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Finite temperature perturbation theory and large gauge invariance
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We examine finite temperature perturbation theory for Chern-Simons theories, in the context of an analogue
(011)-dimensional model. In particular, we show how nonextensive terms arise in the perturbative finite
temperature effective action, using both the real-time and imaginary-time formalisms. We illustrate how large
gauge invariance is restored at all orders, despite being broken at any given order in perturbation theory. We
discuss which aspects generalize to a perturbative analysis of finite temperature Chern-Simons terms in higher
dimensions.@S0556-2821~98!06808-8#

PACS number~s!: 11.10.Wx, 11.10.Kk
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I. INTRODUCTION

Recently, some progress has been made in our un
standing of the temperature dependence of the indu
Chern-Simons terms@1–5#. On the face of it, a temperatur
dependent induced Chern-Simons term would seem to
late gauge invariance@6,7#, because a temperature depend
Chern-Simons coefficient cannot be chosen to take disc
values, as invariance under large gauge transformat
would require@8#. However, in@1# a mechanism was dem
onstrated, motivated by an exactly solvab
(011)-dimensional Chern-Simons theory, whereby the f
effective actiondoessatisfy large gauge invariance, in spi
of the fact that it contains temperature dependent te
which violate large gauge invariance at each order~of the
field variable! in perturbation theory.

The essential new feature is that at finite temperatu
other parity violating terms~other than the Chern-Simon
term! can and do appear in the effective action, and if o
takes into account all such terms to all orders~in the field
variable! correctly, the full effective action can maintai
gauge invariance even though it contains a Chern-Sim
term with a temperature dependent coefficient. In fact, i
clear that if there are higher order terms present~which are
not individually gauge invariant!, one cannot ignore them in
discussing the question of invariance of the effective act
under a large gauge transformation. Remarkably, this me
nism requires the existence of nonextensive terms~i.e. terms
that are not simply space-time integrals of a density! in the
finite temperature effective action, although only extens
terms survive in the zero temperature limit. All these featu
have been demonstrated explicitly and exactly in the 011
Chern-Simons model@1#. This idea has subsequently be
analyzed in the framework of zeta function regularizati
@2#, and has been extended to the Abeli
(211)-dimensional QED (QED211) fermion determinant in
special gauge backgrounds that support gauge transfo
tions with nontrivial winding numbers@2–5#. Once again,
the full effective action is gauge invariant even though
induced Chern-Simons term has a temperature dependen
efficient.
570556-2821/98/57~8!/5023~9!/$15.00
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However, in our opinion, the issue of large gauge inva
ance, at finite temperature, in a (211)-dimensional Chern-
Simons system still poses many interesting and unsol
questions. The QED211 fermion determinants studied in@2–
5# correspond to specially contrived backgrounds that ess
tially factorize the effective action into the 011 model of@1#
and a part corresponding to familiar 2 dimensional~Euclid-
ean! fermion physics. For a general gauge background~and,
more interestingly, for truly non-Abelian backgrounds! the
effective action cannot be computed exactly. Furthermo
Chern-Simons terms may be induced not only in ferm
systems, but also in purely gauge models@9,10# and in
gauge-Higgs models with spontaneous symmetry break
@11,12# where, again, the exact evaluation of the effect
action may not be possible. Therefore, in such models, p
turbation theory~at finite temperature! becomes a crucial and
powerful tool. But as stressed clearly in@2#, there is an in-
herent incompatibility between standard perturbation the
~at a given order! and large gauge invariance, because
coupling constant cannot be factored out of the large ga
transformation at finite temperature. Thereally interesting
question, then, is to understand how to perform reliable
consistent finite temperature perturbative calculations w
large gauge invariance is important. This is a very gene
question, and a deeper understanding of this phenome
should have important implications for finite temperatu
QCD.

In this paper we make a modest first step in this direct
by re-examining the (011)-dimensional model of@1# using
the various standard forms of finite temperature perturba
theory @13#. At first sight, it may seem foolish to study pe
turbation theory for an exactly solvable model, but our go
is to explore the intricacies of finite temperature perturbat
theory in the presence of large gauge invariance. We see
understanding of how these somewhat unfamiliar nonex
sive terms ~in the effective action! arise in perturbation
theory at finite temperature, and yet are all absent at z
temperature. We also seek to identify precisely which f
tures of this model are special to 011 dimensions and which
may be generalized to a perturbative treatment of
(211)-dimensional model. In Sec. II we introduce th
5023 © 1998 The American Physical Society
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5024 57ASHOK DAS AND GERALD DUNNE
model and review briefly the results of@1–5#. In Secs. III and
IV we use the real time formalism of finite temperature p
turbation theory to solve this system, in momentum sp
and then in coordinate space. In Sec. V we apply finite te
perature perturbation theory in the imaginary time form
ism. We conclude with some comments on the relative m
its of these approaches and on which features may gener
to higher dimensions.

