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Minijets and the two-body parton correlation
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A large number of double parton scatterings have been recently observed by the CDF collaboration. The
double parton scattering process measurgs a nonperturbative quantity related to the hadronic transverse
size and with the dimensions of a cross section. The actual value measured by the CDF collaboration is
considerably smaller as compared with the naive expectation, namely, the value of the inelastic nondiffractive
cross section. The small value of; may be an effect of the hadron structure in the transverse plane. We
discuss the problem by taking into account, at all orders, the two-body parton correlations in the many-body
parton distributions[ S0556-282(98)00601-§

PACS numbgs): 13.85.Hd, 11.80.La, 12.38.Bx

. INTRODUCTION respect to the one-body parton distributi¢actually f )
apart form the dependence bnwhose origin is the dimen-
The Collider Detector at FermilatiCDF) collaboration  sjonality of D, and which gives rise to the scale factog;.
has recently shown evidence of a large number of doublén fact in this case one may write

parton collisiond1], namely, events where, in the same in-
2

elastic interaction, two different pairs of partons scatter inde- os
pendently with large momentum transfer. The inclusive cross UD:U_ﬁ 1.3
section for a double parton scattering is written| 2k €
with
op= J D2(Xa Xa:D) T (Xa Xp) T (XA X5) 1
Pt —= f F2(b)d%b (1.4
X Dy(xg X4 ;b)dbdxadxgdxadxs,  (1.1) of
and

wherea(xa,Xg) is the parton-parton cross section integrated

with the cutoffpf, which is the lower threshold to observe N

final state partons as minijets,is the momentum fraction, Is= jpcfeﬁ(XA)feﬁ(XB)”(XA’XB)dXAdXB' (1.9

and A and B are labels to identify the two interacting had- '

rons. op is a function of the product(xa,xg)o(Xa.Xg).  the single scattering expression of the perturbative QCD par-

Actually the two different partonic interactions are localizedton model.

in two regions in transverse space with a size of order Equation(1.2) is the basic hypothesis underlying the sig-

(1/pf)? and at a relative distance of the order of the hadronimature of a double parton collision which one has been look-

radiusr, in such a way that the two partonic interactions adding for in the experimental searg¢h,3]. The expected char-

incoherently in the double scattering cross section. The noracteristic feature of a double collision is in fact that it should

perturbative input in Eq(1.1) is the two-body parton distri- produce a final state analogous to the one obtained by super-

bution D,(x,x";b), which depends on the fractional mo- posing two single scattering processes. CDF measures

menta of the two partons taking part to the interaction and on

their relative transverse distanbeThe transverse distante Te=14.5+1.7°3] mb.

has to be the same for the two partons of hadkoand the _

two partons of hadrorB, in order to have the alinement  BY looking at the dependence oty on x CDF has been

which is needed for a double collision to occ, is a able to verify the correctness of the factorization hypothesis

dimensional quantity and therefore the process introduces i Ed. (1.2). The range of values of available is limited to

non perturbative scale factor which is related to the hadroni¥=<0.2, for the interaction producing a pair of minijets, and

transverse size. to x<0.4 for the interaction giving rise to a minijet and a
The simplest possibility to consider is the one where thePhoton. In the limited range of values &f available, the

dependence db, on the different variables is factorized: ~ factorization hypothesis has shown to be consistent with the
experimental evidence.

Do(x,x";0) = fe(X) f (X" )F (D). (1.2 Since the uncorrelation hypothesis, as expressed in Eq.
(1.2), is not inconsistent with experiment, one can work out
fer is the effective parton distribution, namely, the gluonthe case where all multiparton distributions are uncorrelated
plus 5 of the quark and antiquark distributions aRgb) is  and one may look for the sum of all multiparton interactions
normalized to one. Multiparton distribution are then uncor-to the hadronic inelastic cross section. The subset where all
related andD, does not contain further information with multiple parton collisions are disconnected can be easily
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summed up in the uncorrelated cdgd. The result is the verse parton coordinates are present in every kinematical re-
semihard hadronic cross sectiory, which represents the gime. Indeed the main reason of interest in multiple parton
contributipn to the hadronic _inelastic cross sectio_n fromcollisions, besides the identification of the process itself, is
events with at least one semihard partonic interaction. Therecisely the measure of the many-body parton correlations,

actual expression is which is an information on the hadron structure independent
on the one-body parton distributions usually considered in

O-H:J’ d2B[1—e oFA)] hard processes.
In the present paper we work out the most general expres-

