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Equivalence of renormalized covariant and light-front perturbation theory.
l. Longitudinal divergences in the Yukawa model
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Light-front perturbation theoryl FPT) has been proposed as an alternative to covariant perturbation theory.
LFPT is only acceptable if it produces invariant S-matrix elements. Doubts have been raised concerning the
equivalence of LFPT and covariant perturbation theory. The main obstacles to a rigorous proof of equivalence
are algebraic complexity in the case of arbitrarily high orders in perturbation theory and the occurrence of
longitudinal divergences not present in covariant perturbation theory. We show in the case of the Yukawa
model of fermions interacting with scalar bosons at the one-loop level how to deal with the longitudinal
divergences. Invariant S-matrix elements are obtained using our més@eb6-282198)04608-9

PACS numbses): 11.10.Gh, 11.10.Hi, 11.15.Bt, 11.30.Cp

I. INTRODUCTION longitudinal and transverse divergences. They regulate the
longitudinal divergences by introducing noncovariant coun-
Covariant field theory has been very successful in describterterms. In doing so, they restore at the same time rotational
ing scattering processes. However, in this framework it isnvariance. The transverse divergences are dealt with by di-
difficult to describe bound states of elementary particlesmensional regularization.
Hamiltonian field theories are promising candidates to deter- \We would like to maintain the covariant structure of the
mine the properties of bound states. In a Hamiltonian framet agrangian and take the path of Ligterink and BakKek
work the initial conditions are specified on some plane ofrg|iowing Kogut and Sopef2] they derive rules for LFPT
quantization. The Hamiltonian then gives the evolution ofpy integrating covariant Feynman diagrams over the LF en-
the system in time. Already in 1949, Dir4&] pointed out ergyk ™. For covariant diagrams where tke-integration is

that ther(_e are several possible ch_0|ces for the_ surface %ell-defined this procedure is straightforward and the rules
guantization. Most commonly used is the equal-time plane.Constructed are, in essence, equal to the ones of NLCQ.

For applications in, e.g., deep inelastic scattering, th . . . .
light-front (LF) is favored. For the LF coordinates we use the Pwever, when thi -ln_tegrat!on dlverge_s the mt_egra_l over
convention off2] k™ must be _regulated first. It is our opinion th_at it is impor-
tant to do this in such a way that covariance is maintained.
043 We will show that the occurrence of longitudinal diver-
t:X =X xt=(x1,x?). (1) gences is related to the so-called forced instantaneous loops
vz’ ' (FILs). If these diagrams are included and renormalized in a
proper way, we can give an analytic proof of covariance.
Quantization takes place on the light-like plane=0. This  FILs were discussed before by Mustakial.[8], in the con-
choice implies that the minus component of the momentuniext of QED. They refer to them aagulls There are, how-
will play the role of energy. The advantages of light-front ever, some subtle differences between their treatment of lon-
perturbation theorfLFPT) over quantization on the equal- gitudinal divergences and ours, which are explained in Sec.
time plane are given in many articles: see, e.g., R&fd]. In M.
LFPT there can be no creation of massive particles from the Transverse divergences have a very different origin. How-
vacuum or annihilation into the vacuum. This reduces thesyer, they can be treated with the same renormalization
number of time-ordered diagrams and is related to the speg¢nethod as longitudinal divergences. We found an analytic
trum condition. o . proof of the equivalence of the renormalized covariant am-
_For a number of reasons, quantization on the LF is nonpityde and the sum of renormalized LF time-ordered ampli-
trivial. Subtleties arise that have no counterpart in ordlna_ry[udes in two cases, the fermion and the boson self energy. In

time-ordered theories. We will encounter.some Of, them "the other cases we have to use numerical techniques. They
the present work and show how to deal with them in such jNiII be dealt with in forthcoming work

way that covariance of the perturbation series is maintaine
In naive light-cone quantizatioNLCQ) some problems
are not satisfactorily solved. Still, along this line rules have
been proposed for LF time-ordered diagrafi2ss]. Until
now, one has not succeeded in finding a better method. In the case of fermions the demonstration of equivalence
In LFPT, or any other Hamiltonian theory, covariance isis complicated because of the occurrence of instantaneous
not manifest. Burkardt and Langn@6i] claim that, even for terms.
scattering amplitudes, rotational invariance is broken in The covariant propagator for an off-shell spin-1/2 particle
NLCQ. In the case they studied, two types of infinities occur.can be written as follows:

A. Instantaneous terms and blinks
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following way. First we do not count FILs as LF time-
ordered diagrams. Second we find that this special type of
diagram disappears upon regularization if we use the method
of Ref.[9]: minus regularization.

