PHYSICAL REVIEW D VOLUME 57, NUMBER 8 15 APRIL 1998

Finite temperature perturbation theory and large gauge invariance
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We examine finite temperature perturbation theory for Chern-Simons theories, in the context of an analogue
(0+1)-dimensional model. In particular, we show how nonextensive terms arise in the perturbative finite
temperature effective action, using both the real-time and imaginary-time formalisms. We illustrate how large
gauge invariance is restored at all orders, despite being broken at any given order in perturbation theory. We
discuss which aspects generalize to a perturbative analysis of finite temperature Chern-Simons terms in higher
dimensions[S0556-282(198)06808-9

PACS numbgs): 11.10.Wx, 11.10.Kk

[. INTRODUCTION However, in our opinion, the issue of large gauge invari-
ance, at finite temperature, in a<{2)-dimensional Chern-
Recently, some progress has been made in our undeGimons system still poses many interesting and unsolved
standing of the temperature dependence of the inducequestions. The QER; fermion determinants studied j&—
Chern-Simons termgl—5]. On the face of it, a temperature 5] correspond to specially contrived backgrounds that essen-
dependent induced Chern-Simons term would seem to vidially factorize the effective action into thet0l model of{ 1]
late gauge invariande,7], because a temperature dependen@and a part corresponding to familiar 2 dimensiot&liclid-
Chern-Simons coefficient cannot be chosen to take discretar fermion physics. For a general gauge backgro(ard,
values, as invariance under large gauge transformatiormmore interestingly, for truly non-Abelian backgrouhdbe
would require[8]. However, in[1] a mechanism was dem- effective action cannot be computed exactly. Furthermore,
onstrated, motivated by an exactly solvable Chern-Simons terms may be induced not only in fermion
(0+1)-dimensional Chern-Simons theory, whereby the fullsystems, but also in purely gauge modg&®s10] and in
effective actiondoessatisfy large gauge invariance, in spite gauge-Higgs models with spontaneous symmetry breaking
of the fact that it contains temperature dependent termgl1,12 where, again, the exact evaluation of the effective
which violate large gauge invariance at each or@grthe  action may not be possible. Therefore, in such models, per-
field variablg in perturbation theory. turbation theoryat finite temperatupebecomes a crucial and
The essential new feature is that at finite temperaturegpowerful tool. But as stressed clearly [ig], there is an in-
other parity violating termgother than the Chern-Simons herent incompatibility between standard perturbation theory
term) can and do appear in the effective action, and if ongat a given orderand large gauge invariance, because the
takes into account all such terms to all ordérsthe field coupling constant cannot be factored out of the large gauge
variable correctly, the full effective action can maintain transformation at finite temperature. Theally interesting
gauge invariance even though it contains a Chern-Simonguestion, then, is to understand how to perform reliable and
term with a temperature dependent coefficient. In fact, it isconsistent finite temperature perturbative calculations when
clear that if there are higher order terms preggitiich are  large gauge invariance is important. This is a very general
not individually gauge invariaitone cannot ignore them in question, and a deeper understanding of this phenomenon
discussing the question of invariance of the effective actiorshould have important implications for finite temperature
under a large gauge transformation. Remarkably, this mech&CD.
nism requires the existence of nonextensive tefires terms In this paper we make a modest first step in this direction
that are not simply space-time integrals of a densitythe by re-examining the (& 1)-dimensional model dfl] using
finite temperature effective action, although only extensivethe various standard forms of finite temperature perturbation
terms survive in the zero temperature limit. All these featuresheory[13]. At first sight, it may seem foolish to study per-
have been demonstrated explicitly and exactly in thel0 turbation theory for an exactly solvable model, but our goal
Chern-Simons moddll]. This idea has subsequently beenis to explore the intricacies of finite temperature perturbation
analyzed in the framework of zeta function regularizationtheory in the presence of large gauge invariance. We seek an
[2], and has been extended to the Abelianunderstanding of how these somewhat unfamiliar nonexten-
(2+1)-dimensional QED (QER ;) fermion determinant in sive terms(in the effective actionh arise in perturbation
special gauge backgrounds that support gauge transformteory at finite temperature, and yet are all absent at zero
tions with nontrivial winding number§2—5|. Once again, temperature. We also seek to identify precisely which fea-
the full effective action is gauge invariant even though thetures of this model are special toHd dimensions and which
induced Chern-Simons term has a temperature dependent amay be generalized to a perturbative treatment of a
efficient. (2+1)-dimensional model. In Sec. Il we introduce the
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5024 ASHOK DAS AND GERALD DUNNE 57
model and review briefly the results [df—5]. In Secs. Il and 1
IV we use the real time formalism of finite temperature per- I'[A]=—iN;¢ log 005(5 f th)
turbation theory to solve this system, in momentum space
and then in coordinate space. In Sec. V we apply finite tem- ) pm\ (1
perature perturbation theory in the imaginary time formal- +|tanr(7)sm(§ f th)
ism. We conclude with some comments on the relative mer-
its of these approaches and on which features may generalize Several comments are in order. First, notice that the ef-
to higher dimensions. fective action[A] is not an extensive quantity.e. it is not
an integral of a densily Rather, it is a complicated function
Il. MODEL of the Chern-Simons actioffdtA. Second, in the zero tem-
perature limit, the effective action reduces to

