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Equivalence of renormalized covariant and light-front perturbation theory.
I. Longitudinal divergences in the Yukawa model

N. C. J. Schoonderwoerd and B. L. G. Bakker
Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands 1081 HV

~Received 12 February 1997; revised manuscript received 15 December 1997; published 24 March 1998!

Light-front perturbation theory~LFPT! has been proposed as an alternative to covariant perturbation theory.
LFPT is only acceptable if it produces invariant S-matrix elements. Doubts have been raised concerning the
equivalence of LFPT and covariant perturbation theory. The main obstacles to a rigorous proof of equivalence
are algebraic complexity in the case of arbitrarily high orders in perturbation theory and the occurrence of
longitudinal divergences not present in covariant perturbation theory. We show in the case of the Yukawa
model of fermions interacting with scalar bosons at the one-loop level how to deal with the longitudinal
divergences. Invariant S-matrix elements are obtained using our method.@S0556-2821~98!04608-6#

PACS number~s!: 11.10.Gh, 11.10.Hi, 11.15.Bt, 11.30.Cp
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I. INTRODUCTION

Covariant field theory has been very successful in desc
ing scattering processes. However, in this framework i
difficult to describe bound states of elementary particl
Hamiltonian field theories are promising candidates to de
mine the properties of bound states. In a Hamiltonian fram
work the initial conditions are specified on some plane
quantization. The Hamiltonian then gives the evolution
the system in time. Already in 1949, Dirac@1# pointed out
that there are several possible choices for the surfac
quantization. Most commonly used is the equal-time plan

For applications in, e.g., deep inelastic scattering,
light-front ~LF! is favored. For the LF coordinates we use t
convention of@2#

x65
x06x3

&
, x'5~x1,x2!. ~1!

Quantization takes place on the light-like planex150. This
choice implies that the minus component of the moment
will play the role of energy. The advantages of light-fro
perturbation theory~LFPT! over quantization on the equa
time plane are given in many articles: see, e.g., Refs.@3,4#. In
LFPT there can be no creation of massive particles from
vacuum or annihilation into the vacuum. This reduces
number of time-ordered diagrams and is related to the s
trum condition.

For a number of reasons, quantization on the LF is n
trivial. Subtleties arise that have no counterpart in ordin
time-ordered theories. We will encounter some of them
the present work and show how to deal with them in suc
way that covariance of the perturbation series is maintain

In naive light-cone quantization~NLCQ! some problems
are not satisfactorily solved. Still, along this line rules ha
been proposed for LF time-ordered diagrams@2,5#. Until
now, one has not succeeded in finding a better method.

In LFPT, or any other Hamiltonian theory, covariance
not manifest. Burkardt and Langnau@6# claim that, even for
scattering amplitudes, rotational invariance is broken
NLCQ. In the case they studied, two types of infinities occ
570556-2821/98/57~8!/4965~11!/$15.00
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longitudinal and transverse divergences. They regulate
longitudinal divergences by introducing noncovariant cou
terterms. In doing so, they restore at the same time rotatio
invariance. The transverse divergences are dealt with by
mensional regularization.

We would like to maintain the covariant structure of th
Lagrangian and take the path of Ligterink and Bakker@7#.
Following Kogut and Soper@2# they derive rules for LFPT
by integrating covariant Feynman diagrams over the LF
ergyk2. For covariant diagrams where thek2-integration is
well-defined this procedure is straightforward and the ru
constructed are, in essence, equal to the ones of NL
However, when thek2-integration diverges the integral ove
k2 must be regulated first. It is our opinion that it is impo
tant to do this in such a way that covariance is maintaine

We will show that the occurrence of longitudinal dive
gences is related to the so-called forced instantaneous l
~FILs!. If these diagrams are included and renormalized i
proper way, we can give an analytic proof of covarian
FILs were discussed before by Mustakiet al. @8#, in the con-
text of QED. They refer to them asseagulls. There are, how-
ever, some subtle differences between their treatment of
gitudinal divergences and ours, which are explained in S
III.

Transverse divergences have a very different origin. Ho
ever, they can be treated with the same renormaliza
method as longitudinal divergences. We found an anal
proof of the equivalence of the renormalized covariant a
plitude and the sum of renormalized LF time-ordered am
tudes in two cases, the fermion and the boson self energ
the other cases we have to use numerical techniques. T
will be dealt with in forthcoming work.

A. Instantaneous terms and blinks

In the case of fermions the demonstration of equivale
is complicated because of the occurrence of instantane
terms.

