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We study the zero mode and spontaneous symmetry breaking on the lighfLffont¥We use the discretized
light-cone quantizatiofDLCQ) of Maskawa and Yamawaki to treat the zero mode in a clean separation from
all other modes. It is then shown that the Nambu-Goldst®®@) phase can be realized on the trivial LF
vacuum only when an explicit symmetry-breaking mass of the NG baospiis introduced. The NG-boson
zero mode integrated over the LF must exhibit a singular behaviﬂmf, in the symmetric limitm_,—0,
which implies that current conservation is violated at zero mode, or equivalently the LF charge is not con-
served even in the symmetric limit. We demonstrate this peculiarity in a concrete model, theslimeatel,
where the role of the zero-mode constraint is clarified. We further compare our result with the continuum
theory. It is shown that in the continuum theory it is difficult to remove the zero mode which is not a single
mode with measure zero but the accumulating point causing uncontrollable infrared singularity. A possible
way out within the continuum theory is also suggested based on ithtedory.” We finally discuss another
problem of the zero mode in the continuum theory, i.e., the no-go theorem of Nakanishi and Yamawaki on the
nonexistence of LF quantum field theory within the framework of Wightman axioms, which remains a chal-
lenge for DLCQ, “v theory,” or any other framework of LF theoryS0556-282(98)04708-Q

PACS numbes): 11.10.Ef, 11.30.Qc

[. INTRODUCTION o* (qﬁ‘z‘) theory[8], Abelian[9], as well as non-Abeliafl0]
gauge theories in 1 dimensions and the models in four
The recent revival of the light-frorfLF) quantization[1]  dimensiong11]. As far as the two-dimensional models are
aims at establishing a new formulation to study nonperturbaconcerned, reasonable correspondence with the known re-
tive dynamicq2,3]. A striking feature of LF field theories is sults has been obtained.
that the LF vacuum is simple, or even trivigd]. The In spite of the success in two dimensions, there are a
subtlety of this conclusion due to the so-called “zero mode” number of problems which must be solved to apply the same
was first addressed back in 1976 by Maskawa and Yamawalkhethod to realistic models in four dimensions such as QCD.
[5] who proposed discretized light-cone quantization One such problem is the long-standing zero-mode problem
(DLCQ) to treat the zero mode in a clean separation fron{5]. While the triviality of the LF vacuum in DLCQ can be
other modes. They found a constraint equation for the zerachieved by solving out the zero mode from the physical
mode (“zero-mode constraint) through which the zero Fock space through the zero-mode constr@fit such a
mode becomes dependent on other modes and can in pritrivial vacuum would confront the usual picture of the com-
ciple be removed from the physical Fock space by solvinglicated nonperturbative vacuum structure in the conven-
the zero-mode constraint, thusstablishing the trivial tional equal-time quantization such as the confinement and
vacuum inDLCQ. the spontaneous symmetry breakii®&HB. Simplicity of the
Based on the notion of this trivial vacuum, the first appli- LF vacuum and states can in fact only be realized at the
cation of DLCQ to nonperturbative calculation was done insacrifice of simplicity of the operator side: The only operator
1985 by Pauli and Brodsky7] in the context of the (1 responsible for such phenomena should be the zero mode
+1)-dimensional Yukawa model: DLCQ offers the promis- whose constraint actually carries essential information of the
ing prescription for obtaining the relativistic wave functions complicated dynamics. One might thus expect that explicit
and the bound-state spectra in gauge theories. Their scherselution of the zero-mode constraint in DLCQ should give
has been applied to various models such as two-dimensiongke to the physics equivalent to the nontrivial vacuum struc-
ture in equal-time quantization, while preserving the trivial
LF vacuum. Actually, such an idea was carried out in the
*Email address: sho@mickey.mpi-hd.mpg.de case of (1 1)-dimensionaky* model[12—14 where it was
"Email address: yamawaki@eken.phys.nagoya-u.ac.jp argued that the solution of the zero-mode constraint might
The name “light-cone quantization” is actually confusing, since lead to the SSRof a discrete symmetjyHowever, the most
it is not on the light cone but on the light front which agrees with outstanding feature of the SSB is the existence of the
the former only in &1 dimensions. However, here we simply Nambu-GoldstonédNG) boson associated with the continu-
follow the conventional naming of the majority of the literature. ous symmetry breaking in four dimensions.
The DLCQ was also considered by Cash@findependently in a In this paper, we elaborate on our previous pdpéi to
different context. examine how the NG boson in four dimensions can be de-

0556-2821/98/5(B)/494223)/$15.00 57 4942 © 1998 The American Physical Society



57 ZERO MODE AND SYMMETRY BREAKING ON THe . . . 4943
scribed on the LF in view of the zero mode in DLCQ. The breaks down due to such a singular behavior of the NG-
main conclusion of the previous work was that contrary toboson zero mode.

the naive expectation mentioned above, solving the zero- We also note that were it not for the NG-boson mass from
mode constraint does not lead to the NG phase, unless whe onset, the zero-mode constraints, after integration over
introduce an explicit symmetry breakingnass of the NG the transverse coordinate, would take essentially the same
boson. The NG phase can only be realized when the NGform as that of the two-dimensional massless scalar theory
boson zero mode integrated over the LF behaves @sn2  which, however, will be shown to be ill defined in accord
in the symmetry limit f— 0. The most striking feature of its With Coleman’s theoreni16]. Thus the LF theory without
consequence is that the LF char@gero mode of the local NG-boson mass in four dimensions is also ill defined and

curreni corresponding to the SSB it conserved even in hence introduction of the NG-boson mass and the resulting
the symmetry limitm2—0 nonconservation of the LF charge is inevitable in DLCQ.

Following Maskawa and Yamawaf&] we formulate the Finally, we shall compare our result with the zero-mode
canonical DLCQ in the manner of Dirac for the scalar theoryprObIem in the continuum theory. In the continuum theory it

. o » is rather difficult to remove the zero mode in a sensible man-
with a periodic boundary condition. Then the zero mode can or as was pointed out by Nakanishi and YamawaKi]

be treated §eparately from other modes and be removed %tng ago: The real problem isot a single modewith p*
of the physmgl Fock space through_ the zero-mode constraint (which is merely of zero measure and harmjekat
[5], _th.us Ieavmg_the LF vacuum trivial. Now _that the VacuUM o ally theaccumulating point p—0 as can be seen from
is trivial, whole information about the SSB in the LF quan- 5+ gingularity in the Fourier transform of the sign function
tization should reside in the operator instead of the staté(x ) appearing in the canonical commutator on LF. This
namely, in the zero mode whose dynamics is governed byrevents us from constructing even a free theory on the LF
the zero-mode constraint. (no-go theoren17]), which actually cannot be overcome
However, direct application of the zero-mode constraintgjther by taking the simple continuum limit— of DLCQ
leads to an inconsistent result: The DLCQ allows neither theyr any other existing methdd 7]. Besides this most difficult
emission vertex of the NG boson nor the corresponding curproblem, in this paper we shall point out another problem in
rent vertex, as far as the NG boson mass is exactly zero, @he continuum theory. Namely, tf8SB charge on LF does
conservation of the LF charge is imposgt(false no-go  not annihilate the vacuunif we formulate thes model with
theorem”] [15]. Namely, solving the zero-mode constraint SSB on the LF with careful treatment of the boundary con-
does not give rise to SSB at all in the exact symmetric casgition. Even if we pretend to have removed the zero mode,
mZ=0, in contradiction to the naive expectation mentionedas far as the canonical commutator takes the form of the sign
above[12-14. function e(x7), it inevitably leads to a nontrivial vacuum,
In order to recover the NG phase in DLCQ with the trivial namely, the LF charge does not annihilate the vacuum. This
vacuum, we thus need to formulate the nonconservation dh fact corresponds to difficulty to remove the zero mode as
the LF charge. We propogé5] that this can be achieved in the accumulating point mentioned abdie contradiction to
DLCQ by first introducing the explicit-symmetry-breaking a widely spread expectatidi3]).
mass of the NG bosom,. and then taking its massless limit. ~ We then suggest that a possible way out of this problem
This mass plays a role of regularization of the infrared sin-within the continuum theory would be thev‘theory” pro-
gularity of the zero mode. Based on the notion of partialposed by Nakanishi and YamawdHii7] which removes the
conservation of axial-vector curre(RCAQ), it will be clari-  zero mode in the continuum theory by shaving the vicinity of
fied how the SSB without NG-boson mass becomes selfthe zero mode in such a way thidite sign functionin the
contradictory in DLCQ and how the arguments leading to thecommutator ismodifiedto a certain function vanishing at
above (falsg no-go theorem went wrong. We find that the x~ = . This theory is expected to yield the same result as
NG phase on the LF is characterized by the singular behaviahat we obtain in this paper based on DLCQ, although it does
of the NG-boson zero mode: The global zero mddero  not overcome the no-go theordr7] mentioned above. The
mode integrated over the lLI6f the NG boson must be pro- no-go theorem and the theory will be further discussed in
portional to 12 in the symmetric limiim,,—0 [15]. Thisin  great detail in order to remind the reader of the old results
fact leads tononconservation of the LF charge while pre- [17].
serving the trivial vacuum The plan of this paper is as follows. In Sec. Il we reca-
The above general feature of the SSB on the LF will bepitulate the canonical formalism of DLCQ for the scalar
further demonstrated in a concrete field theoretical modeltheory and the zero-mode constraint in a way slightly differ-
the linearo model, in which the role of the zero mode is ent from the original ong5]. In Sec. Il we consider the SSB
most explicitly illustrated. We derive coupled zero-modeof the continuous symmetry and show how the NG phase can
constraints with the NG-boson mass included and solve therbe realized in the trivial LF vacuum through the explicit-
in perturbation around the classical broken solution whichsymmetry-breaking mass of the NG boson. The singular be-
corresponds to the classical broken vacuum in the equal-timeavior of the global zero mode of the NG bosormin— 0 is
quantization. The singular behavior of the NG-boson zeraequired, which implies nonconservation of the SSB current.
mode is indeed explicitly demonstrated by such a perturban Sec. IV we apply our formulation to the linearmodel by
tive solution which at tree level yields nonvanishiogrm  treating the zero-mode constraints explicitly. It is shown that
and NN vertices consistently with the usual result of the the tree-level amplitude of both therm and theNN# scat-
equal-time quantization. It is most remarkable that the curterings are actually obtained in DLCQ due to the singular
rent conservation or the LF-charge conservation actuallypehavior of the NG-boson zero mode in the symmetric limit.
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In Sec. V we discuss the zero-mode problem in the condix B). Actually, as was emphasized by Steinhdif], the
tinuum theory, which is quite different from that in DLCQ. boundary condition should always be specified even in the
Section VI is devoted to summary and discussions where wécontinuum” theory in order to have a consistent LF quan-
present particular discussions on the no-go theorem and thetization. In fact, the boundary condition on LF includes a
theory in detail. A detailed derivation of the DLCQ canoni- part of the dynamics in sharp contrast to the equal-time
cal commutator is given in Appendix A. In Appendix B the quantization. That is, a different boundary condition defines
special status of the boundary condition on the LF is disa different theory. We shall clarify a special role of the
cussed. In Appendix C, we describe the unbroken phase dfoundary condition on the LF in Appendix B.
0O(2)-symmetric lineafro model in DLCQ and check the op- Since the zero mode in DLCQ is clearly separated from
erator orderingWeyl ordering we use in discussing the per- other modes, we may make an orthogonal decomposition of
turbative solution. The property of the higher order perturbathe primary constraint into two parts as follofk9|. Let us

tive solutions of the zero-mode constraints is studied individe the scalar fieldp(x) into the oscillating mode(x)

Appendix D. plus the zero modeby(x™,x*):
— + Ll
Il. ZERO MODE IN DISCRETIZED LIGHT-CONE $(X) = @(X)F ho(X7,x7), (26
QUANTIZATION 1 (L
In this section we review for later purpose the canonical bo= 2L f_L‘NX)dX ' 2.7

DLCQ of the scalar theor}s]. Throughout this paper we use _ N
the convention of the LF coordinatex”=(x*,x)  The conjugate momentum may also be divided as