. (5

Consider a (6-1)-dimensional field theory dfi; flavors
of fermions¢;, j=1,... N¢, minimally coupled to aJ(1) 1m
gauge fieldA. It is not possible to write a Maxwell-like F[A]T:°_§ me dtA(t) ©®)
kinetic term for the gauge field in©1 dimensions, but we
can write a Chern-Simons term—it is linearAn[14]. [Such  which is the usual zero temperature induced Chern-Simons
(0+1)-dimensional Chern-Simons models have also beeterm. At nonzero temperature the effective action is much
studied recently in dimensional reductions of more complicated. A formal perturbative expansion of the
(2+1)-dimensional Chern-Simons theorie§15].] In  exact resul(5) in powers of the gauge field yields
“Minkowski space” (i.e. real time the Lagrangian is

R\ Bsm i pm)
N I'TA]= > tanl‘(T + 1 SGCH(T a
|_=J_§=)l (i d,— A—m) gy — KA. (1) L em e "
15 tanh ——|sectt| —-ja’+ . ..
This model supports gauge transformations with nontrivial
winding number. Under th&J(1) gauge transformatiogy =~ where we have defined
—e My, A—=A+d\, the Lagrangian changes by a total
derivative and the action changes by aEJ dtA(t). ®)
“+ o0
AS=— Kf dtor=—2mwkN (2)  The first term in this perturbative expansi@h is the Chern-

Simons action, but with a temperature dependent coefficient,

just as was found in the perturbative computations in (2
where N= (1/27) [dto\ is the integer-valued “winding +1)-dimensional Chern-Simons theori¢46,17. If the
number” of the topologically nontrivial gauge transforma- computations stopped there, then we would arrive at the ap-

tion. For example, the gauge transformation with parent contradiction mentioned in the Introduction—namely,
the “renormalized” Chern-Simons coefficient
1+it
N(t)=2N arctant=—iN Iog(—.) 3 N m
1—it KR=K—7ftan>—(%) ©)

has nonzero winding numbé¥, and we see thall must be
an integer so that the gauge transformatibre ™'y pre-
serves the single-valuedness of the figid).

Nevertheless, even though the classical action chdmrges

would be temperature dependent, and so could not take dis-

crete values. Thus, it would seem that the effective action

cannot be invariant under large gauge transformations. The

flaw in this argument is clear. There are other terms in the

path integral, which involves'S, remains invariant provided nQeffe'ctive action besides the Chern—Simons_term which cannot
! ’ be ignored, and these must all be taken into account when

theu;hgirsr](;rse'tn;2225(;%%?3:32;'80?1” tlrrllée%:er:é;l;]rlgirl‘r? élrj]zt g;zmgonsidering the question of the large gauge invariance of the
) - X . . effective action. Indeed, the effective acti¢d) shifts by
cient, familiar from three dimensional non-Abelian Chern-

Simons theoriegs]. (N¢N) 7, independent of the temperature, under a large

Induced Chern-Simons terms appear when we comout auge transformation, for whica—a+2=N. This is just
. > ppea : PUlte familiar global anomaly18,19, which can be removed
the fermion contribution to the effective action for this

theory: (for example by taking an even number of flavors, and is not
: directly related to the issue of the temperature dependence of
Ny the Chern-Simons coefficient. The clearest way to under-
(4 stand this global anomaly is through zeta function regular-
ization of the theory2].
Finally, note that only the first term in the perturbative
From [1], we know theexact finite temperature effective expansion(7) survives in the zero temperature limit. The
action for this theory to bénote that under the Euclidean higher order terms are all nonextensive—they are powers of
rotation fd7A(7)— — [dtA(t)] the Chern-Simons action. The corresponding Feynman dia-

detid;—A—m)
detid;—m)

