) given by Eq.~2.6! is still too compli-
cated to be worked out in its general form, since all possi
multiparton correlations are present inZ. Therefore we fur-
ther simplify the problem by taking into account two-bod
parton correlations only. Our explicit expression forF is,
therefore,

FA,B@J11#5E DA,B~u!J~u!du

1
1

2 E CA,B~u,v !J~u!J~v !dudv, ~2.8!

whereD(u) is the average number of partons andC(u,v) is
the two-body parton correlation.
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506 57G. CALUCCI AND D. TRELEANI
Either by using techniques of functional integration or
means of a suitable diagrammatic expansion@10# one is able
to obtain in this case a closed expression forsH(b):

sH~b!512expF2
1

2 (
n

an2(
n

1

2n
bn G , ~2.9!

wherean andbn are functions of the impact parameterb and
are given by

an5E DA~u1!ŝ~u1 ,u18!CB~u182b,u282b!ŝ~u28 ,u2!

3CA~u2 ,u3!•••DB~un82b!) duidui8 , ~2.10!

bn5E CA~un ,u1!ŝ~u1 ,u18!CB~u182b,u282b!

3ŝ~u28 ,u2!•••CB~un218 2b,un82b!

3ŝ~un8 ,un!) duidui8 . ~2.11!

The actual expression foran ~which will be referred to as
‘‘open chain’’! holds forn odd. Whenn is odd one may also
have the symmetric case, where the expression begins
DB and ends withDA . Whenn is even the initial and fina
distribution are either bothDA or bothDB . In the definition
of bn , which will be referred to as ‘‘closed chain’’n is
always even, so that one of the ends isA and the other isB.
Sometimes the expressionn52m will be used. One may
notice that, at a given order in the number of partonic int
actions, one can obtain a term of kinda from a term of kind
b by replacing oneC with a pair ofD ’s. The operation can
be done inn ways. The combinatorial meaning of the 1n
factor multiplying each term of kindb in Eq. ~2.9! is then
understood. The factor12 in Eq. ~2.9! is the consequence o
the symmetry betweenA andB.

The cross section is given by an integral on the imp
parameter of the interaction probabilitysH(b) that is ex-
pressed as one minus the probability of no interaction. T
probability of no interaction is given by the negative exp
nential of the sum over all possible different connected str
tures, namely, all structures of kindan and of kindbn . With
our approximations, Eq.~2.6! and Eq.~2.8!, these are in fact
all possible connected structures which can be built with
average numbersDA,B , the two-body correlationsCA,B , and
the interactionŝ. Expanding the exponential, the cross se
tion can then be expressed as the sum over all possible s
tures, both connected and disconnected.

One will notice that, when no correlations are present,
terms of kindb disappear and only the first of the terms
kind a, namely,DAŝDB , is left. In that limit the cross sec
tion is given simply by

sH5E d2b H12expF2E DA~u2b!

3DB~u8!ŝ~u,u8!dudu8G J , ~2.12!
ith

-

t

e
-
c-

e

-
uc-

ll

which corresponds to the Poissonian distribution discusse
the Introduction.

III. AN EXPLICIT CASE: GAUSSIAN CORRELATION

The bulk of the semihard cross section originates in
region of smallx values. The experimental observation o
the independence ofseff as a function ofx, at smallx values,
on the other hand, indicates that correlations inx, at smallx,
are not a strong effect in the two-body parton distribution.
sensible case to consider is therefore the one where ther
no correlations in fractional momenta, nor between fractio
momenta and transverse coordinates, while only transv
coordinates are correlated:

D~u!5 f ~x!D~b!, C~u,u8!5 f ~x! f ~x8!C~b,b8!.
~3.1!

Given the localization of the partonic collisions in transver
space, the dependence of the parton-parton interaction p
ability on b andb8 is represented as ad function:

ŝ~u,u8!5sx,x8d~b2b8!. ~3.2!

All integrations on the fractional momentax andx8 are then
factorized from the integrations on the transverse coordin
and result in the single scattering term cross sectionsS ,
whose expression is given in Eq.~1.5!. an andbn are there-
fore considerably simplified:

an5sS
nE DA~b1!CB~b12b,b22b!CA~b2 ,b3!•••

3DB~bn2b!) dbi , ~3.3!

bn5sS
nE CA~bn ,b1!CB~b12b,b22b!•••

3CB~bn212b,bn2b!) dbi••• . ~3.4!