=(x*,xt,x7), where

m(X) =77 ,(X) + 7o(X ", XT), (2.9
+_ i 04 o3 2. where m, and 7, are the zero modes conjugate ¢g and
X _‘/Q(X %), ' that to the remaining orthogonal pag(x), respectively.
Now, substituting Eqs.2.6) and(2.8) into Eq.(2.5), we have
xt=(x1,x2). (2.2)  two independent constraints,
The quantization surface on the equal “LF tim&* is de- P1(X)=7e(X) = d-@(x)~0 (2.9
fined in the finite region-L<x"<L [5-7], while no such gpq
restriction is necessarily imposed for the transverse coordi-
natesxt. The “continuum’ limit L—co (or, more precisely, D,(X)=mo(x",x+)=0, (2.10
infinite volume limiY) is taken at the final stage of the whole I  th ininal Edo
calculations. We use the notation fd3>2 n EJ:ace ?h tfe odrlglna t0|n|e:’ . q '5)5 ket
—lim,_. & dx 3", rom the fundamental Poisson brackets
Let us consider the self-interacting scalar theory in four {p(x),m(y)}= 5 (X-y), (2.11)
dimensions whose Lagrangian is expressed in terms of the _
LF coordinate as we obtain
1 1 _ 1 (2) (vl L _ _
L=d.¢d-d=5(0,¢)°—5u*¢*=V(¢), (23 {¢o,mo} =587 (x" —y"),  {do,bo}={mo,m0}=0,
(2.12
whereV(¢) is a potential. The canonical momentum c:onju—and
gate to¢(x) is
1
m0= =L 5o 2.4 {<p(x),%(y)}=( S(X =y )- Z] SP(xt—yh),
adrp) T ' (2.13
which leads to a primary constraint of the theory: {e(X), e(Y)}={m,(X), 7, (y)} =0, (2.14
D (x)=m(X)— - p(x)~0. (25  wherex™=y" is understood. All other Poisson brackets are

equal to zero as expected.

Sincex" is restricted to the finite region, the boundary  The total Hamiltonian is obtained by adding the primary
condition should be specified af = *L. We adopt the pe- constraints to the canonical ok, :

riodic boundary condition orx™ [5], which is consistent

with nonvanishing vacuum expectation value of the scalar . 32,

field. In fact, very existence of the zero mode is related to HT:HCij a1 () P1(x) 0200 P2(X)].

this periodic boundary condition. Other boundary conditions (2.19
such as the antiperiodic one will be discussed in Appendix B. .
Owing to the boundary condition in the finite box, all surface _ 3z * 2, 2,2

terms can be treated unambiguously, while their treatment is f dx 2{((9L P uIITV()),

subtle in the continuum framewoilsee Sec. V and Appen- (2.16
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wherev, andv are the zero mode and the remaining part of ) 1 X =y | o

the Lagrange multiplier, respectively. The multiplieg is  [C11(X,Y)] Z—Z[G(X V)T ]5( J(xt—y*h)

determined by the consistency condition fbg(x) through

the relation _ i 2 —L liniL) G —y°)
2L n#0 2|n7T

1 1
‘9—01(X):§{7T(X)ch}_E{WOch}a (2.1 ><5(2)(Xl_yl), (2.24

which can be easily integrated without ambiguity owing toin the sense that
the periodic boundary condition. On the other hand, the con-

. . L
sistency condition forb,(x), f_Ldz—f dz'C11(x,2)[C1i(z,y)] !
. 1 S, av
<1)2(X)={(D2(X),HT}=Z f_LdX (9L — )¢—% ~0, :i Z ei(nwn_)(x*—y*)a(z)(xl_yl)'
(218) 2L n#0neZ

leads to a new constraint, the so-called “zero-mode con- @229
straint” [5] where €(x) is the sign function satisfying,e(x)=245(x).

Note that the right-hand sideRHS) in Eq. (2.25 is a 6
v function minus zero-mode contribution as it should, since the

ﬁ - (219 zero mode is already subtracted fraby beforehand.
After the Dirac bracket is taken, all the second-class con-

The consistency condition for the zero-mode constrainftraints become strong relations and so is the zero-mode con-
yields no further constraint and just determines the multipliesstraint(2.19:
v,. Note that in deriving these relations we have used the
condition

1 (L
<I>3(x)EZf dx~

(u2=d)p+

1 L

. N
e ) %% b

iy (2.26

Tl(uP-at) o+

S(x~—L)=68(x"+L), (2.20

which is further converted into the operator relation, when
which comes from the definition of thé function with the  we pass to the quantum theory via the correspondence prin-
periodic boundary condition ciple between the Dirac bracket and the commutator,
{ }pg——i[ ]. This implies that the zero mode f®t an in-
dependent degree of freedobut is implicitly written in
terms of other oscillating modes. It was actually the central
issue of Maskawa and Yamawdlk] who claimed thasuch

Having obtained all the second-class constraints, we ar@ constrained zero mode can in principle be solved away out
ready to calculate the Dirac bracket of two arbitrary dynami-Of the physical Fock space and hence the trivial LF vacuum

1 . _
8(x)= 51 2, glin/L)x (2.22)

cal variablesA(x) andB(y) as is justified in DLCQ It is also noted 20] that the zero-mode
constraint(2.26) can also be obtained by simply integrating
{A(X),B(Y)}ps={A(X),B(Y)} in x~ the Euler-Lagrange equatioril(+ u?) ¢=— dV/dp

with use of the periodic boundary condition

-y d%]f d3o{A(x),®;(u)}
1)

N L I L P ﬂ}
0= fdeX 28+a_¢—fﬂdx (m ai)¢+a¢.

X(C7Y);(u){®;(0),B(y)}, (2.22 2.2

where C™%); ; is the inverse oC; ;(x,y)={®i(x),®;(y)}  Namely, the zero-mode constraint is a part of the equation of
which is the matrix of Poisson bracket of the constraints. Thenotion and the zero mode is nothing but an auxiliary field

inverse matrix can be calculated by noting the separation dfaving no kinetic term.

the zero mode from other modes. For instance, the matrix Through the above correspondence principle, we obtain
element from Eq.(2.22 the canonical commutation relati¢B]

C1,1(X1Y)E{(D1(X),q)1()’)}
= ("~ )d(x —y )P (xt—y*h)
B 1 (—Zinﬂ'
_Znez L

X -y~
=

(2.28

)e“””“-)(xy)ﬁ(z)(xL—yL), for the field without zero modewhich is a direct conse-
guence of Eq(2.24). In sharp contrast to the sign function in

(2.23 the continuum theorysee Sec. Y, here in DLCQ we ob-

serve presence of the extra termi -y~ )/L in the commu-
has its inverse tator (2.28, which is nothing but a term subtracting the zero

[o(x),0(y)]=— 7 | (x =y )~
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mode as can be seen from EJ.24). Note that Eq(2.28 is Ill. NAMBU-GOLDSTONE BOSON
the same as the commutation relation of the full figlaoh the ON THE LIGHT FRONT
free theory in which the zero mode becomes identically zero
through the zero-mode constrai2.26).

By computing Eq.(2.22 for the full matrix, we further
obtain a commutation relation for thall field including the
zero modeg(see Appendix A

It is now widely believed that nonperturbative phenomena

due to nontrivial vacuum in equal-time guantization can be

understood in the LF quantization through the operator prop-

erty of the zero mode. Among the various zero modes, we
focus on the bosonic zero mode which has been shown to be
i a dependent degree of freedom and is expected to play a key

[H(X),d(y)]=— 2 f du dv [B(x")a(u™,xb) role to realize SSB on the LF. One might then expect that the

nonperturbative vacuum structure in equal-time quantization

u —ov- is simply replaced by the solution of the zero-mode con-
—o(um=x) ] e(u—v )= — straint. However, the problem is not so simple for the real-
istic case with continuous symmetry in four dimensions,
X[ByHa(v ™, yH)—6(v -y )] whose realization is usually associated with the massless NG
boson.
X 82 (x =y, (2.29 The purpose of this section is to propose the criteria for

global continuous symmetry breaking on the trivial LF
vacuum[15]. Before drawing our main conclusion, we first
R 92V L R show that the naive application of the zero-mode constraint
a(x)E,uz—af+ —, Bfl(xi)zf dx™ a(x). will not lead to the NG phase at all in contradiction to the
I -t above expectatiof(false no-go theorenj15)): If the zero-
(2.30 mode constraint is not reguralized by the explicit mass of the
At first sight, Eq.(2.29 looks different from the original NG boson, the NG phase cannot be realized in DLCQ.
expression iff5] Name_ly, there is no coupling of the NG bo_son as well as no
associated current vertex @t=0, whereg” is the momen-

where

i X tum of the NG boson.
[o(X).0o(Y)]=—7 ‘ f(Xf—yf)—Z,BJ' . a(Z)dZ} 5@ In order to confirm our assertion, let us start with assum-
Y ing that the NG phase is already realized on the LF in the
X(xt—yh), (2.31)  presence of an exactly conserved current and examine its

consequence. Consider the arbitrary NG-boson emission pro-
which was obtained without orthogonal decomposition of thecessA— B+ 7, where bothA and B represent one-particle
primary constrain(2.5) into two parts, zero mode and non- states which couple with the NG boson. The index of the NG
zero modes. However, explicit computation sho#gpen-  boson associated with the internal symmetry is omitted for
dix A) that both are in fact equivalent to each other if thesimplicity.
operator ordering is disregardéie., in the sense of Dirac Based on the reduction formula, the transition amplitude
bracket$. Note thata and 8 contain field operators in the may be written as
interacting theory and hence E@.29 [or Eq. (2.31] is
generally a complicatedperator-valued commutation rela- . 4o iax . Do -
tion, which is nothing but a consequence of the constraineéB'W(q”M:'f d*xe¥(B|Lm(x)|A)=1(2m)"6(Ps —~Pg
zero mode carrying the vital dynamical information of the ..
theory. —q7)8®(pa—pe—)(Blj~(0)[A), (3.0

Here we should remark on the operator ordering to be . 5

consistent with the Dirac quantization. In the Dirac proce-Vhere m(x) and j (x)=Un(x)=(2d,d_—d7)m(x) are
dure, the Dirac brackets are constructed so that all the secori@e interpolating field of NG boson, which is exactly mass-
class constraints can automatically hold as strong identitied€SS, and the source function of the NG boson, respectively,
This property must be preserved in passing from the classic@ndd”=px—pg is the NG-boson four momenta.
theory to the quantum one. In the case at hand, the zero- Taking the collinear momentum franj@2] q*=q-=0
mode constraint should commute with any operator just byandq~ #0 which is not the soft momentufor the on-shell
calculation using the commutator for the full scalar fields.NG boson withg®=0, we find that the NG-boson emission
Rather such operator orderings in the quantum theory mustertex does vanish as follows:
be determined for both the zero-mode constraint and the RN
RHS of Eq.(2.29 [or Eq.(2.31)] simultaneously. However, (2m)%6®(pa—pe)(Bli~(0)|A)
this is an extremely difficult task and we take a different
approach: Instead of a requirement for the zero-mode con- :f d3§<3|(23+(9__5f)77|A>
straint to be a strong operator identity, we assume the Weyl
ordering for the operators in the zero-mode constraint to
solve it explicitly. The solution of the zero mode then leads =f d?x
to the commutato2.29 with a definite operator ordering.
Our choice of the Weyl ordering is based on the general (3.2
argument[21]. Moreover it will be justified through the
study of lineare model in Sec. IV and Appendix C. where the periodic boundary condition was used for the NG-

L—oo

L lim (B|( jLLdX_2§+§W) |A)=0,
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boson fieldr as before. As seen from E@.27), the last line  Weisberger sum rulg24] and its extensions as an algebraic

is nothing but a zero-mode constraint for the massless fieldgalization of the chiral symmetry in terms of the notion of
and hencehe zero-mode constraint itself dictates that therepresentation mixings among hadronic states with nonde-
NG boson vertex should vanisfihus we have established generate masses:#m3 [22,25,28. Hence the vanishing of
that the solution of the zero-mode constraint, whether perturthe current vertex invalidates whole success of the Adler-
bative or nonperturbative or even exact, does not lead to th@/eisberger sum rules and the associated representation mix-
NG phase at all. ings. Actually, vanishing of the current vertex means conser-

Another symptom of this disease is the vanishing of the ation of the LF charg€) which immediately follows from

current vertex for the SSB curren'g as a dl_rect consequence %nservation of the full LE charg@zfd%?ﬁ, sinceQ al-
the LF charge conservation, which again comes from our

periodic boundary condition through the local current con-Vays reduces t®, with the pole part being dropped out of
servation. The current vertex is an analogueggffor the ~ Q due to the integration over the LF:

nucleon matrix element and is related to the NG boson ver- .

tex (gnn, for the nucleon cagen the usual SSB argument [Q,P ]=[Q,P ]=0. (3.6
through the analogue of the Goldberger-Treiman relation.