S - C. Minus regularization
(b1} (b2)

The minus-regularization scheme was developed by Lig-
FIG. 1. Examples of FILs. |l(la) a boson in the |00p is forced to terink and Bakkefg] with the purpose to maintain the sym-
be instantaneo.us. I{ip1) gfermion is obstructed in its propagation. metries of the theory such that the amplitude is covariant
In (b2) all fermions are instantaneous. order by order. It can be applied to Feynman diagrams as
well as to ordinary time-ordered or LF time-ordered dia-
i(k+m)  i(kgptm) iy” grams. Owing to the fact that minus regularization is a linear
kZ—m?+ie KkK2—m?+ie + 2kt (2) operation, minus regularization commutes with the splitting
of Feynman diagrams into LF time-ordered diagrams.
The first term on the right-hand side is called the propagating Very briefly the method works as follows. Consider a
part. The second one is called the instantaneous part. Ttdtagram defined by a divergent integral. Then the integrand
splitting of the covariant propagator corresponds to a similais differentiated with respect to the external energy, gay
splitting of LF time-ordered diagrams. For any fermion line until the integral is well defined. Next the integration over
in a covariant diagram two LF time-ordered diagrams occurthe internal momenta is performed. Finally the result is inte-
one containing the propagating part of the covariant propagrated oveq™ as many times as it was differentiated before.
gator, the other containing the instantaneous part. For obviThis operation is the same as removing the lowest orders in
ous reasons we call the corresponding lines in the LF timethe Taylor expansion ig~. For example, if the two lowest
ordered diagrams propagating and instantaneousrders of the Taylor expansion with respect to the external
respectively. For a general covariant diagram themomentumq of a LF time-ordered diagramfid®kA(q,k) are
1/ -singularity in the propagating part cancels a similar sin-divergent, minus regularization is the following operation:
gularity in the instantaneous part. Therefore the LF time- 5
ordered diagrams with instantaneous lines are necessary; [a~ , (9™ R PN "
they are usually well-defined. qi/2q+dq Ji,2q+dq Jd k™dk (W) Fka). (4

If the 1k -singularities are inside the area of integration, ‘
we may find it necessary to combine the propagating anghe pointg2=0 is chosen in this example as the renormal-
instantaneous contribution again into the so-called blink: jzation point. This regularization method of subtracting the
lowest order terms in the Taylor expansion is similar to what

,/ . is known in covariant perturbation theory as the Bogoliubov-
\\,—(\ = O S W . (3 Parasiuk-Hepp-ZimmermantiBPHZ) regularization [10].
Some advantages of the minus regularization scheme are

preservation of covariance and local counterterms. Another
In the LF time-ordered diagrams time increases from left toadvantage is that longitudinal as well as transverse diver-
right. The dashed lines denote scalar bosons, the straighences are treated in the same way. A more thorough discus-
lines fermions. The thick straight line is a blink. The bar in sion on minus regularization can be found in Réfl.
the internal line of the third diagram denotes an instanta-

neous fermion. When a LF time-ordered diagram looks like D. Proof of equivalence for the Yukawa model
the covariant diagram, we draw a cut as in the second dia- ) )
gram of Eq.(3) to avoid any confusion. The proof of equivalence will not only hold order by or-

The difference between Eq&) and (3) lies in the fact der in the perturbation series, but also for every covariant

that the first uses covariant propagators, and the second hdi@gram separately. In order to allow for a meaningful com-
energy denominators. An example of a blink is given in SecParison with the method of Burkardt and Langnau we apply
Il on the one-boson exchange correction. our method to the same model as they discuss. The Lagrang-

ian of this model is

B. Instantaneous terms and FILs £=¢/(iaﬂ“—m)¢/+ ¢(D+M2)¢+g¢l//¢- (5)

When a diagram contains a loop where all particles but
one are instantaneous, a conceptual problem occurs. Should In the Yukawa model we have to distinguish four types of
the remaining boson or fermion be interpreted as propagatindiagrams, according to their longitudinal and transverse de-
or as instantaneous? Loops with this property are said to bgrees of divergence. These divergences are classified in Ap-
forced instantaneous loops. Loops where all fermions ar@endix A. The proof of equivalence is illustrated in Fig. 2.
instantaneous are also considered as FILs. However, they do We integrate an arbitrary covariant diagram over LF en-
not occur in the Yukawa model. Examples of these threeergy. For longitudinally divergent diagrams this integration
types of FILs are given in Fig. 1. is ill-defined and results in FILs. A regulateris introduced

Mathematically this problem also shows up. The FILswhich formally restores equivalence. Upon minus regulariza-
correspond to the part of the covariant amplitude where théion the a-dependence is lost and the transverse divergences
k™ -integration is ill-defined. The problem is solved in the are removed. We can distinguish
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. tion to the boson—fermion—anti-fermion vertex due to the
- .

exchange of a boson by the two outgoing fermions. Here,

l l and in the sequel, we drop the dependence on the coupling
constant and numerical factors related to the symmetry of the
i - forced ime- Feynman diagrams.
(cigvarlant : k : instantaneons |+ LF t:ilpe ordered Yy g . .
lagrams | integration loops (o iagrams A boson of masg: with momentump decays into a fer-
minus mion anti-fermion pair with momenta; and g, respec-
regularization tively. The covariant amplitude for the boson exchange cor-
regularized 0 minus-regularized rection can be written as
covariant e - LF time-ordered
diagrams equivalence diagrams K 04
l l < L[k it
] — 2 . 2 . N .
BN, M (kf—m?—ie)(kf—m? —ie) (k- p? —i€)
physical observables | _ _______ physical observables 6
of covariant PT equivalence of light-front PT (6)
FIG. 2. Outline of the proof of equivalence. The subscriptM denotes that the integration is over

Minkowski space. The momentg andk, indicated in the

(1) Longitudinally and transversely convergent diagramsdiagram are given by
(D~<0, D*<0).