To proceed further one needs to consider explicit functio
forms for C(b,b8). A simplest extension of the Gaussia
model discussed in the introduction corresponds to the
lowing Gaussian expression of the correlation term:

D~b!5h exp@2Fb2#,

C~b,b8!5k exp[2 1
2 F~b1b8!22 1

2 G~b2b8!2].
~3.5!

After definingb5y1 1
2 b, bn is explicitly written as

bn5sS
nknE expF2

1

2
nFb2GexpF2~F1G!( yi

2G
3expF2~F2G!( yi•yi 11G) dyi ,

with the convention that the variableyn11 coincides withy1 .
bn can then be worked out through the substitution

vi5myi2nyi 11 ; m2n5A2Fm1n5A2G,
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57 507MINIJETS AND THE TWO-BODY PARTON CORRELATION
which leads to

bn5JsS
nkn expF2

1

2
nFb2G E expF2( vi

2G) dvi ,

~3.6a!

where the Jacobian isJ5(mn2nn)22, as discussed in Ap
pendix B.bn is therefore finally written as

bn5sS
nknpn~mn2nn!22 exp[2 1

2 nFb2]. ~3.6b!

The case of the open chainan is less symmetric and re
quires a slightly less straightforward treatment. Using thy
variables, defined previously, the expression ofan takes the
form

an5sS
nh2kn21 expF2

1

2
nFb2G

3E exp@2~F1G!YT
•M•Y#) dyi , ~3.7a!

where

YT5~y1 ,y2 ,...,yn! ~3.8!

and

M5S 11r r 0 ... 0 0

r 1 r ... 0 0

A A A � A A

0 0 0 ... r 11r

D , ~3.9!

r 5 1
2 ~F2G!/~F1G!. ~3.10!

The Gaussian integral can be evaluated~details of the calcu-
lations are reported in Appendix B! leading to the relation

an5sS
nh2kn21pnr n21@~2r 11!Un21~1/2r !#21

3exp[2 1
2 nFb2], ~3.7b!

whereUn is the Chebyshev polynomial of second kind@11#.
While the termsan andbn are computed exactly, the sum

of the series in Eq.~2.9! can be performed only in limiting
cases. We discuss the case where the correlation leng
much smaller with respect to the hadronic radius. The
rameterG characterizes the correlation whileF is related to
the hadronic transverse size. Small correlation lengths co
spond toF!G. We work out therefore the leading orde
term in F while keeping the full structure inG both in an
and in bn . In order to find the limiting expression ofan
whenF!G, one needs to work out the limit ofUn(1/2r ) for
1/2r→211e. One obtains

Un~211e!'~2 !n~n11!.

By using this expression forUn and with similar, but sim-
pler, manipulations one obtains the following limiting for
for an :
is
-

e-

an5
Gh2

4nkF
Zn, ~3.7c!

with

Z5S 2pk

G DsS expF2
1

2
Fb2G . ~3.11!

The whole series of Eq.~3.1! can be then be summed yield
ing as a result

Sa5
Gh2

4kF
@2 ln~12Z!#. ~3.12!

To work out the limiting case forbn we keep the exac
value of the difference (m2n)252F, while settingm'n
'AG/2 everywhere else. Keeping, moreover, into acco
the conditionn52m, we obtain

b2m5
G

16Fm2 Z2m. ~3.6c!

The sum of the series appearing in Eq.~2.9! is therefore
given by

Sb5
G

32F
L3~Z2!, ~3.13!

whereL3(x)5(xn/n3 is the trilogarithm function@12#.
The final limiting form for the cross section, whenF

!G, is therefore

sH5E d2bsH~b!5E d2bH 12expF2
1

2
Sa2

1

2
SbG J .

~3.14!

In the limit G→` the correlation goes to zero. In this ca
one obtainsZ→0, Sa→(psS/2kF)exp@21

2Fb2# and Sb→0.
The expression ofsH in Eq. ~3.14! is then reduced to the
Poissonian distribution discussed in the Introduction.