(Caveat for the nucleon case will be given latéow that ~ \We again emphasize that conservation of the LF charges is a
we have seen that the NG-boson vertex vanishes due to tirect consequence of the periodic boundary condition we
periodic boundary condition, we may naturally guess that théiré using, provided that the local current is conserved as we
current vertex also should for the same reason. In what follmposed.

lows we shall argue that this is indeed the case. In the NG S0, what went wrong? One might use other boundary con-
phase the currend, is divided into the pole term consisting ditions than the periodic one. In Appendix B we shall argue

of an interpolating field of the NG boson and the remainingthat beside the periodic boundary condition, only the antipe-
nonpole term riodic one can be consistent in DLCQ, which, however,

yields no SSB because of the obvious absence of the zero
J,= _fngW+jM, (3.3  mode. One might then give up DLCQ and consider the con-
tinuum theory from the onset, in which case, however, we
wheref _ is the “decay constant” of the NG boson aﬁg still need to specify the boundary condition in order to have
denotes the nonpole term which yields the current vertexa consistent LF theor{18] as we shall discuss also in Ap-
Now, integrating the local current conservation over the LFpendix B. The best we can do in the continuum theory will
we find that the NG-boson pole term drops out, leaving onlybe described in Sec. V, which, although it can give nonzero
the nonpole term due to the periodic boundary condition a®NG boson vertex and current vertée., nonconservation of

before. Then we establish the vanishing current vertex athe LF charggdue to the boundary condition, will result in
follows [15]: another disaster, namely, the LF charge does not annihilate

the vacuum, thus invalidating the trivial vacuum as the great-
est advantage of the whole LF approach. One also might
suspect that the finite volume in tx¢ direction in DLCQ
could be the cause of this NG-boson decoupling, since it is
well known that SSB does not occur in finite volume. How-
ever, we actually take the— < limit in the end, and such a
limit in fact must realize SSB as was demonstrated in the

0=(B| f dg)zaﬂj“(x)|A)x+=o

2 2
=-i(2m?*5 @) T (BIOIA), 34
A

wherequp;—pg:(mi— mé)/ZpX , which implies equal-time quantization in the infinite volume limit of the
~ finite box quantizatioi27]. Moreover, in the case at hand in
(B|J*(0)|A)=0, (3.5  four dimensions, the transverse directionisextend to infin-
. ity. Hence this argument is totally irrelevant any way.
as far a8 m3#m3. The current vertexB|J*(0)|A) at ¢? Therefore the above result it an artifactof the peri-

=0 is nothing but the matrix element of LF char@ odic boundary condition and DLCQ but is deeply connected
= [d3J* constructed only from the nonpole terfwell- to the very nature of the LF _quantization, namely, the zero
defined charge even in the SSB phaaed is essentially the mode. Thl_Js, as far as the trivial property of the LF vacuum is
same as the X matrix” of Weinberg[22]. The chiral alge- (© P& maintained, the only way to recover the NG phase

bra of LF charge actually yields the celebrated Adler-S€€MS to break the symmetry explicitly. By the various ar-
guments to follow along this line both in this section and

Sec. IV, we actually conclude 5] that the NG phase can be
) ) realized in DLCQ only when the NG-boson mass is in-
For the case where the two particlksandB have a degenerate troduced into the theory. The non-vanishing NG-boson emis-
mass, i.e.ma=mg, Eq.(3.4) by itself does notimply the vanishing  sjon vertex as well as the corresponding current vertex at
current vertex(B|J*(0)|A)=0. However, in this casq’—0 cor-  g2=0 s recovered through the explicit symmetry-breaking

responds to the soft momentum lingt‘—0, which implies that  term in them_,—O0 limit, which is characterized by the sin-
even in the usual equal-time treatment, the NG-boson emission VeHular behavior of the NG-boson zero mode :

tex vanishes anyway by the low-energy theorem, even when thé

current vertex is nonzerdor the nucleon case, the current vertex is 1

also zero for kinematical reason, although is nonzero, see the J d3)2(,,w~ —. 3.7
discussion in Sec. IV[23]. me
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We can easily confirm Eq(3.7) with the help of the as far asf,j,#0 (NG phas¢ Therefore the m2=0"
PCAC hypothesis&MJ“(x)=f7,m,277-r(x). Since the current theory with vanishing LHS is ill defined in DLCQ and we
divergence of the nonpole ternd#(x) reads O’)’uj#(x) should define the symmetric limit after introducing the ex-
=f (O+m2)m(x)="f,j.(x), we obtain plicit symmetry-breaking term.

<B|J d3§aﬂj“(x)|A)=fwme<B|f d*x7(x)|A) (3.8 IV. THE SIGMA MODEL

Based on DLCQ discussed in Sec. I, let us now demon-
_ strate Eq.(3.7) by explicitly solving the zero-mode con-
=<B|j d3f.j (X)|A), straints with the NG-boson mass in a concrete model theory
(3.9 [15]. As the simplest but a nontrivial example, we consider
the (2)-symmetric linearo model defined by the Lagrang-

where the integration of the pole teffr(x) is dropped out 'an
as before. On the RHS of E¢3.8), one can replace(x) by
the zero modew .= (1/2L) fEde‘ 7(X) because the oscil- — _ _ 1 , 1 )
lating modes drop out due to the periodic boundary condi- £=¥1¥"d,¢—gy(o+iysm)y+ 5(d,0)°+ 5(d,m)
tion. Suppose thaf d3xw . (x) = [d3xm(X) is regular when

2 ; 1 A
m:—0, this does not lead to the NG phase at all, because the T T A S
remaining two terms then become vanishing. In order to 2k (074 ) 4(0 ) o, “.D
have the nonzero NG-boson emission vei{@#9) as well as
the nonzero current vertdxHS of Eq.(3.8)] at q>=0, the

2 . _ - -
zero modew,. must behave as E43.7). whereu <0, c is the symmetry-breaking parameter afith

This implies that at the quantum level the LF chafe the nucleor_1 (N) fIEI(.j' We takec—0 at the_ final stage.

. . In equal-time quantization the NG phase is well described
=Q is not conserved or the current conservation does Nokyen at the tree level. It is then sufficient to demonstrate, by
hold for its particular Fourier component witi=0 even in  solving the constraints, that such a situation is realized also
the symmetric limit: on LF. Two kinds of vertices will be examined below: the
omm vertex and theN N7 vertex.

.1 -
Q= .—[Q,F’*]=é?"\],u|c‘|:o=f7T lim mif d3Xw7¢0,
I mfr -0 A. o vertex

(3.10 In this case it is adequate to restrict ourselves to the

bosonic sector. The relevant Lagrangian is
although we can recover the conserved current at the classi-

cal level. 1 1
The situation may well be clarified when we consider the L= 5(%0)24' 5((?#77)2— §M2(02+ w?)
general expression for the current matrix element in momen-

tum space with explicit symmetry breaking: N
P P y y g - Z(O'2+ m%)%+co. (4.2
2¢ + 2 2¢ i (A2
mzf 2 =(a%) a“fL-(a%) .
m2 A2 :&#‘],u(q): m2 A2 +alu‘]/1,(q)y
=4 =9 As in Sec. I, we adopt the periodic boundary condition in

(3.1 DLCQ in order to allow the non-vanishing vacuum expecta-
which is a weaker condition than the operator relation oftion value. The quantization can be done in the way similar
) P . to that in the one-component case given in Sec. Il. There are
PCAC hypothesis. What we have done in proving the ab;[WO kinds of zero modesro= (1/2L) [ dx™ (x) and o
sence of NG phase for the exactly conserved cuifrgaise o Lo h'o h —L learl fo
no-go theorerhis summarized as follows: We first set the — (1/2L) ffL(_jX a(x) w 'C_ are separateg clearly from
LHS of Eq. (3.1 to zero, or equivalently, assume implicitly Other oscillating modesp,=m—m, and p,=0— 09, re-
the regular behavior of d*Xw (x) in the massless limit in spectively. The canonical commutation relation for the oscil-

accord with the current conservatietJ, =0. Second, the lating modes(2.28 now reads

first term (NG-boson pole termnon the RHS of Eq(3.11)

vanishes rigorously due to the periodic boundary condition i Xy
or the zero-mode constraint in the DLCQ with=0 (q? [0, ej(¥)]= =7 ) O =y )= —
=0). Thus we arrived af”“flﬂ(q)zo in addition to the van-

ishing of the NG-boson vertex. However, this procedure is
equivalent to claiming the nonsensical relation

X 58P (xt—yt), 4.3

where each indexi} stands forsr or o. By making use of

) m2—g? this commutation relation, it is shown that the creation and
1= 2||m m2—q2 — =0, 312 annihilation operators are simply constructed from the Fou-
me.q2-0" 7 rier coefficients ofp; with respect tax™:
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_ into the operator constraints. The nontrivial problem which
ei(x)= 2, [aD(x* xt)e T (m/L)x we encounter in solving them is the choice of operator or-
n>0 yanm dering, especially the ordering between the zero modes and

ot olyai(nT/L) X~ the nonzero modes. As mentioned in Sec. Il, agsumehe
+ap (X7, x)e it (44 Weyl ordering. In the present context this ordering has an
advantage that it gives a correct description of the symmetric
phase[u?>0, c—0] from the view point of equal-time

Dot wly at(Drot Ly 2ol ol uantization. This is closely examined in Appendix C.
[an’ (7 x5),am" (X7 )]_5”*m5i'j5( (" -y )’(45) | The operator part of theiero-mode cons?rgints are explic-
' itly written down under the Weyl ordering as follows:

in spite of the presence of interaction. The trivial Fock
vacuum is defined aa{’|0)=0 for anyn.

