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Continuum version of ¢7, , theory in light-front quantization
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A genuine continuum treatment of the massi#®, ; theory in light-cone quantization is proposed. Fields
are treated as operator-valued distributions, thereby leading to a mathematically well-defined handling of
ultraviolet- and light-cone-induced infrared divergences and of their renormalization. Although nonperturba-
tive, the continuum light-cone approach is no more complex than usual perturbation theory in lowest order.
Relative to discretized light-cone quantization, the critical coupling increases by 30% to arvalus.
Conventional perturbation theory at the corresponding order yrgldsl, whereas the RG-improved fourth-
order result ig ,=1.8+0.05.[S0556-282(98)00308-1

PACS numbgs): 11.10.Kk, 11.10.Ef, 11.10.St, 11.30.Rd

I. INTRODUCTION of the test functions are automatically transferred from the
first to the second case; thus, it is ensured that, if the field is
Discretized light-cone quantizatiofDLCQ) [1] has regular in the Minkowski case, it is also regular in the LC
played an important role in clarifying infrared aspects of thecase—it is the same field expressed by different surface in-
theory which are decisive for the appearance of the vacuurtegral. Actually, what is called IR divergence in the unregu-
sector field, the LC counterpart of the nontrivial ground statdarized LC-field expansion is an UV divergence in the LC
of equal-time (ET) quantization[2—7]. The popularity of energy; it is only the special choice of coordinates which
DLCQ resides in the easy and conceptually simple treatmennakes it look like an IR divergence. Therefore, there is no
of the necessary infrared regularization. However, it hagxtra IR singularity in the LC case which would have to be
never been demonstrated that the limit where the periodicitjreated separately: The UV behavior of the field on the
length L goes to infinity is identical to the genuine con- Minkowski manifold dictates the Uind IR behavior on the
tinuum theory where momentum space discretization id-C manifold. There is absolutely no freedom in the LC case
avoided from the start. The reason lies in the infrared behaveeyond the choice of test functions relevant in the
ior of the continuum theory, which has not yet been underMinkowski case. Moreover, because of general properties
stood. Our aim is to clarify this issue on the basis of a mathknown from functional analysis, the independence of physi-
ematically well-defined procedure. cal results from the special form of the test functions is en-
As an example, we treat explicitlyfl‘ﬂ theory in the sured. In Sec. Ill we use the Haag expansion of field opera-
continuum and compare its results for the phase transition térs to define the decomposition into the particle sector field
the DLCQ case. It turns out that with the same type of physi< and the vacuum sector field. In Sec. IV we discuss the
cal approximations the characteristics of the phase transitiofguation of motion(EM) for ¢ and the constraint fot)
are the same in both cases, whereas the critical couplinghich are coupled equations. Finally, in Sec. V we discuss
strength and the dependence of the order parameter on t so-called mean field solution of these equations and the
coupling strength are substantially different. results for the phase transition. In Sec. VI we rewrite the
In connection with phase transitions, there is a vital inter-condition for the phase transition in the language of an ef-
est to dispose of a continuum version of the theory, if one idective theory and compare the results with the literature. In
interested in the study of critical phenomena in the framethe Appendix we collect a number of results from the theory
work of effective theories. This is the point of view of sta- of distributions to substantiate the discussions in Sec. Il
tistical theories of fields in which cutoffs are introduced in
order to define a momentum or mass scale below which the Il. FUNDAMENTALS:
effective theory is valid. Critical points of phase transitions DEFINITIONS AND CONVENTIONS
are determined from zeros of thgfunction. To do this re- . ) o i
quires complete knowledge of the cutoff dependence of the The p.hyS|caI system under consideration is defined by the
critical mass, which can be given only by the continuumlagrangian

theory.
- 1 m? A
In Sec. Il we make use of the concept of field-operator- L=2(9 D) — — B2X) — — (X
valued distributions to have a mathematically well-defined 3 (QuP)@"d) =5 #7000 = g7 #1(X),

Fock expansion. This can be done in a chart-independent 2.3

manner, expressing the field as a surface integral over a m?>0, \>0.
manifold. Comparing the expressions for the Minkowski and
light-front cases, one sees that the regularization propertidsrom Eqg.(2.1) follows the EM
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A
d,0" P+ m2¢+§ $>=0. (2.2

The free field EM defines the free fielgh(x), which can be
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expanded in terms of free field creation and annihilation op-

erators.

