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Continuum version of f111
4 theory in light-front quantization
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A genuine continuum treatment of the massivef111
4 theory in light-cone quantization is proposed. Fields

are treated as operator-valued distributions, thereby leading to a mathematically well-defined handling of
ultraviolet- and light-cone-induced infrared divergences and of their renormalization. Although nonperturba-
tive, the continuum light-cone approach is no more complex than usual perturbation theory in lowest order.
Relative to discretized light-cone quantization, the critical coupling increases by 30% to a valuer 51.5.
Conventional perturbation theory at the corresponding order yieldsr 151, whereas the RG-improved fourth-
order result isr 451.860.05. @S0556-2821~98!00308-7#

PACS number~s!: 11.10.Kk, 11.10.Ef, 11.10.St, 11.30.Rd
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I. INTRODUCTION

Discretized light-cone quantization~DLCQ! @1# has
played an important role in clarifying infrared aspects of t
theory which are decisive for the appearance of the vacu
sector field, the LC counterpart of the nontrivial ground st
of equal-time ~ET! quantization@2–7#. The popularity of
DLCQ resides in the easy and conceptually simple treatm
of the necessary infrared regularization. However, it h
never been demonstrated that the limit where the periodi
length L goes to infinity is identical to the genuine co
tinuum theory where momentum space discretization
avoided from the start. The reason lies in the infrared beh
ior of the continuum theory, which has not yet been und
stood. Our aim is to clarify this issue on the basis of a ma
ematically well-defined procedure.

As an example, we treat explicitlyf111
4 theory in the

continuum and compare its results for the phase transitio
the DLCQ case. It turns out that with the same type of phy
cal approximations the characteristics of the phase trans
are the same in both cases, whereas the critical coup
strength and the dependence of the order parameter on
coupling strength are substantially different.

In connection with phase transitions, there is a vital int
est to dispose of a continuum version of the theory, if one
interested in the study of critical phenomena in the fram
work of effective theories. This is the point of view of st
tistical theories of fields in which cutoffs are introduced
order to define a momentum or mass scale below which
effective theory is valid. Critical points of phase transitio
are determined from zeros of theb function. To do this re-
quires complete knowledge of the cutoff dependence of
critical mass, which can be given only by the continuu
theory.

In Sec. II we make use of the concept of field-operat
valued distributions to have a mathematically well-defin
Fock expansion. This can be done in a chart-independ
manner, expressing the field as a surface integral ove
manifold. Comparing the expressions for the Minkowski a
light-front cases, one sees that the regularization prope
570556-2821/98/57~8!/4981~9!/$15.00
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of the test functions are automatically transferred from
first to the second case; thus, it is ensured that, if the fiel
regular in the Minkowski case, it is also regular in the L
case—it is the same field expressed by different surface
tegral. Actually, what is called IR divergence in the unreg
larized LC-field expansion is an UV divergence in the L
energy; it is only the special choice of coordinates wh
makes it look like an IR divergence. Therefore, there is
extra IR singularity in the LC case which would have to
treated separately: The UV behavior of the field on t
Minkowski manifold dictates the UVand IR behavior on the
LC manifold. There is absolutely no freedom in the LC ca
beyond the choice of test functions relevant in t
Minkowski case. Moreover, because of general proper
known from functional analysis, the independence of phy
cal results from the special form of the test functions is e
sured. In Sec. III we use the Haag expansion of field ope
tors to define the decomposition into the particle sector fi
w and the vacuum sector fieldV. In Sec. IV we discuss the
equation of motion~EM! for w and the constraint forV
which are coupled equations. Finally, in Sec. V we discu
the so-called mean field solution of these equations and
results for the phase transition. In Sec. VI we rewrite t
condition for the phase transition in the language of an
fective theory and compare the results with the literature
the Appendix we collect a number of results from the theo
of distributions to substantiate the discussions in Sec. II.

II. FUNDAMENTALS:
DEFINITIONS AND CONVENTIONS

The physical system under consideration is defined by
Lagrangian

L5
1

2
~]mf!~]mf!2

m2

2
f2~x!2

l

4!
f4~x!,

~2.1!

m2.0, l.0.

From Eq.~2.1! follows the EM
4981 © 1998 The American Physical Society
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]m]mf1m2f1
l

3!
f350. ~2.2!

The free field EM defines the free fieldw0(x), which can be
expanded in terms of free field creation and annihilation
erators.

