
PHYSICAL REVIEW D 15 APRIL 1998VOLUME 57, NUMBER 8
Destructive interference of dualities
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The soldering mechanism has been shown to represent the quantum interference effect between self- and
anti-self-dual aspects of a given symmetry. This mechanism was used to show that the massive mode of the 2D
Schwinger model results from the constructive interference between the right and the left massless modes of
chiral Schwinger models. Similarly, the topologically massive modes resulting from the bosonization of 3D
massive Thirring models of opposite mass signatures are fused into the two massive modes of the 3D Proca
model, thanks to the interference of dualities characteristic of the soldering mechanism. In this work, we show
that the field theoretical analogue of destructive quantum mechanical interference may also be represented by
the soldering mechanism. This phenomenon is illustrated by the fusion of two~diffeomorphism! invariant
self-dual scalars described by right and left chiral-WZW actions, producing a Hull nonmover field. After
fusion, right and left moving modes disappear from the spectrum, displaying the claimed~destructive! inter-
ference of dualities.@S0556-2821~98!02408-4#

PACS number~s!: 11.10.Kk, 11.10.Ef, 11.30.Rd
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The investigation of chiral bosonization began ma
years ago in the seminal work of Siegel@1#. Later on Gates
and Siegel showed how to construct general interacting
tions for chiral bosons, including the supersymmetric and
non-Abelian cases@2#. They used this construction to obta
the righton-lefton interaction by carrying out the path in
gral quantization in a generalized Thirring model. Altern
tively, Stone@3# has shown that the method of a coadjo
orbit when applied to a representation of a group associ
with a single affine Kac-Moody algebra provides an act
for the chiral Wess-Zumino-Witten~WZW! model @4#, a
non-Abelian generalization of the Floreanini-Jackiw mod
@5#. This method gives a useful bosonization scheme
Weyl fermions, since a level one representation of LU~N!
has an interpretation as the Hilbert space for a free ch
fermion@6#. The drawback is that only Weyl fermions can b
dealt with in this way, since a 2D conformally invaria
quantum field theory~QFT! has separate right and left cu
rent algebras. In order to overcome this difficulty, Stone@3#
introduced the idea of soldering the two chiral scalars
introducing a nondynamical gauge field to remove the deg
of freedom that obstructs the vector gauge invariance. Th
connected to the observation that one needs more than
direct sum of two fermionic representations of the Ka
Moody algebra to describe a Dirac fermion. Stated diff
ently, the equality for the weights in the two representatio
is physically connected with the need to abandon one of
two separate chiral symmetries, and accept that only ve
gauge symmetry should be maintained. This is the main
tivation for the introduction of the soldering field which pe
vades for the fusion of dualities in all space-time dimensio
Moreover, being just an auxiliary field, it may posteriorly b
eliminated in favor of the physically relevant quantities. Th
restriction will force the two independent chiral represen
tions to belong to the same multiplet,effectivelysoldering
them together.

On the other hand, the role of duality as a qualitative t
in the investigation of physical systems is being gradua
570556-2821/98/57~8!/4990~5!/$15.00
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disclosed in a different context and dimensions@7#. In two
space-time dimensions in particular, we face the intrigu
situation where chirality also plays the role of duality. Th
enables the investigation of the former to be performed us
the techniques developed for the latter. Recently, this au
and collaborators@8–10# extended the techniques of fusio
or soldering, introduced by Stone@3#, to investigate some
new aspects of dualities at different space-time dimensio
and studied the physical consequences of their combina
by the soldering process. In particular, we have shown@8#
that the constructive interference between the left and
right moving massless modes of two chiral Schwinger m
els @11# of opposite chiralities is soldered into the gau
invariant massive mode of the vector Schwinger model.
fact, by equipping the soldering technique with gauge a
Bose symmetry@12# it automatically selects the massle
sector of the chiral models displaying the Jackiw-Rajaram
parameter that reflects the bosonization ambiguity bya51.
In the 3D case, the soldering mechanism was used to s
the result of fusing together two topologically massi
modes generated by the bosonization of two mass
Thirring models with opposite mass signatures in the lo
wavelength limit. The bosonized modes, which are descri
by self- and anti-self-dual Chern-Simons models@13,14#,
were then soldered onto the two massive modes of the
Proca model@9#. In the 4D case, the soldering mechanis
produced an explicitly dual and covariant action as the re
of the interference between two Schwarz-Sen@15# actions
displaying opposite aspects of the electromagnetic dua
@10#. It is our intention in this work to study the physica
consequences of combining actions possessing truncate
feomorphism invariance and opposite chiralities using
fusion of dualities technique.