IV. TWO QUALITATIVELY DIFFERENT FEATURES OF
THE CORRELATION TERM

The uncorrelated multiparton distributions are charac
ized by two independent features. One feature is that
n-body parton distribution is factorized in the product ofn
times the one-body parton distribution. The second featur
that the distribution in the number of partons~namely, after
integrating over all other degrees of freedom! is Poissonian.
Both features are affected by the introduction of the tw
body correlations and it is therefore interesting to study
two effects separately.

One may modify the number distribution, without intro
ducing nonfactorized two-body correlations inb, by using
the factorized expression

C~u,u8!52lD~u!D~u8!. ~4.1!
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508 57G. CALUCCI AND D. TRELEANI
The terms appearing in Eqs.~2.10! and~2.11! are very much
simplified in this case. After integrating over the longitudin
variables, the transverse integrations always appears in
unique form

T[T~b!5sSE DA~b!DB~b2b!db. ~4.2!

One therefore obtains

1

2 (
n

an5T/~11lT!,

1

2 (
m

b2m/2m5 ln~12l2T2!.

and the cross section, at a fixed value of the impact par
eter, is expressed as

sH~b!512@12l2T2#21/2 exp@2T/~11lT!#. ~4.3!

The parameterl represents a measure of the deviation fro
the Poissonian distribution, both for the initial states and
the elementary collisions. In Appendix C some further ela
ration on the factorized case are presented.

Perhaps more interesting is the case where the num
distribution of the incoming parton is Poissonian, beca
the correlation integrates to zero, while the resulting dis
bution in the number of parton collisions at fixed impa
parameter is non-Poissonian, as a consequence of the
ence of the correlation term. One may, e.g., consider
expressions

D~b!5h exp@2Fb2#,

C~b,b8!52k8D2 exp[2 1
2 F~b1b8!22 1

2 G~b2b8!2],
~4.4!

where D2 indicates the two-dimensional Laplace opera
acting on the transverse differenceb2b8 or y2y8. By inte-
gratingC over the transverse variables one obtains zero.

The number distribution depends only onD and it is Pois-
sonian by construction. The parameterk8 is obviously re-
lated to the parameterk in the previous paragraph. Sincek
was the strength of the correlation atb5b850 in order to
keep the same normalization we make the positionk8
5k/G.

In order to study this case a different way of dealing w
the approximation introduced in obtaining Eqs.~3.6c! and
~3.7c! is useful. This alternative procedure is the followin
The variablesyi are substituted by the mean valueY
5(y/n and by the differencesxi5yi 112yi , with the con-
straint (xi50. The relevant Jacobian isJ51 and so the
integration volume is transformed according toPdyi
5dYPdxid((xi). Then in the terms containingF, which
simply defines the size of the hadron, one performs the s
stitutionsyi'Y/n, whereas the terms containingG and the
differencesxi are not modified. For the calculation ofan ,
since onlyn21 differences appear, the integrations indY
anddxi decouple in the Gaussian integration and the resu
Eqs.~3.7c! and~3.11! is recovered; for the calculation ofbn
the constraint on thexi is essential, it may be implemented
l
he

-

r
-

er
e
i-
t
es-
e

r

b-

f

the standard exponential formd((xi)5(2p)22* exp(i(q
•xi)dq and carrying out all the integrations the result of E
~3.6c! is reproduced.

All open chainsan with n.1 contain at least one integra
tion over theC and give therefore zero since, as alrea
observed, in this case the differences have no constraint.
ery independent integration over a transverse difference
responds therefore to an integration of a single correla
term, which gives zero. Small nonzero effects have been p
sibly lost in the approximate substitutionyi'Y/n in the
terms containingF in Eqs.~3.6b! and ~3.7b!.

When one computes the contribution of the closed ch
bn , the constraint is effective. The calculation is again p
formed by means of the exponential representation of thd
function and the resulting expression can be brought to
following form:

b̃2m5
G

8Fm2 ~Z/m!2m~2m!!. ~4.5!

The final result is obtained by summing all the terms abo
with the weight (1/2m). The cross section~at b fixed! is
therefore

sH~b!512exp@2T2S̃b#, S̃b5 (
m51

`
b̃2m

2m
. ~4.6!