II. MODEL

Consider a (011)-dimensional field theory ofNf flavors
of fermionsc j , j 51, . . . ,Nf , minimally coupled to aU(1)
gauge fieldA. It is not possible to write a Maxwell-like
kinetic term for the gauge field in 011 dimensions, but we
can write a Chern-Simons term—it is linear inA @14#. @Such
(011)-dimensional Chern-Simons models have also b
studied recently in dimensional reductions
(211)-dimensional Chern-Simons theories@15#.# In
‘‘Minkowski space’’ ~i.e. real time! the Lagrangian is

L5(
j 51

Nf

c̄ j~ i ] t2A2m!c j2kA. ~1!

This model supports gauge transformations with nontriv
winding number. Under theU(1) gauge transformationc
→e2 ilc, A→A1] tl, the Lagrangian changes by a tot
derivative and the action changes by

DS52kE
2`

1`

dt] tl522pkN ~2!

where N[ (1/2p) *dt] tl is the integer-valued ‘‘winding
number’’ of the topologically nontrivial gauge transform
tion. For example, the gauge transformation with

l~ t !52N arctant52 iN logS 11 i t

12 i t D ~3!

has nonzero winding numberN, and we see thatN must be
an integer so that the gauge transformationc→e2 ilc pre-
serves the single-valuedness of the fieldc(t).

Nevertheless, even though the classical action change@as
in Eq. ~2!# under a large gauge transformation, the quant
path integral, which involveseiS, remains invariant provided
the Chern-Simons coefficientk is an integer. This is just the
usual discreteness condition on the Chern-Simons co
cient, familiar from three dimensional non-Abelian Cher
Simons theories@8#.

Induced Chern-Simons terms appear when we comp
the fermion contribution to the effective action for th
theory:

G@A#52 i logFdet~ i ] t2A2m!

det~ i ] t2m! GNf

. ~4!

From @1#, we know theexact finite temperature effective
action for this theory to be@note that under the Euclidea
rotation*dtA(t)→2*dtA(t)#
-
e
-

-
r-
ize

n

l

fi-
-

te

G@A#52 iN f logFcosS 1

2 E dtAD
1 i tanhS bm

2 D sinS 1

2 E dtAD G . ~5!

Several comments are in order. First, notice that the
fective actionG@A# is not an extensive quantity~i.e. it is not
an integral of a density!. Rather, it is a complicated functio
of the Chern-Simons action:*dtA. Second, in the zero tem
perature limit, the effective action reduces to

G@A#T505
1

2

m

umu
NfE dtA~ t ! ~6!

which is the usual zero temperature induced Chern-Sim
term. At nonzero temperature the effective action is mu
more complicated. A formal perturbative expansion of t
exact result~5! in powers of the gauge field yields

G@A#5
Nf

2 F tanhS bm

2 Da1
i

4
sech2S bm

2 Da2

1
1

12
tanhS bm

2 D sech2S bm

2 Da31 . . . G ~7!

where we have defined

a[E dtA~ t !. ~8!

The first term in this perturbative expansion~7! is the Chern-
Simons action, but with a temperature dependent coeffici
just as was found in the perturbative computations in
11)-dimensional Chern-Simons theories@16,17#. If the
computations stopped there, then we would arrive at the
parent contradiction mentioned in the Introduction—name
the ‘‘renormalized’’ Chern-Simons coefficient

kR5k2
Nf

2
tanhS bm

2 D ~9!

would be temperature dependent, and so could not take
crete values. Thus, it would seem that the effective act
cannot be invariant under large gauge transformations.
flaw in this argument is clear. There are other terms in
effective action besides the Chern-Simons term which can
be ignored, and these must all be taken into account w
considering the question of the large gauge invariance of
effective action. Indeed, the effective action~5! shifts by
(NfN)p, independent of the temperature, under a la
gauge transformation, for whicha→a12pN. This is just
the familiar global anomaly@18,19#, which can be removed
~for example! by taking an even number of flavors, and is n
directly related to the issue of the temperature dependenc
the Chern-Simons coefficient. The clearest way to und
stand this global anomaly is through zeta function regu
ization of the theory@2#.