No FILs will be generated. No regularization is needed. ki=k—0;, ko=k+0qs. 7
The LF time-ordered diagrams may contaik “Ifpoles, but
these can be removed using blinks. A rigorous proof of
equivalence for this class of diagrams is given in Réf.

(2) Longitudinally convergent diagram®( <0) with a < ~ / A2hLdk+ Ak~ (fy + m) (K2 + m)
N 8k

transverse divergencd®(¢ =0). — Y y s
In the Yukawa model there are three such diagrams: the 1k kt(k~—Hy )(k~—Hy )J(k=—H™)

four fermion box, the fermion triangle and the one-boson

exchange correction. Again, no FILs occur. Their transverse ®)
divergences and therefore the proof of equivalence will be . _ :
postponed until a future publication. However, because th&/here the poles in the compléx -plane are given by
one-boson exchange correction illustrates the concept of

We can rewrite Eq(6) in terms of LF coordinates

k™ -integration, the occurrence of instantaneous fermions and K24 u2—ie
the construction of blinks, it will be discussed as an example H™ ST ookt 9
in Sec. Il.
(3) Longitudinally divergent diagramsD(” =0) with a )
logarithmic transverse divergencB{=0).  ky +mP—ie
In the Yukawa model with a scalar coupling there is one Hy =0, - T og (10

such diagram: the fermion self-energy. Upon splitting the
fermion propagator two diagrams are found. The trouble- ,
some one is the diagram containing the instantaneous part of B  ky +mP—ie
the fermion propagator. It is a FIL, according to our defini- Ho==O =+ (13)
tion, and needs a regulator. In Sec. lll we show how to 2
determine the regulatar that restores covariance formally. ) _ ) _
Sincea can be chosen such that it does not depend on the L/@ Will now show how the LF time-ordered diagrams, in-
energy, the FIL will vanish upon minus regularization. cluding those containing instantaneous terms, can be con-
(4) Longitudinally divergent diagrams with a quadratic stru_cteq. Th'e LF time-ordered diagrams contain on-shell spin
transverse divergenc®( =2). In the Yukawa model only ~Projections in the numerator. They are
the boson self energy is in this class. We are not able to give
an explicit expression fo&. However, in Sec. IV it is shown Kon=Ki ony "+ k" v —ki v". (12
that the renormalized boson self energy is equal to the cor-
responding series of renormalized LF time-ordered diagrams;we will also use the following relation:
This implies that the contribution of FILs has again disap-
peared after minus regularization. _ o
k™—H; =k —k; (13

1 on-

II. EXAMPLE: THE ONE-BOSON EXCHANGE )
CORRECTION We rewrite the numerator

We will give an example of the construction of the LF  (Ky+m)(ky+m)=[(k"—H;)y" + (ki ont mM)]
time-ordered diagrams, the occurrence of instantaneous fer- B -
mions and the construction of blinks. It concerns the correc- X[(KT=Hz)y" +(Kkzontm)]. (14
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1 . 2 . 3 . 4 energy denominator corresponding to the state in the period
—qf 0 G that the exchanged boson exists.
At k*=0 a second pole crosses the real axis. For positive

FIG. 3. Regions for th&* -integration. At the boundaries a pole k* we close the contour in the upper half plane. Here only

crosses the red™ -axis. one pole(10) is present. The result is
This separation allows us to write E) as / o Qkt
= 2ﬂl/d2kL/ 'ﬁ
d?ktdktdk- o 8kTkTk
) ~SkTRE R X (62"_" +Hn_l)(]§;f“ J;IT) (189)
{ 7+7 + (ylon + m)(y2on + m) ( 17— 442 )( 1 )
(k——H-) " (k—H; )(k—H; )(k~——H")

Only the second energy denominator differs from the one in

Pl tm) (et m* Eq. (17 >

(k——H;)(k——H-)  (k——H[)(k——H-) [~ The terms of Eq(15) with one instantaneous term are

(15) easier to determine. There are two poles and a contribution
only occurs if the poles are on different sides of the real

