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Zero mode and symmetry breaking on the light front
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We study the zero mode and spontaneous symmetry breaking on the light front~LF!. We use the discretized
light-cone quantization~DLCQ! of Maskawa and Yamawaki to treat the zero mode in a clean separation from
all other modes. It is then shown that the Nambu-Goldstone~NG! phase can be realized on the trivial LF
vacuum only when an explicit symmetry-breaking mass of the NG bosonmp is introduced. The NG-boson
zero mode integrated over the LF must exhibit a singular behavior;1/mp

2 in the symmetric limitmp→0,
which implies that current conservation is violated at zero mode, or equivalently the LF charge is not con-
served even in the symmetric limit. We demonstrate this peculiarity in a concrete model, the linears model,
where the role of the zero-mode constraint is clarified. We further compare our result with the continuum
theory. It is shown that in the continuum theory it is difficult to remove the zero mode which is not a single
mode with measure zero but the accumulating point causing uncontrollable infrared singularity. A possible
way out within the continuum theory is also suggested based on the ‘‘n theory.’’ We finally discuss another
problem of the zero mode in the continuum theory, i.e., the no-go theorem of Nakanishi and Yamawaki on the
nonexistence of LF quantum field theory within the framework of Wightman axioms, which remains a chal-
lenge for DLCQ, ‘‘n theory,’’ or any other framework of LF theory.@S0556-2821~98!04708-0#

PACS number~s!: 11.10.Ef, 11.30.Qc
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I. INTRODUCTION

The recent revival of the light-front~LF! quantization@1#
aims at establishing a new formulation to study nonpertur
tive dynamics@2,3#. A striking feature of LF field theories is
that the LF vacuum is simple, or even trivial@4#. The
subtlety of this conclusion due to the so-called ‘‘zero mod
was first addressed back in 1976 by Maskawa and Yamaw
@5# who proposed discretized light-cone quantizatio1

~DLCQ! to treat the zero mode in a clean separation fr
other modes. They found a constraint equation for the z
mode ~‘‘zero-mode constraint’’! through which the zero
mode becomes dependent on other modes and can in
ciple be removed from the physical Fock space by solv
the zero-mode constraint, thusestablishing the trivial
vacuum inDLCQ.

Based on the notion of this trivial vacuum, the first app
cation of DLCQ to nonperturbative calculation was done
1985 by Pauli and Brodsky@7# in the context of the (1
11)-dimensional Yukawa model: DLCQ offers the prom
ing prescription for obtaining the relativistic wave functio
and the bound-state spectra in gauge theories. Their sch
has been applied to various models such as two-dimensi

*Email address: sho@mickey.mpi-hd.mpg.de
†Email address: yamawaki@eken.phys.nagoya-u.ac.jp
1The name ‘‘light-cone quantization’’ is actually confusing, sin

it is not on the light cone but on the light front which agrees w
the former only in 111 dimensions. However, here we simp
follow the conventional naming of the majority of the literatur
The DLCQ was also considered by Casher@6# independently in a
different context.
570556-2821/98/57~8!/4942~23!/$15.00
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f4 (f2
4) theory@8#, Abelian@9#, as well as non-Abelian@10#

gauge theories in 111 dimensions and the models in fou
dimensions@11#. As far as the two-dimensional models a
concerned, reasonable correspondence with the known
sults has been obtained.

In spite of the success in two dimensions, there ar
number of problems which must be solved to apply the sa
method to realistic models in four dimensions such as QC
One such problem is the long-standing zero-mode prob
@5#. While the triviality of the LF vacuum in DLCQ can be
achieved by solving out the zero mode from the physi
Fock space through the zero-mode constraint@5#, such a
trivial vacuum would confront the usual picture of the com
plicated nonperturbative vacuum structure in the conv
tional equal-time quantization such as the confinement
the spontaneous symmetry breaking~SSB!. Simplicity of the
LF vacuum and states can in fact only be realized at
sacrifice of simplicity of the operator side: The only opera
responsible for such phenomena should be the zero m
whose constraint actually carries essential information of
complicated dynamics. One might thus expect that expl
solution of the zero-mode constraint in DLCQ should gi
rise to the physics equivalent to the nontrivial vacuum str
ture in equal-time quantization, while preserving the triv
LF vacuum. Actually, such an idea was carried out in t
case of (111)-dimensionalf4 model@12–14# where it was
argued that the solution of the zero-mode constraint mi
lead to the SSB~of a discrete symmetry!. However, the most
outstanding feature of the SSB is the existence of
Nambu-Goldstone~NG! boson associated with the continu
ous symmetry breaking in four dimensions.