The covariant propagator for an off-shell spin-1/2 partic
can be written as follows:
4965 © 1998 The American Physical Society
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i ~k”1m!

k22m21 i e
5

i ~k” on1m!

k22m21 i e
1

ig1

2k1 . ~2!

The first term on the right-hand side is called the propaga
part. The second one is called the instantaneous part.
splitting of the covariant propagator corresponds to a sim
splitting of LF time-ordered diagrams. For any fermion lin
in a covariant diagram two LF time-ordered diagrams occ
one containing the propagating part of the covariant pro
gator, the other containing the instantaneous part. For o
ous reasons we call the corresponding lines in the LF tim
ordered diagrams propagating and instantane
respectively. For a general covariant diagram
1/k1-singularity in the propagating part cancels a similar s
gularity in the instantaneous part. Therefore the LF tim
ordered diagrams with instantaneous lines are neces
they are usually well-defined.

If the 1/k1-singularities are inside the area of integratio
we may find it necessary to combine the propagating
instantaneous contribution again into the so-called blink:

. ~3!

In the LF time-ordered diagrams time increases from lef
right. The dashed lines denote scalar bosons, the stra
lines fermions. The thick straight line is a blink. The bar
the internal line of the third diagram denotes an instan
neous fermion. When a LF time-ordered diagram looks l
the covariant diagram, we draw a cut as in the second
gram of Eq.~3! to avoid any confusion.

The difference between Eqs.~2! and ~3! lies in the fact
that the first uses covariant propagators, and the second
energy denominators. An example of a blink is given in S
II on the one-boson exchange correction.

B. Instantaneous terms and FILs

When a diagram contains a loop where all particles
one are instantaneous, a conceptual problem occurs. Sh
the remaining boson or fermion be interpreted as propaga
or as instantaneous? Loops with this property are said to
forced instantaneous loops. Loops where all fermions
instantaneous are also considered as FILs. However, the
not occur in the Yukawa model. Examples of these th
types of FILs are given in Fig. 1.

Mathematically this problem also shows up. The FI
correspond to the part of the covariant amplitude where
k2-integration is ill-defined. The problem is solved in th

FIG. 1. Examples of FILs. In~a! a boson in the loop is forced to
be instantaneous. In~b1! a fermion is obstructed in its propagatio
In ~b2! all fermions are instantaneous.
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following way. First we do not count FILs as LF time
ordered diagrams. Second we find that this special type
diagram disappears upon regularization if we use the met
of Ref. @9#: minus regularization.

C. Minus regularization

The minus-regularization scheme was developed by L
terink and Bakker@9# with the purpose to maintain the sym
metries of the theory such that the amplitude is covari
order by order. It can be applied to Feynman diagrams
well as to ordinary time-ordered or LF time-ordered d
grams. Owing to the fact that minus regularization is a line
operation, minus regularization commutes with the splitti
of Feynman diagrams into LF time-ordered diagrams.

Very briefly the method works as follows. Consider
diagram defined by a divergent integral. Then the integra
is differentiated with respect to the external energy, sayq2,
until the integral is well defined. Next the integration ov
the internal momenta is performed. Finally the result is in
grated overq2 as many times as it was differentiated befo
This operation is the same as removing the lowest order
the Taylor expansion inq2. For example, if the two lowes
orders of the Taylor expansion with respect to the exter
momentumq of a LF time-ordered diagram*d3kF(q,k) are
divergent, minus regularization is the following operation

E
q'

2 /2q1

q2

dq8E
q'

2 /2q1

q82

dq9E d2k'dk1S ]

]q92D 2

F~k,q9!. ~4!

The pointq250 is chosen in this example as the renorm
ization point. This regularization method of subtracting t
lowest order terms in the Taylor expansion is similar to wh
is known in covariant perturbation theory as the Bogoliubo
Parasiuk-Hepp-Zimmermann~BPHZ! regularization @10#.
Some advantages of the minus regularization scheme
preservation of covariance and local counterterms. Anot
advantage is that longitudinal as well as transverse div
gences are treated in the same way. A more thorough dis
sion on minus regularization can be found in Ref.@9#.

D. Proof of equivalence for the Yukawa model

The proof of equivalence will not only hold order by o
der in the perturbation series, but also for every covari
diagram separately. In order to allow for a meaningful co
parison with the method of Burkardt and Langnau we ap
our method to the same model as they discuss. The Lagr
ian of this model is

L5c̄~ i ]mgm2m!c1f~h1m2!f1gc̄cf. ~5!