The splitting corresponds to the splitting of the covariantk™ -axis. The third term of Eq(15) is

amplitude into LF time-ordered diagrams. The numerators

are written in such a form that Cauchy’s theorem can be<

+

0 + ot
applied easily to th& -integration. Only for the first term of £, = —27Ti/d2kJ'/ N 8kfl<l:€+k+7 g_go_n;?l) (19
Eg. (15 cank™ contour integration not be applied because ™ Tz BR1R2 z
the semi-circle at infinity gives a nonvanishing contribution.
Such a singularity corresponds to a pole at infinity. However, For the fourth and last term of E¢L5) we have
we are saved by the fact that y* =0. Therefore we obtain

for the first term of Eq(15) o
£ dkt on +
1 =2ﬂi/d2kl/l T (]751 _+ m27 :
0 8k1 kg k+ Hl ‘—H (20)
< (16)
=0
The possible K" poles inside the integration area can be

instantaneous terms. This forces the boson line to be instan-
taneous too. We see that this diagram is a FIL according to
the definition we gave in the previous section. The longitu- L = - + $. (21)
cussed in the next sections. Since FILs are not LF time-
ordered diagrams, rules as given by NLCQ do not apply. Using Egs.(17) and (19) we get
parts. It has three pole®)—(11). We are free to close the
contour either in the lower or in the upper half plane. The <
For example, the pole given in E¢P) is in the upper half (Foon — P + m)(%zon +m)

+ +—_0 i ; i X .
plane fork™<0. At k™=0 it changes side. In Fig. 3 we (Hi—H; )(H—Hy) (22

In region 1 all poles lie above the rdal -axis. By closing o _
the contour in the lower half plane we see that the integrallhe other blink is constructed in the same way.
interval 2 the integral is proportional to its residue: have rewritten the covariant expression for the one-boson
exchange correctioni6) in terms of LF time-ordered dia-
x (l’él"_“J”f)(lfzj““LT). (17) < B < * < * < * < (23
(Hi—H3 )(H™—Hy)

No cuts are drawn since this is clearly a LF time-ordered
corresponding to the fermion—anti-fermion state between th&here is another difference with equal-time PT. Of the six
moment in LF time that the boson decays and the momentossible time-orderings of the triangle diagram two have sur-

Here the bars in the two internal fermion lines again denotéemoved using the blinki/]:
dinal divergences which occur due to such diagrams are dis-
The second term of Eq15) contains only propagating
dk™

_ / - = —27rz/d2kj‘/ —
poles do not always lie on the same side of the keahxis. + 8kTky kT
show the four intervals that can be distinguished.
vanishes. Ak*=—q" the pole(11) crosses the real axis. In  We have now succeeded in doing tkie-integration and

di+ grams. The result is
o= —27Tl/d2k‘J'/
. 8k1 ki k+

diagram. The factorfi; —H,) ! is the energy denominator Diagrams with instantaneous parts are typical for LFPT.
that the exchanged boson is emitteti (—H,) ! is the  vived, which give rise to two diagrams each, upon splitting
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the fermion propagators into instantaneous and propagating K24 m?2
parts. This reduction of the number of LF time-ordered dia- Hi= T (29
grams compared to ordinary time-ordered ones is well
known in LFPT, and explained in detail in R¢T]. L )24 2
All the calculations in this section were purely algebraic. HI=q — u (30)
The formulas for the LF time-ordered diagram we derived 2 2(q"—k")
are the same as those given by NLCQ. The integrals that
remain are logarithmically divergent in the transverse direcVe rewrite Eq.(28) as
tion and must be regularized. This calculation will be done in
3_ forthcoming publication in which we discuss transverse Pktdktdk™ HDyt+ bty — kityt+m
ivergences. : = (g =k (b = HO) (- — 1)
Ill. EQUIVALENCE OF THE FERMION SELF ENERGY A’k dk+dk~ 7+(k — H, ) .
- . : . ak* (gt —k*) (k= — H)(k~ — H3)
There are two longitudinally divergent diagrams in the (31)

Yukawa model. We first discuss the fermion self energy. For
our discussion the location of the poles is not relevant and he first term of Eq(31) is the part that gives a convergent
therefore we ignore thiee term. For a fermion momentup k™ -integration. The second term contains the divergent part.
we have the following self energy amplitude: This separation can also be written in terms of diagrams:

/ o ]Hm) : (24) o= N o+ 7 (32

—m?) 2 _ 2
m?)((g=k)* = p?) The propagating diagram is

A. Covariant calculation

gt dk+
We introduce a Feynman paramekeand change the in- SN = 2w / dsz/ YR
tegration variable t&’ given byk=k'+xq in order to com- o 4kt(gt — k)

plete the square in the denominator. This gives y ﬂzﬁfu—ﬂ’f“ L ktym — kiyt 4 m 33
Hy — Hy '

/ / Ak (B + zd +m)
- (k" — (1—z)m? — zp? + z(1-z)q 2) It has the usual form for a LF time-ordered diagram. It is
(25) divergent because of thekl/ singularity in the numerator.