We start with the Minkowski case~ET quantization!. The
field w0(x) is defined in the sense of distributions by t
functional

w0$u%5„w0~x!,u~x!…5E d4x w0~x!u~x!, ~2.3!

whereu(x) is an element of the test function space in co
dinate spaces. Plugging in the Fock expansion ofw0(x)
yields

„w0~x!,u~x!…5
1

~2p!3 E d4xd3p

2v~pW !
•@a~pW !e2 i ^x,p&M

1a†~pW !e1 i ^x,p&M#• f „v~pW !,pW …, ~2.4!

where ^x,p&M is the scalar product ofx and p in the
Minkowski metric,v(pW )5Am21pW 2 is the on-shell energy
and f (p0 ,pW ) is a test function in momentum space which
required to fall off sufficiently fast as a function of the arg
mentsp0 , p1 , p2 , p3 as any one of thepi ’s goes to`.

The minimal conditions for the attenuation factorf (p) are

E d3p

2v~p!
u f „v~pW !,p̃…uu^sua†~pW !us8&u,`

and

E d3p

2v~p!
u f „v~ p̃!,pW …uu^r ua~pW !ur 8&u,`.

Here ~us&,us8&) and (ur &,ur 8&) are arbitrary pairs of state
yielding nonvanishing matrix elements fora† anda, respec-
tively @see the Appendix, Eq.~A15!#. This condition is nec-
essary, if one wants to guarantee that the Fourier integral
~2.4! is finite. w0(x) is then defined as

w0~x!5
1

~2p!3 E d3p

2v~pW !
@a~pW !e2 i ^x,p&M

1a†~pW !ei ^x,p&M# f ~p0 ,pW !. ~2.5!

which can also be written as a surface integral over the m
fold defined byp0

22pW 22m250 ~see the Appendix!. The
positive and negative frequency parts in Eqs.~2.4! and~2.5!
are a consequence of the necessity to introduce two cha
corresponding top056Ap21m2—if one wants to cover the
manifold.

In the light-cone case the corresponding expression
comes

w0~x!5
1

~2p!3 E d3p̃
u~p1!

2p1 @ ã~ p̃W !e2 i ^ x̄, p̃&LC

1ã 1~ p̃W !ei ^ x̃ , p̃&LC# f̃ „p0~ p̃!,pW ~ p̃!…. ~2.6!
-

-

q.

i-

—

e-

Here x̃ and p̃ designate the light-cone variables

x̃ 0
ª:5x11

1

&
~x01x3!,

x̃ 3
ªx25

1

&
~x02x3!,

x̃ 2
ªxi , i 51,2, ~2.7!

p̃ 3
ªp15

1

&
~p01p3!,

p̃ 0
ªp25

1

&
~p02p3!,

p̃ i5pi , i 51,2. ~2.8!

^ x̃,p̃&LC is the scalar product within the LC metric. The cr
ation and annihilation operators in Eqs.~2.5! and ~2.6! are
related through

ã~ p̃W !5a„vW ~ p̃W !…, ã †~ p̃W !5a†
„vW ~ p̃W !…, ; p̃W up1.0,

~2.9!

wherevW ( p̃W ) is the three-vector defined by

vW ~ p̃W !5XpW' ,
1

&
S p12

~p'
2 1m2

2p1 D C. ~2.10!

Finally, f̃ „p0(pW ),pW ( p̃)… is the transformed test function.
Explicitly, we have

f̃ 5 f F 1

&
S p11

p'
2 1m2

2p1 D ,Xp'
1 ,p'

2 ,
1

&
S p12

p'
2 1m2

2p1 D CG ,

~2.11!

from where it is clear that there is no infrared singularity
Eq. ~2.6!, if there is none in Eq.~2.5!, since the singular
behavior of 1/p1 is completely damped out by the behavi
of the test function forp1→0. This is also clear from the
fact that the two integrals in Eqs.~2.5! and ~2.6! are equal
~see the Appendix!. Therefore, ifw0(x) is a bounded opera
tor in the ET case, it is also guaranteed to be bounded in
light-cone case. Whereas the integral in the Minkowski c
is composed of contributions from two charts, the final e
pression~2.6! in the LC case goes only over one chart~the
one withp1.0!. Originally, there were also two charts, co
responding top1,0 and p1.0, but the integral over the
former one turns out to be equal to the integral overp1

.0, hence merging in a single expression; this is due to
different topologies in the Minkowski and LC cases: In t
LC case the sign ofp2 is the same as the sign ofp1,
whereas in the Minkowski case the sign of the energy is
correlated with signs of momentum components; inste
there is a sign ambiguity.
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III. DECOMPOSITION OF FIELDS INTO PARTICLE
SECTOR AND VACUUM SECTOR FIELDS

In the DLCQ case the total fieldf(x) can be naturally
decomposed into the particle sectorw(x)—to be constructed
from polynomials inã †(k1) and ã(k1) with total momen-
d

ul

he
a

tum K1.0—and the vacuum sectorV—to be constructed
from polynomials with total momentumK150 @4#. In the
continuum case this decomposition can be achieved with
help of the Haag expansion@8#.