It should be mentioned that such a procedure has a typ
quantum mechanical nature, with no classical parallel. I
completely meaningless to perform the sum of two class
actions, which, although describing opposite aspects of s
~duality! symmetry, would depend on the same field. On
4990 © 1998 The American Physical Society
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57 4991DESTRUCTIVE INTERFERENCE OF DUALITIES
other hand, the direct sum of duality symmetric actions
pending on different fields would not give anything new. It
the soldering process that leads to a new and nontrivial
sult. In 2D, this result has been interpreted@8# as the conse-
quence of the constructive interference of chiralities, by c
pling the chiral scalar fields to a dynamical gauge field. T
resulting effective gauge theory, obtained after the elimi
tion of the soldered scalar field through equations of moti
shows the presence of a mass term that is typical of
right-left quantum interference@16#.

In this work we show that it is also possible to obtain t
field theoretical analogue of the ‘‘quantum destructive int
ference’’ phenomenon, by coupling the chiral scalars to
propriately truncated metric fields, known as chiral WZ
models, or non-Abelian Siegel models. By soldering the t
~Siegel! invariant representations of the chiral WZW mod
@1# of opposite chiralities, the effective action that resu
from this process is shown to be invariant under the
diffeomorphism group, which is not a mere sum of two S
gel symmetries. In fact, this effective action does not cont
either right or left movers, but can be identified with th
non-Abelian generalization of the bosonic nonmover act
proposed by Hull@18#, thanks to the richer symmetry struc
ture induced over it by the soldering mechanism.

To begin with, let us review some facts about the no
Abelian Siegel model@17#. The action for a left mover chira
scalar is given as1

S0
~1 !~g!5E d2x tr~]1g]2 g̃1l11]2g]2 g̃ !1GWZ~g!,

~1!

wheregPG is a matrix-valued field taking values on som
compact semisimple Lie groupG, with an algebraĜ. The
term GWZ(g) is the topological Wess-Zumino functional, a
defined in Ref.@19#. It is invariant under a chiral diffeomor
phism known as Siegel transformation where

dl1152]1e21l11]2e21e2]2l11 ~2!

andg transforming as a scalar. This action can be seen as
WZW action, immersed in a gravitational background, w
an appropriately truncated metric tensor,

S0
~1 !~g!5

1

2 E d2xA2h1h1
mntr~]mg]n g̃ !1GWZ~g!,

~3!

with h15det(hmn
1 ) and

1

2
A2h1h1

mn5S 0
1

2

1

2
l11

D . ~4!

1Our notation is as follows:x651/2(t6x) are the light-cone vari-

ables andg̃5g21 denotes the inverse matrix.
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Next, let us compute the Noether currents for the ax
vector, vectorial, and the right and left chiral transform
tions. The variation of the Siegel-WZW action~1! or ~3!
gives

dS0
~1 !~g!

5H E d2x tr$dg g̃2@]1~]2g g̃!1]2~l11]2g g̃!#%,

E d2x tr$ g̃dg2@]2~ g̃]1g!1]2~l11 g̃]2g!#%.

~5!

From Eq.~5! and the axial transformation (g→kgk) we ob-
tain

JA
152g]2 g̃ ,

JA
2522@ g̃]1g1l11~ g̃]2g1]2g g̃!#, ~6!

wherekPK take their values in some subgroupK,G. From
the transformation (g→ k̃gk) we obtain the vector current

JV
152g]2 g̃ ,

JV
252@ g̃]1g1l11~ g̃]2g2]2g g̃!#. ~7!

Incidentally, it should be observed that the axial vector a
the vectorial currents~6! and~7! are dual to each other onl
if the following extended definition is adopted,

* Tm5A2h1h1
mnemlTl, ~8!

and use of the following relations is made:

J15J222l11J1,

J25J1, ~9!

which is valid for all currents. Similarly, the chiral curren
can be obtained from the left (g→gk) and right (g→ k̃g)
transformation. The result is

JL
~1 !50,

JL
~2 !52~ g̃]g1l11 g̃]2g! ~10!

and

JR
~1 !522g]2 g̃ ,

JR
~2 !522l11g]2 g̃ . ~11!