While a closed analytic form for the sumS̃b is not easily
written in the general case, in the limiting case where
number of partonic collisions is large one may use
Stirling approximation for the factorial m2m

'A2pme2m/m!. With the help of the decomposition

(2m)! 522mm!( 1
2 )m the sum can be expressed as

S̃b5
pG

8F
c~w!, ~4.7!

where

w5~2Z/e!2, c~w!5(
1

`
~1/2!m

m2m!
wm.

c(w) can be evaluated by computing, as an intermed
step,

~w]w!~w]w!c~w!5(
1

`
~1/2!m

m!
wm,

and by performing the integrations afterwards. The result
expression is

c~w!52L2( 1
2 @12A12w# )2 ln2( 1

2 @11A11w# ),
~4.8!

whereL2(x)5(xn/n2 is the dilogarithm function@12#.

V. CONCLUDING DISCUSSION

The small value ofseff , the dimensional parameter cha
acterizing double parton scatterings, which has been m
sured recently by CDF, is an indication that two-body part
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57 509MINIJETS AND THE TWO-BODY PARTON CORRELATION
correlations, in the many-body parton distribution of the p
ton, are likely to be sizable. In the case of an uncorrela
many-body parton distribution, the value ofseff puts a con-
straint on the range of possible values ofsH , the semihard
contribution to the hadronic inelastic cross section. The
tual measured value ofseff would give rise to values ofsH
of the order ofs inel/2 also at very large c.m. energies, whe
one would rather expectsH.s inel . The experimental evi-
dence is also that, in thex region accessible experimentall
namely, at smallx values, the correlation in fractional mo
menta is not a large effect.

In the present paper we have worked out the semih
cross sectionsH in the case where initial state partons a
correlated in the transverse parton coordinates. In factsH
can be worked out rather explicitly when only two-body pa
ton correlations are included in the many-body parton dis
butions and when each parton can have at most one sem
interaction. There are two qualitatively different features
the two-body parton correlation, and both change the rela
betweensH and seff with respect to the uncorrelated cas
~1! The distribution in the number of partons is not any mo
Poissonian, although the dependence on the kinematical
ables of the different partons is factorized;~2! the overall
distribution in the number of partons, namely after integr
ing on the partonic kinematical variables, is Poissonian
the dependence on the partonic kinematical variables is
factorized, in which case the two-body parton correlat
integrates to zero. The general case is obviously a comb
tion of the two possibilities. We point out, however, that bo
cases separately can give rise to a small value ofseff while
keeping the value ofsH close tos inel .

In the first casesH is obtained by integrating the expre
sion in Eq.~4.3!. In the second by integrating the expressi
in Eq. ~4.6!. The critical value of the impact parameterbc ,
which gives the size to the cross sectionsH , is the value
which makes small the argument of the exponential in
expression ofsH(b). The detailed dependence of the arg
ment of the exponential atb,bc is not of great importance
for the determination ofsH when, forb,bc , the argument
of the exponential is already large:sH is obtained by inte-
grating the probability of having at least one semihard int
action. When the probability is close to one the contribut
to the integral is very similar for events with the same imp
parameter and with different but large average numbe
partonic collisions.

The critical value of the impact parameter which gives
size tosH is therefore determined by the argument of t
exponential at the edge of the interaction region. In case~1!
the behavior of the argument of the exponential when go
at the edge of the interaction region corresponds to the
iting behavior of the expression below at smallT values:

T

11lT
1

1

2
ln~12l2T2!→T5sSE DA~b!DB~b2b!d2b,

while in case~2! it corresponds to neglectS̃b as compared
with T in Eq. ~4.6!:

T1S̃b→T5sSE DA~b!DB~b2b!d2b.
-
d

c-

rd

-
i-
ard

n
:

ri-

-
t
ot
n
a-

e
-

-
n
t
f

e

g
-

In both cases the critical valuebc has the same value whic
one finds for the uncorrelated distribution and thereforesH ,
as in the uncorrelated case, is roughly equal to 4p/F, where
F is the parameter giving the extension of the one-body p
ton distribution in the transverse plane.