In the Yukawa model we have to distinguish four types
diagrams, according to their longitudinal and transverse
grees of divergence. These divergences are classified in
pendix A. The proof of equivalence is illustrated in Fig. 2

We integrate an arbitrary covariant diagram over LF e
ergy. For longitudinally divergent diagrams this integrati
is ill-defined and results in FILs. A regulatora is introduced
which formally restores equivalence. Upon minus regulari
tion thea-dependence is lost and the transverse divergen
are removed. We can distinguish
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~1! Longitudinally and transversely convergent diagra
(D2,0, D',0).

No FILs will be generated. No regularization is neede
The LF time-ordered diagrams may contain 1/k1-poles, but
these can be removed using blinks. A rigorous proof
equivalence for this class of diagrams is given in Ref.@7#.

~2! Longitudinally convergent diagrams (D2,0) with a
transverse divergence (D'>0).

In the Yukawa model there are three such diagrams:
four fermion box, the fermion triangle and the one-bos
exchange correction. Again, no FILs occur. Their transve
divergences and therefore the proof of equivalence will
postponed until a future publication. However, because
one-boson exchange correction illustrates the concep
k2-integration, the occurrence of instantaneous fermions
the construction of blinks, it will be discussed as an exam
in Sec. II.

~3! Longitudinally divergent diagrams (D250) with a
logarithmic transverse divergence (D'50).

In the Yukawa model with a scalar coupling there is o
such diagram: the fermion self-energy. Upon splitting t
fermion propagator two diagrams are found. The troub
some one is the diagram containing the instantaneous pa
the fermion propagator. It is a FIL, according to our defi
tion, and needs a regulator. In Sec. III we show how
determine the regulatora that restores covariance formally
Sincea can be chosen such that it does not depend on the
energy, the FIL will vanish upon minus regularization.

~4! Longitudinally divergent diagrams with a quadrat
transverse divergence (D'52). In the Yukawa model only
the boson self energy is in this class. We are not able to g
an explicit expression fora. However, in Sec. IV it is shown
that the renormalized boson self energy is equal to the
responding series of renormalized LF time-ordered diagra
This implies that the contribution of FILs has again disa
peared after minus regularization.

II. EXAMPLE: THE ONE-BOSON EXCHANGE
CORRECTION

We will give an example of the construction of the L
time-ordered diagrams, the occurrence of instantaneous
mions and the construction of blinks. It concerns the corr

FIG. 2. Outline of the proof of equivalence.
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tion to the boson–fermion–anti-fermion vertex due to t
exchange of a boson by the two outgoing fermions. He
and in the sequel, we drop the dependence on the coup
constant and numerical factors related to the symmetry of
Feynman diagrams.

A boson of massm with momentump decays into a fer-
mion anti-fermion pair with momentaq1 and q2 respec-
tively. The covariant amplitude for the boson exchange c
rection can be written as

~6!

The subscript M denotes that the integration is ove
Minkowski space. The momentak1 and k2 indicated in the
diagram are given by

k15k2q1 , k25k1q2 . ~7!

We can rewrite Eq.~6! in terms of LF coordinates

~8!

where the poles in the complexk2-plane are given by

H25
k'2

1m22 i e

2k1 , ~9!

H1
25q1

22
k1

'2
1m22 i e

2k1
1 , ~10!

H2
252q2

21
k2

'2
1m22 i e

2k2
1 . ~11!

We will now show how the LF time-ordered diagrams, i
cluding those containing instantaneous terms, can be c
structed. The LF time-ordered diagrams contain on-shell s
projections in the numerator. They are

k” on5ki on
2 g11ki

1g22ki
'g'. ~12!

We will also use the following relation:

k22Hi
25ki

22ki on
2 . ~13!

We rewrite the numerator

~k” 11m!~k” 21m!5@~k22H1
2!g11~k” 1 on1m!#

3@~k22H2
2!g11~k” 2 on1m!#. ~14!
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This separation allows us to write Eq.~8! as

~15!

The splitting corresponds to the splitting of the covaria
amplitude into LF time-ordered diagrams. The numerat
are written in such a form that Cauchy’s theorem can
applied easily to thek2-integration. Only for the first term o
Eq. ~15! can k2 contour integration not be applied becau
the semi-circle at infinity gives a nonvanishing contributio
Such a singularity corresponds to a pole at infinity. Howev
we are saved by the fact thatg1g150. Therefore we obtain
for the first term of Eq.~15!