Finally, note that only the first term in the perturbativ
expansion~7! survives in the zero temperature limit. Th
higher order terms are all nonextensive—they are power
the Chern-Simons action. The corresponding Feynman
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57 5025FINITE TEMPERATURE PERTURBATION THEORY AND . . .
grams vanish identically at zero temperature, and this is u
ally understood by noting that theymust vanish because
there is no gauge invariant~even under infinitesimal gaug
transformations! term involving more than one factor ofA(t)
that can be written down. This, however, assumes that
only look for extensiveterms; at nonzero temperature, th
assumption breaks down and correspondingly we shall
that our notion of perturbation theory must be enlarged
incorporate nonextensive contributions to the effective
tion. For example, let us consider an action quadratic in
gauge fields which can have the general form

G~2!5
1

2 E dt1dt2A~ t1!F~ t12t2!A~ t2! ~10!

where we assume thatF(t12t2)5F(t22t1). Under an in-
finitesimal gauge transformation, this action will transfor
as

dG~2!52E dt1dt2l~ t1!] t1
F~ t12t2!A~ t2!. ~11!

Clearly, the action will be invariant under an infinitesim
gauge transformation ifF50. This corresponds to excludin
the quadratic term~10! from the effective action. But as i
clear from Eq.~11!, the action can also be invariant und
infinitesimal gauge transformations ifF5const, which
would make the quadratic action~10! nonextensive and, in
fact, proportional to the square of the Chern-Simons act
The origin of such nonextensive terms will be discussed
detail in the following sections when we analyze this mo
using standard finite temperature perturbation theory te
niques.

To conclude this section, we recall briefly the results
@2–5# concerning the fermionic determinant in QED211. In
Euclidean space, using the imaginary time formalism, it
been shown that for an Abelian gauge background of
form

A35const, AW ~xW ! ~ independent of time! ~12!

the parity odd part of the finite temperature effective act
is

Sodd5 iF arctanF tanhS bm

2 D tanS eA3

2 D G ~13!

whereF[ (e/2p) *d2xe i j ] iAj is the time-independent mag
netic flux of the background field. Notice that this parity o
part of the effective action corresponds precisely to the
part of the effective action~5!, with the natural identifica-
tions A3→a andF→Nf .

III. REAL-TIME FORMALISM: MOMENTUM SPACE
CALCULATION

The perturbative computation of the fermionic contrib
tion to the effective action requires computing all diagra
with one fermion loop and any number of external gau
fields. We begin by considering the first few such diagra
for this theory, in momentum space, using the real-time f
malism @13#, before giving a systematic method for evalua
u-

e

ee
o
-
e

n.
n
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f

s
e
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al
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ing them. The fermionic Feynman propagator is~we assume
from now on thatm.0, and since the propagator as well
the vertices are diagonal in the flavor index, we do not wr
it explicitly for simplicity!

S~p!5~p1m!S i

p22m21 i e
22pnF~ upu!d~p22m2! D

~14!

wherenF(upu) is the Fermi statistical factor:

nF~ upu!5
1

ebupu11
. ~15!

This propagator simplifies dramatically in 011 dimensions,
due to the trivial one-dimensional nature of space-time. U
ing d(p22m2)5 (1/2m) @d(p2m)1d(p1m)#, we find
that

S~p!5
i

p2m1 i e
22pnF~m!d~p2m!. ~16!

Each fermion-gauge-fermion vertex contributes a factor
2 i . Thus, the contribution of the tadpole diagram to t
linear term in the effective action is~with the negative sign
for the fermion loop!

i I ~1!52~2 i !NfE dp

2p S i

p2m1 i e
22pnF~m!d~p2m! D

[ i I ~1!
~T50!1 i I ~1!

~b! . ~17!

The zero temperature piece is

i I ~1!
~T50!52NfE dp

2p

1

p2m1 i e
52NfE dp

2p

p1m

p22m21 i e

5
i

2
Nf . ~18!

Note that to evaluate the first form of this integral direct
we must include the contribution from the semicircle at
finity since the integrand does not fall off fast enough. T
temperature dependent tadpole contribution can be evalu
trivially to give

i I ~1!
~b!522p iN fnF~m!E dp

2p
d~p2m!52 iN fnF~m!.

~19!

Thus, the net tadpole diagram contribution is

i I ~1!5
iN f

2
@122nF~m!#5

iN f

2
tanhS bm

2 D ~20!

which gives a linear contribution to the effective action,

G~1!52 iA~k50!i I ~1!5
Nf

2
tanhS bm

2 D E dtA~ t !, ~21!

in agreement with the first term in the perturbative expans
~7! of the full effective action.



ro

ive

o
c-
re
te

u

uc
e

x-

ef-
ot

ate
w-
ia-
o-

-

ace-
me.

n-
,
he
tive
of

-

e of
nd
t is
ec-
us-
the

ysis
al-
te
of

5026 57ASHOK DAS AND GERALD DUNNE
The two-point function also splits naturally into a ze
temperature piece and a temperature dependent piece~this is,
in fact, a general property of the real time formalism! and
gives a contribution to the quadratic term in the effect
action of the form

i I ~2!~k!5~2 !
~2 i !2

2!
NfE dp

2p
S~p!S~k1p!