@ [osF(B)]" sion for the semihard cross section,, which one obtains
:E dZBS—'ewsHB)_ (1.6) by assuming that only two-body parton correlations are
n=1 n: present in the many-body parton distributions and by sum-

_ ) _ _ ming all disconnected multiple parton interactions. The two
T_h_e Integration on the Impact parameter of the hadfo”'c COIbody parton correlation in transverse plane is then worked
lision 5 gives the. dimensionality to the cross section. Theout in great detail in a few cases by considering different
argument of the integral has the meaning of a Pmssomagx licit shapes
distribution of multiple semihard partonic interactions with P pes.
average number depending on the impact parameter. The ex-
pression in Eq(1.6) can be also obtained by introducing the
semi-hard component in the conventional eikonalization of !l- GENERAL FORMALISM AND SEMIHARD CROSS
multiple scattering$5]. SECTION

O Can be obtained frorry by taking twice the opposite
of the second term of the expansion @f; in powers of
multiple collisions. The actual value of, is related to the
value of o through Eq.(1.6). The relation depends on the
functional form of F(B). In the simplest case whefe(3)
=exp(— B4R%)/=R? one obtains a closed analytic expression
for oy :

At a given resolution, provided by the cutoff™ that
defines the lower threshold for the production of minijets,
one can find the hadron in various partonic configurations.
The probability of an exclusiven-parton distribution,
namely, the probability to find the hadron in a configuration
with n-partons, is denoted By, (u;---u,). ui=(b;,X;) rep-
resents the transverse partonic coordirgtend longitudinal

UH=27TR2[7+|n k+E(k)], (1.7 fractional momentunx; while color and flavor variables are

not considered explicitly. The distributions are symmetric in

where y=0.5772-- is Euler's constantx=og/(27R?), the variableas; . One defines the generating functional of the

and E,(x) is the exponential integral. In this example the multiparton distributions as

relation with the hadronic radius is R=rv2. For smallk

one obtainsry—27R?k= o, for largek, namely,os—,

one obtainsoy— 27R?(y+1In «). In this simplest example 1

ooi=27R2. The value ofoy, is therefore proportional to the  2[J]=2> o7 | Uz I(Uup) Wyug- - Un)duy - -dup,

measured value af.;, the proportionality factor is slightly no 2.1)

dependent on energy and on the cutoff. Sensible values of '

the hadron-hadron c.m. energy and of the cutoff give values

for oy which are some 30—40 % larger with respect to the . N
value of 0. Different analytic forms foiF (8) give quali- where the dependence on the infrared cumff’ is implic-

tatively similar results. Althouglery has no reason in prin- itly understqod, and one may introduce also the Iogarit_hm of
ciple to be close tar,, a value ofoy as small asre/2, the generating functionaf[ J]=In(Z[J]). The conservation

which would result from such considerations, seems neverc-’f the probability yields the overall normalization condition

theless too small. Indeedt,, as given in Eq.(1.6), has a

smooth dependence on the infrared cutoff. If one could really

have the interaction under control also at small valueg{of Z1]=1

one would say that; has to be the same as the inelastic non

diffractive cross sectiomr;,. It would therefore be rather

natural to expect fory a value not much smaller as com-

pared to the value of;,,. The large difference betweery

and o, could therefore be an indication that the simplest

assumptions underlying the derivation of the expression in

Eq. (1.6) have to be revised. Dl(u)=W1(u)+f W, (u,u’)du’
The main hypothesis which has been done to obtain the

expression fowry in Eq. (1.6) is the Poissonian multiparton

(2.2

One may use the generating functional to derive the many
body densities, i.e., the inclusive distributioRg(u;---u,):

S 1
distribution. On the other hand, one has to expect correla- += f Wa(u,u’,uydu' du’+ -
tions between partons as a consequence of the binding force. 2
While most probably correlations will affect the depen- 52 ‘ SF |

dence of the multiparton distribution only for finite values of
X, and therefore at large rapidities, correlations in the trans-

T8, s,
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with n partons fromA andm partons fromB, summing over
Dz(Ul,Uz)zwz(Ul,Uz)ﬂLj Wi3(ug,up,u’)du’ all possible multiple partonic interactions. This last sum is
constructed asking for the probability of no interaction be-
tween the two configurationt@ctually IT;_ ;T ;[1— a7 ;1).
One minus the probability of no interaction is equal to sum
over all semihard interaction probabilities.