The value of the semihard cross section is therefore
termined by the behavior at large distances and it does
depend on correlations.seff , on the contrary, is related di
rectly to the correlation term, as it is seen by working out t
double scattering cross section from the expansion ofsH .
One obtains in fact the relation

seff5
4p

F~11l!2

in case~1!, and

1

seff
5

F

4p
1E C~b,b8!C~b2b,b82b!d2bd2b8d2b

in case~2!.
A qualitative feature is that in both cases one obtain

value of seff which may be sizably smaller with respect
4p/F.sH . While, on the other hand, nothing prevents t
value of sH to be close to the value ofs inel . The smaller
value ofseff , with respect to the expectation of the uncorr
lated case, is rather generally associated with the increa
dispersion of the distribution in the number of partonic c
lisions: In the case of no correlations the distribution
strictly Poissonian when the impact parameter is fixed. Wh
correlations are introduced the distribution in the number
parton collisions, at fixedb, is not Poissonian any more an
the natural consequence is that the dispersion in the num
of collisions is increased.

The indication from the measure of the rate of doub
parton scatterings is therefore that two-body parton corr
tions are likely to be important while, unfortunately, on
cannot say much about dynamical quantities, such as
correlation length. Useful observables to be measured, in
der to get some more insight into the problem, would be
semihard cross sectionsH and the triple parton scatterin
cross section. Our present analysis shows thatsH can be
reliably discussed in perturbation theory. The measure
sH , in association withseff , would help considerably in
clarifying the size of the effect induced by the presence
the two-body parton correlations: All the considerations
the present paper are based on the prejudice thatsH should
have a value rather close to the value ofs inel .

The measure of triple parton scattering would allow o
to test the possibility discussed in case~1!, since in that case
the rate of triple scatterings would be strictly fixed by t
measured rate of double scatterings. In the other cases
ently discussed the knowledge of the rate of triple par
collisions would allow one to obtain the actual values of t
parameters of the correlation term.

A lot of effort has been put on the study of the proto
structure as a function of the momentum fractionx. The
distribution of partons however depends on three degree
freedom, the momentum fractionx and the transverse parto
coordinateb. The measure of the rate of triple and of high
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510 57G. CALUCCI AND D. TRELEANI
order partonic collisions is the essential tool to learn on
parton structure of the proton in transverse plane.
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APPENDIX A

In this appendix some short observations about the eff
of the rescattering processes will be displayed. The gen
form of the hadron-hadron scattering cross section Eq.~2.5!
has been reduced to a more manageable form by throw
away all the rescattering process by means of the positio

H 12)
i , j

n,m

@12ŝ i j #J ⇒(
i j

ŝ i j 2
1

2! (
i j

(
kÞ i ,lÞ j

ŝ i j ŝkl1••• .

~A1!

It is possible to deal with some rescattering process with
too much effort if we look at processes where only one of
two colliding partons has already suffered some collision
this case instead of Eq.~A1! we write
b
it
h
to
th
n-
th
re
a

re
e

-

–

ts
ral

ng
:

ut
e
n

H 12)
i , j

n,m

@12ŝ i j #J ⇒(
i j

ŝ i j 2
1

2! (
i j

H (
kÞ i ,l

ŝ i j ŝkl

1 (
k,lÞ j

ŝ i j ŝkl2 (
kÞ i ,lÞ j

ŝ i j ŝklJ 1••• . ~A2!

In this expression the first term shows that the partons
longing to the first hadron suffer only one collision, the pa
tons belonging to the second hadron undergo any numbe
collisions, the second term describes the symmetrical si
tion, the third term eliminates the double counting of t
single-collision processes.1

The operatorial form of the cross section at fixed imp
parametersH(b) acquires now the more complicated sha

sH~b!5$12exp~d•@eŝ•d821# !2exp~d8•@eŝ•d21# !

1exp~2d•ŝ•d8!%ZA@J11#ZB@J811#uJ5J850 .

~A3!