[ i I ~2!
~T50!~k!1 i I ~2!

~b!~k!. ~22!

The zero temperature piece is

i I ~2!
~T50!~k!52

Nf

2 E dp

2p S 1

p2m1 i e D S 1

~k1p!2m1 i e D
5

Nf

4p
2p i F1

k
1

1

2kG
50. ~23!

This is an explicit demonstration of the fact that the tw
point function ~and, therefore, its contribution to the effe
tive action! vanishes identically at zero temperature, as
quired by ~small! gauge invariance. However, the fini
temperature contribution is

i I ~2!
~b!~k!52

Nf

2 E dp

2p F2p inF~m!
d~p2m!

~k1p!2m1 i e

12p inF~m!
d~k1p2m!

p2m1 i e

24p2nF
2~m!d~p2m!d~k1p2m!G

52
i

2
NfnF~m!F 1

k1 i e
1

1

2k1 i eG
1pNfnF

2~m!d~k!

52pNfnF~m!@12nF~m!#d~k!

522pd~k!
Nf

8
sech2S bm

2 D . ~24!

Here we have used the identityd(k)5 (1/p) lime→0 @e/(k2

1e2)]. Since I (2)
(T50)(k) vanishes, this result~24! gives the

entire two-point function. The resulting quadratic contrib
tion to the effective action is

G~2!52 i E dk

2p
A~k!A~2k!i I ~2!~k!

5 i
Nf

8
sech2S bm

2 D S E dtA~ t ! D 2

~25!

in agreement with the perturbative expansion~7!.
There are two important things to observe from the str

ture of the two point function:~i! its dependence on th
external momentum k is through a delta functiond(k), and
~ii ! it vanishes at zero temperature (b→`) because of the
-

-

-

-

‘‘sech’’ factor. The first observation illustrates how none
tensive terms such as@cf. Eq. ~10!#

a25S E dtA~ t ! D 2

5E dk

2p
A~k!A~2k!2pd~k! ~26!

arise in a perturbative approach to the finite temperature
fective action, while the latter explains why these are n
seen in zero temperature perturbation theory.

It is a straightforward matter to go ahead and evalu
diagrams with more than two external gauge fields. Ho
ever, motivated by the above result that the two-point d
gram is proportional to a delta function in the external m
mentum, we appeal to the Ward identities for~small! gauge
invariance, which state that theN-leg diagram ~with N
>2), which is a function ofN21 external momenta, satis
fies the relations

kj I ~N!~k1 , . . . ,kj , . . . ,kN21!50 for j 51, . . .N21.
~27!

This is a generalization of Eq.~11! to N-point functions in
momentum space and here there is no contraction of sp
time indices since we are in a one-dimensional space-ti
This implies thatI (N)(k1 , . . .kN21), for N>2, must be pro-
portional to a product of delta functions in theN21 external
momenta:

i I ~N!~k1 , . . . ,kN21!5CN~bm!d~k1!d~k2!¯d~kN21!
~28!

where the coefficientCN is a function ofbm by dimensional
reasoning. But this immediately implies that theNth order
contribution to the effective action in the perturbative expa
sion is proportional to theNth power of the first order term
which is just the Chern-Simons action. This is exactly t
nonextensive structure that we observe in the perturba
expansion~7!. Here we see that it is a direct consequence
the Ward identities for small gauge invariance.

The result ~28! suggests that the coefficientsCN(bm)
could be calculated from theN-leg diagram with zero exter
nal energies:

~2 !
~2 i !N

N
NfE dp

2p
@S~p!#N. ~29!

These are, however, extremely singular integrals becaus
the product of delta functions with coincident arguments a
have to be evaluated carefully. We have done this, but i
rather complicated, and we shall see in the following s
tions that it is much easier to evaluate these coefficients
ing the coordinate space representation or using
imaginary-time formalism.

IV. REAL-TIME FORMALISM: COORDINATE
SPACE CALCULATION

In this section we describe the coordinate space anal
of the perturbative calculation in this model, using the re
time formalism. The real-time propagator in the coordina
space can be obtained simply from the Fourier transform
the momentum space propagator~16!:
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57 5027FINITE TEMPERATURE PERTURBATION THEORY AND . . .
S~ t ![E dp

2p
e2 iptS~p!5@u~ t !2nF~m!#e2 imt. ~30!