Instead of one zero-mode constrai{@t26) here we have
two coupled zero-mode constraints

where the coefficients satisfy

—m2 2 _ )\ L — 3 2
(—mztiDer=5- | dX(eat@r05+2007¢,)
—L

A L
1 (L oL | Ax | (wrer+ elo,
Xo=5 | Ax[(w=d)m+ra(m?+0?)]=0, -t
-L
(4.6

1
2 2
+ 0 00,)+ E(wwfpﬁ o)

1 JL 2_ 2 2, 2 1
== dx~ —d7)o+No(m“+0°)—c]=0,
Xo=2L ), [(w"=ai) ( )=l +§(w,rcp,r%+ CreP T Q0P

4.7
1
which are also represented by + @ 0,0,)( TA wf,+ Ewﬂwi
1 [t B 1
Xa= " 5 _de 29,9-m=0, (4.8 + Ewiw,,-l—vwﬂwg-i-vwoww) , (4.15
= 1de*2aa =0 4.9 A
TR Bt e 49 (mi+ P o, =5 AKX (oot eoT vl 3ol
through the equation of motidrsee Eq.(2.27)]. N (L ,
Our next task is to solve these constraints within some + T deX_ (0,051 Q0

approximation. As explained in the beginning of this section,
it is sufficient to obtain a solution corresponding to the per- 1
turbation theory around the classicélree leve] SSB + @ 0,0,)t+ E(wgcpfﬁr <p,27w,,)
vacuum in equal-time quantization. For this purpose it is
convenient to further divide the zero modes as 1

+ E(ww¢u¢ﬂ+ QD‘rrwﬂ'(PtT—}_ PoW 7P

To=0U,t W, (4.10
3 1 2
(TQZUO.+(OO., (41]) +qDO'(Pva77) +A wg+§waww
wherev, andv, are the classical constant pieces ang 1, 5 )
and w, are their operator parts. Then the zero-mode con- towiwtvert3veg |, (4.16

straints are split into the classical and the operator parts. The

classical parts of the zero-mode constraints are given by where each mass term is defined mé=u?+3\v? and

120+ 03+ Ao w2 =0, 412  Mz=up’+\o? respectively. Here it is worth referring to the
scaling property of the zero mode with respeckfodirec-
szoﬂ\viﬂ\vavi: c, (4.13 tion. The explicit form of the constraints shows that the zero

modes are implicitly composed of the complicated combina-

which are nothing but the condition determining the minimalion of the following type of integrals:
of the classical potential. The conventional choice of the so- 1
lution isv,,=0 andv,=v, whereu?v +\v3=c. dx— ol m
T T ’ i . —_— X : X,L : X,L , 4.1
The operator zero modes are solved by substituting the 2L ), erL)efxL) (.17
perturbative expansion

where the explicit. dependence is labeled angn are some

0= Aol (4.14 non-negative integers. The important feature of @ql7) is
=] b its invariance under the scale transformation sL,
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1 sL N N
sl f dx” ¢f(x,sL)e"(x,sL) (2m)*6° (@) -(0)|o)= f d*x(7(20..9-— %) 7o)
—sL
P =~ | d%(mlxx(0)]0)=0
=50 | delxbielxL), (418 =~ | #Xmh(0lo)=0.
—-L
(4.29
which is on account of the relation ..
whereq=gq,—p, is the momentum of the NG boson. This
e(sx,sL)=oe(x,L), (4.19 relation leads to an internal inconsistency: the NG-boson

emission vertexo— mrr at q>=0 is vanishing due to the
derived from Eq.(4.3) or Eq. (4.4). Thus the zero modes RHS of Eq.(4.24 or equivalently the zero-mode constraint
have_ no expliqit dependence on the box dizand the naive =0, while the LHS of Eq(4.24 gives the nonvanishing
continuum limitL—o may be safely taken at least for the result as will be shown later.
zero-mode sector. Furthermore this inconsistency is connected with the cur-

Using the explicit form of the zero-mode constraints, therent conservation which also means the charge conservation
lowest order solution of the perturbative zero modesdgr

; ) ) s _ d A

and w,, is now easily obtaine@15]: o f Py 3+

N L dx

S e f AX (@3 + 0,02+ 200 ,40,),
—L

420 =—f d3y(9_3"+a,3Y

Aot =— [ d¥yH{I (x =+L)-J (x =-L)}=0,
(~mE+)ol= o [ ax (o3t e et rogtangd) Jetvaroc= o

(4.21) (4.25

gvhere the periodic boundary condition was used. In our

where there is no operator-ordering ambiguity between th odel we have an explicit form of the(®) current

zero modes and the nonzero modes. Let us briefly see tHe
feature of these explicit solutions. One can find that there is I“=9 om—0a. wo. (4.26)
no divergence inw!") due to the positivity of longitudinal : g

momentum. Moreover this feature is valid beyond the leadThe LF charge defined b@:fdg)?\]+ reduces to

ing approximation, that isp{!)) has no divergence for ariy

N, and leads to Q= J X0 @ Pr— -0 20,), (4.27)
_ i) 4 -0 4.2 which contains only the oscillating modes, because the op-
{m <|21 O > {em) =0, 422 erator part of the zero mode in addition to the pole term is

dropped by the integration over [5]. Thus the LF charge
which is expected from equal-time perturbation theory. Weis well defined even in the NG phase and always annihilates
will see that this well-defined zero mode solution is used inthe vacuum simply by th®* conservation
the actual calculation. On the other hansf}) contains the
divergence which is similar to the tadpole divergence in the Ql0)=0, (4.28

equal-time perturbation_theory. This divergenc_e is ess_entiallvvhich supports the trivial property of the LF vacuum. This

the same as the one qhscusied by Roberts8hin the dis- i also be checked in later discussions, see Eggil and

crete symmetry breaking ap; model and can be formally (4.43.

renormalized inta through the mass renormalization. The charge conservation can also be checked through the
We are now in a position to examine the consequence aéxplicit calculation including the zero modes. In fact the

the explicit solutiong4.20) and(4.21). In order to emphasize  straightforward but tedious calculation using the perturbative
the importance ofc, we first examine the case=0 (or  go|ution of the zero modes leads to

m_=0) again which turns out to have internal inconsistency.
We will then study the case#0 (or m,#0), c—0 and _ _.f 3> _ .

show that the singular behavior of the zero md@e’) re- [Q.P7]=T ] dX(ux7T woXxr— waxo) +(divergence,
covers the correctrrm vertex[15]. (4.29

where the divergence arises from the operator ordering and
should be renormalized in an appropriate way. If we simply
The equation of motion fotr is given by neglect this divergence, or the commutator is understood as
Dirac bracket, the RHS of E¢4.29 becomes zero owing to
Oa(x)=j.()=—N7+mo'?+2v7mc"), (423  the zero-mode constraints.
By substitutingo= o' +v into Eq.(4.26, we have

1. =0

where ¢’ =o—v andv=+—u?/\. Rewriting Eq.(3.2) in .
the present context leads to Jt=Jt=v4,m, (4.30
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whereJ“=d,0'7—d,ma’. From the current conservation, Se€ Appendix D for more details.
we obtain This actually ensures the correet- 7 vertex as well as

the nonvanishing current vertex. Indeed the> w7 vertex
as. an atq?=0 is evaluated as follows:
(| [ %3, 3400 o= = (] | PRnalhes o

(m,m(q?=0)|o)= lim ifd4xeiqx<77|(D+me)7-r(x)|a>

=—i(2m)3s¥ w20
L ompmmE
X(q) T(wld (0)|a), = lim ifolx+
7 mi—>0
(4.32)
+ o
R iqg-x*t 2 3g,,(1)
which meang 7|3 (0)|o)=0 (m2#m?) due to the charge xe <7T|m’*f,x d*xwy o)
conservation or the zero-mode constraint. The charge conser- _ P
vation does not lead to the NG phase at alll. =i(2m)"8(q” +p, —P,)
This pathology suggests that the zero-mode constraint @3y e =
without mass term is ill defined. Up to the operator ordering, X 87(Py—Pa)(—2M0), (4.39
the zero-mode constraint fes,. with m_=0 is given by whereg#=p#— p* is the four momentum of the NG boson.
The current vertex is also obtained by using the operator
A [ lation
Hog=sr | dX(@3+er0s+200,0,) rea
ot 3,3%(x) = v M2 m(x), (4.36
N (L .
tor | X (0054 20,0,0,+30,07) which leads to
—-L
9, 3*(x)=v(0+m2) m(X)=0v]j ,(X), (4.37
M0+ 0,02+ 200,0,). (4.32 . :

where j_(X)=—\N(7+7o'2+2vmo’) with o' =0—v.
Note that it is notw . but fd3Xw ., which is used to calculate 1hen we can confirm the following relations:
the oror vertex. Thus the real quantity to be considered is L .
the integration of Eq(4.32 over the LF which has the simi- (wlf dsxaﬂJ”(x)|a):f d3x(7|vj .(x)| o)
lar structure as that in two dimensions, because the LHS of

Eq. (4.32 vanishes by the transverse integration. However, ) 32 ()

in two dimensions, the zero-mode constraint without mass :Umw<77|f X (X)| o)

term is ill defined in the interacting theory. The reason can

be easily understood as follows. The overall fadt@ppear- =—2z0?(2m)38(g™) 82 (qh)
ing on the RHS of Eq(4.32 is canceled and dropped out. (4.38

The solutionw , is then independent of. Equation(4.32
(before the transverse integratjotiictates thatw, does de- in the limit of m,—0 orv— — u?/\. Throughout the cal-
pend on\. Therefore it is necessary to introduce the NG-culations we have used the covariant normalization of states
boson mass to make the theory well defined. <p,8|pa>:(277)32p:; @) (p,— 5ﬂ) and the on-shell mode
expansion forp in the continuum limit.
2. ¢#0 and ¢~0 Let us see the property of the LF charge in this case (

Having the explicit breaking NG boson mass, we now#0). As already mentioned, the LF charge is well defined
derive the tree-level matrix element for tleers scattering even in the NG phase and always annihilates the vacuum
[15]. The singular behavior of the NG-boson zero mode prosimply by P conservation
posed in the previous section is in fact derived from Eq.

(4.20: Q[0)=0, (4.39
which supports the trivial property of the LF vacuum. The
; 2 3¢ () _ 32, 3 trivial LF vacuum is also consistent with the explicit compu-
I;mo m”f d™Xwy )\f d*(e tation of the commutators. We can show that the oscillating
M modes are transformed under the actiorQoés
Oa¢uT 207000, [Q.e,]=—ie,
(4.33 and
which is not restricted to the lowest order but is valid for [Q,¢.]=i¢,, (4.40
higher order solutions " 7
where use has been made of E@s3) and(4.27). Then we
- 1 have
f BV~ —. (4.39
Mo ([Q.e,1)=([Q,¢~])=0, (4.41
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which is consistent with the trivial vacuu@|0)=0. On the  vacuum. Rewriting the Lagrangigd.1) by the shifted field
other hand, the lowest order solution of the zero modew’'=o—v, we find the standard Lagrangian in the broken
yields rather complicated transformation property of the zerghase
modes
L= 90, MOON+ 55,072+ 5(3,m— ST
N P Y ou 2\ %m PR B
[Quw,1=(~m+ %) —f dx

‘ 2L -, 1

- —mi.’ﬂz— Z((r’)“- Z(W)4—)\v(a")3—)\va"772

X(@2+ 0ot dv0,0,)F ~iw,, 2
inoL ~X (ot (4.45
[Q o l=(-mi+a]) ' | dx 2
g 2L -,
3 5 5 o whereM(x)=m,+g[ o’ (x) +ivysm(x)] and the “nucleon”
X(@ot @r7— 200+ 200,) Fiw,. field ¢ acquired the “degenerate” mass,=guv.
(4.42 Let us first clarify the fermion contribution to the NG-
boson zero mode. By integrating the equation of motion over
Nevertheless, it is straightforward to confirm that X,
—29,0_+3*—m2)m— N7+ 7(c' )+ 2v0 7
Q7D =([Q.o])=0 (4ay  (TEAOFATM)TEMm (o) )

—gui = 4.4
by putting together Eqs4.40 and (4.42. Equation(4.43 9¥1ys4=0, (449
can also be checked by use of the commutator for the fullve can easily derive the zero-mode constraint for the NG
fields (2.29 or (2.3 up to operator ordering: The would-be boson:
nonvanishing term arising from the sign function is precisely
canceled by that from the extra term in the commutator.
Then we conclude that our LF charge does annihilate the
vacuum in accord with the general argum¢hi for the
trivial vacuum based on the zero-mode constraint through +(scalar and pseudoscalar parts
which the zero mode can be solved away out of the physical (4.47)
Fock space. We should remark th&,#]#ic and[Q, ]
# —ia even in them,— 0 limit which are on account of the Henceforth we shall omit both scalar and pseudo-scalar parts
effect of zero modes. They are contrasted to those in théor simplicity.
usual equal-time cas¢Q®,o]=—imw, and [Q% 7]=io. As we have seen in theww vertex, theNN7 vertex at
Since the information of the equal-time vacuum symbolicallyq2=0 is essentially given by
denoted byQ®]0).# 0 is expected to be carried into the zero
mode in DLC_ZQ, the unusual transformation property of the —mif d3)2w,7=gf d%?ﬁ yoib, (4.48
zero modes in the NG phase seems to be natural.