As in the DLCQ case, we decomposef(x)5w(x)1V,
where for fixed LC time we have
s in
n of

on
w~x!5w0~x!1E dy1
2dy2

2g2~x22y1
2 ,x22y2

2!:w0~y1!w0~y2!:

1E dy1
2dy2

2dy3
2g3~x22y1

2 ,x22y2
2 ,x22y3!:w0~y1!w0~y2!~y3!:1¯ . ~3.1!

All fields are taken at a fixed time, e.g.,x150; the argumentyi means thereforeyi5(yi
2 ,x1).

Because of the properties ofw0(x), the support ofw in Fourier space is determined by the support of the test function
w0(x). The coefficient functionsg2 ,g3 ,...—or rather their Fourier transforms—have to be determined from the equatio
motion and the constraints.

In order to obtain the vacuum sector fieldV—which by definition isx2 independent—we perform an additional integrati
over x2 and add a constantc-number partf0 :

V :5f01
1

V E dx2dy1
2dy2

2g2~x22y1
2 ,x22y2

2!:w0~y1!w0~y2!:

1
1

V E dx2dy1
2dy2

2g3~x22y1
2 ,x22y2

2 ,x22y3
2!:w0~y1!w0~y2!w0~y3!:1¯ , ~3.2!
r

V being the integration volume.
Apparently, the operator valued part ofV is nonlocal.

Because of the fact thatw0 is defined as an operator-value
distribution, the integrations in Eqs.~3.1! and ~3.2! are well
defined.

Substituting the expansion~2.6! into the definition~3.2,!
one obtains, after a lengthy but completely standard calc
tion the Fourier expansion ofV,

V5f01E
0

` dk1

4pk1 f 2
„k1,k̂2~k1!…C~k1!

3ã †~k1!ã~k1!1¯ , ~3.3!

where the coefficientC(k1) is given by

C~k1!5
2

V E E g2~x22y1
2 ,x22y2

2!

3cosFk1

2
~y22y1!Gdy1dy2 .

The higher terms of the expansion are not reproduced
because they will not be considered in this paper. App
ently, one has, as in DLCQ,

^0uVu0&5^0ufu0&5f0

and

Vuq1
1 ,q2

1 ,¯qN
1&5l~q1

1
¯qN

1!uq1
1 ,q2

1 ,...qN
1&,

~3.4!
a-

re
r-

the eigenvaluesl(q1
1

¯qN
1) being given by

l~q1
1

¯qN
1!5f01(

i 51

N f 2
„qi

1 ,q̂2~qi
1!…

4pqi
1 C~qi

1!.

~3.5!

This shows that within the bilinear approximationV acts like
a momentum-dependent mass term.

IV. DETERMINATION OF f0 AND C„k1
…

The field f(x)5w(x)1V satisfies the LC form of the
equation of motion

2]1]2„w~x!1V…1m2@w~x!1V#1
l

3!
@w~x!1V#350.

~4.1!

We first define an operatorP which projects an operato
F(x) onto the vacuum sector according to

P* F~x! :5
1

V E
2`

1`

F~x!dx. ~4.2!

Acting with P on Eq.~4.1! yields the constraint~the deriva-
tive term vanishes!

u3 :5m2V1
l

3!
V31

l

3!

1

V E
2`

1`

@w3~x!V12Vw2~x!

1w~x!Vw~x!#dx50. ~4.3!
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Projection with the complementary operatorQ :512P
yields the equation of motion forw(x),

2]1]2w~x!1m2w~x!1
l

3!
Q* @w~x!1V#350, ~4.4!

Equations~4.3! and ~4.4! are coupled operator-valued equ
tions which are solved by taking matrix elements betwe
Hilbert space states. Technically, this is very similar to
DLCQ case@4#:

One replacesw→w0 in Eqs.~4.3! and~3.2! and calculates
the matrix elementŝ0uu3u0& and ^k1uu3uk1&.