In this paper, we elaborate on our previous paper@15# to
examine how the NG boson in four dimensions can be
4942 © 1998 The American Physical Society
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57 4943ZERO MODE AND SYMMETRY BREAKING ON THE . . .
scribed on the LF in view of the zero mode in DLCQ. Th
main conclusion of the previous work was that contrary
the naive expectation mentioned above, solving the ze
mode constraint does not lead to the NG phase, unless
introduce an explicit symmetry breaking~mass of the NG
boson!. The NG phase can only be realized when the N
boson zero mode integrated over the LF behaves as;1/mp

2

in the symmetry limit mp
2→0. The most striking feature of its

consequence is that the LF charge~zero mode of the loca
current! corresponding to the SSB isnot conserved even in
the symmetry limitmp

2→0.
Following Maskawa and Yamawaki@5# we formulate the

canonical DLCQ in the manner of Dirac for the scalar theo
with a periodic boundary condition. Then the zero mode c
be treated separately from other modes and be removed
of the physical Fock space through the zero-mode constr
@5#, thus leaving the LF vacuum trivial. Now that the vacuu
is trivial, whole information about the SSB in the LF qua
tization should reside in the operator instead of the st
namely, in the zero mode whose dynamics is governed
the zero-mode constraint.

However, direct application of the zero-mode constra
leads to an inconsistent result: The DLCQ allows neither
emission vertex of the NG boson nor the corresponding c
rent vertex, as far as the NG boson mass is exactly zero
conservation of the LF charge is imposed@‘‘ ~false! no-go
theorem’’# @15#. Namely, solving the zero-mode constrain
does not give rise to SSB at all in the exact symmetric c
mp

2 [0, in contradiction to the naive expectation mention
above@12–14#.

In order to recover the NG phase in DLCQ with the trivi
vacuum, we thus need to formulate the nonconservation
the LF charge. We propose@15# that this can be achieved i
DLCQ by first introducing the explicit-symmetry-breakin
mass of the NG bosonmp and then taking its massless limi
This mass plays a role of regularization of the infrared s
gularity of the zero mode. Based on the notion of par
conservation of axial-vector current~PCAC!, it will be clari-
fied how the SSB without NG-boson mass becomes s
contradictory in DLCQ and how the arguments leading to
above~false! no-go theorem went wrong. We find that th
NG phase on the LF is characterized by the singular beha
of the NG-boson zero mode: The global zero mode~zero
mode integrated over the LF! of the NG boson must be pro
portional to 1/mp

2 in the symmetric limitmp→0 @15#. This in
fact leads tononconservation of the LF charge while pr
serving the trivial vacuum.

The above general feature of the SSB on the LF will
further demonstrated in a concrete field theoretical mo
the linears model, in which the role of the zero mode
most explicitly illustrated. We derive coupled zero-mo
constraints with the NG-boson mass included and solve th
in perturbation around the classical broken solution wh
corresponds to the classical broken vacuum in the equal-
quantization. The singular behavior of the NG-boson z
mode is indeed explicitly demonstrated by such a pertur
tive solution which at tree level yields nonvanishingspp
and NNp vertices consistently with the usual result of t
equal-time quantization. It is most remarkable that the c
rent conservation or the LF-charge conservation actu
o-
we

-

y
n
ut

int

e,
y

t
e
r-
or

se
d

of

-
l

lf-
e

or

e
l,

m
h
e

o
a-

r-
ly

breaks down due to such a singular behavior of the N
boson zero mode.