Finally, we can show from Ed4.38 that the regularized

zero mode leads to nonconservation of the LF charge in th
symmetric limit ofm2—0 [15]:

L —
(—miwi)wfif dX™ i st
2L ),

which is consistent with our proposé3.7) as long as the
RHS is nonvanishing. Let us estimate the RHS of B@8

in detail. We assume the antiperiodic boundary condition for
the fermion field and neglect the fermion zero mode. Intro-

Q=.E[Q P~]=v lim sz dXw_#0. (4.44 ducing the projection operatoh (.= (1/2) Y’y* where
i ) T i y==(1W2) (¥°= ®), the fermion field can be decomposed

into the dynamical plus the nondynamical componets

=)+ ¥y, where ¥ =A.y. Note that ¢*)?2

=(y7)?=0 impliesA )A(-y=AyA4)=0. The relevant

m“ﬁo

Therefore the SSB in DLCQ is realized as if it were an

explicit symmetry breaking. Actually, there exists no NG . ) .

theporem gn the IYF Insteag the singular behaosd) es- part of the Lagrangian can be written in terms of the two
: o ' kinds of fermion projections:

tablishes the existence of the massless NG boson coupled to

the current whose charge satisfi@$0)=0 and Q#0, in L=p(x){i v*3,— M(X)}(X)
much the same way as the NG theorem in the equal-time ; # R
guantization which ensures existence of the massless NG bo- = i\/ft//(ﬂft Yyt i‘/ilﬂ(_)(t by
son coupled to the current whose charge satishe¥0) ro
#0 andQ®=0. i (1YY o= Y"M) g
+ (1 VA=Y MY - (4.49

B. NN vertex . . )
) ) ) . The equation of motion fog_ leads to the constraint equa-
As was shown in the previous subsection, the classicayn

part of the zero mode faw is given byv which contributes
to the vacuum expectation valygr)=v in the trivial LF iV29_ i)+ (i1Y° Y= y’M) ¢ -y=0,  (4.50
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whose solution is readily obtained as but the accumulating point p—0 [17]. This is in sharp
contrast to our result in DLCQ where the trivial vacuum is

i L i 0k always guaranteed thanks to the clean separation and explicit
Y- (X)= 2 f Ldy e(x” =y )iy yd removal of the zero mode through the zero-mode constraint.
- Let us illustrate this by starting with the canonical com-
— YOM(Y)}‘PH)(V)- (4.51) mutator for the fieldsr,7 in the bosonic part of the @) o

model(4.2) (without explicit symmetry breaking terc=0)
By substituting the solution ofy_) into the RHS of Eq. in continuum theory
(4.48), one obtains

[0(X),0(Y) Terys = — 7 €0 =y ) 62 x" —y"),

— 1
— B -y
| s [ a¥idy etx =yl 0 5.
i
X{M(X) ys— ¥sM(Y)} #(4)(y), (4.52 [ (X), 7 (y) D —ye == 7 (X —y7) 8D (xt—yh),
where the RHS is nonvanishing as is seen from the explicit (5.2

form of M(x) =m,,+go’(X) +ig ys7(x). Thus our proposal ; ;
for the singular bwehavior of the NG-boson zero mode is Conyvhere the sign function
firmed. i +oo
It is worth mentioning that an exceptional situation hap- e(x)=— 7’]
pens for the tree-leveNN# coupling, in which case we o
should keep only the-independent part d¥l (x), i.e.,m, in s defined by the principal value prescription and hence has
Eq. (4.52, because the rest gives higher order contributionsy,, p*=0 mode but does have an accumulating pgifit
Keeping onlym, is equivalent to applying the free equation _, g This accumulating point is really a trouble as we will
of motion to the RHS of Eq(4.48. It is a well-known pe-  geg in the following. Theras far as we use this sign function
culiarity on the LF that the pseudoscalar density fi@e  for the commutatorwe cannot really remove the zero mode
massivefermion, when integrated over the LF, vanishes.i this sense.

This is what the RHS of Eq(4.52 implies for g=0 and We first look at the transformation property of the fields

M=m,. Owing to this specific property on the LF, the ; - The conserved current associated with the symmetry of
physical amplitude for the tree-levéIN7 scattering af®> e Lagrangian is given by

=0 becomes zero, which is of course consistent with that in

the equal-time quantization. Note thgt=0 is nothing but J,=md,o—0d,m, (5.9
the soft momentum limig#= 0 for the “degenerate nucleon

mass” and the physical amplitude of the NG-boson emissiornd the LF charge is defined by

vertex as well as the associated current vertex is known to be

zero in such a limit for kinematical reason from the low- Q:f d3)2('m9_0'—0'z9_ 7). (5.5
energy theorem, even whétN+ coupling constant and,

are nonzerg23].

dp™ ., _
pp+ e ip'x (5.3

From the canonical commutation relatiofgs1) and(5.2) we

can easily find

V. ZERO-MODE PROBLEM IN THE CONTINUUM
LF QUANTIZATION . i

, L Qo) ]=—im(X)+ Z[ (X" =)+ m(X™=—0)],

The issue of symmetry breaking is important not only in 4

the DLCQ but also in the continuum LF framework such as (5.6
the renormalization-group approach. Wilsenal. [3] stud- .

ied the o model “without zero mode” in the continuum [Q,7(X)]=i0(X)— I—[a(x‘zoo)+(r(x‘= —)].
framework and described the broken phase at the tree level 4

by constructing the corresponding “effective Hamiltonian” (5.7

without zero modeand with the “unusual counter terms” . . .
. . " To obtain a sensible transformation property of the funda-
which compensate the “removal of the zero mode.” Instead

; . o : mental fields, the surface terms must vanish as operators:
of comparing our result with theirs in a direct manner, we

here examine the same model in the broken phase in the T(X"=%)+m(X =—%)=g(X =)+ a(X =—00)=0.
general continuum frameworlpaying special attention to (5.9

the boundary conditionAs we emphasized in Sec.(#lso in

Appendix B, the boundary condition in the LF quantization However, this condition, antiperiodic boundary condition,
contains dynamical information and is crucial to define themeans that the zero mode is not allowed to exist and hence
theory. Then we shall demonstrate that it is actuatipos-  its classical part, condensate), does not exist at all. Thus
sible to remove the zero mode in the continuum théorg  we have no spontaneous symmetry breaking contrary to the
manner consistent with the trivial vacuum. The point is thatinitial assumption.

the real problem with the zero mode in the continuum theory We then seek for a modification of the boundary condi-
is not a single modevith p* =0, which is just measure zero, tion to save the condensate and vanishing surface term si-
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multaneously. The lesson from the above argument is thafhe constant term on the RHS of E§.16) has its origin in
we cannot impose the canonical commutation relation for théhe commutation relatiofb.2), or equivalently,

full fields, because then not only the surface term but also the .

zero modegand hence condensatre required to vanish due [9_7(X),m(y)]=— '_5(3)()2_9)_ (5.17)
to the relation(5.8). So, let us first separate the constant part 2

or condensatéclassical zero modes from ¢ and then im- Namely

pose the canonical commutation relations for the fields with- '
out zero modessr, and the shifted fieldb=o—v =0’ (here ) i
we use¢ instead ofo’), which are now consistent with the (O[Q,m(x)][0)=i(0[$(x)[0) + 5 v,
antiperiodic boundary condition and E¢.8). This actually

corresponds to the usual quantization around the classical i

SSB vacuum in the equal-time quantization. The constant :E‘”&O- (5.18
partv should be understood to be determined by the mini- _ o
mum of the classical potential Then we find that thed.F charge does not annihilate the

vacuum QO0)# 0 and we have lost the trivial vacuum which
o o N is a vital feature of the LF quantization. There actually exists
V=suio™+ a9+ 7 (o™+ 79" an infinite number of zero-mode statgs)=e€'*?|0) such
that P*|a)=€'“9P*|0)=0, where we have usedP*,Q]
1,0, s o N, =0 and « is a real number: All these states satisfy the
=5;Myd Ao d($ "+ m)+ (67 7% (5.9 “Fock-vacuum condition”a(p*)|a)=0 and hence the true
unigue vacuum cannot be specified by this condition in con-
wherev=—u?/\, u?<0 and mi:z)\vz_ In the renor- trastto the usual expectation. This implies that the zero mode
malization group approach, the potent{al9) appears as an has not been removed, even though the Hamiltonian has
“effective Hamiltonian” [3], while the same potential can be been rearranged by shifting the field into the one without
obtained simply through shifting to ¢=o—v. The canoni- ~€xact zero mode™=0. This is in sharp contrast to DLCQ in
cal commutation relation fos is now replaced by Sec. IV where the surface terms in E¢5.12 and(5.13 and
the constant term in Eq5.16) do vanish altogether thanks to
I L the additional term—(x~ —y~)/L (“subtraction of the zero
[P0, b(Y) Ixt =y+=— Ze(x —y) 8P —yh). mode”) besides the sign functica(x ™ —y™) in the canoni-
(5.10  cal commutator4.3).
It should be noted that a somewhat peculiar situation hap-
Now that the quantized fields have been arranged to obeyens to the LF charge due to this boundary condition at the
the antiperiodic boundary condition, one might consider thakyrface term: Although the local current is conserved, the LF

we have removed the zero mode. It is not true, howea®r, charge is not. In fact, integrating the equation of the current
far as we are using the commutator with the sign functlonconservatiomMJM:0, we have

(5.10, in which the zero mode as an accumulating point

ersists to exist. Q - -
P 7:—f d3x(a,J*+(9LJi)=vf d3xda_

Let us look at the LF charge which is given by d
Q:f d3x(wd_p— pd_m—vi_). (5.12) :UJ A3 [0, m(X " =)=, m(X = —»)]
The straightforward calculation leads to =20f 42t 9, m(x~ =00) %0, (5.19
. i _ _
[Q¢(X)]=—im(X)+ Z[m(X" =)+ (X" =—=)], where the antiperiodic boundary conditi¢s.14) has been

(5.12) used. Thus in continuum theobyF charge is not conserved
in spite of the conservation of the local current. This charge
nonconservation can also be checked by direct calculation:

[Qur)]=1 400+ 5o 5L =)+ B(x~=—2)], 10

(5.13 i WZ[Q,H]
where the surface terms should vanish: i i
(X =)+ p(x™ = — ) = m(x" =)+ 7(x" = —%)=0 =gt | @t 200w
(5.149
for the same reason as before. Thus we find :ivf d2x [0 (X =) =g m(x” = —2»)],
[Q.¢(x)]=—im(X), (5.15 (5.20

where use has been made of the equation of motion

, i
[Q.7m(x)]=id(x)+ Zv. (5.16 —20,0_m+Pa=2 T+ Am($2+7?) (5.21)
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as well as the antiperiodic boundary conditi¢s.14). VI. SUMMARY AND DISCUSSIONS
The resulting Hamiltonian via the field shifting coincides
with the “effective Hamiltonian” of Ref[3] which was ob-
tained by “removing the zero mode and adding unusua
counter terms” for it. The above peculiarity of the LF
charge, nonconservation of the LF charge and conservati

We have studied how the continuous symmetry breaking
'n 3+1 dimensions is described on the LF within the frame-
work of DLCQ. We have shown that it is necessary to intro-
0(%uce an explicit symmetry-breaking mass of the NG boson

of the local current, was also claimed in RE3] for com- m,, in order to realize the NG phase in DLCQ. The NG

; Lo hase is reproduced in the limit ai,,— 0, where the pecu-
\p/)frfieslzigéﬁ;rﬁgcree?s?g; ;Tt%g;ﬁg. They implicitly assume iar behavior of the NG-boson zero mode is derived: The

NG-boson zero mode, when integrated over the LF, must
behave as~1/m%. This ensures the nonvanishing matrix
elements associated with the NG boson. However, we en-
counter as an inevitable consequence that the LF charge is
not conserved or even the current conservation breaks down
%ven in the limit ofm_—0.