Hereu(t) is the standard Heaviside step function.
Let us now consider theN-leg diagrams contributing to

the effective action. The contribution of the tadpole diagr
is

i I ~1!52~2 i !NfS~0!5 iN f S 1

2
2nF~m! D5

iN f

2
tanhS bm

2 D .

~31!

The contribution of the two-point function to the quadra
action has the form

i I ~2!~ t1 ,t2!52~2 i !2
Nf

2
S~ t12t2!S~ t22t1!

5
Nf

2!
@u~ t12t2!2nF~m!#@u~ t22t1!

2nF~m!#

52
Nf

2
nF~m!@12nF~m!#

52
Nf

8
sech2S bm

2 D . ~32!

The three-point function gives a contribution of the form

i I ~3!~ t1 ,t2 ,t3!52~2 i !3
Nf

3!
@S~ t12t2!S~ t22t3!S~ t32t1!

1S~ t12t3!S~ t32t2!S~ t22t1!#

52
iN f

6
@2nF~m!13nF

2~m!22nF
3~m!#

5
iN f

6
nF~m!@12nF~m!#@122nF~m!#

5
iN f

24
tanhS bm

2 D sech2S bm

2 D . ~33!

We notice that theN-point functions are independent o
the external coordinates. This is the coordinate space
logue of the statement~28! that the momentum spac
N-point functions are proportional to products of delta fun
tions in the external momenta@or the generalization of Eq
~11! to N-leg diagrams#. In coordinate space, it is easy to s
explicitly how this works. Clearly, the tadpole is independe
of the external coordinate. For the 2-point function~and its
contribution to the quadratic part of the action!,

]

]t1
i I ~2!~ t1 ,t2!5

Nf

2

]

]t1
@~u~ t12t2!2nF!~u~ t22t1!2nF!#

5
Nf

2
d~ t12t2!@u~0!2nF#
a-

-

t

2
Nf

2
d~ t22t1!@u~0!2nF#

50. ~34!

Similarly, for the 3-point function,

]

]t1
i I ~3!~ t1 ,t2 ,t3!52

iN f

6
d~ t12t2!@S~ t22t3!S~ t32t1!

2S~ t12t3!S~ t32t2!#1
iN f

6
d~ t12t3!

3@S~ t12t2!S~ t22t3!

2S~ t32t2!S~ t22t1!#

50. ~35!

In general, the derivative of the higherN-point functions
with respect to any one, sayt1 , of the external coordinate
vanishes because for any diagram contributing to theN-point
function with a given ordering of the external coordinate
there is another diagram witht1 interchanged with anothe
coordinate, sayt2 . But (]/]t1) S(t12t2)5(2 ]/]t1) S(t2
2t1), and so these diagrams cancel pairwise. We recog
that this is just a manifestation of the coordinate space W
identities, which corresponds to a generalization of Eq.~11!.

Furthermore, we notice from the results~31!,~32!,~33! that
I (N) is essentially the derivative ofI (N21) with respect to
bm, for N<3. To prove this in general, for anyN, note that
in any diagram contributing to the effective action, the pro
uct of the phase factorse2 imt in a loop simply cancels out
Therefore, we can effectively consider the ‘‘reduced’’ prop
gator without this phase factor in our computations:

S̃~ t12t2![u~ t12t2!2nF~m!. ~36!

Then it is clear that

]

]m
S̃~ t12t2!52nF8 ~m!52bnF~12nF! ~37!

where in the last step we have used the identity explic
satisfied by the Fermi factor in Eq.~15!. Since the Feynman
amplitudes are independent of the external time coordina
we can choose any time ordering for these quantities and
chooset1.t2 . This gives

]

]m
S̃~ t12t2!52b S̃~ t12t3! S̃~ t32t2!, t1.t2.t3 ,

~38!

wheret3 is arbitrary, but strictly less thant2 . Similarly,

]

]m
S̃~ t22t1!52b S̃~ t22t3! S̃~ t32t1!, t1.t2.t3 .

~39!

Thus, the effect of differentiating anN-point function with
respect tom is to introduce another coordinate~and, there-
fore, an external gauge field!, lower than all the others, in al
possible lines on the original diagrams. This is a general
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5028 57ASHOK DAS AND GERALD DUNNE
tion of the zero temperature Ward identity and relates
(N11)-point function to theN-point function through the
following recursion relation:

]

]m
I ~N!52 ib~N11!I ~N11! ~40!

where we have suppressed the external coordinates sinc
N-point functions are in fact independent of them. But th
means thatall the coordinate spaceN-point diagrams are
given as derivatives of the tadpole diagram with respec
the massm. Thus, the full effective action is

G52 i (
N51

` S E dtA~ t ! D N

~ i I ~N!!