The results are

^0uu3u0&5m2f01
l

3!
f0

31
l

24p E
0

`

dk1
C~k1! f̂ 4~k1!

k1 50

~4.5!

and

^k1uu3uk1&5
l

6
C3~k1! f̂ 6~k1!1

l

2
f0C2~k1! f̂ 4~k1!

1Fm2f 2~k1!1
l

2
f0

2 f̂ 2~k1!

1
l

4pk1 f̂ 4~k1!GC~k1!1
lf0

4pk1 f̂ 2~k1!

50, ;k1. ~4.6!

Here we use the notationf „k1,k̂2(k1)…ª f̂ (k1). m2 is de-
fined by

m25m21
l

8p E
0

` dk1

k1 f̂ 2~k1!, ~4.7!

which is nothing but the tadpole renormalization of t
mass. In order to keep things as close as possible to
DLCQ case, we use dimensionless momenta, which we m
sure in units ofm.

Apparently, Eq.~4.5! is an equation forf0 as a functional
of C(k1); in turn, Eq.~4.6! determinesC(k1) as a function
of f0 in the form of a cubic equation. Whereas the ‘‘exac
solution of Eqs.~4.5! and ~4.6! has to found numerically
important qualitative features of the solution can be d
cussed analytically.

In the region wherek1 is very small butf̂ (k1)'1, the
solution of Eq.~4.6! is simply

C~k1!52
lf0

4pk1

f 2~k1!

~l/4pk1! f 4~k1!
'2

f0

f 2~k1!
;

~4.8!

i.e., the order parameterf0 determines the infrared behavio
of the vacuum vector part of the field.

Using Eq. ~4.8! in the small-k1 region in Eq. ~4.5!
yields an integrand which behaves in the IR
~2lf0/24p! f̂ 2(k1)/k1 which has, up to numerical factors
the same behavior as the tadpole contribution in Eq.~4.7!.
Therefore, any divergence in Eq.~4.5! arising from sending
cutoffs present inf̂ (k1) to infinity can be cured by an ap
n
e

he
a-

-

propriate mass counterterm. It is important to note that t
result is independent of the particular form chosen for
test function. In the UV region the integral in Eq.~4.5!
causes no problem whatsoever, since fork1→` C(k1)
;1/k1, which yields an integrand;1/k12.

Nevertheless, in order to be able to evaluate the integr
one has to make a choice forf̂ (k1)5 f „k1,k̂2(k1)…; without
the on-shell conditionk̂5 k̂2(k1), the test functions depen
on the two variablesk1 andk2. f can be chosen to hav
compact support and to be unlimitedly differentiable. In o
case the support is the interior of a circle of radiusL—which
later on will be identified with a cutoff. A possible form i
@9#

f ~k1,k2!5expS 1

L2DexpF2
1

L22~k121k22!G
~k121k22<L2!50 ~k121k22.L2!.

From this function one can construct another one which
the property that it equals 1 inside the two-sphere of rad
L2e and falls to zero within the interval@L2e,L#, e can
be chosen as small as one likes without affecting theC`

character of the function@9#.
In order to make the comparison with the DLCQ case,

use from now on the conventionk̂25m2/k1 instead ofk̂2

5m2/2k1 ~see Sec. II!. This means the use of the factor1
2 in

Eqs.~2.7! and ~2.8! instead of 1/&.
Taking into account the on-shell condition, we arrive

the situation depicted in Fig. 1. The final result forf̂ (k1) is
shown in Fig. 2.

In the limit where e is arbitrarely small,f̂ acts like a
cutoff at 1/L and L. Using this cutoff form does not influ-
ence the physical results, since any other test function ha
the same support would yield the same results. Of cou
instead of the divergent integral in Eq.~4.9!, we would get
something else, but the counterterm of Eq.~4.8! would
change correspondingly. We have tested and verified
statement by doing numerical integrations with small, b
finite values ofe.