I'TA]=—i log
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grams vanish identically at zero temperature, and this is usung them. The fermionic Feynman propagatofus assume
ally understood by noting that themust vanish because from now on thaim>0, and since the propagator as well as
there is no gauge invariarieven under infinitesimal gauge the vertices are diagonal in the flavor index, we do not write
transformationsterm involving more than one factor éf(t) it explicitly for simplicity)
that can be written down. This, however, assumes that we

only look for extensiveterms; at nonzero temperature, this _ I 2
assumption breaks down and correspondingly we shall see S(p)=(p+m) pz—m2+ie_27TnF(|p|)6(p —m)
that our notion of perturbation theory must be enlarged to (19
incorporate nonextensive contributions to the effective ac- ) ] o

tion. For example, let us consider an action quadratic in th&vhereng(|p|) is the Fermi statistical factor:

gauge fields which can have the general form

1
1 ne(|pl)= P T (15
F(2)25 f dtydt, Aty F(t—to)A(to) (10
This propagator simplifies dramatically intQL dimensions,
where we assume th&(t,;—t,)=F(t,—t;). Under an in- due to the trivial one-dimensional nature of space-time. Us-
finitesimal gauge transformation, this action will transformf[fr‘]gt 8(p>—m?)= (1/2m) [ (p—m)+ S(p+m)], we find
as

aT(Z):—f dtydtA (t)d F(ti—t)A(tz). (1) S(p)=m—2wnp(m)5(p—m)- (16)
Clearly, the action will be invariant under an infinitesimal Each fermion-gauge-fermion vertex contributes a factor of
gauge transformation F=0. This corresponds to excluding —i. Thus, the contribution of the tadpole diagram to the
the quadratic terng10) from the effective action. But as is linear term in the effective action isvith the negative sign
clear from Eg.(11), the action can also be invariant under for the fermion loop

infinitesimal gauge transformations iF=const, which

would make the quadratic actigii0) nonextensive and, in il = —(=)N f @ i o ne(m) S(p—m)
fact, proportional to the square of the Chern-Simons action. (Y ") 2x\p—mtie “TF P
The origin of such nonextensive terms will be discussed in
detail in the following sections when we analyze this model ~ =i|(]=0+i1(£). (17
using standard finite temperature perturbation theory tech-
nigues. The zero temperature piece is

To conclude this section, we recall briefly the results of
[2-5] concerning the fermionic determinant in QED. In L (T=0)_ dp 1 _ dp p+m
Euclidean space, using the imaginary time formalism, it had!® = ~Nr| - p—m+ie ') 2mp’-mitie

been shown that for an Abelian gauge background of the _
[

form = 5Ny (18
Az=const, A(X) (independent of time (12)

Note that to evaluate the first form of this integral directly,
the parity odd part of the finite temperature effective actiorwe must include the contribution from the semicircle at in-
is finity since the integrand does not fall off fast enough. The

temperature dependent tadpole contribution can be evaluated

m eA i ;
Sod= i P arctar%tanl‘(—ﬂ2 tar( —23) (13 rivially to give
dp
B — o o
whered = (e/2) [d?xe;;9;A; is the time-independent mag- 1= ZW'Nf”F(m)f 57 0(P—m)=—iNmg(m).
netic flux of the background field. Notice that this parity odd (19)

part of the effective action corresponds precisely to the real . o
part of the effective actiorf5), with the natural identifica- Thus, the net tadpole diagram contribution is
tions Az—a and®— N;s. ) )
. iIN¢ iN;¢ Bm
il 1y=—5"[1—2ng(m)]= ——tanh —- (20
Il. REAL-TIME FORMALISM: MOMENTUM SPACE 2 2 2

CALCULATION . . . I . .
which gives a linear contribution to the effective action,