To shed more light on the structure of this formula we intro-
The integral(25) is ill-defined. The appearance fin the  duce internal variables andk’~:

numerator causes the integral to be divergent in the minus
direction and obstructs the Wick rotation. However, this term - i
is odd and is removed in accordance with common practice X= q k'==k"—xq". (34)
[10]. Wick rotation gives then

+

The denominator is now a complete square and we drop as
d*k’ (zd +m) usual the odd terms ik’+ in the numerator. Then we find

.- . !
o= z/o dx[ﬁ(klz + (I=a)ym? + zp? — 2(1—x)g?)” !
2 =i @k [de

The subscripE denotes that the integration is over Euclid-

L2
m2+k z2g? +—|—:c<j+m

ean space. From E{26) we can immediately infer that the % 2zqt 35
fermion self energy has the covariant structure Er? 4 (1—z)m? 4 zp? — x(l—x)qz‘ (35
The FIL is
7T =4 R +m F(d). 2
- @ /d2kldk+dk‘ vt (36)
B. Residue calculation —-F_ Ak* (gt —kt) k- — Hy '

To obtain the LF time-ordered diagram and the FIL cor-1t contains the divergent part of the -integration and a
responding to the fermion self energy we perform thelk™ singularity too. The single bar in E¢36) stands for an

k™ -integration by doing the contour integration, instantaneous part. The diagram is instantaneous because it
does not depend on the external eneygy In order to dem-
. A2kLdktdk™ kT + kTyT — kit 4+ m onstrate this we shikt™ by q~. Then we see that the depen-
~——— " 4k*(qt—k*) (k- —H7)(k-—H;) dence onq~ disappears. However, this way of reasoning is

28) dangerous since the integral is divergent. We make the inte-
gral well-defined by inserting a functio® containing a
with the following poles: regulatora:
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a(k®) 1—a(k®) \
R=\1"Tsgk T THioqk | 37) - = _

om 0h  dm + éh + éi + —6i
If we choosea=1 for k*<0 anda=0 for k*>q™*, the
extra pole only contributes forOk* <q™. In other words, +
then the spectrum condition is also satisfied for all lines in N ot
the FIL. This is convenient, but not necessary. Musdlal. — e = ! .

do not require the spectrum condition to be fulfilled for in-  FIG. 4. Addition of the counterterms. The result is the minus-
stantaneous particles. They have as integration boundarigsgularized fermion self energy.
for the FIL O<k™ <o,

We perform thek™ -integration and take the limié—0.  This can be rewritten as

This gives
= o / 42kt / dpt L mT) '
4k+ (gt — k+) (38 1 m? — +( . zx) ¢ ) (42)
T * L 4 (1—z)m? + op? — z(l—2)g®)
Using internal variable$34) we obtain The dependence o0g? is limited to the second term. The

integral overx of the latter can be done explicitly, whence
one finds that the integral is independentjéf Therefore we

/ko’l/ dz a(x can takeg?=0 in Eq. (42):
',‘T\\ — i koI_L ldl'
— , | = e 2q+ o
C. Equivalence y <l n m? — u? > (43
5 .
The FIL is not a LF time-ordered diagram. We think it is K%+ (1—z)m? + zp?

a remnant of the problems encountered in quantization on thehis is a good moment to see if we can satisfy the two

light-front. We require it to satisfy two conditions: conditions we put forward in the beginning of this subsec-

1) The FIL has to restore covariance and equivalence of tho"-

@) full series of LF time-ordered diagrams g The first condition is satisfied if the right-hand sides of

(2) The FIL has to be a polynomial ig- ' Egs.(43) and(39) are equal. We can verify that there is an
boly Q- infinite number of solutions forr to make this happen. We

are free to choose to be g™ -independent. This will make

The first condition will also ensure that the FIL contains aformula(39) also independent af . Then the second con-

1k* singularity that cancels a similar singularity in the dition is trivially satisfied.

propagating diagram. The second condition is that the FIL is

truly instantaneous; i.e., it does not contajn in the de- D. Conclusions
nominator like a propagating diagram. To find the form of  Qur renormalization method is visualized in Fig. 4. There
the FIL that satisfies these conditions we calculate are two noncovariant countertermai{. One of them occurs
in the LF time-ordered part; the other one is associated with
— AT a self-induced inertia. Minus regularization guarantees that

T (400  they cancel provided the regulateris chosen appropriately.
The other counterterm8m and sh are covariant. After the
(infinite) counterterms have been added the renormalized
amplitude(denoted by the superscripj remains. An illus-
tration of the full procedure of minus regularization is given
A the next section.

We take another look at Fig. 4. The first line contains
three ill-defined objects. The covariant amplitu@d) has a
Minkowskian measure and contains odd terms. Divergent
odd terms are dropped as part of the regularization proce-
dure. To calculate the LF time-ordered diagré38) we also

where we take for the covariant diagram, E26). This is a
strictly formal operation. The covariant diagram is a 4-
dimensional integral, whereas the propagating diagram has
only 2 dimensiongnot counting thex-integration. We can
calculate Eq(40) without evaluation of the integrals. In Ap-
pendix B useful relations are derived betwegnand d
—2)-dimensional integrals. Upon using them we obtain

SN T = _m /d2k'l/ dz dropped surface terms. Can these assumptions be justified?
‘ — Would another set of assumptions give different physical
m? + li_Z — 22 amplitudes? We conjecture that any set of assumptions cor-