FIG. 1. The area inside the circle is the support of the t
function f (k1,k2). f equals unity inside a circle of radiusL
2e. The falloff to zero takes place in the interval@L2e,L#. The
hyperbola represents the on-shell conditionk̂25m2/k1. Its inter-
sections with the circle determine the IR and UV cutoffs for t
variablek1. The resulting support for the functionf̂ (k1) is indi-
cated by the thick line. Only the right half is physically realized d
to the kinematical conditionk1.0.
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Using from now on the cutoff form forf̂ and the dimen-
sionless couplingg5l/4pm2, the integral to be renormal
ized becomes

I ~L!52
g

6 E
m/L

L/m

dk1
C~k1!

k1 . ~4.9!

which is UV finite, but IR divergent. Using the IR limit o
C(k1) given in Eq.~4.8!, I (L) becomes

I ~L!52
gf0

6
logS L

m D2
f0

6~L/m!
10S m2

L2D¯ .

~4.10!

Given that

^0uw0
2u0&5

1

8p E
m/L

L/m dk1

k1 5
1

4p
log~L/m!, ~4.11!

the divergence in Eq.~4.9! can be compensated for by th
substraction of a mass-type counterterm 2pgf0w0

2/3.

V. CRITICAL COUPLING AND NATURE
OF THE PHASE TRANSITION

In the vicinity of the phase transition wheref0!1, one
can linearize Eqs.~4.5! and ~4.6!, yielding

C~k1!52
lf0

4pk1

1

m21l/4pk1 52gf0

1

~g1k1!
.

~5.1!

The phase transition being determined by the vanishing
the mass term, the critical couplinggc is determined by the
condition

15
gc

2

6 E
m/L

L/m dk1

k1~k11gc!
2

2p

3
gc^0uw0

2u0&, ~5.2!

which follows from Eq.~4.5! after division bym2 and sub-
straction of the mass counterterm.

The integral in Eq.~5.2! can be evaluated analytically an
yields, with Eq.~4.11!,

gc

6
log~gc!51,

which has the solutiongc54.19 . . . .
The corresponding value for DLCQ@4# is gcDLCQ

53.18;
i.e., there is a 30% deviation between the two cases. On
other hand, there is no change in the nature of the ph
transition~which is of second order! and of the critical ex-
ponents.

FIG. 2. Generic form of the test functionf̂ (k1).
of

he
se

VI. COMPARISON TO THEORIES
OF CRITICAL BEHAVIOR

In order to compare our value for the critical couplinggc
to results obtained earlier in ET quantization, we have
rewrite the constraint~4.5!. The most complete study of th
critical behavior off111

4 theory has been performed by P
risi @10# in the scenario of a theory of critical phenomena.
this context the field theory is interpreted as an effect
theory with a cutoffL, which defines the scale of validity o
the theory. In the spirit of such a theory, one has to keep
the constraints~4.5! the dependence onL and consider this
equation as a prescription for the calculation of the criti
massM (g̃,L). From this quantity one obtains theb function

b~ g̃!5M
]M

]g̃ U
l,L

. ~6.1!

Here the definition of the couplingg̃ differs from ourg—all
momenta and masses are measured in units ofL, and dis-
tances are replaced by the dimensionless quantityxL. g
and g̃ are related by

g5
l

4pm2 5
l

4pL2

L2

m2 :5g̃
L2

m2 . ~6.2!

We consider the constraintu3 as an equation forM2:

M25m21
l

24p E
m/L

L/m C~k1!

k1 dk1. ~6.3!

Satisfying the constraintu350 amounts toM2(L,g̃)50,
which in turn meansb(g̃,L)50, i.e., the condition which
defines the phase transition via the fixed point of theb func-
tion.

We define the critical massmc by

05mc
21

l

24p E
mc /L

L/mc C~k1!

k1 dk1

5mc
21

l

24p F log
gc1k1

k1 GU
mc /L

L/mc

. ~6.4!

Using gc5g̃cL
2/mc

2 and the new variabley(g̃c)
5 log(L/mc)

2, we obtain, in the limit of largeL,

FIG. 3. The functiony(g) solution of Eq.~6.5!.
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yey5
6

g̃c
. ~6.5!

The numerical solution of Eq.~6.5! is shown in Fig. 3 as a
function of g̃c .

Knowing y(g̃c), we can now relateg̃c andgc by

g̃c5gcS mc

L D 2

5gce
2y~ g̃ ĉ!

or

g̃ce
y~ g̃ ĉ!5gc . ~6.6!

In Fig. 4 the left hand side of Eq.~6.6! is shown together
with the straight line corresponding togc54.19. The numeri-
cal value forg̃c is 1.

Parisi @10# uses in his calculation still another couplin
called r , defined byr 53l/8pL25 3

2 g̃. It is normalized in
such way that the critical coupling at the order of one loop
r 151.0. He pushed his calculations up to four loops~with a
Borel improvement of the convergence of the asympto
series! and obtained the value forr 4 reproduced in Table I.