1
+§ f W,(uq,u,,u’,u”)du’du’---

_ 8’2 | _ SF \ The presence of multiple parton interactions is induced by
8J(uy) 5J(u2)|J:1 53(”1)53(112)\3:1 the large fl'ux of partons V\{hich is effective at large energies.
The most important contribution to the semihard cross sec-

oF  OF tion, as a consequence, is the contribution of the discon-

(2.3

nected partonic collisions, namely, the interactions where
each parton undergoes at most one semihard collision. These
The many-body parton correlations are defined by expandingre, in fact, those multiple partonic interactions that, at a
F[J] in the vicinity of J=1: given number of partonic collisions, maximize the parton
flux. Indeed the search and the observation of the first evi-

TSy awy)

1 dence of multiple semihard parton interactions has been fo-
f[J]ZJ D(w[I(u)—1]du+ o f Cn(uz---uy) cused to the case of double disconnected parton interactions
n=2 T [1,3]. We simplify therefore the problem by expanding the
X[J(uy)—1]---[I(uy) —1]duy---du,. (2.4)  interaction probabilitythe factor in curly brackejsas sums

and by removing all the addenda containing repeated indices:
HereD=D;, and the correlation€,, describe how much the

distribution deviates from a Poisson distribution, which cor- nm . 1 L
responds in fact t&€,=0, n=2. 1_1i_J[ [1-0] :%‘4 Tij T 5y ; k#iz#j Oijo T
In the case of hadron-nucleus and nucleus-nucleus colli- ' ' (2.6)

sions a sistematic use of the Abramovskii-Gribov-Kancheli

(AGK) cutting rules[6] allows one to express the total in- as a result the semihard cross section is constructed with
elastic cross section as a probabilistic superposition ofultiple disconnected parton collisions only, where discon-
nucleon-nucleon interaction probabilitiEg]. The same fea- nected refers to the perturbative component of the interac-
ture holds for the self-shadowing cross sectip8s When  tion. Some features of semihard parton rescatterings are pre-
considering hadron-hadron collisions as interactions betweegented in Appendix A. Because of the symmetry of the

objects composed with partons, one can make the assumgerivative operators in Eq2.5) one can replace the expres-
tion that similar relations hold with nucleons replacing nucleisjon in Eq.(2.6) with

and partons replacing nucleons. In this respect semihard

parton-parton interactions have to be regarded as a particular R 1 o

case of self-shadowing interaction®]. The semihard nNMoy1— o1 n(n=1)m(m—1)0q305+
nucleon-nucleon cross section is then expressed as the sum '

of all the probabilities of multiple parton collisions: in such a way that the sums overandn can be performed

explicitly. As a consequence the cross section at fixed impact
oy= j d?Bay(B) parametelor(B) can be expressed by the operatorial form

with on(B)=[1—exp(—8-0-6")]1ZA[I+1]Z5[ I’ +1]]=y 0.
(2.7)
1 ¢ d We h ided writi licitly th iabl du’
UH(B)ZJ > = Za[J] e have avoided writing explicitly the variablesandu’
nonlod(uy)  83(up) and the functional derivativé/ 5J(u;) has been simply indi-
1 s cated ass; .
XE _ ARG The form ofoy(B) given by Eq.(2.6) is still too compli-
m mb o) (u—pB) 8 (up—p) cated to be worked out in its general form, since all possible
nom multiparton correlations are present # Therefore we fur-
B A , ther simplify the problem by taking into account two-body
X{l .Hl ,—1;[1 [1=0ij(uu )]} parton correlations only. Our explicit expression téris,
therefore,
<[] dudu , (2.5
J=r=0 fA,B[J+1]=J Dag(u)J(u)du

whereg is the impact parameter between the two interacting
hadronsA andB and &i,j is the elementary probability for
partoni (of A) to have a hard interaction with partgn(of

B). The semihard cross section is constructed summing over
all possible partonic configurations of the two interactingwhereD (u) is the average number of partons &¢l,v) is
hadrongthe sums oven andm) and, for each configuration the two-body parton correlation.