The perturbative computation of the fermionic contribu-
tion to the effective action requires computing all diagrams . vy Ny sm
with one fermion loop and any number of external gauge 1“(1)——|A(k—0)||(1)—?tan 2 dtAt), (2D)
fields. We begin by considering the first few such diagrams
for this theory, in momentum space, using the real-time forin agreement with the first term in the perturbative expansion
malism[13], before giving a systematic method for evaluat- (7) of the full effective action.
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The two-point function also splits naturally into a zero “sech” factor. The first observation illustrates how nonex-
temperature piece and a temperature dependent (ilésés,  tensive terms such d4sf. Eq. (10)]
in fact, a general property of the real time formal)semd
gives a contribution to the quadratic term in the effective 2 [ diact
action of the form a= (t)

2

—f dkAkA k)27o(k) (26
= | S-AWA(-K2mok) (26

J’ 2 S(p)S(k+p) arige ina perturbgtive approach to the finite temperature ef-
2 fective action, while the latter explains why these are not
1 (T=0) L (8) seen in zero temperature perturbation theory.

=il (k) +il 5j(k). (22) It is a straightforward matter to go ahead and evaluate
diagrams with more than two external gauge fields. How-
ever, motivated by the above result that the two-point dia-
gram is proportional to a delta function in the external mo-

The zero temperature piece is

|(T=0) Nf dp 1 1 . "
il ~(k)= - 5=mi RS — mentum, we appeal to the Ward identities femal) gauge
m\p—mtie/\(k+p)-m+ie invariance, which state that thM-leg diagram (with N
N 1 1 =2), which is a function oN—1 external momenta, satis-
L omi| =+ — fies the relations
4 k -k

ij(N)(kll"'ikj!""kN—l):o forjzl,N_l
=0. (23 (27)

This is an explicit demonstration of the fact that the two-This is a generalization of Eq11) to N-point functions in
point function (and, therefore, its contribution to the effec- momentum space and here there is no contraction of space-
tive action vanishes identically at zero temperature, as retime indices since we are in a one-dimensional space-time.
quired by (smal) gauge invariance. However, the finite This implies thatl (ks . . .ky—1), for N=2, must be pro-

temperature contribution is portional to a product of delta functions in the- 1 external
momenta:
(B)(k)__& —| 27ring(m) 5(p——m)
@) 2 2m|“TF (k+p)—m+ie il ny(Kgs -« Kn—1) = Cn(BmM) 8(ky) 8(Ko)- - - 8(Kn-1)
28
: o(k+p—m) 29
+2aing(m) p—m+ie where the coefficienty is a function of3m by dimensional

reasoning. But this immediately implies that tN&" order
contribution to the effective action in the perturbative expan-
sion is proportional to th&N™ power of the first order term,
which is just the Chern-Simons action. This is exactly the

—47°nZ(m)8(p—m)S(k+ p—m)}

i 1 nonextensive structure that we observe in the perturbative
- §Nf”F(m) ktie t Tktie expansion(7). Here we see that it is a direct consequence of
the Ward identities for small gauge invariance.
+77an§(m) (k) The result(28) suggests that the coefficien@y(Bm)
could be calculated from thid-leg diagram with zero exter-
=—aNme(M)[1—ng(m)]8(k) nal energies:
N m —iN d
=—2w5(k)§fsecﬁ<ﬂ7). (24) (—)%NJ %[S(p)]”. (29

Here we have used the identii(k) = (1/m)lim._[e/(k*  These are, however, extremely singular integrals because of
+€9)]. Slncel(T 0)(k) vanishes, this resul24) gives the the product of delta functions with coincident arguments and
entire two- pomt funct|on The resulting quadratic contribu-have to be evaluated carefully. We have done this, but it is
tion to the effective action is rather complicated, and we shall see in the following sec-
tions that it is much easier to evaluate these coefficients us-

. . ing the coordinate space representation or using the
Fi2)= _'f ZA(k)A(_k)'I @(K) imaginary-time formalism.
—|N—secﬁ( Uth(t)) (25) IV. REAL-TIME FORMALISM: COORDINATE
8 SPACE CALCULATION

in agreement with the perturbative expansi@h In this section we describe the coordinate space analysis

There are two important things to observe from the strucof the perturbative calculation in this model, using the real-
ture of the two point function{i) its dependence on the time formalism. The real-time propagator in the coordinate
external momentum k is through a delta functiétk), and  space can be obtained simply from the Fourier transform of
(ii) it vanishes at zero temperatur8-G) because of the the momentum space propagatd6):
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dp _ . N
s(t)—f 5-€ e P'S(p)=[6(t)—ne(m)]e” ™. (30) — 5 (= t)[6(0) —ne]