We start with the Minkowski casgeT quantization The
field ¢o(x) is defined in the sense of distributions by the
functional

eolU} = (¢o(x),U(x))= J d' go(Ou(x), (2.3

whereu(x) is an element of the test function space in coor-
dinate spaces. Plugging in the Fock expansionegfx)
1 d*xd®p

yields
- (2m)° j 20(p)

+a'(p)et ™ Pm]. f(w(p),p),

(po(x),u(x)) -[a(p)e” ' *Pu

(2.9

where (x,p)y is the scalar product ok and p in the
Minkowski metric, w(p)=m?+ p? is the on-shell energy,
andf(pg,p) is a test function in momentum space which is
required to fall off sufficiently fast as a function of the argu-
mentspy, P1. P2, P3 as any one of th@;’s goes toe.

The minimal conditions for the attenuation facf¢p) are

J
| 2

Here (|s),|s’)) and (r),|r’)) are arbitrary pairs of states
yielding nonvanishing matrix elements faf anda, respec-
tively [see the Appendix, EQA15)]. This condition is nec-

3

2w(p)

[f(w(p).D(sla’(p)]s")| <

and

3
[f((P).p)l[{rla(p)|r')| <.

essary, if one wants to guarantee that the Fourier integral Eq.

(2.4 is finite. pg(x) is then defined as
3

J 5w

+a'(p)e!*Pm]f(py,p).

[a(B)e™ P

(PO(X): (277)3

(2.9

which can also be written as a surface integral over the man
fold defined byp2—p?—m?=0 (see the Appendjx The
positive and negative frequency parts in E@s4) and (2.5

57
HereX andp designate the light-cone variables
1
X O==x"+ — (x°+x3),
V2
1
X P=xT=— (x°=x7),
V2
X 2=x, i=1,2, (2.7
P 3==|o+=i (p°+p?),
V2
1
Z0_n- =" (n0_n3
Pr=p =~ (p"—p),
P'=p, i=12. (2.9

(X,p)Lc is the scalar product within the LC metric. The cre-
ation and annihilation operators in Eq2.5 and (2.6) are
related through

ap)=a@®), atm=a'@®). Vplp*>0,

(2.9
wherev (5') is the three-vector defined by
I | (p+m? )
= ,— | p"— . 2.1
v(p) (pl 7 (p 2p° (210

Finally, f(po(B),B(P)) is the transformed test function.

Explicitly, we have
1
1 52
)’(pl’pl’ V2 (

-

from where it is clear that there is no infrared singularity in
Eq. (2.6), if there is none in Eq(2.5), since the singular
behavior of 1p* is completely damped out by the behavior
of the test function fop™ —0. This is also clear from the
fact that the two integrals in Eq$2.5 and (2.6) are equal
(see the Appendix Therefore, ifey(x) is a bounded opera-
tor in the ET case, it is also guaranteed to be bounded in the
light-cone case. Whereas the integral in the Minkowski case
is composed of contributions from two charts, the final ex-

pl+m’
2p”

1

V2

T=f

are a consequence of the necessity to introduce two chartspression(2.6) in the LC case goes only over one chétte
corresponding t@y= *+ \/p2+ m?—if one wants to cover the one with p*>0). Originally, there were also two charts, cor-
manifold. responding top* <0 andp* >0, but the integral over the

In the light-cone case the corresponding expression beermer one turns out to be equal to the integral opér
comes >0, hence merging in a single expression; this is due to the
different topologies in the Minkowski and LC cases: In the
LC case the sign op~ is the same as the sign q@f",
whereas in the Minkowski case the sign of the energy is not
correlated with signs of momentum components; instead,
there is a sign ambiguity.