-I—%fCA'B(u,v)J(u)J(v)dudv, 2.9



506 G. CALUCCI AND D. TRELEANI 57

Either by using techniques of functional integration or by which corresponds to the Poissonian distribution discussed in
means of a suitable diagrammatic expangibd] one is able the Introduction.
to obtain in this case a closed expressiondgpi(S3):
Ill. AN EXPLICIT CASE: GAUSSIAN CORRELATION

oH(,B)=1—ex;{— % > a—> % b,|, (29 The bulk of the semihard cross section originates in the
n n region of smallx values. The experimental observation on
the independence @f as a function ok, at smallx values,
wherea, andb, are functions of the impact paramefeand  on the other hand, indicates that correlations,imt smallx,
are given by are not a strong effect in the two-body parton distribution. A
sensible case to consider is therefore the one where there are
- , , , -~ no correlations in fractional momenta, nor between fractional
a”:f Da(ug)o(ug,up)Ca(us = B,uz=B)o(Uz,Uz) momenta and transverse coordinates, while only transverse
coordinates are correlated:

X Ca(Uz,Ug) - Dg(uy=B)]] dudu, (210 D(u)=f(x)D(b), C(u,u’)=F(x)f(x’)C(b,b’).
3.
_ ~ / / , Given the localization of the partonic collisions in transverse
b,=1[C , ,u;)C —Bus— ; .
" f AlUn U)o (g, Up) Ce(Ur = .U ) space, the dependence of the parton-parton interaction prob-

ability on b andb’ is represented as &function:

F(U,U") =0y 8(b—b"). (3.2

X o(Up,Up) -+ Cg(Ul_1— B,U,— B)

X (U ,u dudu/ . 2.1 _ _ .
a(up un]1 dudy 213 All integrations on the fractional momenkaandx’ are then

factorized from the integrations on the transverse coordinates

The actual expression far, (which will be referred to as and result in the single scattering term cross sectign
“open chain”) holds forn odd. Whem is odd one may also whose expression is given in E{.5). a, andb,, are there-
have the symmetric case, where the expression begins witore considerably simplified:
Dg and ends wittD 5. Whenn is even the initial and final
distribution are either bot® , or bothDg. In the definition _.n _ _
of b,, which will be referred to as “closed chaint is a”_gsf DA(by)Cp(by=B,b2~ B)Calbz,bs)
always even, so that one of the end#\isnd the other i8.
Sometimes the expressian=2m will be used. One may xDg(by—B)[1 dby;, (3.3
notice that, at a given order in the number of partonic inter-
actions, one can obtain a term of kiadrom a term of kind
b by replacing oneC with a pair ofD’s. The operation can bn:(,gj Ca(b,,b;)Cg(b;—B,0,—B)- -
be done inn ways. The combinatorial meaning of thenl/
factor multiplying each term of kindb in Eq. (2.9) is then
understood. The factoy in Eq. (2.9) is the consequence of XCB(bn_l—,B,bn—,B)H db;--- . (3.9
the symmetry betweeA andB.

The cross section is given by an integral on the impactrg proceed further one needs to consider explicit functional
parameter of the interaction probability,,(8) that is ex-  forms for C(b,b’). A simplest extension of the Gaussian
pressed as one minus the probability of no interaction. Thenodel discussed in the introduction corresponds to the fol-

probability of no interaction is given by the negative expo-|owing Gaussian expression of the correlation term:
nential of the sum over all possible different connected struc-

tures, namely, all structures of kirag, and of kindb,, . With D(b)=h exg —Fb?],
our approximations, Eq2.6) and Eq.(2.9), these are in fact
all possible connected structures which can be built with the  C(b,b’")=k exp[— 3 F(b+b’)?2— 1 G(b—b")?].
average numbAerBA,B, the two-body correlation€ g, and (3.5
the interactiono. Expanding the exponential, the cross sec-
tion can then be expressed as the sum over all possible strugfter definingb=y+ 38, b, is explicitly written as
tures, both connected and disconnected. 1

One will notice that, when no correlations are present, all _ npn _ = 2 _ 2
terms of kindb disappear and only the first of the terms of by =05k J exr{ 2 nFa exr{ (F+G)E Yi }
kind a, namely,D,oDg, is left. In that limit the cross sec-

tion is given simply by xex;{—(F—G)z Vi-Yit1

[T dyi,

on= f dzﬂ{ 1— exr{ - J Da(u—p) with the convention that the variabjg . coincides_wi'ghyl.
b, can then be worked out through the substitution

XDg(u")o(u,u’)dudu

], (2.12 Vi= myi— vie1;  p—v=\2Fu+v=\2G,
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which leads to

f ex;{—z V[T dv,
(3.6a

where the Jacobian i3=(u"—»") "2, as discussed in Ap-
pendix B.b, is therefore finally written as

> NFp?