We also note that were it not for the NG-boson mass fr
the onset, the zero-mode constraints, after integration o
the transverse coordinate, would take essentially the s
form as that of the two-dimensional massless scalar the
which, however, will be shown to be ill defined in acco
with Coleman’s theorem@16#. Thus the LF theory without
NG-boson mass in four dimensions is also ill defined a
hence introduction of the NG-boson mass and the resul
nonconservation of the LF charge is inevitable in DLCQ.

Finally, we shall compare our result with the zero-mo
problem in the continuum theory. In the continuum theory
is rather difficult to remove the zero mode in a sensible m
ner as was pointed out by Nakanishi and Yamawaki@17#
long ago: The real problem isnot a single modewith p1

[0 ~which is merely of zero measure and harmless! but
actually theaccumulating point p1→0 as can be seen from
1/p1 singularity in the Fourier transform of the sign functio
e(x2) appearing in the canonical commutator on LF. Th
prevents us from constructing even a free theory on the
~no-go theorem@17#!, which actually cannot be overcom
either by taking the simple continuum limitL→` of DLCQ
or any other existing method@17#. Besides this most difficult
problem, in this paper we shall point out another problem
the continuum theory. Namely, theSSB charge on LF doe
not annihilate the vacuum, if we formulate thes model with
SSB on the LF with careful treatment of the boundary co
dition. Even if we pretend to have removed the zero mo
as far as the canonical commutator takes the form of the s
function e(x2), it inevitably leads to a nontrivial vacuum
namely, the LF charge does not annihilate the vacuum. T
in fact corresponds to difficulty to remove the zero mode
the accumulating point mentioned above~in contradiction to
a widely spread expectation@3#!.

We then suggest that a possible way out of this probl
within the continuum theory would be the ‘‘n theory’’ pro-
posed by Nakanishi and Yamawaki@17# which removes the
zero mode in the continuum theory by shaving the vicinity
the zero mode in such a way thatthe sign functionin the
commutator ismodified to a certain function vanishing a
x256`. This theory is expected to yield the same result
that we obtain in this paper based on DLCQ, although it d
not overcome the no-go theorem@17# mentioned above. The
no-go theorem and then theory will be further discussed in
great detail in order to remind the reader of the old resu
@17#.

The plan of this paper is as follows. In Sec. II we rec
pitulate the canonical formalism of DLCQ for the scal
theory and the zero-mode constraint in a way slightly diff
ent from the original one@5#. In Sec. III we consider the SSB
of the continuous symmetry and show how the NG phase
be realized in the trivial LF vacuum through the explic
symmetry-breaking mass of the NG boson. The singular
havior of the global zero mode of the NG boson inmp→0 is
required, which implies nonconservation of the SSB curre
In Sec. IV we apply our formulation to the linears model by
treating the zero-mode constraints explicitly. It is shown th
the tree-level amplitude of both thespp and theNNp scat-
terings are actually obtained in DLCQ due to the singu
behavior of the NG-boson zero mode in the symmetric lim
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4944 57SHO TSUJIMARU AND KOICHI YAMAWAKI
In Sec. V we discuss the zero-mode problem in the c
tinuum theory, which is quite different from that in DLCQ
Section VI is devoted to summary and discussions where
present particular discussions on the no-go theorem and tn
theory in detail. A detailed derivation of the DLCQ canon
cal commutator is given in Appendix A. In Appendix B th
special status of the boundary condition on the LF is d
cussed. In Appendix C, we describe the unbroken phas
O~2!-symmetric linears model in DLCQ and check the op
erator ordering~Weyl ordering! we use in discussing the pe
turbative solution. The property of the higher order pertur
tive solutions of the zero-mode constraints is studied
Appendix D.

II. ZERO MODE IN DISCRETIZED LIGHT-CONE
QUANTIZATION

In this section we review for later purpose the canoni
DLCQ of the scalar theory@5#. Throughout this paper we us
the convention of the LF coordinatexm5(x1,xW )
5(x1,x',x2), where

x6[
1

&
~x06x3!, ~2.1!

x'[~x1,x2!. ~2.2!