As far as the solution of the equation of motion is co
cerned, our result corresponds to the one-loop result of P
~tadpole correction of the mass!. On the other hand, it is
nonperturbative as far as the solution of the constrain
concerned. This is reflected by the considerable impro
ment relative tor 151, which brings us withr lc51.5 already
rather close to the four-loop resultr 451.85 and to the lattice
resultnlat51.8060.05.

VII. CONCLUSIONS

We have shown for scalar fields that the continuum qu
tum field theory quantized on the light cone does not su
from divergence problems beyond those present in conv
tional quantization, if the field operators are treated prope
as operator-valued distributions. The treatment is quite
neric and should be rather easily generalizable to other ty
of fields. Apart from giving substantially different results fo
the critical coupling of thef111

4 theory as compared to

FIG. 4. The solution of Eq.~6.6!.

TABLE I. Critical couplings by different methods.r lc is the
value from the present continuous light-cone calculation.

r 1
a,b r 4

a,b r lat
c r lc

1 1.85 1.8060.05 1.5

aRef. @10#.
bRef. @11#.
cRef. @12#.
s
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DLCQ, the continuum version has the advantage that it
be rewritten as an effective theory for critical phenome
This is important for a detailed comparison with the liter
ture because the most elaborate studies in conventional q
tization have been performed in this domain. Our resu
compare very favorably with the best values
renormalization-group-improved fourth-order perturbati
theory and of lattice calculations which are reached up
20%. Given the calculational simplicity of our approach
which on the technical level corresponds to first-order p
turbation theory—this is an encouraging success. It is att
uted to the existence of an operator-valued vacuum se
field which has to be added to the usual particle sector fi
and which is theLC signature of nonperturbative physics.
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APPENDIX

In this appendix we review some concepts from t
theory of distributions which are at the basis of the results
Sec. II.

1. Pullback of distributions

Here we can give only a very short version. For mo
details, the reader can consult, e.g., Ref.@13#.

We consider two open subsetsU andV of Rn, U, V,Rn,
and aC` diffeomorphismk between them:

k:U→V.

Given a distribution

~w, f !5E
V
w~x! f V~x!dx, ~A1!

with f V(x) a test function of compact support onV, the
distribution w can be ‘‘pulled back’’ toU with the help of
the pullback mappingk* 5k+w5w„k(x)… ~see Fig. 5!.

~k* @w#, f !5E
U

w„k~x!…f U~x!dx. ~A2!

Introducing the inverse mapping

t :5k21:V→U

and making the coordinate transformationj :5k(x), Eq.
~A2! goes over into

~k* @w#, f !5E
V
w~j! f „t~j!…udet D„t~j!…udj, ~A3!

whereD„t(j)… is the Jacobian of the coordinate transform
tion. Equation ~A2! assigns to each distributionw on V
‘‘pulled back’’ distribution k* @w# on U and Eq.~A3! is the
prescription for its evaluation in terms ofw. The application
which one has in mind in connection with Eqs.~A2! and
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~A3! is the frequent case where one works with distributio
which depend on functions of the integration variables, e
d(p22m2).

In order to treat such a case in the pullback framewo
we takeU,Rn, n.1; V,R1 is obtained fromU through
the mappingQ: U→V with a C` function which we call
now Q instead of k. Moreover, we introduce the
(n21)-dimensional submanifoldS defined byQ(x)50,

( :5$xPUuQ~x!50%,

and a Diracd1 distributiond0 in R1.
The following theorem can be proved@13#: If ¹Q(x)

Þ0 ;xPU, then the pullback ofd1 exists and is defined
by

d+Q5
1

u¹Qu
dS , ~A4!

wheredS is a distribution defined by

~dS , f !5E
S

f dS ; f PU: ~A5!

here,dS is the Euclidian surface measure onS; this yields
the distributiond+Q as a surface integral:

~d+Q, f !5E
S

f

u¹Qu
dS. ~A6!

Specializing Q to Q(p)5p22m2,, p being the energy-
momentum four-vector, and using onS the charts

V6„6v~pW !,pW …,

the distribution ~A6! can be rewritten as~in Minkowsky
space!