by=Jok" exp{

b,=oek"m"(u"— ") "2 exp[— 3 NFB?]. (3.6b

The case of the open chaay, is less symmetric and re-
quires a slightly less straightforward treatment. Usingthe

variables, defined previously, the expressioraptakes the
form

1
a,=oeh?k" "1 exp{ -3 nF,BZ}

xf exgd —(F+G)Y"- M-V[] dy;,, (3.7a

where
yT:(yl,yz,---,yn) (38)
and
1+r r O
r 1 r ... O 0
M= : RN : : ! (3.9
0 0O 0 ... r 1+r
r=3(F-G)/(F+G). (3.10

The Gaussian integral can be evaluateéetails of the calcu-
lations are reported in Appendix)Beading to the relation

an=02h?k" 1 " (2r+ 1)U, _q(1/2r)] 7t
xexp[— 3 nFB?], (3.7b
whereU,, is the Chebyshev polynomial of second kirid].

While the termsa,, andb,, are computed exactly, the sum
of the series in Eq(2.9 can be performed only in limiting
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——Gh2 z" 3.7
A= AnkE < @79
with
Z= 2K lF 2 3.1
= ? Og €eX _E Bel. ( . :D

The whole series of Eq3.1) can be then be summed yield-
ing as a result

h2

ST akE L

—~In(1-2)]. (3.12

To work out the limiting case fob, we keep the exact
value of the difference £ — v)?=2F, while settingu~ v
~\/G/2 everywhere else. Keeping, moreover, into account
the conditionn=2m, we obtain

(3.60

bom=16Emz 2"

The sum of the series appearing in EQ.9 is therefore
given by

G

szﬁ L3(Z?), (3.13

where L3(x) ==x"/n? is the trilogarithm functiorf12].
The final limiting form for the cross section, when
<G, is therefore

1 1
UH:J' dzBUH(B):f dzﬁ(l_exl{_ 5 Sa— 5 Sb“
(3.19

In the limit G—< the correlation goes to zero. In this case
one obtainsZ—0, S,— (7og/2kF)exd —3F5?] and S,—0.
The expression ofry in Eq. (3.19 is then reduced to the
Poissonian distribution discussed in the Introduction.

IV. TWO QUALITATIVELY DIFFERENT FEATURES OF
THE CORRELATION TERM

cases. We discuss the case where the correlation length is
much smaller with respect to the hadronic radius. The pa- The uncorrelated multiparton distributions are character-
rameterG characterizes the correlation whifeis related to  ized by two independent features. One feature is that the
the hadronic transverse size. Small correlation lengths corrd-body parton distribution is factorized in the productrof
spond toF<G. We work out therefore the leading order times the one-body parton distribution. The second feature is
term in F while keeping the full structure i® both ina, that the distribution in the number of partoramely, after
and inb,. In order to find the limiting expression af, integrating over all other degrees of freedaisiPoissonian.
whenF <G, one needs to work out the limit &f ,(1/2r) for ~ Both features are affected by the introduction of the two-
1/2r — — 1+ €. One obtains body correlations and it is therefore interesting to study the
two effects separately.

One may modify the number distribution, without intro-
ducing nonfactorized two-body correlations lin by using
the factorized expression

Un(—1+e)~(—)"(n+1).

By using this expression fdd,, and with similar, but sim-
pler, manipulations one obtains the following limiting form

for a,: C(u,u’)=—=AD(u)D(u"). 4.1
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The terms appearing in EqR.10 and(2.11) are very much  the standard exponential form(Ex,)=(2) 2 exp(=q

simplified in this case. After integrating over the longitudinal . x.)dq and carrying out all the integrations the result of Eq.
variables, the transverse integrations always appears in thg.6¢ is reproduced.

unique form All open chainsa,, with n>1 contain at least one integra-
tion over theC and give therefore zero since, as already
T=T(B)= O-Sf Da(b)Dg(b—B)db. (4.2  observed, in this case the differences have no constraint. Ev-
ery independent integration over a transverse difference cor-

responds therefore to an integration of a single correlation
term, which gives zero. Small nonzero effects have been pos-
1 sibly lost in the approximate substitutio~Y/n in the
> > a,=T/(1+\T), terms containingF in Egs.(3.6b and(3.7b).
. When one computes the contribution of the closed chain
b,, the constraint is effective. The calculation is again per-
> byy/2m=In(1—\2T2). formed by means of the exponential representation oféthe
m function and the resulting expression can be brought to the

. i . following form:
and the cross section, at a fixed value of the impact param- g

eter, is expressed as

One therefore obtains

N[ -

- G
bom=s=— (Z/mM)?™(2m)!. (4.5
ou(B)=1—[1-\2T2] 2 exf ~ T/(1+AT)]. (4.3 m8Fm?