The quantization surface on the equal ‘‘LF time’’x1 is de-
fined in the finite region2L<x2<L @5–7#, while no such
restriction is necessarily imposed for the transverse coo
natesx'. The ‘‘continuum’’ limit L→` ~or, more precisely,
infinite volume limit! is taken at the final stage of the who
calculations. We use the notation *d3xW

[ limL→` *2L
L dx2d2x'.

Let us consider the self-interacting scalar theory in fo
dimensions whose Lagrangian is expressed in terms of
LF coordinate as

L5]1f]2f2
1

2
~]'f!22

1

2
m2f22V~f!, ~2.3!

whereV(f) is a potential. The canonical momentum con
gate tof(x) is

p~x!5
]L

]~]1f!
5]2f~x!, ~2.4!

which leads to a primary constraint of the theory:

F~x!5p~x!2]2f~x!'0. ~2.5!

Since x2 is restricted to the finite region, the bounda
condition should be specified atx256L. We adopt the pe-
riodic boundary condition onx2 @5#, which is consistent
with nonvanishing vacuum expectation value of the sca
field. In fact, very existence of the zero mode is related
this periodic boundary condition. Other boundary conditio
such as the antiperiodic one will be discussed in Appendix
Owing to the boundary condition in the finite box, all surfa
terms can be treated unambiguously, while their treatmen
subtle in the continuum framework~see Sec. V and Appen
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dix B!. Actually, as was emphasized by Steinhardt@18#, the
boundary condition should always be specified even in
‘‘continuum’’ theory in order to have a consistent LF qua
tization. In fact, the boundary condition on LF includes
part of the dynamics in sharp contrast to the equal-ti
quantization. That is, a different boundary condition defin
a different theory. We shall clarify a special role of th
boundary condition on the LF in Appendix B.

Since the zero mode in DLCQ is clearly separated fr
other modes, we may make an orthogonal decompositio
the primary constraint into two parts as follows@19#. Let us
divide the scalar fieldf(x) into the oscillating modesw(x)
plus the zero modef0(x1,x'):

f~x!5w~x!1f0~x1,x'!, ~2.6!

f0[
1

2L E
2L

L

f~x!dx2. ~2.7!

The conjugate momentump may also be divided as

p~x!5pw~x!1p0~x1,x'!, ~2.8!

wherep0 and pw are the zero modes conjugate tof0 and
that to the remaining orthogonal partw(x), respectively.
Now, substituting Eqs.~2.6! and~2.8! into Eq.~2.5!, we have
two independent constraints,

F1~x![pw~x!2]2w~x!'0 ~2.9!

and

F2~x![p0~x1,x'!'0, ~2.10!

in place of the original one, Eq.~2.5!.
From the fundamental Poisson brackets

$f~x!,p~y!%5d~3!~xW2yW !, ~2.11!

we obtain

$f0 ,p0%5
1

2L
d~2!~x'2y'!, $f0 ,f0%5$p0 ,p0%50,

~2.12!

and

$w~x!,pw~y!%5H d~x22y2!2
1

2LJ d~2!~x'2y'!,

~2.13!

$w~x!,w~y!%5$pw~x!,pw~y!%50, ~2.14!

wherex15y1 is understood. All other Poisson brackets a
equal to zero as expected.

The total Hamiltonian is obtained by adding the prima
constraints to the canonical oneHc :

HT[Hc1E d3xW @v1~x!F1~x!1v2~x!F2~x!#,

~2.15!