52
ibNf

2 (
N51

`
@~ i /b!*dtA~ t !#N

N!

3S ]

]mD N21

tanhS bm

2 D . ~41!

Remarkably, this expansion may be resummed, to yield
full exact effective action in Eq.~5!.

V. IMAGINARY TIME: MOMENTUM SPACE
CALCULATION

In this section we present a perturbative analysis of
model using the imaginary time formalism for finite tem
perature perturbation theory. The coordinate space appro
in the imaginary time formalism, was already given in@1#,
and so here we discuss the momentum space analysis.

Defining an imaginary time coordinatet5 i t , the La-
grangian~1! becomes

LE5(
j 51

Nf

c j
†~]t2 iA1m!c j2 ikA. ~42!

The imaginary time coordinatet is restricted to the ranget
P@0,b#, whereb is the inverse temperature. Fermi fields a
antiperiodic int, c(0)52c(b), while gauge fields are pe
riodic, A(0)5A(b). The propagators are the same as
zero temperature propagators, but the antiperiodicity and
riodicity conditions on the fields imply that the correspon
ing energies take discrete values, being odd~even! multiples
of 2pT for fermions~bosons! @13#.

The photon vertex, in this theory, contributes a factor oi
so that the contribution of the ‘‘Euclidean’’ tadpole diagra
to the effective action is

I ~1!5~2 !~ i !trS 1

ip1mD52 i trS 2 ip1m

p21m2 D . ~43!

There is no Dirac index except for the flavor index who
trace is trivial and at zero temperature the energy trace i
integral: so

I ~1!52 iN fE
2`

` dp

2p S 2 ip1m

p21m2 D52
i

2

m

umu
Nf . ~44!
e

the

o

e

e

ch,

e
e-
-

an

Notice that the real part of the tadpole vanishes identica
while the imaginary part is proportional to the sign of th
massm. At nonzero temperature, the trace is a sum over
discrete fermionic energies:

I ~1!5~2 iN f !T (
n52`

`
2~2n11!ipT1m

~2n11!2p2T21m2

52
iN fm

p2T (
n52`

`
1

~2n11!21m2b2/p2

52
iN f

2
tanhS bm

2 D . ~45!

The infinite sum, here, is just a standard representation@20#
of the tanh function and this agrees exactly with the first te
of Eq. ~14! in @1#. In the zero temperature limit, this reduce
smoothly to the zero temperature result~44! for the tadpole.

The ‘‘Euclidean’’ two-point diagram gives a contributio
to the quadratic action of the form

I ~2!~k!5~2 !
~ i !2

2!
trS m22p~p1k!1 im~2p1k!

@m21p2#@m21~p1k!2# D .

~46!

First consider this diagram at zero temperature. The ima
nary part vanishes identically, as can be seen by replacinp
by 2(k1p). The real part also vanishes, as a result o
cancellation between the two terms:

E
2`

` dp

2p S m22p~p1k!

@m21p2#@m21~p1k!2# D
5

umu
k214m2 2

umu
k214m2 50. ~47!

At nonzero temperature, the trace in Eq.~46! involves a sum
over the discrete fermionic energies. Once again, the im
nary part vanishes after a shift of the energy variable, but
note that this relies on the fact that the~bosonic! external
energyk is an even multiple of 2pT, while the~fermionic!
loop energyp is an odd multiple of 2pT. The real part
requires considerably more care, as we must distinguish
tween the case when the external energy vanishes and w
it is nonzero. Whenk50, it is trivial to evaluate

I ~2!~k50!5
Nf

2
T (

n52`

`
m22~2n11!2p2T2

@m21~2n11!2p2T2#2

52b
Nf

8
sech2S bm

2 D . ~48!

WhenkÞ0, it is surprisingly tricky to evaluate this two-poin
diagram~46! at finite temperature. A natural approach is
use Schwinger’s parametric representation of the integra
in which case the diagram becomes a parametric inte
involving a Jacobi theta function. The advantage of this
proach is that the only difference between the zero temp
ture and nonzero temperature result is the absence or p
ence of the theta function factor. Represent the integran
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m22p~p1k!

@m21p2#@m21~p1k!2#
5@m22p~p1k!#E

0

`

da1E
0

`

da2e2a1~m21p2!e2a2@m21~p1k!2#

5E
0

`

da1E
0

`

da2F2m21
1

2
k21

1

2

]

]a1
1

1

2

]

]a2
Ge2a1~m21p2!e2a2@m21~p1k!2#.

~49!