7 o(p")
2p*

[a( 5)e7i<>75>LC

1
@o(X)= 23 J d

+3 T (PP (po(P).B(P). (2.6
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[ll. DECOMPOSITION OF FIELDS INTO PARTICLE tum K*>0—and the vacuum secté@—to be constructed
SECTOR AND VACUUM SECTOR FIELDS from polynomials with total momenturK* =0 [4]. In the

continuum case this decomposition can be achieved with the
In the DLCQ case the total fielgp(x) can be naturally help of the Haag expansid8].

decomposed into the particle sectgix)—to be constructed As in the DLCQ case, we decompoggx) = ¢(x)+ (2,
from polynomials ina T(k™) anda(k™") with total momen-  where for fixed LC time we have

()= go(X)+ f dyr dy; 02X — Y1 X" —Y3):o(y2) ealya):

+ f dy; dy, dy3 93(X™ —Y1 X" =Y X" —Y3)i@o(Y1) eo(Y2)(Ya)i+--- . (3.1

All fields are taken at a fixed time, e.c} =0; the argumeny; means thereforg;=(y; ,x*).
Because of the properties ¢f(x), the support ofp in Fourier space is determined by the support of the test functions in

¢o(X). The coefficient functiong,,ds,...—or rather their Fourier transforms—have to be determined from the equation of
motion and the constraints.

In order to obtain the vacuum sector figdd—which by definition isx™ independent—we perform an additional integration
overx~ and add a constamtnumber partpg:

1 L S
Q::¢o+vfdx_dY1 dy; 92(X™ Y1 X" —Y2)ieo(Y) @o(Y2):

1
ty f dx"dyy dy, gs(X™ —y1 X" =Yz . X" —Y3)i@o(YD) po(Y2) @olYa)i++, 3.2
|
V being the integration volume. the eigenvaluea (q; ---qy) being given by
Apparently, the operator valued part Of is nonlocal. N R
Because of the fact that, is defined as an operator-valued e s f2@.a (a") _
distribution, the integrations in Eq€3.1) and(3.2) are well NCH "'qN)—¢o+i=l T arqt C(a;").

defined. (3.5
Substituting the expansiof2.6) into the definition(3.2)
one obtains, after a lengthy but completely standard calculaFhis shows that within the bilinear approximati@nacts like

tion the Fourier expansion @, a momentum-dependent mass term.
Q= o+ jm dk” f2(k* k—(k+))c(k+) IV. DETERMINATION OF ¢, AND C(k*)
0 0 477'k+ !
The field ¢(x) = ¢(x) + () satisfies the LC form of the
xa T(kHak )+, (3.3  equation of motion

where the coefficien€(k*) is given by A
20,9_(e(X)+Q)+m [ o(x)+ Q]+ 3 [e(x)+Q]3=0.

2
Ck=g ffgz(x*—yi,x*—yz’) (4.1
+

We first define an operatdP which projects an operator
dy,dys,. F(x) onto the vacuum sector according to

k
X 00{7 (Y2—Y1)

1 [+
The higher terms of the expansion are not reproduced here P*I(x) =V f F(x)dx. (4.2
because they will not be considered in this paper. Appar- -

ently, one has, as in DLCQ, Acting with P on Eq.(4.1) yields the constrainfthe deriva-

(0]Q]0)=(0| #|0)= ¢ tive term vanishes
and o, Y . N1 [+ . ,
f3:=m Q+§Q tary _w[qo (X)Q+2Q¢%(x)

Qla; 0z - -ag)=A(a; a9 dq b7 ,..AN),
(3.4 +e(X)Qe(x)]dx=0. (4.3
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Projection with the complementary operat@ :=1—-P K
yields the equation of motion fap(x), k

20, 9_@(X)+m?p(X) + % Q*[ o(X) +Q]3=0, (4.4

k+
Equations(4.3) and (4.4) are coupled operator-valued equa-
tions which are solved by taking matrix elements between
Hilbert space states. Technically, this is very similar to the i3
DLCQ cas€4]:
One replaceg— ¢, in Egs.(4.3) and(3.2) and calculates FIG. 1. The area inside the circle is the support of the test
the matrix element$0| 65/0) and (k™| 65k ™). function f(k*,k™). f equals unity inside a circle of radius
The results are — €. The falloff to zero takes place in the intenfal —€,A]. The
N \ . Ck 4Kt hyperbola represents the on-shell condition=m?/k™. Its inter-
(0]9 |0>:M2¢ L ¢3 N f dk* (kT)f*(k™) -0 sections with the circle determine the IR and UV cutoffs for the
3 0 0 k* variablek*. The resulting support for the functidi{k*) is indi-
(4.5 cated by the thick line. Only the right half is physically realized due
to the kinematical conditiok*>0.