~16!

Here the bars in the two internal fermion lines again den
instantaneous terms. This forces the boson line to be ins
taneous too. We see that this diagram is a FIL accordin
the definition we gave in the previous section. The longi
dinal divergences which occur due to such diagrams are
cussed in the next sections. Since FILs are not LF tim
ordered diagrams, rules as given by NLCQ do not apply

The second term of Eq.~15! contains only propagating
parts. It has three poles~9!–~11!. We are free to close the
contour either in the lower or in the upper half plane. T
poles do not always lie on the same side of the realk2-axis.
For example, the pole given in Eq.~9! is in the upper half
plane for k1,0. At k150 it changes side. In Fig. 3 w
show the four intervals that can be distinguished.

In region 1 all poles lie above the realk2-axis. By closing
the contour in the lower half plane we see that the integ
vanishes. Atk152q1 the pole~11! crosses the real axis. I
interval 2 the integral is proportional to its residue:

~17!

No cuts are drawn since this is clearly a LF time-orde
diagram. The factor (H1

22H2
2)21 is the energy denominato

corresponding to the fermion–anti-fermion state between
moment in LF time that the boson decays and the mom
that the exchanged boson is emitted. (H22H2

2)21 is the

FIG. 3. Regions for thek1-integration. At the boundaries a pol
crosses the realk2-axis.
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energy denominator corresponding to the state in the pe
that the exchanged boson exists.

At k150 a second pole crosses the real axis. For posi
k1 we close the contour in the upper half plane. Here o
one pole~10! is present. The result is

~18!

Only the second energy denominator differs from the one
Eq. ~17!.

The terms of Eq.~15! with one instantaneous term ar
easier to determine. There are two poles and a contribu
only occurs if the poles are on different sides of the r
k2-axis. The third term of Eq.~15! is

~19!

For the fourth and last term of Eq.~15! we have

~20!

The possible 1/k1 poles inside the integration area can
removed using the blinks@7#:

~21!

Using Eqs.~17! and ~19! we get

~22!

The other blink is constructed in the same way.
We have now succeeded in doing thek2-integration and

have rewritten the covariant expression for the one-bo
exchange correction~6! in terms of LF time-ordered dia
grams. The result is

~23!

Diagrams with instantaneous parts are typical for LFP
There is another difference with equal-time PT. Of the
possible time-orderings of the triangle diagram two have s
vived, which give rise to two diagrams each, upon splitti
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the fermion propagators into instantaneous and propaga
parts. This reduction of the number of LF time-ordered d
grams compared to ordinary time-ordered ones is w
known in LFPT, and explained in detail in Ref.@7#.

All the calculations in this section were purely algebra
The formulas for the LF time-ordered diagram we deriv
are the same as those given by NLCQ. The integrals
remain are logarithmically divergent in the transverse dir
tion and must be regularized. This calculation will be done
a forthcoming publication in which we discuss transve
divergences.

III. EQUIVALENCE OF THE FERMION SELF ENERGY

There are two longitudinally divergent diagrams in t
Yukawa model. We first discuss the fermion self energy.
our discussion the location of the poles is not relevant
therefore we ignore thei e term. For a fermion momentumq
we have the following self energy amplitude:

~24!

A. Covariant calculation

We introduce a Feynman parameterx and change the in
tegration variable tok8 given byk5k81xq in order to com-
plete the square in the denominator. This gives

~25!

The integral~25! is ill-defined. The appearance ofk” in the
numerator causes the integral to be divergent in the m
direction and obstructs the Wick rotation. However, this te
is odd and is removed in accordance with common prac
@10#. Wick rotation gives then

~26!

The subscriptE denotes that the integration is over Eucli
ean space. From Eq.~26! we can immediately infer that th
fermion self energy has the covariant structure

~27!

B. Residue calculation

To obtain the LF time-ordered diagram and the FIL c
responding to the fermion self energy we perform t
k2-integration by doing the contour integration,

~28!

with the following poles:
ng
-
ll

.

at
-

n
e

r
d

s

e

-

H1
25

k'2
1m2

2k1 , ~29!

H2
25q22

~q'2k'!21m2

2~q12k1!
. ~30!

We rewrite Eq.~28! as

~31!

The first term of Eq.~31! is the part that gives a converge
k2-integration. The second term contains the divergent p
This separation can also be written in terms of diagrams

~32!