At zero temperature, the integration over the loop energyp is simply a Gaussian integral:

E
2`

` dp

2p
e2a1p2

e2a2~p1k!2
5

1

A4p~a11a2!
expF2k2S a1a2

a11a2
D G . ~50!

After a change of variables

u5a11a2 , v5
a2

a11a2
~51!

for which the Jacobian equalsu, we arrive at a simple parametric integral representation for the two-point function:

I ~2!
~T50!~k!5

Nf

4Ap
E

0

1

dvE
0

`

uduF2m21
1

2
k21

]

]u
1

122v
2u

]

]v G S 1

Au
e2u@m21v~12v !k2#D

5
Nf

4Ap
E

0

1

dvE
0

`

uduFm21v~12v !k22
1

2uG S 1

Au
e2u@m21v~12v !k2#D

50. ~52!
,

t
n
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a

m-

o
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-

n
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Thus, the two-point function vanishes at zero temperature
in Eq. ~47!.

At nonzero temperature, the energy trace is a sum, no
integral, and so we cannot perform a Gaussian integratio
in Eq. ~50!. Rather, the summation over the loop ener
produces a Jacobi theta function. Write the loop energy
p5(2n11)pT and the external gauge momentum ask
52lpT. Then

(
n52`

`

e2a1p2T2~2n11!2
e2a2p2T2~2n1112l !2

5e24p2l 2T2a2Q2„4p i lT 2a2u4p iT2~a11a2!… ~53!

whereQ2 is the second Jacobi theta function@20#:

Q2~vut![ (
n52`

`

eipt~n11/2!2
eipv~2n11!. ~54!

We now exploit the Poisson summation formula

Q4S v
t U 21

t D5A2 i teipv2/tQ2~vut! ~55!

whereQ4 is the fourth Jacobi theta function:

Q4~vut![112(
n51

`

~21!neiptn2
cos~2nv !. ~56!
as

an
as

s

Then, the finite temperature two-point function becomes

I ~2!~k!5
Nf

4Ap
E

0

1

dvE
0

`

uduF2m21
1

2
k21

]

]u

1
122v

2u

]

]vG
3F 1

Au
e2u@m21v~12v !k2#Q4S kv

2pT U i

4pT2uD G .

~57!

Remarkably, this expression only differs from the zero te
perature parametric expression~52! by the presence of the
theta function factor. WhenT→0, this theta factor reduces t
1 and we get the zero temperature expression. Furtherm
when the external momentumk vanishes, it is a straightfor
ward exercise to show that we regain the~nonzero! answer in
Eq. ~48!. However, whenkÞ0, we can integrate by parts i
v, and use the fact that the Jacobi theta functions satis
heat equation

]

]t
Q~vut!52 i

p

4

]2

]v2 Q~vut! ~58!

to convert the parametric integral~57! into
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I ~2!~kÞ0!5
Nf

4Ap
E

0

1

dvE
0

`
Audue2u@m21v~12v !k2#

3Fm21v~12v !k22
1

2u
2

]

]uG
3Q4S kv

2pT U i

4pT2uD
50. ~59!

Therefore, we have shown that the two-point function va
ishes when the external momentumk is nonzero, but is non-
zero when the external momentumk vanishes. That is, the
two-point function is proportional to a Kronecker delta in t
external momentumk:

I ~2!~k!52bdk,0

Nf

8
sech2S bm

2 D . ~60!

This is the imaginary time analogue of the real time res
~24!, and it agrees exactly with the second term in Eq.~14!
of @1#. Similarly, using Schwinger’s parametric represen
tion, we can show that theN-point function vanishes if any
one of the external momenta is nonzero. This is an exp
illustration of the Ward identity~28! in the imaginary-time
formalism.

When all the external momenta vanish it is very easy
evaluate theN-point function using the imaginary time for
malism:

I ~N!~k150, . . . ,kN2150!

5~2 !
~ i !N

N
NfT (

n52`

` S 1

i ~2n11!pT1mD N

5
Nf

2

~2 i !N

N! S ]

]mD N21

tanhS bm

2 D . ~61!

As before, this permits the effective action to be resumm

GE5 (
N51

`

TN21(
k1

¯ (
kN21

A~k1!¯A~kN21!

3A~2k12¯2kN21!I ~N!~k1 , . . . ,kN21!

5 (
N51

`

TN21@A~k50!#NI ~N!~k150, . . . ,kN2150!

5b
Nf

2 (
N51

` F2 ~ i /b!E
0

b

A~t!dtGN

N!