The parametex represents a measure of the deviation from1Ne final result is obtained by summing all the terms above,

the Poissonian distribution, both for the initial states and forVith the weight (1/2n). The cross sectiofat 3 fixed) is

the elementary collisions. In Appendix C some further elabotnerefore

ration on the factorized case are presented. = 5

~ Perhaps more interesting is the case where the number ou(B)=l-exi—-T-S,], Sp=> —2m. (4.6)
distribution of the incoming parton is Poissonian, because =1 2m
the correlation integrates to zero, while the resulting distri- ~
bution in the number of parton collisions at fixed impact While a closed analytic form for the suf, is not easily
parameter is non-Poissonian, as a consequence of the prégitten in the general case, in the limiting case where the
ence of the correlation term. One may, e.g., consider th@umber of partonic collisions is large one may use the
expressions Stirling  approximation  for the factorial m™™

~+2mme "/m!. With the help of the decomposition

— 2
D(b)=h exd —Fb“], (2m)! =22™mi( 3),, the sum can be expressed as

C(b,b")=—k'A, exp[— 3 F(b+Db")?2— 3 G(b—b")3, ~ 7G
(4.4) S=3gE (w), (4.7)
where A, indicates the two-dimensional Laplace operator, here
acting on the transverse differenbe-b’ or y—y’. By inte-
gratingC over the transverse variables one obtains zero. “ (12
The number distribution depends only Pnand it is Pois- w=(22/e)?, $(w)=, m2ml wm.
1 !

sonian by construction. The parametéris obviously re-
lated to the parametds in the previous paragraph. Sinke

; . w) can be evaluated by computing, as an intermediate
was the strength of the correlationlat=b’=0 in order to v(w) y puting

o . tep,
keep the same normalization we make the positidn Step
—K/G. _ _ o S (12
In order to study this case a different way of dealing with (W) (Way) (W) = >, o m,
1 :

the approximation introduced in obtaining Eq8.69 and
(3.70 is useful. This alternative procedure is the following:
The variablesy; are substituted by the mean valoé
=3Xy/n and by the differences;=y;,.;—Yy;, with the con-
straint £x;=0. The relevant Jacobian =1 and so the
integration volume is transformed according fddy;
=dYIldx;6(2x;). Then in the terms containing, which
simply defines the size of the hadron, one performs the suliyhere £,(x) = =x"/n? is the dilogarithm functiori12].
stitutionsy;~Y/n, whereas the terms containii@ and the
differencesx; are not modified. For the calculation af,,
since onlyn—1 differences appear, the integrationsdi
anddx; decouple in the Gaussian integration and the result of The small value otr¢, the dimensional parameter char-
Egs.(3.70 and(3.1)) is recovered; for the calculation bf, acterizing double parton scatterings, which has been mea-
the constraint on the, is essential, it may be implemented in sured recently by CDF, is an indication that two-body parton

and by performing the integrations afterwards. The resulting
expression is

P(W)=2Ly(3 [1—V1-w])—In*(z [1+1+w]),
4.8

V. CONCLUDING DISCUSSION
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correlations, in the many-body parton distribution of the pro-In both cases the critical valye. has the same value which
ton, are likely to be sizable. In the case of an uncorrelatedne finds for the uncorrelated distribution and therefege
many-body parton distribution, the value @f; puts a con- as in the uncorrelated case, is roughly equal #dR, where
straint on the range of possible valueswf, the semihard F is the parameter giving the extension of the one-body par-
contribution to the hadronic inelastic cross section. The acton distribution in the transverse plane.