It is crucial to notice that out of the two affine invariances
the original WZW model, only one is left over due to th
chiral constraint]2g'0. Indeed, the affine invariance i
only present in the left sector sinceJL

(1)50 and]2JL
(2)50,

which implies JL
(2)5JL

(2)(x1), while JR
(2)Þ0 and JR

(1)

ÞJR
(1)(x2).
Next we work out the details for the right chirality action



i-
s,
se
i

fo

t

pt
ns
s
a
ite
is

o
s
le
a

th
nc

ba

of

e-
le

a.

un-
the

tor

be
on-

n:

4992 57CLOVIS WOTZASEK
S0
~2 !~h!5E d2x tr~]1h]2 h̃1l22]1h]1 h̃ !2GWZ~h!

5
1

2 E d2xA2h2h2
mntr~]mh]n h̃ !2GWZ~h!,

~12!

where

1

2
A2h2h2

mn5S l22

1

2

1

2
0
D . ~13!

Notice thatS0
(1)(g) andS0

(2)(h) are chosen at opposite crit
cal points; otherwise, they will not carry different chiralitie
a crucial condition for the soldering to be performed. The
of axial vector, vector, and chiral Noether currents is sim
larly obtained:

JA
~1 !~h!52@ h̃]2h1l22~ h̃]1h1]1h h̃!#,

JA
~2 !~h!52]1g g̃, ~14!

JV
~1 !~h!52@ h̃]2h1l22~ h̃]1h2]1h h̃!#,

JV
~2 !~h!522]1h h̃, ~15!

JL
~1 !~h!52]1h h̃,

JL
~2 !~h!52l22]1h h̃, ~16!

JR
~1 !~h!52~ h̃]2h1l22 h̃]1h!,

JR
~2 !~h!50, ~17!

with the corresponding interpretation analogous to that
lowing Eq.~11!. Since the actions~1! and~12! do correspond
to opposite aspects of a symmetry~chirality!, the stage is se
for the soldering.

Next, let us discuss the gauging procedure to be ado
in the soldering of the right and the left chiral-WZW actio
just reviewed. The basic idea of the soldering procedure i
lift a global Noether symmetry present at each individu
chiral component into a local symmetry for the compos
system that, consequently, defines the soldered action. It
vital importance to notice that the coupling with the~auxil-
iary! soldering gauge field is only consistent if use is made
the correspondent chiral current. Otherwise the equation
motion, after the gauging, will result being incompatib
with the covariant chiral constraint, by the presence of
anomaly. Anomalies can certainly be incorporated into
theory, but not at the expense of violating the consiste
between equations of motion and gauge constraints. Here
shall adopt an iterative Noether procedure to lift the glo
~left! chiral symmetry of Eq.~1!,

g→gk,

l11→l11 ,
t
-

l-

ed

to
l

of

f
of

n
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we
l

A2→ k̃A2k1 k̃]2k, ~18!

into a local one. To compensate for the noninvariance
S0

(1) , we introduce the coupling term

S0
~1 !→S1

~1 !5S0
~1 !1A2JL

2~g!, ~19!

along with the soldering gauge fieldA2 , taking values in the
subalgebraK̂ of K, whose transformation properties are d
fined in Eq.~18!. Using such transformations, it is a simp
algebra to find that

d~S1
~1 !2l11A2

2 !52]1vA2 , ~20!

with vPK̂ being an infinitesimal element of the algebr
One can see that

S2
~1 !5S1

~1 !2l11A2
2 ~21!

cannot be made gauge invariant by additional Noether co
terterms, but it has the virtue of being independent of
transformation properties ofg while depending only on the
elements of the gauge algebraK̂. Similarly, for the right
chirality we find

dS2
~2 !522A1]2v ~22!

for

S2
~2 !~h!5S0

~2 !~h!2A1JR
1~h!2l22A1

2 ~23!

when the basic fields transform as

h→hk,

A1→kA1 k̃1k]1 k̃ ,

l22→l22 . ~24!

It is important to observe that the action for the right sec
depends functionally on a different field, namely,hPH. Al-
though the gauged actions for each chirality could not
made gauge invariant separately, with the inclusion of a c
tact term, the combined action

Se f f5S2
~1 !1S2

~2 !12A1A2 ~25!

is invariant under the set of transformations~18! and ~24!
simultaneously.

Following Ref. @3#, we eliminate the~nondynamical!
gauge fieldAm . From the equations of motion one gets

J52MA, ~26!

where we have introduced the following matricial notatio
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J5S JL
2~g!

JR
1~h! D , ~27!