and

Y - \ . propriate mass counterterm. It is important to note that this
(k™[ 03]k =5 C3(k*)fe(k*)+ > BoCA (k)4 (k™) result is independent of the particular form chosen for the
test function. In the UV region the integral in E.5
N e causes no problem whatsoever, since kdr—o< C(k*)
(k") + 5 dof (k™) ~1/k*, which yields an integrand- 1/k*2.
Nevertheless, in order to be able to evaluate the integrals,
one has to make a choice fb(rk*) —f(k* k™ (k™)); without
the on-shell conditiork= k™ (k™), the test functions depend
on the two variablek® andk™. f can be chosen to have
compact support and to be unlimitedly differentiable. In our
case the support is the interior of a circle of radius-which

; = (et (Lt 2 _
Here we use the notatiaitk ™ k™ (k"))=f (k™). n”is de later on will be identified with a cutoff. A possible form is
fined by [9]

Ao
t Ak Akt

=0, Vk . (4.6

f4(kh)

C(k*)+ 2(k*)

N (= dk* -
2_ 2 2/L+
pr=mit o fo o P, 4.7)

1 1
f(k*,k)=exp(—2) ex;{— T I
which is nothing but the tadpole renormalization of the oy /é A2 (l_<2 +k2 )
mass. In order to keep things as close as possible to the (k™2 +k™?<A%)=0 (k"?+k *>A%).
DLCQ case, we use dimensionless momenta, which we mea-

sure in units ofu. ) . .
Apparently, Eq(4.5) is an equation fo, as a functional From this function one can construct another one which has

of C(k™): in turn, Eq.(4.6) determine<C(k™) as a function the property that it equals 1 inside the two-sphere of radius
of ¢, in the form of a cubic equation. Whereas the “exact” A ~ € and falls to zero within the intervalA —€,A ], e can
solution of Egs.(4.5 and (4.6) has to found numerically, be chosen as small as one likes without affecting @fe
important qualitative features of the solution can be dis-character of the functiofg].

cussed analytically. In order to make the comparison with the DLCQ case, we
In the region wherek* is very small butf(k*)~1, the US€ from now on the conventicki =m%k* instead ofk~
solution of Eq.(4.6) is simply =m?/2k" (see Sec. )| This means the use of the factpin
Egs.(2.7) and(2.8) instead of 2.
N N g f2(k") bo Taking into account the on-shell condition, we arrive at
CkT)=- Akt (NdakHFAKT) fz(k+); the situation depicted in Fig. 1. The final result fgk™) is

(4.9 shown in Fig. 2. A
In the limit where € is arbitrarely small,f acts like a

i.e., the order parameteff, determines the infrared behavior cytoff at 1A and A. Using this cutoff form does not influ-
of the vacuum vector part of the field. ence the physical results, since any other test function having

Using Eq. (4.9 in the smallk™ region in Eq.(4.5  the same support would yield the same results. Of course,
yields an integrand which behaves in the IR asjnstead of the divergent integral in EGt.9), we would get
(—No/24m)F2(k*)/k* which has, up to numerical factors, something else, but the counterterm of Hé.8 would
the same behavior as the tadpole contribution in @d?).  change correspondingly. We have tested and verified this
Therefore, any divergence in EG.5) arising from sending  statement by doing numerical integrations with small, but
cutoffs present irf(k™) to infinity can be cured by an ap- finite values ofe.
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¥(®)
3

WA Ay 2

FIG. 2. Generic form of the test functidifk*).