3S ]

]mD N21

tanhS bm

2 D . ~62!

This agrees with the exact effective action derived in@1#, and
is the imaginary time version of the real time result~41!.
-

lt

-

it

o

d:

VI. CONCLUSIONS

In conclusion, we have analyzed the fermion contributi
to the effective action in a (011)-dimensional model with a
Chern-Simons term, using various standard techniques o
nite temperature perturbation theory. Each formalism has
own advantages and disadvantages. In the real-time form
ism, the momentum space calculation gives an immed
derivation, via the Ward identities~28!, of the existence of
nonextensive terms in the effective action. But the act
computation of the coefficients of these nonextensive te
is rather messy in the momentum space approach. In par
lar, the diagrams with zero external momenta are singu
and must be treated with great care. Rather, in the coordi
space approach~in the real time formalism! it is very easy to
evaluate these coefficients using the recursion relation~40!
that relates all higher order diagrams back to the tadp
diagram. It is also rather straightforward to demonstrate
independence of theN-point diagram on the external tim
coordinates, which is the coordinate space statement of
Ward identities. Finally, the momentum space calculation
the imaginary time formalism gives a trivial evaluation of th
N-point diagram when the external momenta are all ze
However, it is surprisingly difficult to verify explicitly the
Ward identities by showing that the diagrams vanish if a
of the external momenta are nonzero.

Nevertheless, each of these different approaches wo
The final result is~as in@1#! that although each term in finite
temperature perturbation theory gives a temperature de
dent contribution that violates large gauge invariance, we
resum all orders of perturbation theory to obtain the f
effective action~5!, which respects large gauge invarianc
We stress that gauge invariance alone is not enough to
termine the exact form of the effective action. Small gau
invariance implies, Eq.~28!, that the effective actionG is a
functionof the Chern-Simons actiona @i.e. thatG5G(a) is
nonextensive#. But to satisfy large gauge invariance all w
need is that the fermion determinanteiG(a) change by at mos
a sign under a large gauge transformation:a→a12pN.
This is satisfied by a general expression

exp@ iG~a!/Nf #5(
j 50

` FdjcosS ~2 j 11!a

2 D
1 f j sinS ~2 j 11!a

2 D G . ~63!

The actual answer~5! gives as the only nonzero coefficien
d051 and f 05 i tanh(bm/2). This fact can only be deduce
by computation, not solely from gauge invariance requi
ments.

We now ask, which features of this (011)-dimensional
model will extend to the general (211)-dimensional case?
In the (011)-dimensional case, the Ward identities~27!
have the simple consequence that nonextensive terms
appear in the effective action~although the actual coeffi
cients, zero or nonzero, must be determined by a calc
tion!. This argument does not immediately generalize to
11 dimensions, although it does apply to certain spec
backgrounds such as the static ones used in@2–5#; for these
backgrounds the finite temperature fermionic determin
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can be calculated explicitly. However, the nonextens
terms that appear are nonextensive in time only, and th
probably a consequence of the fact that the backgrou
themselves are static. Another dramatic simplification of
(011)-dimensional model is that the propagator has a v
simple structure, both in momentum space~16! and in coor-
dinate space~30!, primarily because there is contributio
only from the positive energy terms. This is due to the f
that the on-shell condition is very simple for on
dimensional space-time and also the fact that the D
spinor structure is trivial. This simplicity is the key to deriv
ing the recursive relations~40! between theN-leg diagrams.
These recursion relations are essential for the resumma
~41! of the perturbative expansion to yield the full effectiv
action ~5!, which is necessary to demonstrate that la
gauge invariance is satisfied. Another simplifying feature
the (011)-dimensional model is that there is no ambigu
in taking the zero momentum limit of theN-leg diagrams
~because there is just energy, no spatial momentum!. How-
ever, in higher dimensions the dependence ofN-leg diagrams
on external momenta is nonanalytic at finite temperat
@21#, and great care must be used in extracting Che
Simons-like terms via a zero external momentum limit@22#.
This problem simply does not arise in th
-
ce

ys

m

ik

ys

s.
i

e
is
ds
e
y

t

c

on

e
f

e
-

(011)-dimensional model. Finally, an important feature
the 211 induced Chern-Simons term atzero temperature is
the Coleman-Hill theorem@23#, which essentially states tha
only one-loop graphs contribute to the induced Che
Simons term. But finite temperature violates the assumpti
used for the Coleman-Hill result, and it is not clear what ro
this will play in a finite temperature perturbative analysis
(211)-dimensional systems. However, this issue sim
does not even arise in the (011)-dimensional model, as th
‘‘photon’’ does not propagate; thus, there are no higher lo
diagrams to consider.

A direct perturbative analysis of (211)-dimensional
models will reveal whether these various simplifications
the (011)-dimensional model are matters of convenience
if they are crucial to restoring the large gauge invariance t
finite temperature perturbation theory breaks order by or
@24#.
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