" . " e responds to a certain class of choices fer The a-
z (k’ + (I=e)m? + zp?® — z(1-2)q ) (41)  dependence is only present in the FILs. In the process of
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— ReF,ImFy (@) 1= m/7 — KE,Im Al (B p=0 The same is true for the calculation by Mustakial. if they
Refodmf ot i make a particular choice for the cutoffs.
IV. EQUIVALENCE OF THE BOSON SELF ENERGY
0 P P 0 py PEIN Our analysis of the boson self energy serves two pur-

poses. First of all it illustrates in detail the concept of minus

FIG. 5. The renormalized fermion self energy. The left handregularization. Second it concludes our proof of equivalence

panel(a) shows the casg.=m/7; the right hand paneb) is for  for one-loop diagrams with longitudinal divergences in the

n=0. scalar Yukawa model. The covariant expression for the bo-
son self energy at one-loop level is

minus regularization the-dependence is lost, as we see for

the fermion self energy in Fig. 4. Therefore the physical £* 4k T .

observables do not depend on the assumptions we started ¢- - = / 5 r{f +m)(F—d + m)].

with. M (k2 —m?)((g—k)? — m?) (45)
Finally we give the result for the fermion self energy:

The momenta are chosen in the same way as for the fermion

1 . S
P N 2. self energy. The location of the poles is given by EH@S),
4—[—4— =7 Z/O dz (zd +m) (30) with w replaced bym. In order to do the&k™ -integration
z(1—z)g? we separate the numerator into three parts. We find
1 1-
x log ( I—2)m? + $N2> (44)

Q - @ +2 7w
This integral can be done analytically, but the result is a

rather long formula, which we give in the Appendix C. Here The second term on the right-hand side are the two FILs,

we display the result in pictorial form. Figure 5 shoWg  \hich are identical. The first term is the LF time-ordered
andF, for values of the fermion momentum squared in thepogon self energy. It can be rewritten as

rangeq? e[ 0,2m?] for the case of a massless boson and the

case wherg.=m/7 corresponding to the self energy correc- ot dk+
tion for a nucleon due to a scalar pion. The caseO is @ = 27ri/d2k"‘/ W
0

included because it was calculated before by Ligterink anc gt — k%)
Bakker[9]. L I [(Bon + m) (F=¢)on + m)]
The threshold behavior in the two cases is clearly seen ii H;y — HT ) (47)

this figure. Above thresholdy?>(m+ u)?, the self energy
becomes complex.

We have verified that our result is in agreement with the YLl A1t Am N
result given by dimensional regularization and the result - / d*k+dk*dk™ Tr [v* ((F=¢)on + m)]
given by Bjorken and Drell11], using Pauli-Villars regular- D 4kt (gt —kt) k- — Hy
ization.

For the following reasons our analysis differs essentially

from the analysis of Mustalét al. [8]. First of all, we make We have seen in our discussion of the fermion self energy
that it is possible to determine the exact form of the FIL that

an explicit distinction between LF time-ordered diagrams- ' "™ X
and FILs. Second, we make the integration over the Iongitumamtams covariance. However, we have also seen that tak-
’ ing this step is not necessary, since upon minus regulariza-

dinal coordinates well-defined by introducing a regulator'’ i ; X ~J"
tion the FILs disappear. An analysis along lines similar to

a(k™). Mustakiet al. make thek™-integration well-defined , . : > o
by using cutoffs. The form of the cutoffs depends on thethose in Sec. 1l C will show that the FIL is also in this case

regularization scheme of the divergences in the transverd@dependent ofj”. Therefore we limit ourselves to the cal-
directions. In our calculation the form af(k*) is deter- culation and renormalization of the propagating diagram.

mined by requiring equivalence to the covariant calculation.

In our opinion, this is the most important constraint on the A. Minus regularization
FIL. We do not think that the cutoffs can always be deter-
mined from an analysis of the transverse divergences. Fq_r
example, in two dimensionsdD(=1+ 1) there are no trans-
verse divergences, but longitudinal divergences are stil
present ande(k*) has to ensure that covariance is main-
tained. Moreover, irD=1+1 the covariant calculation of
the fermion self energy gives a finite result. Our choice of(1) Write the denominator in LF coordinates.

a(k*), independent ok', ensures also in this case that the (2) Complete the squares in the denominator by introducing
LF time-ordered calculation reproduces the covariant result. internal variablegk’* andx).

The FIL is given by

(48)

We will now apply the minus regularization scheme to the
F time-ordered boson self energy. For a self energy dia-
ram the following ten steps can be used to find the regular-
zed diagram. Some steps are explained in more detail for the
boson self energy.
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(3) Write the numerator in terms of internal and external LF 1 1
coordinates.

(4) Remove odd terms ikR’* in the numerator.
These steps were also taken in our discussion of the fer-

= X, 49
k’L2~l—r'nz—x(1—x)q2 k’L2~|—mzj20 49

mion self energy. Next we diverge. where the multiplieiX has the form
(5) Subtraction of the lowest order in the Taylor expansion
is equivalent to inserting a multiplieX. Construct the X(1=x)¢?
o =—. (50)
multiplier. K+ +m?