Here 6(t) is the standard Heaviside step function. =0. (34)
Let us now consider th&l-leg diagrams contributing to _ _
the effective action. The contribution of the tadpole diagramSimilarly, for the 3-point function,
'S g iN
1 iN Am EII 3ty 1o, tg)=— T5(t1—tz)[S(tz_ts)S(ts_tl)
1):_(_i)NfS(O):iNf(E_np(m)) = Tta |‘( >
(3D —S(t;—t3)S(t3— tz)]+ 5("1 ts)

The contribution of the two-point function to the quadratic

action has the form X[S(ty—t)S(t,—t3)

il (2)(ta,t )=—(—i)2&s(t —t,)S(t,—t) —S(t3— 1) S(t,— )]
S 2 ANk ~o0. (35)

In general, the derivative of the high&-point functions

f
= o0t~ t) —ne(m ][ 6(t,— 1) with respect to any one, sdy, of the external coordinates
' vanishes because for any diagram contributing td\theoint
—ng(m)] function with a given ordering of the external coordinates,

there is another diagram with interchanged with another
coordinate, sayt,. But (d9/dt;) S(t;—t,)=(— dldt;) S(t,

f
== ?”F(m)[l_”F(m)] —t,), and so these diagrams cancel pairwise. We recognize
that this is just a manifestation of the coordinate space Ward

Ny Bm identities, which corresponds to a generalization of @4).

=— —secﬁ( ) (32 Furthermore, we notice from the resui8d),(32),(33) that

I(n) is essentially the derivative dfy_qy with respect to

Bm, for N<3. To prove this in general, for any, note that

in any diagram contributing to the effective action, the prod-

uct of the phase factors '™ in a loop simply cancels out.

il (3)(ty,to,t3) = —( —|)3 [5(t1 t2) S(tr—t3)S(tz—ty) Therefore, we can effectively consider the “reduced” propa-
gator without this phase factor in our computations:

The three-point function gives a contribution of the form

+S(t;—t3)S(ta—t,) S(tr—t
S(t1—t3)S(t3—t2) S(ta—ty) ] S(ty—ty)=6(t;—to) — ne(m). (36)

iN -
- ?f[— ng(m)+3n2(m)—2n3(m)] Then it is clear that

J ~
iN{ >m S(t;—tp)=—ng(m)=—Bng(1—ng) 37
= ?nF(m)[l_nF(m)][l_ZnF(m)]

|Nf Bm Bm
=5t nl‘( > )secﬁ( >

where in the last step we have used the identity explicitly
satisfied by the Fermi factor in E(L5). Since the Feynman
(33 amplitudes are independent of the external time coordinates,
we can choose any time ordering for these quantities and we
We notice that theN-point functions are independent of chooset;>t,. This gives
the external coordinates. This is the coordinate space ana-
Iogue_ of the_ statement28) _that the momentum space 7 S(tl t,)=— B3(t;— ts) S(ts—t,)
N-point functions are proportional to products of delta func- Jm
tions in the external momen{ar the generalization of Eq. (39
(11) to N-leg diagrams In coordinate space, it is easy to see
explicitly how this works. Clearly, the tadpole is independent
of the external coordinate. For the 2-point functi@nd its

t;>t,>t,,

wheret; is arbitrary, but strictly less thaty. Similarly,

contribution to the quadratic part of the actipn % S(ty—ty)=—BS(t,—t3)S(tg—ty), t;>t,>ts.
(39
II(Z)(tl t2)= 2 oty [(a(tl t2) = NR) (Bt~ 1) = ne)] Thus, the effect of differentiating aN-point function with
N fore. an oxtemal gauige faldower than allthe others, i ai
=5 0(t;—t3)[6(0) —ng] : ’

possible lines on the original diagrams. This is a generaliza-
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tion of the zero temperature Ward identity and relates théNotice that the real part of the tadpole vanishes identically,

(N+1)-point function to theN-point function through the while the imaginary part is proportional to the sign of the

following recursion relation: massm. At nonzero temperature, the trace is a sum over the
discrete fermionic energies:

d .
o= 71BN+ D)l sy (40) I T i —(2n+1)i7T+m
1= (—1Ny) (2n+ 1)272T2+ m?