The propagating diagram is

~33!

It has the usual form for a LF time-ordered diagram. It
divergent because of the 1/k1 singularity in the numerator
To shed more light on the structure of this formula we intr
duce internal variablesx andk8':

x5
k1

q1 , k8'5k'2xq'. ~34!

The denominator is now a complete square and we drop
usual the odd terms ink8' in the numerator. Then we find

~35!

The FIL is

~36!

It contains the divergent part of thek2-integration and a
1/k1 singularity too. The single bar in Eq.~36! stands for an
instantaneous part. The diagram is instantaneous becau
does not depend on the external energyq2. In order to dem-
onstrate this we shiftk2 by q2. Then we see that the depen
dence onq2 disappears. However, this way of reasoning
dangerous since the integral is divergent. We make the i
gral well-defined by inserting a functionR containing a
regulatora :
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R5S a~k1!

12 idq1k2 1
12a~k1!

11 idq1k2D . ~37!

If we choosea51 for k1,0 and a50 for k1.q1, the
extra pole only contributes for 0,k1,q1. In other words,
then the spectrum condition is also satisfied for all lines
the FIL. This is convenient, but not necessary. Mustakiet al.
do not require the spectrum condition to be fulfilled for i
stantaneous particles. They have as integration bound
for the FIL 0,k1,`.

We perform thek2-integration and take the limitd→0.
This gives

~38!

Using internal variables~34! we obtain

~39!

C. Equivalence

The FIL is not a LF time-ordered diagram. We think it
a remnant of the problems encountered in quantization on
light-front. We require it to satisfy two conditions:

~1! The FIL has to restore covariance and equivalence of
full series of LF time-ordered diagrams.

~2! The FIL has to be a polynomial inq2.

The first condition will also ensure that the FIL contains
1/k1 singularity that cancels a similar singularity in th
propagating diagram. The second condition is that the FI
truly instantaneous; i.e., it does not containq2 in the de-
nominator like a propagating diagram. To find the form
the FIL that satisfies these conditions we calculate

~40!

where we take for the covariant diagram, Eq.~26!. This is a
strictly formal operation. The covariant diagram is a
dimensional integral, whereas the propagating diagram
only 2 dimensions~not counting thex-integration!. We can
calculate Eq.~40! without evaluation of the integrals. In Ap
pendix B useful relations are derived betweend- and (d
22)-dimensional integrals. Upon using them we obtain

~41!
n

ies

he

e

is

f

-
as

This can be rewritten as

~42!

The dependence onq2 is limited to the second term. Th
integral overx of the latter can be done explicitly, whenc
one finds that the integral is independent ofq2. Therefore we
can takeq250 in Eq. ~42!:

~43!

This is a good moment to see if we can satisfy the t
conditions we put forward in the beginning of this subse
tion.

The first condition is satisfied if the right-hand sides
Eqs.~43! and ~39! are equal. We can verify that there is a
infinite number of solutions fora to make this happen. We
are free to choosea to be q2-independent. This will make
formula ~39! also independent ofq2. Then the second con
dition is trivially satisfied.

D. Conclusions

Our renormalization method is visualized in Fig. 4. The
are two noncovariant counterterms (d i ). One of them occurs
in the LF time-ordered part; the other one is associated w
a self-induced inertia. Minus regularization guarantees t
they cancel provided the regulatora is chosen appropriately
The other countertermsdm anddh are covariant. After the
~infinite! counterterms have been added the renormali
amplitude~denoted by the superscriptr ! remains. An illus-
tration of the full procedure of minus regularization is give
in the next section.

We take another look at Fig. 4. The first line contai
three ill-defined objects. The covariant amplitude~24! has a
Minkowskian measure and contains odd terms. Diverg
odd terms are dropped as part of the regularization pro
dure. To calculate the LF time-ordered diagram~33! we also
dropped surface terms. Can these assumptions be justi
Would another set of assumptions give different physi
amplitudes? We conjecture that any set of assumptions
responds to a certain class of choices fora. The a-
dependence is only present in the FILs. In the process

FIG. 4. Addition of the counterterms. The result is the minu
regularized fermion self energy.
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minus regularization thea-dependence is lost, as we see f
the fermion self energy in Fig. 4. Therefore the physi
observables do not depend on the assumptions we starte
with.

Finally we give the result for the fermion self energy:

~44!