(6) Compensate for the subtraction by adding counterterms.
Verify that they are infinite. If they are not, the corre- (7) |dentify, term by term, the degree of divergence and in-
sponding divergence was only apparent and we should sert the corresponding multiplier. To compensate for
not subtract it. We do not allow for finite renormaliza- this, add a polynomial of the appropriate degree with
tions. infinite coefficients.

For the boson self energy all terms have the same denomgteps(1)—(7) lead to the following result for the boson self
nator. For them we can write the expansion energy:

1 XEL2 4 22012 4 m2 ~
@ =A+Bq2+m'/d2k'l/ deX Tr [( 2zq‘1+ 7* + (g =gty t) +m
0

1120 (132122 -1
x (Xk te- g +m v++(w—1)(q+'y"—ql7L)+m> +X(k'L'yl)2] (k4% m? —2(1 —2)®) . (5D

2(x~1)qt

Longitudinal divergences appear ax singularities. Trans- B. Equivalence

verse divergences appear as ultraviokét divergences.

Since every term in the boson self energy is at least logarith- We will now compare the result of the minus regulariza-

mically divergent, there is an overall fact¥ Some of the tion scheme applied to the LF time-ordered boson self en-
terms are quadratically divergent kit and have an extra ergy with dimensional regularization applied to the covariant
factor X. We use the fact that terms containing the factordiagram. Using the standard rules of dimensional regulariza-
v* 9" vanish. We are not interested in the exact form of thetion [10] we obtain

countertermdA andB. We can verify that they are infinite.

They are included to allow for comparison with other regu- )
larization schemes. Q = A"+ B'¢* — 4r%i(4m® - ¢*)
y 4m? — g2 . / q?
i i i i i —F———arctan i/ ——————.
(8) Rewrite the numerator in terms of objects having either e dm? — ¢ (54)

covariant ory*/q™" structure.
For our integral we use the following relation:

x2¢2+nF N . X2R+ME y* A’ andB’ are constants containing&l/ In the limit of &
W?’ +x(q"y —¢¢)=Tq—++xq —0 _thgy_dlverge. Of courséy’ andB’ can_not be relate_d t(_)
(52) the infinite constants generated by minus regularization.
However, this is not necessary. Both schemes are equivalent
) if the same physical amplitudes are generated. To calculate
(9) Perform the trace, if present. them we have to construct the counterterms or, equivalently,
(10) Do thex andk’* integrations. fix the amplitude and its first derivative at the renormaliza-
tion point. For the unrenormalized amplitudgss),(54) the
coefficientsA or A’ of the constant term are used to deter-
mine the physical masg, of the boson. The coefficien&
2 .9 2 2 or B’ determine the fermion wave function renormalization.
@ = A+ Bq 2 (3‘1 — 8m Only the g* and higher order terms can be used to make
— . predictions. These coefficients must be the same for the two
5 9. [4mZ—gq q methods. We see that Eg&3) and (54) only differ in the
+2(4m* —¢*) Vg arctan dm? — g2 > : first two coefficients of thfa( polynomial iqz.yTherefore the

(53)  two methods generate the same physical amplitudes.

Application of the last two steps gives
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V. CONCLUSIONS Di=d-f-2b. (A1)
We discussed in this paper the problem of covariance,

which includes the problem of nonmanifest rotational invari- 2. Longitudinal divergences

ance, in LFPT.

We relate covariant PT and LFPT by integrating over LF
nergyk . In this process we can find divergences for the
tegration which are classified iy~ . The formula for the
longitudinal degree of divergence of a diagram is

For diagrams which are both longitudinally and trans-
versely convergent one can give a rigorous demonstration q
equivalence, without discussing renormalization explicitly. It
is given by Ligterink and Bakk€f7].

For longitudinally divergent diagrams such a proof is not D =1-b. (A2)
possible because the integration over LF energy is ill-
defined. Still, LF time-ordered diagrams can be constructed ongitudinally divergent diagrams contain zero or one boson
applying the rules of NLCQ. However, FILs have to be in-in the loop. Since any loop contains at least two lines, a
cluded to make the full series add up to the covariant diatongitudinally divergent diagram contains at least one fer-
gram. These FILs contain the ambiguity related to the ill-mion line. For the model we discuss, the Yukawa model with
defined integration, as can be shown by our analysig scalar coupling, the divergence is reduced. For scalar cou-
involving the regulator. pling g it turns out thaty" gy =0 and therefore two instan-

We conjecture that the FILs are remnants of the difficultytaneous parts can not be neighbors. The longitudinal degree
of quantizing on the light-front. Just like NLCQ, we are not of divergence for the Yukawa model with scalar coupling is
able to provide general rules to construct them. However, we
can identify the conditions for their occurrence. We show
that it is not necessary to find an explicit expression for the
FILs. Upon minus regularization they vanish. Therefore the
a-dependence drops too. The remaining series of regularized
LF time-ordered diagrams is again covariant. _ ) _