Using from now on the cutoff form fof and the dimen- =
sionless couplingg=\/47u?, the integral to be renormal- 1 2 3 4 g

ized becomes FIG. 3. The functiony(g) solution of Eq.(6.5).
g (Me , C(k")

I(A)=— g dk k—+ (4.9 VI. COMPARISON TO THEORIES
A OF CRITICAL BEHAVIOR
which is UV finite, but IR divergent. Using the IR limit of In order to compare our value for the critical coupligg
C(k™) given in Eq.(4.8), I(A) becomes to results obtained earlier in ET quantization, we have to
) rewrite the constraing4.5). The most complete study of the
(A)=— % Iog(é) — bo +0('“_2) ) critical behavior of¢‘1‘+1 theory has been performed by Pa-
6 m)  6(Alu) A risi [10] in the scenario of a theory of critical phenomena. In

(410  this context the field theory is interpreted as an effective
theory with a cutoffA, which defines the scale of validity of

Given that the theory. In the spirit of such a theory, one has to keep in
1 (Ale dkt 1 the constraint$4.5) the dependence of and consider this
(0] gl0)= P f W KA log(A/w), (4.1)  equation as a prescription for the calculation of the critical
y2

massM(g,A). From this quantity one obtains tigfunction

the divergence in Eg4.9) can be compensated for by the
substraction of a mass-type countertermg?ﬁocp?)/& B(G) =M ﬂ _ 6.1)
G, 5
V. CRITICAL COUPLING AND NATURE

OF THE PHASE TRANSITION Here the definition of the coupling differs from ourg—all
momenta and masses are measured in unitd,adind dis-
tances are replaced by the dimensionless quartity g
andg are related by

In the vicinity of the phase transition whegg<1, one
can linearize Eqs4.5 and(4.6), yielding

C(k")=— > o L =—g¢ 1 N N A% A2
T 4mkt ulPHNAmkT % (g+k™)" - - =3 6.2
(5.1) S amp 2" ann? w2 "9 07 (63

The phase transition being determined by the vanishing of \ye consider the constraimk, as an equation fo2:
the mass term, the critical coupling, is determined by the

condition

dk™. (6.3

A JA/M C(k*)
244

M2= 24— | o2
_gg j/\/,u dk* K m K
© 6 Jun kKT(kT+ge)

2 )
1 3 9:(0l¢5l0), (5.2

Satisfying the constraing;=0 amounts toM?(A,g)=0,
which follows from Eq.(4.5) after division byu? and sub-  which in turn means3(g,A)=0, i.e., the condition which

straction of the mass counterterm. defines the phase transition via the fixed point of ghieinc-
The integral in Eq(5.2) can be evaluated analytically and tion.
yields, with Eq.(4.11), We define the critical masg. by
9c N (Mg C(kT)
—log(g.) =1, _ 2, M +
6 [ 0 /.LC+ 2477_ e A k+ dk
which has the solutiog.=4.19 ... . \ g+ k| Mee
The corresponding value for DLC(3] is oo o= 3-18; =ul+ py log e (6.9
i.e., there is a 30% deviation between the two cases. On the KelA

other hand, there is no change in the nature of the phase _ ~
transition (which is of second ordérand of the critical ex- Using gc=gCA2/,u§ and the new variabley(g.)
ponents. =log(A/uo)? we obtain, in the limit of large\,
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fig) DLCQ, the continuum version has the advantage that it can
be rewritten as an effective theory for critical phenomena.
This is important for a detailed comparison with the litera-
ture because the most elaborate studies in conventional quan-

4 tization have been performed in this domain. Our results

/ compare very favorably with the best values of
17 . . . .

1 z 3 4 8 renormalization-group-improved fourth-order perturbation

FIG. 4. The solution of Eq(6.6). theory a}nd of lattice cal_culatiorls V\./h.iCh are reached up to
20%. Given the calculational simplicity of our approach—

6 which on the technical level corresponds to first-order per-

ye/==. (6.5  turbation theory—this is an encouraging success. It is attrib-

9c uted to the existence of an operator-valued vacuum sector

field which has to be added to the usual particle sector field

The numerical solution of E6.9) is shown in Fig. 3 as a and which is the.C signature of nonperturbative physics.

function ofg...
Knowing y(g.), we can now relatg. andg. by
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or APPENDIX
ﬁcey(aé>:gc- (6.6) In this appendix we review some concepts from the

] ] ] theory of distributions which are at the basis of the results of
In Fig. 4 the left hand side of E{6.6) is shown together gg¢ ||

with the straight line corresponding ¢R=4.19. The numeri-
cal value forg, is 1.