tual measured value af; would give rise to values o The value of the semihard cross section is therefore de-
of the order ofo,o/2 also at very large c.m. energies, wheretermined by the behavior at large distances and it does not
one would rather expeary=o0j,. The experimental evi- depend on correlationsr;, on the contrary, is related di-
dence is also that, in theregion accessible experimentally, rectly to the correlation term, as it is seen by working out the
namely, at smalk values, the correlation in fractional mo- double scattering cross section from the expansiowrpf

menta is not a large effect. One obtains in fact the relation

In the present paper we have worked out the semihard
cross sectioroy in the case where initial state partons are 41
correlated in the transverse parton coordinates. In dqct Ueﬁ:m

can be worked out rather explicitly when only two-body par-
ton correlations are included in the many-body parton distri-
. . in,case(1), and
butions and when each parton can have at most one semihard
interaction. There are two qualitatively different features in
the two-body parton correlation, and both change the relation i: i+f C(b,b")C(b—B,b’ — B)d?bd?b’ d2B
betweeno, and oo With respect to the uncorrelated case:  Oe 47 ' '
(1) The distribution in the number of partons is not any more
Poissonian, although the dependence on the kinematical vaiin case(2).
ables of the different partons is factorize@) the overall A qualitative feature is that in both cases one obtains a
distribution in the number of partons, namely after integrat-value of o which may be sizably smaller with respect to
ing on the partonic kinematical variables, is Poissonian buti/F=¢ . While, on the other hand, nothing prevents the
the dependence on the partonic kinematical variables is natalue of o to be close to the value af,,. The smaller
factorized, in which case the two-body parton correlationvalue of o, with respect to the expectation of the uncorre-
integrates to zero. The general case is obviously a combingated case, is rather generally associated with the increased
tion of the two possibilities. We point out, however, that bothdispersion of the distribution in the number of partonic col-
cases separately can give rise to a small valuegfwhile lisions: In the case of no correlations the distribution is
keeping the value ofry close toa,g. strictly Poissonian when the impact parameter is fixed. When
In the first casery is obtained by integrating the expres- correlations are introduced the distribution in the number of
sion in Eq.(4.3). In the second by integrating the expressionparton collisions, at fixeg, is not Poissonian any more and
in Eqg. (4.6). The critical value of the impact parametg, the natural consequence is that the dispersion in the number
which gives the size to the cross sectiop, is the value of collisions is increased.
which makes small the argument of the exponential in the The indication from the measure of the rate of double
expression obry(B). The detailed dependence of the argu-parton scatterings is therefore that two-body parton correla-
ment of the exponential @< 8. is not of great importance tions are likely to be important while, unfortunately, one
for the determination ofr, when, forB<g., the argument cannot say much about dynamical quantities, such as the
of the exponential is already large}, is obtained by inte- correlation length. Useful observables to be measured, in or-
grating the probability of having at least one semihard inter-der to get some more insight into the problem, would be the
action. When the probability is close to one the contributionsemihard cross sectiosy and the triple parton scattering
to the integral is very similar for events with the same impactcross section. Our present analysis shows thatcan be
parameter and with different but large average number ofeliably discussed in perturbation theory. The measure of
partonic collisions. oy, In association witho, would help considerably in
The critical value of the impact parameter which gives theclarifying the size of the effect induced by the presence of
size to oy is therefore determined by the argument of thethe two-body parton correlations: All the considerations of
exponential at the edge of the interaction region. In ¢dge the present paper are based on the prejudicedhathould
the behavior of the argument of the exponential when goinghave a value rather close to the valueogf,;.
at the edge of the interaction region corresponds to the lim- The measure of triple parton scattering would allow one
iting behavior of the expression below at smalvalues: to test the possibility discussed in cd4¢ since in that case
the rate of triple scatterings would be strictly fixed by the
T 1 e ) measur_ed rate of double scatterings. In the other_ cases pres-
1T T NN )—>T=an Da(b)Dg(b—p)db, ently discussed the knowledge of the rate of triple parton
collisions would allow one to obtain the actual values of the
o ) ~ parameters of the correlation term.
while in case(2) it corresponds to negled, as compared A ot of effort has been put on the study of the proton
with T in Eq. (4.6): structure as a function of the momentum fraction The
distribution of partons however depends on three degrees of
freedom, the momentum fractionand the transverse parton
coordinateb. The measure of the rate of triple and of higher

T+§b—>T=an D A(b)Dg(b— B8)d?b.
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order partonic collisions is the essential tool to learn on the
parton structure of the proton in transverse plane. 1- H [1-0]}=

AR
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APPENDIX A single-collision processés
The operatorial form of the cross section at fixed impact

In this appendix some short observations about the effecﬁarameteraH(,B) acquires now the more complicated shape

of the rescattering processes will be displayed. The gener
form of the hadron-hadron scattering cross section(Edy) ou(B)={1—exp 5- [e‘}"s/ —1])—exp( &' - [e&.a_ 1])
has been reduced to a more manageable form by throwing

away all the rescattering process by means of the position: +exp(—8-0-8")} ZA[I+1]12Z5[I +1]|5-3/ 0.
(A3)
[1_1:][ [1_"”]] :>i2j TiiT o1 ; kggij Tijot This expression seems of uneasy interpretation but is gives