The main difficulty we encountered was to show that the 3. Divergent diagrams in the Yukawa model
FILs are instantaneous indeed. This can be shown by proving |n Table | we list all one-loop diagrams up to ordgft
that the regulator does not depend on the LF energy, as Wethat are candidates to have either longitudinal or transverse
did for the fermion self energy. Another way is to show thatdivergences. There are five diagrams with transverse diver-
the regularized covariant amplitude equals the correspondingencesD =0, of which two also have a longitudinal diver-

series of minus-regularized LF time-ordered diagrams. WejenceD ~=0. These are the boson and the fermion self en-
used this technique for the boson self energy. ergies.
This concludes our proof of equivalence of renormalized
covariant and LF perturbation theory for longitudinally di- APPENDIX B: RELATIONS BETWEEN EUCLIDIAN
vergent diagrams in the Yukawa model. Three diagrams with INTEGRALS
transverse divergences remain. They require a more elabo-
rate analysis of minus regularization and numerical imple- The two basic formulas are
mentation of the method. Therefore this work is postponed a
until a future publicatiorf12]. f k() 2m

=Td2) fo dk k9= (k?), (B1)

1+f—b 1+f+b

Dyy=1-b~-
entier

(A3)

entier
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APPENDIX A: TYPES OF DIVERGENCES

d . a2 (M=d2) 5 4o m
OF FEYNMAN AMPLITUDES d k(k2+C2)m = T (C?) , (B3)
1. Transverse divergences
In a discussion on LF time-ordered diagrams we encoun- o A+BK  T(m-1-d2) ..
. . . . . K——m=7m""——=—"7"—"(C9

ter divergences in the perpendicular direction. In most cases (k*+Cc?)m I'(m)
this divergence is the same as what is known in covariant PT )
asthe divergenceD of a diagram. There it is the divergence X[(m=1-d/2)A+dBC/2].
one finds if in the covariant amplitude odd terms are re- (B4)

moved and Wick rotation is applied. For a one-loop Feyn-

man diagram ird space-time dimensions withinternal fer- ~ We can formulate the same equation fb+ 2 dimensions
mion lines andb internal (scalay boson lines the transverse andm—1 powers in de denominator. We find that the right
degree of divergence is hand sides differ only slightly:
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TABLE I. Transverse and longitudinal divergences in the Yukawa modetl fo4.
D\_fuk:O D\_fuk:_l D\_(ukz_l
Dt =1 Dt =0 Dt=-1
‘D\_fuk=O "D\_/uk:_]‘ D§uk~ 1
b=0[ ) ) Ej
D=2 D+ =1 Dt =0
A+BK? T 2 2 Cc1
J' dd 2k (k2+CZ)m ; _{_l__\“ = ¢ Fl(q )+ m Fg(q ) ( )
792 T (m-1—d/2) Then the two function$, , are found to be
=— —————(C?H¥2 M (m—1-d/2)A ) )
7 T(m-1) F1(9?) 1 X(1-x)q
> =—f dx xlog| 1— ———=——| (C2
+(d—2)BC?/2]. (B5) 7 0 (1=x)m"+xp
: . and
A comparison of these formulas gives
2(q2) 1 x(1-x)g
g — fo dx Iog(l— A=+ xa? (C3
A+BK A+BG 5K
f dK ——>m= fdd 2K T T T For n=0 we find the result to be in agreement with the
(k*+C%) m-1 (k*+C?) (B6) formula given by Ligterink and Bakk€i9] and by Bjorken

provided we havel>2 andm>1.

and Drell[11]. They use the vector coupling appropriate for
the photon and therefore overall numerical factors are differ-
ent:

Fi(g®> 1 . m? (1 m4>| 2—qg? 4
=t ——|=—=—]lo ,
APPENDIX C: THE FERMION SELF ENERGY 24 22 |2 2979 T e
IN CLOSED FORM X 5 .
. . _ F2(9) m -q
Here we give the results for the integr@4) in closed e rd log ———. (CH)
form. We write for the renormalized self energy
For u>0 we have
|
Fl(qz) B 1 (MZ_mZ)Z_ILLZqZ . (m2_M2+q2)2_2m2q2 m4 I 2 . I Dl/2+ m2_ﬂ2_q2
24 2(mP— 1) P aq” 2(m?— u2)? 09 m2 0g D= mZ+ 12+ P
D24 m2— 42+ g?| DYAmP— w2+ o?)
—log 17— z (Co)
DY2—m?+ u?—q 4q
and
Fz(qZ) m2 m2_M2+q2 1“2 D1/2 D1/2+m /*'L q D1/2+m M2+q
7 = ) 7 log —+ 5= | 109 =112 2T 2 —log =17~ -, (C7)
i w—m 2q m’  2q DY —m?+ u?+¢q? DY’—m?+ u?—q?
where the variabl® contains the threshold behavior
D=[g*—(m+u)?][g°—(m—u)?]. (C8

We checked that the limjtz— 0 of Eqgs.(C6),(C7) exists and is equal to Eq&C4),(C5), respectively.
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