. L . . . 1. Pullback of distributions
Parisi[10] uses in his calculation still another coupling,

calledr, defined byr =3\/87A2?=%g. It is normalized in Here we can give only a very short version. For more
such way that the critical coupling at the order of one loop isdetails, the reader can consult, e.g., R&8].
r,=1.0. He pushed his calculations up to four logpsth a We consider two open subséfsandV of R", U, VCR",

Borel improvement of the convergence of the asymptoticand aC™ diffeomorphism« between them:
serie$ and obtained the value far, reproduced in Table I.

As far as the solution of the equation of motion is con-
cerned, our result corresponds to the one-loop result of Parigiven a distribution
(tadpole correction of the mgssOn the other hand, it is

k:U—=V.

nonperturbative as far as the solution of the constraint is
concerned. This is reflected by the considerable improve- (o,f ):f e(X)fy(x)dx, (AL)
ment relative ta ;=1, which brings us withr,;=1.5 already v

rather close to the four-loop resulf=1.85 and to the lattice . ,
resultn,, = 1.80+ 0.05 with fy(x) a test function of compact support on the
o= 1.80+0.05.

distribution ¢ can be “pulled back” toU with the help of
ok .
VIl CONCLUSIONS the pullback mapping* = ke o= @(x(X)) (see Fig. 5.
We have shown for scalar fields that the continuum quan- * —
tum field theory quantized on the light cone does not suffer (*Lelf) fu(’D(K(X))fU(X)dX' A2)
from divergence problems beyond those present in conven-
tional quantization, if the field operators are treated properly Introducing the inverse mapping
as operator-valued distributions. The treatment is quite ge-
neric and should be rather easily generalizable to other types =k VU
of fields. Apart from giving substantially different results for ) ) )
the critical coupling of theg?,, theory as compared to and making the coordinate transformatign=~«(x), Eq.
(A2) goes over into
TABLE |. Critical couplings by different methods,. is the
value from the present continuous light-cone calculation.

(T, f )= qua(é)f(r(é))ldetD(T(f))ldé, (A3)

I’lavb r4a,b rlatc lic
1 185 1.80-0.05 15 v_vhereD(r(g)) is the Jaqobian of the coc_>rdi_nat¢ transforma-
tion. Equation(A2) assigns to each distributiop on V
aRef.[10]. “pulled back” distribution «*[ ¢] on U and Eq.(A3) is the
bRef. [11]. prescription for its evaluation in terms ¢f The application

‘Ref.[12]. which one has in mind in connection with Eq#2) and
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K
u———"=v (Lf )=f f(p)d°p
[0) and 5. obey
K*(@)
(8. f >—f a f(=w(p),p) (A9)
C =T 20(p) PR
FIG. 5. lllustration of the pullback mappingC(V)— C(U); Comparison with Eq(A7) shows that

K* (@)=«

_ o (6Q)(p) =8, (p*~m?)+5_(p?—m?).

(A3) is the frequent case where one works with distributions
whicz:h dezpend on functions of the integration variables, e.g., Going back to Eq(A6) in the form
S(p—m9).

In order to treat such a case in the pullback framework, 2_m2)+ 85_(p2—m? = (&0
we takeUCR", n>1; VCR! is obtained fromU through (2 (pP=m)+ 8-(p"= ). H(P))=(>Q.1(p))
the mappingQ: U—V with a C” function which we call f
now Q instead of . Moreover, we introduce the J2+ IvQ| ds+J - |vQ| ds
(n—1)-dimensional submanifold defined byQ(x)=0,

we see thath, andé_ can be written as surface integrals:

> ={xeU|Q(x)=0},

(8. (p?—m?), f(p))= f (A10)

and a Diracs® distribution &, in RL. Zx |VQ|
The following theorem can be provdd3]: If VQ(x) ,

#0 VxeU, then the pullback oB* exists and is defined Here the two integralgs-ds are over the two surfaces de-

by fined by the two signs op, in po=* Vp>+m? with charts

Q*, Eq.(A5). It is important to note that the integrals in Eq.