This integral can be done analytically, but the result i
rather long formula, which we give in the Appendix C. He
we display the result in pictorial form. Figure 5 showsF1
andF2 for values of the fermion momentum squared in t
rangeq2P@0,2m2# for the case of a massless boson and
case wherem5m/7 corresponding to the self energy corre
tion for a nucleon due to a scalar pion. The casem50 is
included because it was calculated before by Ligterink a
Bakker @9#.

The threshold behavior in the two cases is clearly see
this figure. Above threshold,q2.(m1m)2, the self energy
becomes complex.

We have verified that our result is in agreement with
result given by dimensional regularization and the res
given by Bjorken and Drell@11#, using Pauli-Villars regular-
ization.

For the following reasons our analysis differs essentia
from the analysis of Mustakiet al. @8#. First of all, we make
an explicit distinction between LF time-ordered diagra
and FILs. Second, we make the integration over the long
dinal coordinates well-defined by introducing a regula
a(k1). Mustaki et al. make thek1-integration well-defined
by using cutoffs. The form of the cutoffs depends on t
regularization scheme of the divergences in the transv
directions. In our calculation the form ofa(k1) is deter-
mined by requiring equivalence to the covariant calculati
In our opinion, this is the most important constraint on t
FIL. We do not think that the cutoffs can always be det
mined from an analysis of the transverse divergences.
example, in two dimensions (D5111) there are no trans
verse divergences, but longitudinal divergences are
present anda(k1) has to ensure that covariance is ma
tained. Moreover, inD5111 the covariant calculation o
the fermion self energy gives a finite result. Our choice
a(k1), independent ofk', ensures also in this case that t
LF time-ordered calculation reproduces the covariant res

FIG. 5. The renormalized fermion self energy. The left ha
panel ~a! shows the casem5m/7; the right hand panel~b! is for
m50.
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The same is true for the calculation by Mustakiet al. if they
make a particular choice for the cutoffs.

IV. EQUIVALENCE OF THE BOSON SELF ENERGY

Our analysis of the boson self energy serves two p
poses. First of all it illustrates in detail the concept of min
regularization. Second it concludes our proof of equivalen
for one-loop diagrams with longitudinal divergences in t
scalar Yukawa model. The covariant expression for the
son self energy at one-loop level is

~45!

The momenta are chosen in the same way as for the ferm
self energy. The location of the poles is given by Eqs.~29!,
~30! with m replaced bym. In order to do thek2-integration
we separate the numerator into three parts. We find

~46!

The second term on the right-hand side are the two FI
which are identical. The first term is the LF time-order
boson self energy. It can be rewritten as

~47!

The FIL is given by

~48!

We have seen in our discussion of the fermion self ene
that it is possible to determine the exact form of the FIL th
maintains covariance. However, we have also seen that
ing this step is not necessary, since upon minus regular
tion the FILs disappear. An analysis along lines similar
those in Sec. III C will show that the FIL is also in this ca
independent ofq2. Therefore we limit ourselves to the ca
culation and renormalization of the propagating diagram.

A. Minus regularization

We will now apply the minus regularization scheme to t
LF time-ordered boson self energy. For a self energy d
gram the following ten steps can be used to find the regu
ized diagram. Some steps are explained in more detail for
boson self energy.

~1! Write the denominator in LF coordinates.
~2! Complete the squares in the denominator by introduc

internal variables~k8' andx!.
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~3! Write the numerator in terms of internal and external
coordinates.

~4! Remove odd terms ink8' in the numerator.
These steps were also taken in our discussion of the
mion self energy. Next we diverge.

~5! Subtraction of the lowest order in the Taylor expans
is equivalent to inserting a multiplierX. Construct the
multiplier.

~6! Compensate for the subtraction by adding counterter
Verify that they are infinite. If they are not, the corr
sponding divergence was only apparent and we sho
not subtract it. We do not allow for finite renormaliza
tions.

For the boson self energy all terms have the same den
nator. For them we can write the expansion
rit

to
th
.
u

e

r-

s.

ld

i-

1

k8'
2
1m22x~12x!q2

5
1

k8'
2
1m2 (

j50

`

Xj, ~49!

where the multiplierX has the form

X5
x~12x!q2

k8'
2
1m2

. ~50!

~7! Identify, term by term, the degree of divergence and
sert the corresponding multiplier. To compensate
this, add a polynomial of the appropriate degree w
infinite coefficients.