Here we emphasize thtte NG theorem does not exist on
the LF. Instead we found the singular behavi@:7) which
in fact establishes existence of the massless NG boson

coupled to the current such that|@=0 and Q+0, quite

H(X" =)= p(X"=—w)=m(x =0)=7m(Xx" =—»)=0.
(5.22

However, it is actually not allowed, because it contradicts th
commutation relationg5.2) and (5.10. For instance, the
commutation relatior§5.17) yields

U d3xa_m(x),m(y)

xt=y* analogously to the NG theorem in the equal-time quantiza-
i tion which proves the existence of the massless NG boson
=f d3X[9_7(X), 7(Y) Iyt =y = — 5#0, coupled to the current such thaf]0).#0 andQ®=0 (op-

posite to the LF cage Thus the singular behavior of the
(5.23 NG-boson zero mod€8.7) [or (4.34] may be understood as
a remnant of the Lagrangian symmetry, an analogue of the

while Eq. (5.22 requires the LHS to vanish. If one illegiti- NG theorem in the equal-time quantization.
mately assumed Ed5.22 and neglected all surface terms, The zerO-mode problem was also discussed in the con-
then the LF charge would have been conserved as is easilipfuum theory with careful treatment of the boundary condi-
read off from Eq.(5.20), in contradiction td[3]. tion. It was demonstrated that as far as the sign function is
To summarize, in the general continuum LF quantizationused for the commutator, the LF charge does not annihilate
based on the canonical commutation relatidth sign func-  the vacuum in sharp contrast to DLCQ, since the zero mode
tion, the LF charge doesot annihilatethe vacuum and isot ~ as an accumulating point cannot be removed by simply drop-
conservedor the conserved local current. It corresponds toPing the exact zero mode with" =0 which is just measure
impossibility to remove the zero mode as an accumulating€ro. We also suggested that théheory might give a pos-
point in the continuum theory in a manner consistent withsSible way out of this nontrivial vacuum problem in the con-
the trivial vacuum. Thus, in the continuum theory the greattinuum theory and give rise to the same result as that in
est advantage of the LF quantization, the simplicity of theDLCQ.
vacuum, is lost, although the NG-boson emission vertex can The nonconservation of the SSB charge on the LF was
be nontrivial without such a manipulation as via the explicita!so stressed by 1d&6] and Carlitzet al. [28] long ago in
NG-boson mass in contrast to DLCQ. the continuum theory but not in DLCQ. Their way to define
Here it is worth suggesting that even in the continuumthe LF charge is somewhat similar to ours, namely, the ex-
theory there exists a prescriptiontheory[17], which may  Plicit mass of the NG boson is kept finite in order to pick up
give rise to the same result that we obtained in DLCQ inthe current matrix element with the NG-boson pole term
this paper: the trivial vacuun®|0)=0, and the nondecou- dropped. However, they discussed it in the continuum theory
pling NG boson through the explicit breaking mass of thewithout consistent treatment of the boundary condition and
NG boson or the singular behavior of the global zero modavithout realizing the zero-mode problem. If they were care-
of the NG boson. The theory modifies the sign function in ful enough about the boundary condition in the continuum
the commutator into a certain function which vanishes atheory, they would have arrived at difficulty of the nontrivial
X~ =+, by shaving the vicinity of the zero mode to tame Vacuum as we ment_ioned before. So it is essentially different
the 1p* singularity as|p*|"/p*(»>0). The limit of »  from our argument in DLCQ. _ _
—0 is taken only after whole calculation. Then there is no Finally, we should mention that there is a more serious
surface term nor constant teffti/2) v] in the commutators Z€ro-mode problem in the continuum LF theory, namely, the
(5.12 and (5.13, and hence the transformation property of N0-go theorem found by Nakanishi and Yamaw(dki]. The
the fields and the trivial vacuum should be both realizedLF canonical commutatd(5.10 gives explicit expression of
Also, the LF charge conservation is expected to follow un-Wo-point Wightman function on LF:
less we introduce the explicit symmetry breaking, which is in 1 dp*
fact the same situation as in DLCQ. Thus, in order to realize I —iptXT (2) (ol
the NG phase we could use the same method as we used f0r<0|¢(x)¢(0)|0>|x+:0— 2 fo 2p* e 80X,
DLCQ, namely, introduce the explicit breaking mass of the (6.1
NG boson in such a way that the global zero mode of the NG
boson behaves singular asnf/in the symmetric limit. which is logarithmically divergent ga™ =0 and local inx*
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and, more importantly, is independent of the interaction and o

the mass. We can easily check this result in the free theory <0|[¢(X)-¢(0)]|0>:if du?p(p?)A(X; u?),

[29] where the theory is explicitly solved in all space-time o

and the two-point Wightman function is given at any point w0

by the well-known invariant delta functiom (")(x;m?) f du?p(u?d)=1, p(u?=0. (6.4)
which is written in terms of the Hankel functiag; in the 0

i 20
spacelike regiox”<0: If one assumed that the LF restrictish =0 of the theory was

well defined, then it would follow that

B L (~de” (= -
(01800010 =0 06m) = s [ 50w [T (01100000010 o= [ dun(uAGiu? e
—ip~xt—ipTx~ +iptxt i
xdpe :—;—fe(x’)a(z)(xﬂ, 6.5
— m _ 2 2
T am o mymxt) s O0<0). since 1A(x; 12| —o=— (i/4) e(x )@ (x") is indepen-

dent ofu?. Taking thep® >0 part of the Fourier component

of the commutator functioni6.5), one would further obtain
exactly the same result as H§.1) for the two-point Wight-
man function atx™ =0, this time ¢ being the interacting
Heisenberg field instead of the free field. On the other hand,
the same Wightman axioms yield the spectral representation
also for the two-point Wightman function:

(6.2

Restricting Eq(6.2) to the LF,x* =0, yields

m
(0] A(X) $(0)| 0]+ o= ———=K1(myX?), (6.3 -
Tamrd T <0|¢(X)<75(0)|0>=J0 du’p(u?) AT (6 u?). (6.6

which is finite (positive definitg, nonlocal inx* and depen- NOW, the LF restriction of Eq(6.6) dependszorp(,uz) and
dent on mass, in obvious contradiction to the above resuff0€S not agree with EcﬁG.l),zs!nceA“)(x;M )|x+ =0 given
(6.1). Hence, already for the free field the LF quantization@S EG.(6.3 does depend op*, in sharp contrast to E¢6.1)
fails to reproduce the Lorentz-invariant theory. Actually, the'Vhich was derived from Eq(6.5). Thus we have arrived at

latter Lorentz-invariant resuli6.3) is a consequence of the self-contradiction within_ the framework_ O.f Wightman 6.‘Xi'
mass-dependentegularization of 1+ singularity at p* oms under the assumption that LF restriction is well defined.

o S An immediate way to resolve this trouble would be to

—0 bY t,h? |nf|mteI2y ozscnI?tlrlqmass-depende)wphase fac- define the theory on the “near LF%* #0, slightly away
tor e X = !(M*PIZTX"in the integral of Eq(6.2)  from the exact LFx"=0, and then take the LF limit
before taking the LF restriction’=0. The LF quantization, x*_—0 only in the end of whole calculation as in E§.3).
restricting tox " =0 beforehand, in fact kills such a regular- In fact such a prescription was first proposed by Nakanishi
izing factor and leads to a wrong res@#.1). Thus the LF  and Yabuki[29] in the continuum framework and later by
restriction from the beginning loses all the information of Prokhvatilovet al. and otherd30] in the context of DLCQ.
dynamics carried by theero mode as the accumulating However, it was notefl17] that the price to pay in this ap-
point This implies thateven a free theory does not exist on proach isnonvanishing vacuum polarizatias in the equal-
the LF[17]. time quantization and henceee must give up the trivial

One might suspect that this conclusion could be an artivacuum, or physical Fock spaoshich is the most important
fact of too formal argument and irrelevant to the actual physfeature of the LF quantization. Then there is no advantage of
ics, since one can construct free particle states, namely, this approach over the equal-time quantization, concerning
free Fock space, with the correct spectra, as far as the méhe simplicity of the vacuum in nonperturbative studies. In-
mentum space consideration is concerned. However, thdeed, it was demonstrated more explicifl§1] that the
above result implies thafjuantum field on LF is ill defined as vacuum is nontrivial and there exists nontrivial renormaliza-
the operator-valued distribution and so is the operator prod-tion in the LF Hamiltonian in this approach: It is no longer
uct on LE Then it is rather difficult to construct ealistic =~ simple to solve dynamics compared with the equal-time
LF Hamiltonian(with interaction in terms of the products of quantization.
local fieldson the same LFAn a way consistent with the Thus, in spite of its difficulties with the above no-go theo-
Lorentz invariance, which would be a serious problem everrem, we must take the quantization on the exactd!=0
for practical physicists. from the beginning in order to keep the trivial vacuum and

In fact, the above difficulty also applies to the interactingphysical Fock space. Actually, the no-go theorem implies
theory satisfying the Wightman axiom@o-go theorem  that the LF restriction is not compatible with the Wightman
[17], in which case we have a spectral representatiomxioms. Therefore, in order to make ttieeory well defined
(Umezawa-Kamefuchi-Ken-Lehmann representatiprfor ~ on the exact LFwe are forced tgive up some of the Wight-
the commutator function: man axioms, most naturally the Lorentz invarianteleed,
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DLCQ defined on the exact LF is such a theory: The theory F(p*p)
itself explicitly violates the Lorentz invariance far<e and f dp*| D+|Vj dp -———— 5=
never recovers it even in the limit of-k» [17], as we shall 2p'p —m+i0

see later. At the sacrifice of the Lorentz invariance, the trivial . . —im2e

vacuum is in fact realized in DLC(b] as we have seen in :j d)‘ﬁ()‘)f dé¢ e _ f dp*lp*|”
this paper. The same is true in threheory[17] as we dis- —o 0 I

cussed in Sec. V and further demonstrate in the following.

In the v theory the two-point Wightman function for the XJ' dpfei2p+p_(§+}\)
free theory is given by17]
Cc i dp* — J +nt|v +y—
(F)fgepm2y — ¥ +lv =C| dp*|pT|"8(pT)=0, (6.9
AL (x;me) (z—w)gfo 2p+|p |
o e whereF andF are a certain function and its Fourier trans-
xf dpte P x P X +ip7x form with respect to N, respectively and C=

—wifd)\dge‘inglf()\)/()ﬂrg) a numerical constant, and

c,[e™(xT—i0)]" [m\1T¥ we have disregarded the transverse part which is irrelevant.
= g i Ki+,(Mp), Note that thezero-mode contributio®(p™) has been modi-
fied by the extra factofp™|” (»>0) so as to yield zero
c,(=consh>0 (co=1), vacuum pplarization This is pgnsistent with the' previous
argument in Sec. V on the trivial vacuu@|0)=0 in the v
p=[—2(x* —i0)(x~ —i0)+x2]¥2 (6.7) theory. In contrastall other graphs having né(p*) would

be unaffected by the extra factfp™|” and thus reproduce

where the extra factoc,|p*|” is the regularization of the the usual Lorentz-invariant result in the—0 limit. The
zero-mode singularity p/* as was mentioned in Sec. V. The Vanishing vacuum polarizatio6.9) is in sharp contrast to
previous noncommutativity between the integral of Ey2)  the case where we take—0 beforehandno [p*|” factor),
and x*—0 is now traded for that betweem—0 andx*  Which actually corresponds to the prescripti@®—31 ap-
—0. If we takev— O first and therx™ —0, we can reproduce Proaching from “near LF” to LF, withv=0: In such a case
correct Lorentz-invariant resu(®.3), which is the same as We have a nonvanishing vacuum polarization as in the equal-
the procedure to take the “near LF” to the LF limit time quantization, the whole contribution coming from the
x*—0 [29-31]. If, on the other hand, we take'—0 and 2ero modefdp”&(p*)+0, as was noted by Chang and Ma
thenv—0, we arrive at the non-invariant answiérl) again.  [32]. S
Thus the theory itselfoperator, Fock space, etoiolates We can also expect the same situation in DLCQ. The
Lorentz invariance andever reproduces a Lorentz-invariant theory itself is not Lorentz invariant, since the two-point
field theory even in the limit— 0. Conversely, the theory ~ Wightman function in the free theory takes the form
is well-defined on the exact LF at the sacrifice of the Lorentz 1 -
invariance(a part of Wightman axioms A(DthQ(X;mz)lx+:0: — > ——
Now, the real problem is how trecover Lorentz invari- 2w =0 L 2p,
ance of the physical quantity {cumber) such as the S ma-
trix which, unlike the Wightman functiorhas no reference p+=”_77 (h=1,2,..) (6.10
to the fixed LF, even though the theory itself, defined on the noL B ’
fixed exact LF, has no Lorentz-invariant limibhdeed, it was ) o ) ) ) o
pointed out[17] that as far as the perturbation theory is Which coincides with Eq(6.1) in the continuum limit ofl.
concernedthe S matrix coincidesn the limit of v—0 with =~ — (with p, =nz/L=fixed), again in disagreement with
the conventional Feynman rule reswihich is Lorentz in-  the Lorentz invariancgl7]. Note that thesum does not in-
variant, with one notable exception, namely, the vanishingclude the zero mode=0, since the zero mode the free
vacuum polarization graphiue to the modification of the theoryvanishes through the zero-mode constrén26). Al-
zero-mode contribution. Note that—0 is to be takerafter ~ though thetheory itself is not Lorentz invariantve would
whole calculation since thev theory is defined on the exact reprOduce the Lorentz-invariant result for the S matrix ex-
LF only for »>0 (no »=0 theory exists on the exact LF, as Cept for the vacuum polarizatiom the continuum limit of
dictated by the no-go theorénin fact, the Feynman propa- L—, as far as perturbation theory is concerneld fact,