A5S A1

A2
D , ~28!
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M5S 1 l11

l22 1 D . ~29!

Bringing these results into the effective action~25! gives
Se f f5S0
~1 !~g!1S0

~2 !~h!1E d2x
1

12l2 tr$2@ g̃]1g h̃]2h1l2g̃]2g h̃]1h1l11 g̃]2g h̃]2h1l22 g̃]1g h̃]2h#

1l22~]1g]1 g̃12l11]1g]2 g̃1l11
2 ]2g]2 g̃ !1l11~]2h]2 h̃12l22]1h]1 h̃1l22

2 ]1h]1 h̃ !%. ~30!
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where l25l11l22 . It is now a simple algebra to show
that this effective action does not depend on the fieldsg and
h individually, but only on a gauge invariant combination
them, defined below, Eq.~32!. This effective action corre-
sponds to that of a~nonchiral-!WZW model coupled mini-
mally to an effective metric built out of the Lagrange mul
pliers of the original Siegel actions,

1

2
A2hhmn5

1

12l2 S l22

11l2

2

11l2

2
l11

D , ~31!

and a new~effective! field

G5g h̃ ~32!

and reads

S5
1

2 E d2xA2hhmntr~]mG]nG̃!1GWZ~G!. ~33!

Here we have used the well-known property of the We
Zumino functionalGWZ(h)52GWZ( h̃), and the Polyakov-
Weigman identity@19#.

It is interesting to notice that the original chiral transfo
mations ~18! and ~24! are now hidden, since the effectiv
action is composed of only the gauge invariant objects~31!
and ~32!. To unravel the physical contents of the effecti
soldered action~33!, it is important to study the new set o
symmetries of the composite theory. We first observe t
under diffeomorphism the metric transform as a symme
tensorial density,

dl1152]1e21l11
2 ]2e11~]1e12]2e21e1]1

1e2]2!l11 ,

dl2252]2e11l22
2 ]1e21~]2e22]1e11e1]1

1e2]2!l22 , ~34!

while theG transforms as a scalar. It is important to obse
that if we restrict the diffeomorphism to just one sector, s
by requiringe150, we reproduce the original Siegel sym
metry for the sector described by the pairG,l11 in the same
-

at
c

e
,

way as it appears in the original chiral theory~1!. However,
under this restriction,l22 transforms in a nontrivial way as

dl225l22
2 ]1e21~]2e21e2]2!l22 . ~35!

The original Siegel symmetry, therefore, is not a subgroup
the diffeomorphism group but it is only recovered if we al
make a further truncation, by imposing thatl2250. The
existence of the residual symmetry~35! seems to be related
to a duality symmetry satisfied by the effective action~33!
when the metric is parametrized as in Eq.~31!. Under the
discrete transformation

l66→
1

l77
, ~36!

the residual transformation~35! swaps to~2! while that be-
comes the residual symmetry for the opposite chiral sec
Indeed we see that the classical equations of motion rem
invariant under Eq.~36! while the effective action change
its signature, very much like in the original electromagne
duality transformation. This is obviously related to the inte
change symmetry between the right and the left moving s
tors of the theory, and seems to be of general validity@10#.
Also notice that the gauged Lagrangian in one sector, ei
S2

1 or S2
2 , cannot be written in a diffeomorphism invarian

manner. Therefore, gauging in one of the sectors breaks
gel invariance. However, let us note that if we integrate
either theA2 or the A1 field, the Siegel theory change
chirality with the identification provided by Eq.~36!, that is,
again related to the discrete duality symmetry.

Now comes the crucial observation. By solving the equ
tions of motion and setting thel6 to zero by invoking the
diffeomorphism invariance discussed above, it is simple
see that the composite field~32! of the effective action~33!
describes a nonmover field, as first proposed by Hull@18#.
The right and the left moving modes have therefore dis
peared from the spectrum. The soldering procedure
clearly produced a destructive interference between left
right movers of the original chiral components. Moreover
can be easily seen that the coupling of chiral scalars t
dynamical gauge field before soldering, as done in@8# ~see
the Appendix!, will decouple the gauge sector from the e
fective soldered action. This seems to be a natural re
since a nonmover field cannot couple to either right or l
components of the vector gauge field. This is a distinct
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result produced by the presence of the full group of diffe
morphism resulting from the soldering process, which c
strains the matter scalar field to the nonmoving sector, q
in opposition to the constructive interference result t
comes from soldering the noninvariant models.
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