~d+Q, f !5E d3p

2v~pW !
@ f „v~pW !,pW …1 f „2v~pW !,pW …#,

~A7!

wherev(pW )51Ap21m2.
We introduce the two tempered distributions

d6~p22m2!51~pW !u~6p0!d~p22m2!, ~A8!

where 1(pW ) is the unit distribution defined by

FIG. 5. Illustration of the pullback mapping:C(V)→C(U);
k* (w):5w°k.
s
.,

,

~1,f !5E f ~pW !d3p

andd6 obey

~d6 , f !5E d3p

2v~pW !
f „6v~pW !,pW …. ~A9!

Comparison with Eq.~A7! shows that

~d+Q!~p!5d1~p22m2!1d2~p22m2!.

Going back to Eq.~A6! in the form

„d1~p22m2!1d2~p22m2!, f ~p!…5„d+Q, f ~p!…

5E
S1

f

u¹Qu
ds1E

S2

f

u¹Qu
ds,

we see thatd1 andd2 can be written as surface integrals

„d6~p22m2!, f ~p!…5E
S6

f

u¹Qu
ds. ~A10!

Here the two integrals*S6ds are over the two surfaces de
fined by the two signs ofp0 in p056ApW 21m2 with charts
V6, Eq. ~A5!. It is important to note that the integrals in E
~A10! are independent of the special choice of the chartsV6

which one makes on the surfacesS6.

2. Solutions of the KG equation in Minkowski space

The tempered distributionx(p)d(p22m2) defined by

x~p!d~p22m2!5x1~p!d1~p22m2!1x2~p!d2~p22m2!

~A11!

satisfies

„x~p!d~p22m2!, f ~p!…5E
S

x f

u¹Qu
ds ~A12!

and solves the Klein-Gordon~KG! equation in momentum
space:

~p22m2!v~p!50,

with

v~p!5v1~pW !u~p0!d~p22m2!1v2~pW !u~2p0!d~p22m2!.

From the distributionx(p)d(p22m2), one obtains the solu
tion of the coordinate space KG equation as a distribut
f(x) defined by~Minkowsky metric!

f~x!:52pFMx
@x~p!d~p22m2!#, ~A13!

where FM symbolizes the Fourier transform wit
Minkowski metric or, more explicitly,
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„f~x!, f ~x!…52p„x~p!d~p22m2!,FM~ f !~p!…

52pE
S

x~FM f !

u¹Qu
ds

52pE d3p

2v~pW !
@x„v~pW !,pW …•~FM f !„v~pW !,pW …

1x„2v~pW !,pW …~FM f !„2v~pW !,pW …#. ~A14!

In order to guarantee the existence of the two last in
grals, one has to impose the condition onx:

E uxu
u¹Qu

ds,` and E d3p

2v~pW !
ux~6v~pW !,pW !u,`.

~A15!

As it stands, this is valid for classical fields. Afte
quantization—where thex’s are replaced by creation an
annihilation operators—Eq.~A15! becomes a condition fo
matrix elements of these operators.

With Eq. ~A15! the functions

H6~x,p!5
1

2v~pW !
x„6v~pW !,pW …e2 i ^x,p̂6&M f ~x!,

p̂65„6v~pW !,pW …

are integrable; consequently, one can inject the Fourier
resentation ofFMf into Eq. ~A14! to obtain the regular dis
tribution

„f~x!, f ~x!…5
1

~2p!3 E d4x f~x!

3E dp3

2v~pW !
@x~ p̂1!e2 i ^x,p̂1&M

1x~ p̂2!e2 i ^x,p̂2&M#. ~A16!

From Eq.~A16! one identifies the fieldf(x) as

f5
1

~2p!3 E dp3

2v~pW !
@x~ p̂1!e2 i ^x,p̂1&M

1x~ p̂2!e2 i ^x,p̂2&M#. ~A17!

The chart-independent form of Eq.~A17! is

f5
1

~2p!3 E
S

x~p!

u¹Q~p!u
e2 i ^x,p̂&Mds. ~A18!

3. Solutions of the KG equation on theLC

We go from the coordinatesx, p to the correspondingLC
coordinatesx̃, p̃ via the mapping

x̃5k+x, p̃5k+p,

which leads to theLC-KG equation

~hLC1m2!f̃~ x̃!50,

with
-

p-

hLC52]1]22]'
2 .