e*ipr-:x_ 5(2)(XL),

gator of thev theory takes the forril7] Feynman propagator in DLCQ takes the form
. i T
ic, R m2)— =
AF,V(X;mz): (277_)4 f dp|p+|y AF,DLCQ(va ) (277)4 n=i§i2,... L

efip’x++iﬁ>z e—ip‘xJ’fip;’x_ﬂpixL

Xf dp 2p pt—pi—m?+i0°

6.9 dep*dp 20 pi —p2—mP<i0"

Then the vacuum polarization graph calculated by the stan- .19
dard LF method32] does vanisi17]: where agairthe zero mode =0 is not included in the sum
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When this is used in the Feynman rule for the perturbationsired. Much work needs to be done in order to reveal the
the absence of the zero mode=f actually dictates that the nonperturbative structure of the LF theory through the zero
vacuum polarization graph does vanigimilarly to Eq. mode.
(6.9):
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To summarize, the no-go theorem forbids the well-defined There are three constraint.9), (2.10, and(2.19:
LF restriction of the Lorentz-invariant field theory due to the

zf ~__Fp'p)

n=+1=+2.. L 2ptp —m?+i0

APPENDIX A: DLCQ CANONICAL COMMUTATOR

peculiarity of the zero mode as an accumulating point in theb;(X)= 7 ,(x) — d_¢(x)~0, (A1)
continuum framework. Conversely, the theory defined on the

exact LF such as DLCQ or theory, although realizing the ®2(X)=mo(x)~=0, (A2)
trivial vacuum and no vacuum polarization, would never re- . v

cover the Lorentz-invariance even in the limit bf- or _ SR PP NI

v—0. Thus the Lorentz-invariant limit in such a theory can ()= 2L f_ dx| (u" =)+ do ~0. (A3)

only be realized on the-number physical quantity such as
the S matrix which has no reference to the fixed LF but notUsing Egs. (2.12-(2.14, we compute C;;(x,y)
on the theory itself{Fock space, operator, ¢tdn fact, we  ={®;(x),®;(y)}, whose nonzero matrix elements are given
have discussed that as far as the perturbation theory is cohy
cerned, both DLCQ andr theory would reproduce the .
Lorentz-invariantS matrix, while keeping the vacuum polar- C11(X,y)= (& — )53 (x—y), (A4)
ization absent(no zero-mode contributionin accordance
with the trivial vacuum. This was showthrough the explicit
solution of the perturbative dynamigghich is based on the
interaction picture with the propagator being given by the
free theory whose solution is completely known not only on =—Cza(y.x), (A5)
a fixed LFx" =0 but also on the other region” #0. 1

However, the real purpose of the LF quantization is to T a1l S22k Ly —
solve the dynamicaonperturbativelyin a way much simpler C24X%) 4L2’8 (x) 3B =yH) == Cady ),
than the equal-time quantization, based on the trivial vacuum (A6)
and the physical Fock space for the interacting Heisenberg ] N
field. Then, in order to reproduce the Lorentz invariancehere x” =y is understood andr(x) and 8~ *(x") are
without recourse to the perturbation theory, we actuallydiven in Eq.(2.30. Note that (1/2) B8~ * is the zero mode of
would need an explicit solution of the nonperturbative dy- @ _ _
namicsitself, particularly the zero-mode solution. Thus, re- Let us now calculate the inverse matrid; ;(X,y)
covering the Lorentz invariance istaghly dynamical issue =(C™ %) j(x,y), which is the essential step to obtain the
in the LF quantization, the situation being somewhat analoDirac brackets(2.22. It is easy to see that nonzero matrix
gous to lattice gauge theories. Therefore, it remains a biglements ofM; ; are given by
challenge for the LF quantization to overcome the no-go _
theorem in a nonperturbative way. Particularly in DLCQ we M1s(x,y)=(C10 " (xy)
would need to find the nonperturbative solution to the zero- 1 X —y~

1 .1
Crgxy)==51a(¥) =5 “1xhy b D (xt—yt)

mode constraint which might play a crucial role in taking the =77 eX -y )— L Y 52 (xt—yh),

continuum limitL— so as to recover the Lorentz invari-

ance in the physical quantifg numbey. (A7)
In this paper we did not attempt to solve the above no-go .

theorem in the nonperturbative sense. Instead, in DI(@Q M AX,y)=p(x,y"), (A8)

in the v theory), we only made a rather modest attempt to

solve the easier one, namely, to formulate the SSB in a man- Mz’l(x,y)zq(xij), (A9)

ner consistent with the trivial LF vacuum. No doubt, a fully
nonperturbative solution to the no-go theorem is highly de- My J(X,y)=r(x",y*), (A10)



M, o(X,¥)=(Csz2) (x,y)=4L?B(y") 5P (x* —yh)
M3 Ay, X), (A11)

where the functionp, g, andr satisfy the equations

f d)_;Cl,l(va)p()_;vZL)_"f dy'Cy5(X,y)M3Ay,2)=0,
(A12)

f d)7C3’1(X,y)M1’1(y,Z)+fdyLC3’2(X,y)q(yl,£)=O,
(A13)

f d;/C3,1(x,y)p()7,zl)+fdle3,2(x,y)r(yl,zi)=0.
(A14)

We readily find the solutions

p(y,z")=— j dw;dw; My 4(y,W1)Cy oWy, W) M3 AW;,2)

L
f du~
-L

X B(z")a(u™,z4) 8Pyt —zY),

L

2

y —u”
L

ey —u)—

(A15)

q(yi,i)z—f dvﬁdsz2,3(Y1W1)C3|1(W1,Wz)Ml,l(WzyZ)

L (L ) o
=§ﬁLdu BlyH)a(u™y ) e(u”—z7)

L

u-

}5(2)(VL—ZL)=—D(Z,VL), (A16)

r(yt,zh)= f dVVidV?’deT’3d“’ﬁ My oy, Wq)Cg1(Wg,W5)

XMy (W3 ,W3)Cq A(W3,Wye) M3 AWy,2)

=2 dw; dwg Byt )| elw; —ws)

W2 W
L

B(z")a(wz ,z4) 82 (y" —24),

(A17)
where we have used
L u —v-
J_Ldu_ eUu —v)— 3
B PN e
—7Lv e(u —v)— 3 =0.
(A18)

Now we are ready to derive the Dirac brackets for the full
field o=+ ¢q:
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{(X),6(Y)}os=1{e(X),e(¥)}oa+{do(X"), ¢(¥)}os
+{@(X), do(Y")} o8
+{po(x"), bo(Y)}oB -

According to Eq.(2.22), each Dirac bracket is evaluated as
follows:

(A19)

R R 1
{(P(X):(P(y)}DB:Ml,l(va):_Z (X —y7)
X Iy_} S(xt—yh),  (A20)
- 1 -
{¢(X)y¢o(yl)}DB:Zp(X'yi)
1 (L —u”
:Zﬁde e(x’—u’)—X Lu

X B(yH)a(u™,yh) 8@ (xt—yh),
(A21)

- 1 - N
{¢>0(XL)JP()/)}Dla:iq(Xl Y)=—{e(y), do(x")}ps
=% f_LLdu‘,B(xi)a(u‘,xL)

|

u -y
L

X|e(u -y )—

X 82 (xt—yh), (A22)

1
{d’o(xl),¢o(yL)}DB:IZr(XL7yl)

—% f du dv B(xH)a(u,xb)

_07
L

u-
X

e(U —v )—

XB(yH) a(v™,yh) 8@ (xt—yh),
(A23)

where use has been made of Egsl5)—(A17) and the Pois-
son bracket$2.12—(2.14).

Combining Eqs(A20)-(A23) into Eq.(A19) and making
replacement{A,B}pz—[A,B], we arrive at the DLCQ ca-
nonical commutatof2.29

[900.9001=—7 [ du do (B0 )atu™x)

—-v
L

u-

—6(u”—x7)]

e(u —v )—

X[ByHa(v ™,y )—6v =y )]

X 8@ (xt—yh). (A24)
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Next we demonstrate that the above commut2o?29 ac- —L<x" <L. Besides such a practical reason, there is an
tually coincides with Eq(2.31), the one obtained in Reff5], inevitable reason why the boundary condition on direc-

up to operator ordering, i.e., in the sense of the Dirac bracktion must be specified. This is not a specific problem of
ets. First note that EqA23) is actually vanishing and so is DLCQ, but a common problem to the whole LF quantization

the zero-mode—zero-mode commutdte,(X), oY) ]: including the “continuum” framework. To emphasize that
the consistent LF quantization must be accompanied by the
r(xt,y*)=0, (A25)  poundary condition we reexamine the special role of the
boundary condition according to Steinhafd8] and study
where use has been made of E418) and what kind of boundary condition is consistent in DLCQ.
Let us consider the “continuum” or “discretized” LF
(U —v") quantization of scalar modeithout boundary condition
the context of the Dirac quantization in Sec. Il. Because of

the no boundary condition, the constraint for zero mode will
a(u™ , xHa(v,yH) 6P (xt—yH)=0. not appear. The only constraint appearing in the theory is

f du_f dv™
u —v

L

(A26) D (x)=m(X) = - p(X), (B1)

Equation(A25) also follows from the antisymmetric prop- whose Poisson bracket is given by
erty of M; ;(x,y) and the one dimensionality &fl,, in the
x~ (y) direction: i.e.,MpAx,y)=r(x",y*)=—M;Ay,x) {D(x),P(y)}= (8.~ %) (x—y). (B2)
=0.