n=-—ow

where we have suppressed the external coordinates since the

N-point functions are in fact independent of them. But this . %
. . . iNtm 1

means thatall the coordinate spachl-point diagrams are =—— R

given as derivatives of the tadpole diagram with respect to 7T 222w (2n+ 1)+ m B

the masan. Thus, the full effective action is

iN m

w N =— —ftanl'( 'B—) . (45

. . 2 2

r=—i> U dtAt) | (il )
N=t The infinite sum, here, is just a standard represent§f26h
. o . N of the tanh function and this agrees exactly with the first term
__1BN; D [(i/B)JdtA(t)] of Eq. (14) in [1]. In the zero temperature limit, this reduces
2 =1 N! smoothly to the zero temperature resdi) for the tadpole.
N-1 The “Euclidean” two-point diagram gives a contribution
i ﬂ_m to the quadratic action of the form
X om tan 5| (41

(i) (m?—p(p+k)+im(2p+k)
Remarkably, this expansion may be resummed, to yield the '(2)(k):(_)j tr [m2+ p2[m?+ (p+Kk)?] |

full exact effective action in Eq(5). (46)
V. IMAGINARY TIME: MOMENTUM SPACE First consider this diagram at zero temperature. The imagi-
CALCULATION nary part vanishes identically, as can be seen by replgzing

) ) ) ) by —(k+p). The real part also vanishes, as a result of a
In this section we present a perturbative analysis of theancellation between the two terms:

model using the imaginary time formalism for finite tem-
perature perturbation theory. The coordinate space approach, © dp m?—p(p+k)
in the imaginary time formalism, was already given[in, f_m om ([m2+p2][m2+(p+k)2]
and so here we discuss the momentum space analysis.
Defining an imaginary time coordinate=it, the La- |m| |m|
grangian(1) becomes = ieram? @rame 0 (47)

N¢

Le=, (0, iA+m)y,—iA. 42) At nonzero temperature, the trace in E4) involves a sum
=1

over the discrete fermionic energies. Once again, the imagi-
nary part vanishes after a shift of the energy variable, but we
The imaginary time coordinateis restricted to the range  note that this relies on the fact that tkigosoni¢ external
e[0,8], wherep is the inverse temperature. Fermi fields areenergyk is an even multiple of 2T, while the (fermionio
antiperiodic inr, (0)=— y(B), while gauge fields are pe- loop energyp is an odd multiple of ZT. The real part
riodic, A(0)=A(B). The propagators are the same as theg'equires considerably more care, as we must distinguish be-
zero temperature propagators, but the antiperiodicity and pdween the case when the external energy vanishes and when
riodicity conditions on the fields imply that the correspond-it is nonzero. Wherk=0, it is trivial to evaluate

ing energies take discrete values, being ¢elekr) multiples

of 27T for fermions(bosons [13]. N & M= (2n+1)%A0T?
The photon vertex, in this theory, contributes a factor of l(2)(k=0)= ?Tn;m [m?+(2n+1)?7°T?]?
so that the contribution of the “Euclidean” tadpole diagram
to the effective action is Ny Bm
= —Bgsecﬁ 7) . (48)

. [—iptm
ip+m =i pZ+m?

Whenk# 0, it is surprisingly tricky to evaluate this two-point

) ) ) ) diagram(46) at finite temperature. A natural approach is to

There is no Dirac index except for the flavor index whose,se' Schwinger’s parametric representation of the integrand,

trace is trivial and at zero temperature the energy trace is ai \which case the diagram becomes a parametric integral

integral: so involving a Jacobi theta function. The advantage of this ap-
. . proach is that the only difference between the zero tempera-

) © dp [—ip+m i

I(l): _Ifo_m E

— EN 44 ture and nonzero temperature result is the absence or pres-
p2+m2 f ( )

2 [m[ ence of the theta function factor. Represent the integrand as
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2
m“—p(p+k) 9 f"c J"’ 2, 2 2 2
_ _ 4 —a1(Mm°+p%) o~ ag[m“+(p+k)“]
[m2+p2][m2+(p+k)2] [m p(p k)] 0 dal 0 daZe €
= fmdaljwdaz 2m2+ %kz-i— % ﬁi + % ai e*al(m2+pz)efaz[m2+(p+k)2].
0 0 aq o
(49
At zero temperature, the integration over the loop engrdgy simply a Gaussian integral:
fw @effllpze*az(erk)z: ;ex% — k2 &) i (50)
— 2m Vam(as+az) art a;
After a change of variables
+ 2 51
U—al Ay, U—al+a2 ( )

for which the Jacobian equals we arrive at a simple parametric integral representation for the two-point function:

N 1 » 1 g 1-2v 4| 1
(T=0)py— _f 24 T2 4= T T o gmuimPtu(-u)k?
li2) (k) aim Odvfo udul 2m 2k 70 50 70 \/Ue
- N fldvfmudu M2 p(1— 0k || U+ o(a-0))
4w Jo " Jo 2uf\ Ju
=0. (52)

Thus, the two-point function vanishes at zero temperature, abhen, the finite temperature two-point function becomes
in Eq. (47).

At nonzero temperature, the energy trace is a sum, not an N N .
integral, and so we cannot perform a Gaussian integration as | ,, (k)= - f d”f udu
. . (2)
in Eq. (50). Rather, the summation over the loop energy 4w Jo 0
produces a Jacobi theta function. Write the loop energy as

1 d
2m 2k 7

p=(2n+1)#T and the external gauge momentum las 1-2 i
=2l7T. Then 2u Jdv
* 1 _ 2 _ 2 kl) |
n;w e*alﬂrrZTz(ZnJrl)ze*a27r2T2(2n+l+2|)2 X ﬁe um“+v(1-v)k ]@4(2771_ m .
(57)

= e 47 020, (A7l T2 | 47 T oy + @) (53)

where®, is the second Jacobi theta functi0]:

[

0,(v | = E gl mr(n+ 1/2)Zei m(2n+1) (54)
n=—x

We now exploit the Poisson summation formula

v
@4(_

T

‘_1) — ST ™6 ,(u| ) (55

T

where®, is the fourth Jacobi theta function:

o

®4(U|T)El+221(—1)“ei”m2cos{2nv). (56)

Remarkably, this expression only differs from the zero tem-
perature parametric expressi@h?) by the presence of the
theta function factor. Whem— 0, this theta factor reduces to

1 and we get the zero temperature expression. Furthermore,
when the external momentukivanishes, it is a straightfor-
ward exercise to show that we regain thenzerg answer in

Eq. (48). However, wherk# 0, we can integrate by parts in

v, and use the fact that the Jacobi theta functions satisfy a
heat equation

2

J .
E@(U|T):—IZW®(U|T) (58

to convert the parametric integréd?) into
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VI. CONCLUSIONS

In conclusion, we have analyzed the fermion contribution
to the effective action in a (8 1)-dimensional model with a
Chern-Simons term, using various standard techniques of fi-
nite temperature perturbation theory. Each formalism has its
_ own advantages and disadvantages. In the real-time formal-
l ) ism, the momentum space calculation gives an immediate

\P fl
4\/; 0

1
X[m?+ov(l-v)k?— —— —

kv

X4\ 30T

A47T?%u derivation, via the Ward identitie€8), of the existence of
nonextensive terms in the effective action. But the actual
=0. (590  computation of the coefficients of these nonextensive terms
is rather messy in the momentum space approach. In particu-
Therefore, we have shown that the two-point function vanJar, the diagrams with zero external momenta are singular
ishes when the external momentinis nonzero, but is non- and must be treated with great care. Rather, in the coordinate
zero when the external momentusnvanishes. That is, the SPace approactin the real time formalismit is very easy to

two-point function is proportional to a Kronecker delta in the 8valuate these coefficients using the recursion relgd@n
external momenturk: that relates all higher order diagrams back to the tadpole

diagram. It is also rather straightforward to demonstrate the
Ny Bm independence of thél-point diagram on the external time
l2)(K)= —,35k,o§SECH<7>- (60 coordinates, which is the coordinate space statement of the
Ward identities. Finally, the momentum space calculation in

the imaginary time formalism gives a trivial evaluation of the

;I’hi)s Is the imaginary time analogue of the real timégp:)esuItl\l-point diagram when the external momenta are all zero
24), and it agrees exactly with the second term in e o e : . :
, o . : . : However, it is surprisingly difficult to verify explicitly the
of [1]. Similarly, using Schwinger's parametric representa—Ward identities bypshov?irilg that the diagr;yms \F/)anis)rlm if any
tion, we can show that thK-point function vanishes if any f the external momenta are nonzero

one of the external momenta is nonzero. This is an expliciP )