1 (A10) are independent of the special choice of the charts
Q= |VQ| (Ad4)  which one makes on the surfacEs.
where &5 is a distribution defined by 2. Solutions of the KG equation in Minkowski space
The tempered distributiog(p) (p?>—m?) defined by
Ss f =deS VieU: A5
(= 0)= ], ) B9 (P 8(p?—m?) = . (p) 5. (PP~ M)+ x_(p)6_ (P2~ )
. . o (A11)
here,dS is the Euclidian surface measure &n this yields o
the distributions°Q as a surface integral: satisfies
(#0.0)= [ oo 08 (46) (papE-me )= Aeds a1
’ s [VQ| ’ s [VQ|
SpecializingQ to Q(p)=p*—m?, p being the energy- and solves the Klein-GordofKG) equation in momentum
momentum four-vector, and using @nthe charts space:
Q- (xw(p),p), (p?—m?)v(p)=0,
the distribution (A6) can be rewritten agin Minkowsky with
space
&p v(p)=v1(B) (p%) 8(p*~m?)+v(P) 6~ p°) 8(p* —m?).
(6°Q,f )=f 20(B) [f(w(p),p)+f(—w(p).P)], o _
(p) From the distributiony(p) 8(p>— m?), one obtains the solu-
(A7) tion of the coordinate space KG equation as a distribution
wherew(p) = + JpZr m2. ¢(x) defined by(Minkowsky metrig

We introduce the two tempered distributions
P $()=2mFy [X(P)S(P2-m)],  (AL3)
8. (pPP~m?)=1(p)6(=p°)8(p*~m?),  (A8)
where F,, symbolizes the Fourier transform with
where 1) is the unit distribution defined by Minkowski metric or, more explicitly,



4988

(¢(x),f(x))=2m(x(p) 8(p?—m?), Fy(f )(p))

)
‘ZWL vq 9

- f d’p Fuf
=27 | 350 [x(«(P),P)- (Fuf )(w(P),P)

+x(=o(P).P)(Fuf )(—w(p),p)]. (Al4)
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Oc=20,9_—d°.
Introducing the quadratic form
QP)=

one can define the distributiaf(p 2— m?) as the pullback of
the & distribution under the mappin@\19):

8(p 2—m?):=6:Q,

p2-m?, (A19)

In order to guarantee the existence of the two last inte-

grals, one has to impose the condition gn

X d3p .
(A15)

(8(p 2=m?),f(p))= fl(p) (A20)

WhereVQ(p) 2(p~,— P, ,p")#0 on the mass shell. The
manifold X is a sum of two disconnected paﬁf§ p*>0

As it stands, this is valid for classical fields. After 5ngS- o+ <.

guantization—where thg’s are replaced by creation and
annihilation operators—EJA15) becomes a condition for

matrix elements of these operators.
With Eq. (A15) the functions

H.(x,p)= (= w(p),p)e” P=Iuf(x),

1
20(p) X

=(xw(p),P)

are integrable; consequently, one can inject the Fourier rep-
resentation offF,,f into Eq.(Al14) to obtain the regular dis-

tribution

1
($00,100)= 553 f d*xF(x)

dp3 o itxba)

+x(|6_)e*'<x'pf>M]. (A16)

From Eqg.(A16) one identifies the field)(x) as

1 dp®

$= 2w | 2a(p) X(PHE (P du

+x(po)eiP-m], (A17)
The chart-independent form of EQAL7) is
1

=T |, ® s a0

3. Solutions of the KG equation on theLC

We go from the coordinates p to the correspondingC
coordinates, p via the mapping

X=kKoX, P=ko°p,
which leads to thé.C-KG equation
(Opctm?) p(X) =

with

Choosing orS* the charts
[07:(@(B,B);p">0)]
and
[Q7:@(R,p);p" <0),]
pi+m®

5P =55

one obtains

6F - mAE )= [ o

ki
fd*‘

The two integrals in Eq(A13) (with y=1) and Eq.(A20)
can be shown to be equal. More generally, it can be shown
that for y e £1(2) andy= xyou~te £1(2), one has the iden-

tity
f+ mds=J: LE)d'é
= |VQ| ¥ |[VQ

Using this identity, one arrives immediately at the refsdte
Eq. (A17)]

+j @dE
s |VQ|

f(Q (®))-

(A21)

(A22)

X(P) i
X)= e *Puds
- (2m)* L [VQ(p)|
1 XP) e
= | —=—— e ixPids.  (A23
(2m)* L|VQ(I0)| A2