The sum of Eqs(A21) and (A22) can be rewritten as  Strictly speaking, we have infinitely many constraints which

o are expressible as linear combination of EgLl).

oo Uy } An important observation ifil8] is that there is a subset

eu —y") L . , i
of constraints which appears to be not only first class but also

second class. To see this, consider a linear combination of

% f du B(xHa(u™,xh)

1 X —u ; ;
X 8@(xt —yb)+ 5 j du| e(x —u) - = the primary constraint
X B(y")a(u™,y") 6P (x —y*) cbozf dx~ ®(x), (B3)
1 e - _
=2 f du-[e(u"—y )+e(x —u")]Ba(u™) which corresponds to the “zero mode” df(x) in the dis-

cretized theory. Suppose that any surface term is neglected
throughout the calculation, one can easily find

u -y x —u-
L

1
2) (vl Ly -
X 62 (xt—yh) 4fdu 3

{0, P(x)}=0. (B4)
X Ba(u™) 8P (x" —y*)
This means thad is first class, because it should commute

— E fxfdu—ﬁa(u—)gb(xi_yi) with any Iir_1ear combination ob(x) as a consistency. How-
2 )y~ ever, this is not always the case, as the following example
1[x -y~ illustrates:
i s sP(xt—yh), (A27)

@, [ e(y)@(y)dy—] ——2[ ax dy ety 605

=—452(xt—yH)#0, (B5)

which is combined with Eq(A20), yielding

e(x —y")

1
16(x), d(Y)}pg=— i

wheree(x) is the sign function. This means thdt, is sec-
ond class in contradiction with the previous result. Actually,
S (xt—yh). ®, is neither first class nor second class, which represents
inconsistency hidden in the theory. This ambiguity reveals
(A28) itself as the ambiguity of the inverse matrix of constraints,
Clin Eq.(2.22, and that of the Lagrange multiplie(x).
Upon replacemerit{A,B}ps—[A,B], we finally obtain Eq. It is easily shown that all such ambiguities can be removed,

—Zﬁfyxdz‘ a(z”)

(2.39). once the boundary condition at™ =+ or x ==*L is
specified.
APPENDIX B: Let us then study the possible boundary conditions in

DLCQ. Although the same problem was studied by Stein-
hardt, he discussed it within the continuum framework and

We usually assign the boundary condition in DLCQ, be-neglected all surface terms appearing in the partial integra-
cause the “space” coordinates are confined in the finite boxtions. So we study the same problem by carefully treating

THE PROBLEM OF BOUNDARY CONDITION
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surface terms in DLCQ. For this purpose, we generalige It is shown that the inverse of the Dirac mati@ 1(x,y)
and consider the following constraint which appears in thesatisfying the condition

total Hamiltonian:
Cixy)=—C Xyx), CYLy=-C}-Ly)=0

L
<I>[v]=f dx v (x)P(x), (B6) does not exist. Therefore the only constraint which may give
L the consistent theory is the case of the antiperiodic boundary
) ) ) o ) condition.
whereuv (x) is a certain functioriLagrange multiplierwhich Antiperiodic boundary conditio33]. The scalar field

satisfies the same boundary conditionggs) [5]. Once the  \yith the antiperiodic boundary condition is expanded by the
boundary condition is specified, providing[v] for all v complete sets{(l/\/ﬁ)e* (ne/Ox) s, where

becomes equivalent to providing(x) for all x, which is there is no zero mode due to the antiperiodic boundary con-

Qg:;ggaggf/eth?wQfgsfesfrzvgodngrgg: df?r:a(tx)trrlséls\t/zr:igio?eg_ ition. For the Lagrangiari2.3), the only constraint is the
: ’ rimary constraint® (x) = w(X) — d_ ¢(x) which is second

canonical variable ge_n_erated by E@B). must satlsfy_ _the class. It is easily confirmed that Poisson brackets
same boundary condition. We can derive this condition by

writing down the functional variation ob[v | [D(X),D(y) = (= + 3 )S(x —y ) 8D (x- —yb)
50[v]= f_Lde—[v(x) 57(X)+0_0(X) 5h(X)] have their inverse
1
—v(x =L)8p(x =L)+v(x =—L) {20, @(y)}H=—Ze(x”—y) s (x" —y"),
Xép(x™=-L), (B7) (B11)

i , __in the meaning of the function
where the first two terms on the RHS give the canonical

variation of the fields which preserve the same boundary 1 _ - 1 3
condition as the canonical variables. On the other hand, the — 8(x™)= >, L€ (inafL)x (n: iz,iz"').
surface terms generally violate the boundary condition. One " (B12)
can thus require the condition
B B B B Then the commutation relation is given by
v(X"=L)dp(X =L)=v(X =—L)Sd(x =—L),
(B8) i

[¢(x),p(y)]=— 7 e(x” —y) 8P (xt—yh), (B13y)
which is nothing but the discretized version derived 18].
This includes the periodic boundary condition studied in Refwhere both sides of the equation show the consistent behav-
[5] . . . . . jors atx™ ==*L.

Based on th'.s condmo_n we Investigate th'"t kind of Next we check the Poincaiavariance of the theory. In
boundary .COPd't'on cag eX|sht conss_tedn_tly. W_e.p;]ck :f.p herethe case of periodic boundary condition it is shown that the
Eomed typ|ca| onesititLer_t an Eenﬁ Eioffa@-the 'St poincareinvariance is not recovered at least in the naive

03” bary ;/a ue¢(x| N )d_ P h )__ ,dfltlj) the SeC- |imjt of L— oo [5]. Hence it is interesting to study the same
ond boundary value d/dx™) ¢(x™ =L)= (d/dx") &(x problem for an antiperiodic boundary condition.

=—L)=0; (iii) the third boundary value, the mixed type of | ot 5 first derive the equation of motion. The total
the above two conditionsiv) the antiperiodic boundary con- Hamiltonian is described by

dition, where the right-hand sides of bdifh and (ii) can be
generalized to any value. Note thad(x) andv (x) obey the N
same boundary condition as(x). Now, in the boundary HT:f d3x

1
510187+ u?d + V()
condition (i) and (iii) ¢ is left arbitrary atx” =*L and so

are ¢(x) andv(x), and hence the boundary conditi@in .
and (iii) do not generally satisfy the conditidB8). +J d3xv (X)P(X), (B14)
Let us next consider the cage, in which case it is help-
ful to use mode expansion: wherev is the Lagrange multiplier.
The consistency condition for the primary constraint

[’

H(x)= >, an(x+,xi)sin{n—w(x+L)}. (B9)
1 2L

n=

®(x) reads

oV
—20 v=(u?= )+ ——=x, (B15)
The 6 function should be interpreted as I

where the surface term far(x) is dropped by the boundary
condition. Combined with

B L 1 “ . N - . nm _
S =y)=1 2 S'”[Z(X +L)}S'”[2L(y o
(B10) 9+ $0={(x),Hr}=v(x), (B16)
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we obtain classical contribution to the vacuum expectation value is
zero. On the other hand, the operator part of the zero-mode
20.0_¢p~—x. (B17)  constraints is still too complicated to solve nonperturba-
i i L tively. Then we solve them perturbatively again. The lowest
By using this relation it is shown that order solutions of the operator part of the zero modes are
Py, derived as

d

L
[¢(X),P7]=J_Ld3y (1?= ) (y)+ - LX), (Y],

\ L
wimar (w24 dy (o3t ened). (€D

. i _ _
=|§+¢(X)+§{(9+¢(X =L)e(x"—L) N T N B
v -+ [ dy (elroned), (€
—d,p(x =—L)e(x +L)},
both of which include no divergence and thus are well-

=id; P(X), (B18) defined. These explicit solutions confirm the well-known
properties in the unbroken phase.
where First of all, the same transformation law as that in the
equal-time quantization

1
S{(0L0)*+ u?*+V(¢)|.  (B19 [Q,7]=io, [Q,o]=—im, (C3)

follows from the direct calculation

L
P*=J' d3x
—L

Similar arguments can be applied to other Poinage-

erators: [Qe.]l=iw,, [Qu,]=-lo,, (C4
[P(x),PH*]=id"P(X), (820)  Where
[H(x),MIT=i(x1d —x ') p(x), (B21) Q:f X0 ouo—d 00, -
[400,M"™]=i(x9" —x* ) ¢(x), (B22) Second, Eq(C3) is consistent to the trivial property of the

[S00.M* =i (X 9" —x~ ") (), 823 I;I?;/Sc:%n:é;\jc:gally(wWF(w0>=0 in addition to{¢,,)

which is compared with the periodic ca$g] where Eq. ([Q,71)=([Q,o])=0, (C6)
(B23) does not hold except for the free theory due to the zero
mode. which is consistent wittQ|0)=0.
On the other hand, we have Now, let us check the operator ordering by checking the
_ o charge conservation which should hold in the unbroken
[¢(X),M"]=i(x"d'—x'97)(X) phase in contrast to the broken phase. In fact an arbitrary
) operator ordering would not necessarily lead to the charge
_ l—[y‘ e(x"—y7)o, ¢(y)]y::L conservation due to the existence of zero modes. One should
4 ! =L find such an operator ordering as to satisfy the charge con-

(B24) servation and th&Veyl orderingactually does it. Indeed it is
easy to show

which is dependent on the box sikeand hence violates the dQ
Lorentz invariance even in the infinite volume limit as in the i —=[Q,H]=0, (C7)
case of the periodic boundary conditips]. Thus the Poin- dx
careinvariance does not hold with respecthb '. We need
to devise an appropriate continuum limit instead of the naiv
limit to recover the Poincarivariance of the theory.

under the Weyl ordering. It is this property that the Weyl
®rdering was assumed even in the case of the broken phase
in Sec. IV. Although only the lowest order solution was ex-

plicity examined, the same results stated above are valid
APPENDIX C: beyond it.

UNBROKEN PHASE OF O(2)-LINEAR o MODEL
APPENDIX D:

We describe the unbroken phase of th€iinear o 1,e srRUCTURE OF THE ZERO-MODE CONSTRAINT

model by treating the zero modes explicitly. In this phase we

can explicitly check validity of our operator ordering, = We reexamine the zero-mode constraint for the NG boson
namely, the Weyl ordering used for studying the brokenwith the mass term. The crucial feature of the NG phase is
(SSB phase of ther model in Sec. IV. the singular behavior of the zero mot&7) which is explic-

For simplicity, let us consider the bosonic pé&tt2) with itly confirmed by the lowest order solution of the linear
u?>0 andc=0. To solve the zero modes, it is convenient to sigma model. The purpose of this appendix is to confirm Eq.
divide them into the classical and the operator parts as don@.7) beyond the leading approximation. For simplicity, con-
in Sec. IV. The solution of the zero-mode constraints for thesider the bosonic sector of the lineamodel in Eqs.(4.15
classical part is trivial, i.e.pv ,=v,=0, implying that the and(4.16). By redefining the lowest order solution
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N (L - 1
W)= J dX " (—=m2+07) "N @it @05+ 200,0,) J )0~ —,
2L -, m.
=D, ®.(x",x"), (D1)  can also be confirmed inductively.
q Here it may be interesting to consider the same problem
an in two-dimensions where a continuous symmetry cannot be
N (L broken spontaneously due to Coleman’s thed&6h In two
oM=— [ dx (-m2+*) Y2+ ¢, 2+ v > dimensions, the leading order solution of the zero modes is
o 2L L o o T ™ .
given by
+3v¢2)=D, P, (x" x}), (D2)
(H_— _
Wy = (I)w: (D4)
where D,=(-m2+4%)"! and D,=(-m2+4°)"%, the m?
second order perturbative solution of the NG-boson zero
. . 1
mode is given by wfrl): B Fq)ov (D5)

AL 1
D= _— | dx D, 5[(D,P + ¢ (D, D
@ 7L J’,L ”[2[( L) @r@rt @o(DoPo) o where® . depend orx* only. Without integral inx", &

by itselfbecomes divergent as,— 0 in sharp contrast to the

2
T ¢x(De®0) 0ot 050 n(De® ) [+ [(DrP ) 07 four-dimensional case. The peculiarity of two dimensions
1 becomes clearer in the higher order solution. In fact, up to
+ 02D, P )+ 0 (DD, ]+ E[(Dﬂ_(l)ﬂ_)(pi the operator ordering, the second order solution
(2>—)\f et b S A
+¢§(Dw‘1’w)]}, 03 U7 T2l ) Pz | m2 Tt 2 P iz B
(D6)
which leads to
leads to
f B ® ~ — f LD ) 1
Toom 2 0P~ (m,~0). (D7)

1 0,(Dy®@y) 07t @(DyPy) @,
P 2 In general thenth order perturbative solution of the NG-
T 0,0 (De® )1+ [(,“P )7 boson zero mode behaves as

+ 02920 )+ 0.(0 2D ) ¢,]

1 oM~ % (D8)
+ 50020 ) g5t 05,20 )] v
The singular behavior becomes worse in higher orders. In
1 other words, the NG-boson field in two dimensions is ill
Tme defined due to its wrong “infrared behavior” @t" —0. In

m

this sense the NG phase cannot be realized in two dimen-
in the m_—0 limit. Repeating the similar procedure, such sions in conformity with Coleman’s theordr6], even if we
singular behaviors of the zero mode for higher order perturapply our method by introducing the NG-boson mass as a
bative solutionsif>1), regulator.
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