. . . . : . . " Nevertheless, each of these different approaches works.
flustration of the Ward identity28) in the imaginary-ime: e final result ias in[1]) that although each term in finite

When all the external momenta vanish it is very easy totemperature perturbation theory gives a temperature depen-

: . : : : ; dent contribution that violates large gauge invariance, we can
evaluate theN-point function using the imaginary time for- Il ord f bati h btain the full
malism: resum all orders of perturbation theory to obtain the fu

effective action(5), which respects large gauge invariance.

| (Ky=0 Ky_1=0) We stress that gauge invariance alone is not enough to de-
(NJRRLT He e+ AN=1 termine the exact form of the effective action. Small gauge

1 N invariance implies, Eq(28), that the effective actiolh is a
(m) function of _the Chern-Slr_nons actioa [i.e. t_hatl“_=1“(a) is

nonextensivg But to satisfy large gauge invariance all we

need is that the fermion determinat(® change by at most
61) a _sig_n unde_r a large gauge transfo_rmatian:—>a+ 27N.

This is satisfied by a general expression

(2j+1)a
djco —

N =
=<—)%NJ >

n=—o

_vaaw(a)Nﬂ e
== &—m tan 7

As before, this permits the effective action to be resummed:

ex;{ir(a)/Nf]:_Eo
“

o0

FE:NZl -|—N71k21 ...kél A(ky) A(ky—1) (2j+1)a

+f]- sin 5

(63

XA(=Ky = =Kkn-1) (kg - Kn-1)

The actual answe(5) gives as the only nonzero coefficients
dp=1 andfy=i tanh(8m/2). This fact can only be deduced

— N—1 — N — —
—N; T AAK=0) M (ke =0, kn-1=0) by computation, not solely from gauge invariance require-

ments.
8 N We now ask, which features of this {0L)-dimensional
w [— (i/,B)j A(T)dT} model will extend to the general (21)-dimensional case?
:B& 2 0 In the (0+1)-dimensional case, the Ward identitiéz7)
2 &1 N! have the simple consequence that nonextensive terms will

No1 appear in the effective actiofalthough the actual coeffi-
i) tanl‘(ﬁ—m) 62) cients, zero or nonzero, must be determined by a calcula-
am 2 ) tion). This argument does not immediately generalize to 2

+1 dimensions, although it does apply to certain special
This agrees with the exact effective action derivefilipand  backgrounds such as the static ones usd@%5]; for these
is the imaginary time version of the real time residil). backgrounds the finite temperature fermionic determinant

X
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can be calculated explicitly. However, the nonextensive(0+ 1)-dimensional model. Finally, an important feature of
terms that appear are nonextensive in time only, and this ithe 2+ 1 induced Chern-Simons term atrotemperature is
probably a consequence of the fact that the backgroundse Coleman-Hill theorerfi23], which essentially states that
themselves are static. Another dramatic simplification of thesnly one-loop graphs contribute to the induced Chern-
(0+1)-dimensional model is that the propagator has a vengimons term. But finite temperature violates the assumptions
simple structure, both in momentum spdté) and in coor-  ysed for the Coleman-Hill result, and it is not clear what role
dinate space(30), primarily because there is contribution this will play in a finite temperature perturbative analysis of
only from the positive energy terms. This is due to the fact 2+ 1)-dimensional systems. However, this issue simply
that the on-shell condition is very simple for one- goes not even arise in the ¢QL)-dimensional model, as the
dimensional Space-time and also the fact that the Dira@photon” does not propagate; thUS, there are no h|gher |00p
spinor structure is trivial. This simplicity is the key to deriv- diagrams to consider.

ing the recursive relation@0) between theN-leg diagrams. A direct perturbative analysis of (@1)-dimensional
These recursion relations are essential for the resummatiqiodels will reveal whether these various simplifications of
(41) of the perturbative expansion to yield the full effective the (0+ 1)-dimensional model are matters of convenience or
action (5), which is necessary to demonstrate that largef they are crucial to restoring the large gauge invariance that

gauge invariance is satisfied. Another simplifying feature offinite temperature perturbation theory breaks order by order
the (0+1)-dimensional model is that there is no ambiguity [24).

in taking the zero momentum limit of thN-leg diagrams

(because there is just energy, no spatial momeptitow-

ever, in higher dimensio_ns the depen_dencbl_diég diagrams ACKNOWLEDGMENTS
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