Hc5E d3xW F1

2
$~]'f!21m2f2%1V~f!G ,

~2.16!
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57 4945ZERO MODE AND SYMMETRY BREAKING ON THE . . .
wherev2 andv1 are the zero mode and the remaining part
the Lagrange multiplier, respectively. The multiplierv1 is
determined by the consistency condition forF1(x) through
the relation

]2v1~x!5
1

2
$p~x!,Hc%2

1

2
$p0 ,Hc%, ~2.17!

which can be easily integrated without ambiguity owing
the periodic boundary condition. On the other hand, the c
sistency condition forF2(x),

Ḟ2~x!5$F2~x!,HT%5
1

2L E
2L

L

dx2F ~]'
2 2m2!f2

]V

]fG'0,

~2.18!

leads to a new constraint, the so-called ‘‘zero-mode c
straint’’ @5#

F3~x![
1

2L E
2L

L

dx2F ~m22]'
2 !f1

]V

]f G . ~2.19!

The consistency condition for the zero-mode constra
yields no further constraint and just determines the multip
v2 . Note that in deriving these relations we have used
condition

d~x22L !5d~x21L !, ~2.20!

which comes from the definition of thed function with the
periodic boundary condition

d~x2!5
1

2L (
nPZ

e~ inp/L ! x2
. ~2.21!

Having obtained all the second-class constraints, we
ready to calculate the Dirac bracket of two arbitrary dynam
cal variablesA(x) andB(y) as

$A~x!,B~y!%DB[$A~x!,B~y!%

2(
i , j

E d3uW E d3vW $A~x!,F i~u!%

3~C21! i , j~u,v !$F j~v !,B~y!%, ~2.22!

where (C21) i , j is the inverse ofCi , j (x,y)[$F i(x),F j (y)%
which is the matrix of Poisson bracket of the constraints. T
inverse matrix can be calculated by noting the separatio
the zero mode from other modes. For instance, the ma
element

C1,1~x,y![$F1~x!,F1~y!%

5~]2
y 2]2

x !d~x22y2!d~2!~x'2y'!

5
1

2L (
nPZ

S 22inp

L De~ inp/L ! ~x22y2!d~2!~x'2y'!,

~2.23!

has its inverse
f

-

-

t
r
e
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@C1,1~x,y!#2152
1

4 H e~x22y2!2
x22y2

L J d~2!~x'2y'!

5
1

2L (
nÞ0

S 2L

2inp De~ inp/L ! ~x22y2!

3d~2!~x'2y'!, ~2.24!

in the sense that

E
2L

L

dz2E dz'C1,1~x,z!@C1,1~z,y!#21

5
1

2L (
nÞ0,nPZ

ei ~np/L ! ~x22y2!d~2!~x'2y'!,

~2.25!

where e(x) is the sign function satisfying]xe(x)52d(x).
Note that the right-hand side~RHS! in Eq. ~2.25! is a d
function minus zero-mode contribution as it should, since
zero mode is already subtracted fromF1 beforehand.

After the Dirac bracket is taken, all the second-class c
straints become strong relations and so is the zero-mode
straint ~2.19!:

1

2L E
2L

L

dx2F ~m22]'
2 !f1

]V

]f G50, ~2.26!

which is further converted into the operator relation, wh
we pass to the quantum theory via the correspondence p
ciple between the Dirac bracket and the commuta
$ %DB→2i @ #. This implies that the zero mode isnot an in-
dependent degree of freedombut is implicitly written in
terms of other oscillating modes. It was actually the cen
issue of Maskawa and Yamawaki@5# who claimed thatsuch
a constrained zero mode can in principle be solved away
of the physical Fock space and hence the trivial LF vacu
is justified in DLCQ. It is also noted@20# that the zero-mode
constraint~2.26! can also be obtained by simply integratin
in x2 the Euler-Lagrange equation (h1m2)f52 ]V/]f
with use of the periodic boundary condition

052E
2L

L

dx22]1]2f5E
2L

L

dx2F ~m22]'
2 !f1

]V

]fG .
~2.27!

Namely, the zero-mode constraint is a part of the equation
motion and the zero mode is nothing but an auxiliary fie
having no kinetic term.

Through the above correspondence principle, we ob
from Eq. ~2.22! the canonical commutation relation@5#

@w~x!,w~y!#52
i

4 H e~x22y2!2
x22y2

L J d~2!~x'2y'!