Introducing the quadratic form

Q̃~ p̃!:5 p̃ 22m2, ~A19!

one can define the distributiond( p̃ 22m2) as the pullback of
the d distribution under the mapping~A19!:

d~ p̃ 22m2!:5d+Q̃,

„d~ p̃ 22m2!, f ~ p̃!…5E
S̃

f ~ p̃!

u¹Q̃u
ds̃, ~A20!

where¹Q̃( p̃)52(p2,2pW' ,p1)Þ0 on the mass shell. The
manifold S̃ is a sum of two disconnected partsS̃1,p1.0
and S̃2,p1,0.

Choosing onS̃6 the charts

@Ṽ1:„ṽ~ p̃W ,p̃W…;p1.0!#

and

@Ṽ2:„ṽ~ p̃W ,p̃W…;p1,0!,#

ṽ~ p̃W !5
p'

2 1m2

2p1 ,

one obtains

„d~ p̃ 22m2!, f ( p̃ )…5E
S1

f ~ p̃!

u¹Q̃u
ds̃1E

S2

f ~ p̃!

u¹Q̃u
ds̃

5E d3p̃
u~p1!

2up1u
f „Ṽ1( p̃W )…

1E d3p̃
u~2p1!

2up1u
f „Ṽ2~ p̃W !….

~A21!

The two integrals in Eq.~A13! ~with x51! and Eq.~A20!
can be shown to be equal. More generally, it can be sho
that forxPL1(S) andx̃5x+u21PL1(S̃), one has the iden-
tity

E
S6

x~p!

u¹Qu
ds5E

S̃6

x̃~ p̃!

u¹Q̃u
ds̃. ~A22!

Using this identity, one arrives immediately at the result@see
Eq. ~A17!#

f~x!5
1

~2p!3 ES

x~p!

u¹Q~p!u
e2 i ^x,p̂&Mds

5
1

~2p!3 ES̃

x̃~ p̃!

u¹Q̃~ p̃!u
e2 i ^ x̂,p̂&Lds̄. ~A23!

Introducing the same charts as in Eq.~A21!, one obtains
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f̃~ x̃!5
1

~2p!3 E d3p
1

2up1u
x̃„Ṽ~ p̃!…e2 i ^Ṽ~ p̃ !, x̃ &L,

~A24!

where

x̃„Ṽ~ p̃W !…

5xF 1

&
S p11

p'
2 1m2

2p1 D ,pW' ,
1

&
S p12

p'
2 1m2

2p1 D G .

The transition to the quantized field is made in Eq.~A17!
by the substitution

x~ p̂1!→a~pW !,

x~2 p̂2!→a†~pW !,

yielding

f̂~x!5
1

~2p!3 E d3p

2v~pW !
@a~p!e2 i ^x,p̂2&M

1a†~pW !ei ^x,p̂1&M#.

In the LC case the two contributions fromp̃ 1.0 and
p̃1,0 in Eq. ~A23! can be recast into a single one by fir

changing the integration variable in the second termp̃W→2p̃W

and then making the substitution

x̃„Ṽ~ p̂W !…→ã~ p̂W !, p̃ 1.0,

x̃„Ṽ~2 p̃W !…→ã 1~ p̃W !, p̃ 1.0,

yielding
y,

t-

.

.

v.

er
f̂̃~ x̃ !5
1

~2p!3 E d3p̃
u~ p̃ 1!

2p̃ 1

3@ ã~ p̃W !e2 i ^Ṽ~ p̃ !, x̃ &L1ã †~ p̃W !e1 i ^Ṽ~ p̃ !, x̃ &L#.

~A25!

For completeness we add a remark: In the literature@14#
operator-valued distributions have been introduced on
level of the Fock-space operatorsa(p), a†(p) by defining
the distributions

~a, f !5
1

~2p!3 E d3p

2v~pW !
a~pW ! f „v~pW !,pW …,

~a†, f !5
1

~2p!3 E d3p

2v~pW !
a†~pW ! f „v~pW !,pW …. ~A26!

For theLC case this reads

~ ã, f̃ !5
1

~2p!3 E d3p̃

p̃ 1 ã~ p̃W ! f̃ „v~pW !,pW …,

~ ã †, f̃ !5
1

~2p!3 E d3p̃

p̃ 1 ã †~ p̃W ! f̃ „v~pW !,pW …. ~A27!

Decomposing the fieldw0(x) into positive and negative
frequency partsw0(x)5w0

1(x)1w0
2(x), we see that

w0
1~0!5~a, f !5~ ã, f̃ !,

w0
2~0!5~a†, f !5~ ã †, f̂ !.

This shows again that the fieldw0(x) is well defined in the
sense of operator-valued distributions.
,
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