Steps~1!–~7! lead to the following result for the boson se
energy:
~51!
a-
en-
nt

iza-

on.
lent
late
tly,
a-

r-

n.
ke
two
Longitudinal divergences appear as 1/x singularities. Trans-
verse divergences appear as ultravioletk8' divergences.
Since every term in the boson self energy is at least loga
mically divergent, there is an overall factorX. Some of the
terms are quadratically divergent ink8' and have an extra
factor X. We use the fact that terms containing the fac
g1g1 vanish. We are not interested in the exact form of
countertermsA andB. We can verify that they are infinite
They are included to allow for comparison with other reg
larization schemes.

~8! Rewrite the numerator in terms of objects having eith
covariant org1/q1 structure.
For our integral we use the following relation:

x2q'2
1m2

2xq1 g11x~q1g22q'g'!5
x2q21m2

2x

g1

q1 1xq”.

~52!

~9! Perform the trace, if present.
~10! Do thex andk8' integrations.

Application of the last two steps gives

~53!
h-

r
e

-

r

B. Equivalence

We will now compare the result of the minus regulariz
tion scheme applied to the LF time-ordered boson self
ergy with dimensional regularization applied to the covaria
diagram. Using the standard rules of dimensional regular
tion @10# we obtain

~54!

A8 and B8 are constants containing 1/«. In the limit of «
→0 they diverge. Of course,A8 andB8 cannot be related to
the infinite constants generated by minus regularizati
However, this is not necessary. Both schemes are equiva
if the same physical amplitudes are generated. To calcu
them we have to construct the counterterms or, equivalen
fix the amplitude and its first derivative at the renormaliz
tion point. For the unrenormalized amplitudes~53!,~54! the
coefficientsA or A8 of the constant term are used to dete
mine the physical massmph of the boson. The coefficientsB
or B8 determine the fermion wave function renormalizatio
Only the q4 and higher order terms can be used to ma
predictions. These coefficients must be the same for the
methods. We see that Eqs.~53! and ~54! only differ in the
first two coefficients of the polynomial inq2. Therefore the
two methods generate the same physical amplitudes.
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V. CONCLUSIONS

We discussed in this paper the problem of covarian
which includes the problem of nonmanifest rotational inva
ance, in LFPT.

For diagrams which are both longitudinally and tran
versely convergent one can give a rigorous demonstratio
equivalence, without discussing renormalization explicitly
is given by Ligterink and Bakker@7#.

For longitudinally divergent diagrams such a proof is n
possible because the integration over LF energy is
defined. Still, LF time-ordered diagrams can be construc
applying the rules of NLCQ. However, FILs have to be i
cluded to make the full series add up to the covariant d
gram. These FILs contain the ambiguity related to the
defined integration, as can be shown by our analy
involving the regulatora.

We conjecture that the FILs are remnants of the difficu
of quantizing on the light-front. Just like NLCQ, we are n
able to provide general rules to construct them. However,
can identify the conditions for their occurrence. We sh
that it is not necessary to find an explicit expression for
FILs. Upon minus regularization they vanish. Therefore
a-dependence drops too. The remaining series of regular
LF time-ordered diagrams is again covariant.

The main difficulty we encountered was to show that
FILs are instantaneous indeed. This can be shown by pro
that the regulatora does not depend on the LF energy, as
did for the fermion self energy. Another way is to show th
the regularized covariant amplitude equals the correspon
series of minus-regularized LF time-ordered diagrams.
used this technique for the boson self energy.

This concludes our proof of equivalence of renormaliz
covariant and LF perturbation theory for longitudinally d
vergent diagrams in the Yukawa model. Three diagrams w
transverse divergences remain. They require a more el
rate analysis of minus regularization and numerical imp
mentation of the method. Therefore this work is postpon
until a future publication@12#.
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APPENDIX A: TYPES OF DIVERGENCES
OF FEYNMAN AMPLITUDES

1. Transverse divergences

In a discussion on LF time-ordered diagrams we enco
ter divergences in the perpendicular direction. In most ca
this divergence is the same as what is known in covariant
as the divergenceD of a diagram. There it is the divergenc
one finds if in the covariant amplitude odd terms are
moved and Wick rotation is applied. For a one-loop Fey
man diagram ind space-time dimensions withf internal fer-
mion lines andb internal ~scalar! boson lines the transvers
degree of divergence is
e,
-

-
of
t

t
l-
d

-
-
is

e

e
e
ed

e
ng
e
t
ng
e

d

th
o-
-
d

y
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-
es
T

-
-

D'5d2 f 22b. ~A1!