This expression seems of uneasy interpretation but is g
some information when reduced to simpler particular cas
The simplest, but nontrivial result is produced when the
coming parton distribution is purely Poissonian and only
double scattering is actually considered. In these situation
is easily seen that instead of Eqs.~2.9!, ~2.10!, ~2.11! one
obtains the form
sH5E dbH 12expF2E DA~u!ŝ~u,u8!DB~u8!dudu8G S expF1

2 E DA~u!ŝ~u,u8!ŝ~u,u9!DB~u8!DB~u9!dudu8du9G
1expF1

2 E DA~u!DA~u9!ŝ~u,u8!ŝ~u9,u8!DB~u8!dudu8du9G21D J . ~A4!
n
e
are

e

This form is not unexpected, it could have been written
hand, Eq.~A3! shows a more systematic way of deriving
and possible further corrections. The final distribution of t
collision isnot Poissonian and this deviation is purely due
the hard dynamics. It can be observed that precisely
origin in the hard collision may also offer a way to disti
guish these effects from the effects of correlations in
incoming two-body distributions, in fact in the case he
sketched there should be an unbalance among the kinem
cal variables of the pair of jets originating from the scatte
partons.

APPENDIX B

The Jacobian appearing in Eq.~3.6!, which arises from
the transformation from the variablesy to the variablesv, is
expressed asJ5@detJ#22. The actual form ofJ is

J5S m 2n 0 ... 0 0

0 m 2n ... 0 0

A A A � A A

2n 0 0 ... 0 m

D ,
y

e

is

e

ti-
d

and the result detJ5mn2nn is easily obtained by expansio
according to the last row. The exponent22 appears becaus
the matrix describes the inverse transformation and there
two transverse dimensions.

In order to calculate the determinant of the matrixM in
Eq. ~3.9! an auxiliary matrixA is introduced so that we hav

M5S 11r r 0 ... 0 0

r 1 r ... 0 0

A A A � A A

0 0 0 ... r 11r

D ,

A5S 1 r 0 ... 0 0

r 1 r ... 0 0

A A A � A A

0 0 0 ... r 1

D .

1This possibility was already considered in Ref.@10#, for an un-
symmetrical situation.
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By means of the standard rules for the computation of
determinants two recurrence relations are obtained:

detMn5detAn12r detAn211r 2 detAn22,

detAn5detAn212r 2 det An22

which imply the simpler relation

detMn5~2r 11!detAn21 .

The recurrence relations for the determinants ofAn are very
similar to the recurrence relation for the Chebyshev poly
mials Un @11# and in this way it is possible to get the fin
expression for them

detAn5r nUn~1/2r !.

For completeness we give also the explicit expression of
U polynomials:

Un~cosu!5
sin~n11!u

sin u
.

APPENDIX C

In this appendix we shall briefly discuss some no
Poissonian one-body densities, the essential point were
ready shown in Ref.@10#, but it may be useful to state aga
them in order to have a comparison of the previous tre
ment. The starting point of Eq.~2.7! is specialized to the cas
of pure one-body densities in the form

sH5@12exp~2T]]8!#XA~Y!XB~Y8!uY5Y0 ,Y85Y
08
.

~C1!
.

e

-

e

-
al-

t-

The Poissonian distribution is given byX5exp@Y2Y0#, the
situation described in Eq.~4.1! corresponds to

X5exp[~Y2Y0!1 1
2 l~Y2Y0!2], ~C2!

Then by applying Eq.~C1! to Eq. ~C2!, one gets as interme
diate step

sH5exp[2T]81 1
2 l~T]8!2]exp@~Y82Y08!

1 1
2 l~Y82Y08!2#uY85Y

08
. ~C3!

By the use of the shift formula exp@a]x#F(x)5F(x1a) and of
the relation.

exp@2p]x
2#exp@qx2#5

1

A124pq
expF qx2

114pqG ,
it is seen that the expression appearing in Eq.~C3! reduces to
the form already given in Eq.~4.3!.

One could also choose the form

X5@12~Y2Y0!#2a,

which corresponds to a negative binomial distribution for t
initial partons and obtain in this way the result

sH~b!512T2aU@a;1;1/T#,

by representing the incoming distributions as Laplace tra
forms as shown in Ref.@10#. Note that a slight simplification
has been introduced in the distribution, with respect to t
reference, and this reflects into a slight simplification of t
result, which keep, however, its main properties; in particu
U is the irregular confluent hypergeometric function.
an,

l
-
,
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