Introducing the same charts as in E421), one obtains
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1 1 - e

7= T = D(ENe AR
¢ (zw)?’fdsp 2lp*] X(Q(p))e @ ( y
A24

where
QD))

1 pL—i-m
— L B
Xﬂ(p

1 p%+m?
ﬁj_ ! - 2p+

The transition to the quantized field is made in E17)
by the substitution

x(p1)—a(p),
x(—p-)—a’(p),
yielding
3p

A 1
— —i(6p-)m

+ aT(ﬁ)ei<X:p+>M]_

In the LC case the two contributions from >0 and
PT<0 in Eqg. (A23) can be recast into a single one by first

changing the integration variable in the second term p
and then making the substitution

X@(p)—3(p), B*>0,
X@Q(-PN—-3 (), B >0,
yielding
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fds*""(p )

x[A(P)e @D+ 71 (F)e (OB Ty,
(A25)
For completeness we add a remark: In the literaflisig
operator-valued distributions have been introduced on the

level of the Fock-space operatoagp), a'(p) by defining
the distributions

d3

<af)=if =P ) tw(p).p),

Tf)= ! d°p T(p)f 26
(a', )—Wf 5% (p)a(p) (0(P),p). (A26)

For theLC case this reads

o~ 1 d*p _

(a,f)= (ZW)sf = a(P)f(w(p),P),

ey~ 1 d°p_, -~
(a*,f)=(2—w)gf Tfa*(p)f(w(ﬁ),ﬁ). (A27)

Decomposing the fieldy(x) into positive and negative
frequency partspg(x) = @q (X) + ¢ (X), We see that

og(0)=(a,f)=@Ef),
0o (0)=(ahf)=@"ht).

This shows again that the fielgy(x) is well defined in the
sense of operator-valued distributions.

[1] H. C. Pauli and S. J. Brodsky, Phys. Rev3R, 1993(1993;

32, 2001(1985; S. J. Brodsky, H. C. Pauli, and S. S. Pinsky,

Report No. MPIH-VI-1991.

[2] T. Maskawa and K. Yamawaki, Prog. Theor. Phg§, 270

(1976.

[3] R. S. Wittman, inNuclear and Particle Physics on the Light-
Cone edited by M. B. Johnson and L. S. Kissling&World

Scientific, Singapore, 1989

[4] T. Heinzl, S. Krusche, S. Simbger, and E. Werner, Z. Phys.
C 56, 415 (1992; T. Heinzl, C. Stern, E. Werner, and B.

Zellermann,ibid. 72, 353 (1996.

[5] G. McCartor and D. G. Robertson, Z. Phys5@, 679(1992.

[6] D. G. Robertson, Phys. Rev. &7, 2549(1993.

[7] S. S. Pinsky, B. van de Sande, and C. M. Bender, Phys. Rev.
48, 816 (1993; S. S. Pinsky and B. van de Sandleid. 49,
2001(1994; S. S. Pinsky, B. van de Sande, and J. R. Hiller,
ibid. 51, 726 (1995; A. C. Kalloniatis and H. C. Pauli, Z

Phys. C63, 161(1994; A. C. Kalloniatis and D. G. Robertson,
Phys. Rev. D60, 5262(1994; A. C. Kalloniatis, H. C. Pauli,
and S. S. Pinskyibid. 50, 6633(1994).

[8] R. Haag, Phys. Revi12 669 (1958.

[9] L. Schwartz, Theories des distributions(Hermann, Paris,
1966; A. M. Gelfand and G. E. ShilovGeneralized Functions
(Academic, New York, 196)7

[10] G. Parisi, J. Stat. Phy23, 49 (1980; Nuovo Cimento A21,
179(1974.

[11] J. Zinn-JustinQuantum Field Theory and Critical Phenomena
(Clarendon, Oxford, 1990 Chaps. 22.3 and 25.1-25.4.

[12] F. Cooperet al,, Nucl. Phys.B210[FS6], 210(1982.

I513] L. Hormander,The Analysis of Linear Partial Differential Op-

erators | (Springer-Verlag, Berlin, 1990
[14] N. N. Bogoliubov, General Principles of Quantum Field
Theory(Kluwer Academic, Dordrecht, 1990