2. Longitudinal divergences

We relate covariant PT and LFPT by integrating over
energyk2. In this process we can find divergences for t
integration which are classified byD2. The formula for the
longitudinal degree of divergence of a diagram is

D2512b. ~A2!

Longitudinally divergent diagrams contain zero or one bos
in the loop. Since any loop contains at least two lines
longitudinally divergent diagram contains at least one f
mion line. For the model we discuss, the Yukawa model w
a scalar coupling, the divergence is reduced. For scalar
pling g it turns out thatg1gg150 and therefore two instan
taneous parts can not be neighbors. The longitudinal de
of divergence for the Yukawa model with scalar coupling

DYuk
2 512b2F11 f 2b

2 G
entier

512F11 f 1b

2 G
entier

.

~A3!

3. Divergent diagrams in the Yukawa model

In Table I we list all one-loop diagrams up to orderg4

that are candidates to have either longitudinal or transve
divergences. There are five diagrams with transverse di
gencesD'>0, of which two also have a longitudinal diver
genceD2>0. These are the boson and the fermion self
ergies.

APPENDIX B: RELATIONS BETWEEN EUCLIDIAN
INTEGRALS

The two basic formulas are

E ddk f~k2!5
2pd/2

G~d/2!
E

0

`

dkkd21f ~k2!, ~B1!

E
0

`

dk
kd21

~k21C2!m 5
G~d/2!G~m2d/2!

2G~m!
~C2!d/22m,

~B2!

with d>1 andm.0. If we taked>2 andm.1, the follow-
ing manipulations are valid. Formulas~B1! and ~B2! can be
combined to give

E ddk
1

~k21C2!m 5pd/2
G~m2d/2!

G~m!
~C2!d/22m, ~B3!

E ddk
A1Bk2

~k21C2!m 5pd/2
G~m212d/2!

G~m!
~C2!d/22m

3@~m212d/2!A1dBC2/2#.

~B4!

We can formulate the same equation ford22 dimensions
andm21 powers in de denominator. We find that the rig
hand sides differ only slightly:
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TABLE I. Transverse and longitudinal divergences in the Yukawa model ford54.
e

or
fer-
E dd22k
A1Bk2

~k21C2!m21

5
pd/2

p

G~m212d/2!

G~m21!
~C2!d/22m@~m212d/2!A

1~d22!BC2/2#. ~B5!

A comparison of these formulas gives

E ddk
A1Bk2

~k21C2!m 5
p

m21 E dd22k

A1B
d

d22
k2

~k21C2!m21 ,

~B6!

provided we haved.2 andm.1.

APPENDIX C: THE FERMION SELF ENERGY
IN CLOSED FORM

Here we give the results for the integral~44! in closed
form. We write for the renormalized self energy
~C1!

Then the two functionsF1,2 are found to be

F1~q2!

p2i
52E

0

1

dx x logS 12
x~12x!q2

~12x!m21xm2D ~C2!

and

F2~q2!

p2i
52E

0

1

dx logS 12
x~12x!q2

~12x!m21xm2D . ~C3!

For m50 we find the result to be in agreement with th
formula given by Ligterink and Bakker@9# and by Bjorken
and Drell@11#. They use the vector coupling appropriate f
the photon and therefore overall numerical factors are dif
ent:

F1~q2!

p2i
5

1

4
1

m2

2q2 2S 1

2
2

m4

2q4D log
m22q2

m2 , ~C4!

F2~q2!

p2i
512S 12

m2

q2 D log
m22q2

m2 . ~C5!

For m.0 we have
F1~q2!

p2i
5

1

4
1

~m22m2!22m2q2

2~m22m2!q2 1S ~m22m21q2!222m2q2

4q4 2
m4

2~m22m2!2D log
m2

m2 1S log
D1/21m22m22q2

D1/22m21m21q2

2 log
D1/21m22m21q2

D1/22m21m22q2D D1/2~m22m21q2!

4q4 ~C6!

and

F2~q2!

p2i
511S m2

m22m2 1
m22m21q2

2q2 D log
m2

m2 1
D1/2

2q2 S log
D1/21m22m22q2

D1/22m21m21q2 2 log
D1/21m22m21q2

D1/22m21m22q2D , ~C7!

where the variableD contains the threshold behavior

D5@q22~m1m!2#@q22~m2m!2#. ~C8!

We checked that the limitm→0 of Eqs.~C6!,~C7! exists and is equal to Eqs.~C4!,~C5!, respectively.
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