(A1) some information when reduced to simpler particular cases.
The simplest, but nontrivial result is produced when the in-
It is possible to deal with some rescattering process withoutoming parton distribution is purely Poissonian and only the
too much effort if we look at processes where only one of thedouble scattering is actually considered. In these situations it
two colliding partons has already suffered some collision. Inis easily seen that instead of Eq2.9), (2.10, (2.11) one
this case instead of EgALl) we write obtains the form

1
(ex;{i f Da(u)o(u,u’)a(u,u”)Dg(u’)Dg(u”)dudu’ du”

_1)]. (nd)

U'H:f dﬁ[l—exp{—f Da(u)o(u,u’)Dg(u’)dudu

1 . .
+exr{§ f Da(u)Da(u")o(u,u’)a(u”,u")Dg(u’)dudu’ du”

This form is not unexpected, it could have been written byand the result def/= u"— v" is easily obtained by expansion
hand, Eq.(A3) shows a more systematic way of deriving it according to the last row. The exponen® appears because
and possible further corrections. The final distribution of thethe matrix describes the inverse transformation and there are
collision isnot Poissonian and this deviation is purely due totwo transverse dimensions.

the hard dynamics. It can be observed that precisely this In order to calculate the determinant of the mathix in
origin in the hard collision may also offer a way to distin- Eq.(3.9) an auxiliary matrixA is introduced so that we have
guish these effects from the effects of correlations in the

incoming two-body distributions, in fact in the case here 14r r 0 ... O
sketched there should be an unbalance among the kinemati-
cal variables of the pair of jets originating from the scattered M= r 1r .. 0 0
partons. )
0 0 O r1+r
APPENDIX B
The Jacobian appearing in E.6), which arises from 1 r 0 ... 0
the transformation from the variablggo the variablew, is r 1 r 0
expressed a3=[det7] 2. The actual form of7 is A=
u —v O 0 0 0 0O r 1
0 u -v 0 0
j: : 1

This possibility was already considered in Rg0], for an un-
-v 0 0O ... 0 u symmetrical situation.
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By means of the standard rules for the computation of théfhe Poissonian distribution is given B§=exdY—-J,], the
determinants two recurrence relations are obtained: situation described in Ed4.1) corresponds to

det M, =det A,+2r det.A,_,+r? detA,_,, X=exp[(Y— Vo) + ¥ MY—-I5)2], (C2)

Then by applying Eq(C1) to Eq.(C2), one gets as interme-
diate step

det A,=det A,_,—r? detA,_,

which imply the simpler relation

_ _ ! 1 1\ 2 r_ Ny
det M,=(2r +1)det A, ;. on=exp[=To"+ 2 MTI) Jexd (V= Yo)

1 ’ N2
The recurrence relations for the determinantsigfare very + 3 MY =20 1lyr—yy - (C3

similar to the recurrence relation for the Chebyshev polyno- ,
mials U,, [11] and in this way it is possible to get the final BY the use of the shift formula efq, |F(x)=F(x+a) and of
expression for them the relation.

{ —pazlexd qx?] = l{ il

exd —pdglexd qx-]= ex
J1—=4pq 1+4

For completeness we give also the explicit expression of the 1-4pq Pd

U polynomials: it is seen that the expression appearing in &) reduces to
the form already given in Eq4.3).

det A,=r"U,(1/2r).

U,(cos @)= W One could also choose the form
X=[1-(Y=I)]
APPENDIX C

which corresponds to a negative binomial distribution for the

In this appendix we shall briefly discuss some non-initial partons and obtain in this way the result
Poissonian or_1e—body densit_ies, the essential point were al- ou(B)=1-T “U[a;1;1/T],
ready shown in Ref.10], but it may be useful to state again
them in order to have a comparison of the previous treatby representing the incoming distributions as Laplace trans-
ment. The starting point of Eq2.7) is specialized to the case forms as shown in Ref10]. Note that a slight simplification
of pure one-body densities in the form has been introduced in the distribution, with respect to that

reference, and this reflects into a slight simplification of the
op=[1-exp(—Tad") IXANXKe(V)|y= 35,7 =3 result, which keep, however, its main properties; in particular
(C) U is the irregular confluent hypergeometric function.
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