~2.28!

for the field without zero mode, which is a direct conse-
quence of Eq.~2.24!. In sharp contrast to the sign function i
the continuum theory~see Sec. V!, here in DLCQ we ob-
serve presence of the extra term (x22y2)/L in the commu-
tator ~2.28!, which is nothing but a term subtracting the ze
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4946 57SHO TSUJIMARU AND KOICHI YAMAWAKI
mode as can be seen from Eq.~2.24!. Note that Eq.~2.28! is
the same as the commutation relation of the full fieldf in the
free theory in which the zero mode becomes identically z
through the zero-mode constraint~2.26!.

By computing Eq.~2.22! for the full matrix, we further
obtain a commutation relation for thefull field including the
zero mode~see Appendix A!:

@f~x!,f~y!#52
i

4 E du2dv2@b~x'!a~u2,x'!

2d~u22x2!#H e~u22v2!2
u22v2

L J
3@b~y'!a~v2,y'!2d~v22y2!#

3d~2!~x'2y'!, ~2.29!

where

a~xW ![m22]'
2 1

]2V

]f2 , b21~x'![E
2L

L

dx2a~xW !.

~2.30!

At first sight, Eq. ~2.29! looks different from the original
expression in@5#

@f~x!,f~y!#52
i

4 H e~x22y2!22bE
y2

x2

a~z2!dz2J d~2!

3~x'2y'!, ~2.31!

which was obtained without orthogonal decomposition of
primary constraint~2.5! into two parts, zero mode and non
zero modes. However, explicit computation shows~Appen-
dix A! that both are in fact equivalent to each other if t
operator ordering is disregarded~i.e., in the sense of Dirac
brackets!. Note thata and b contain field operators in the
interacting theory and hence Eq.~2.29! @or Eq. ~2.31!# is
generally a complicatedoperator-valued commutation rela
tion, which is nothing but a consequence of the constrai
zero mode carrying the vital dynamical information of t
theory.

Here we should remark on the operator ordering to
consistent with the Dirac quantization. In the Dirac proc
dure, the Dirac brackets are constructed so that all the se
class constraints can automatically hold as strong identi
This property must be preserved in passing from the class
theory to the quantum one. In the case at hand, the z
mode constraint should commute with any operator just
calculation using the commutator for the full scalar field
Rather such operator orderings in the quantum theory m
be determined for both the zero-mode constraint and
RHS of Eq.~2.29! @or Eq. ~2.31!# simultaneously. However
this is an extremely difficult task and we take a differe
approach: Instead of a requirement for the zero-mode c
straint to be a strong operator identity, we assume the W
ordering for the operators in the zero-mode constraint
solve it explicitly. The solution of the zero mode then lea
to the commutator~2.29! with a definite operator ordering
Our choice of the Weyl ordering is based on the gene
argument@21#. Moreover it will be justified through the
study of linears model in Sec. IV and Appendix C.
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III. NAMBU-GOLDSTONE BOSON
ON THE LIGHT FRONT

It is now widely believed that nonperturbative phenome
due to nontrivial vacuum in equal-time quantization can
understood in the LF quantization through the operator pr
erty of the zero mode. Among the various zero modes,
focus on the bosonic zero mode which has been shown t
a dependent degree of freedom and is expected to play a
role to realize SSB on the LF. One might then expect that
nonperturbative vacuum structure in equal-time quantiza
is simply replaced by the solution of the zero-mode co
straint. However, the problem is not so simple for the re
istic case with continuous symmetry in four dimension
whose realization is usually associated with the massless
boson.

The purpose of this section is to propose the criteria
global continuous symmetry breaking on the trivial L
vacuum@15#. Before drawing our main conclusion, we fir
show that the naive application of the zero-mode constr
will not lead to the NG phase at all in contradiction to th
above expectation„~false! no-go theorem@15#…: If the zero-
mode constraint is not reguralized by the explicit mass of
NG boson, the NG phase cannot be realized in DLC
Namely, there is no coupling of the NG boson as well as
associated current vertex atq250, whereqm is the momen-
tum of the NG boson.

In order to confirm our assertion, let us start with assu
ing that the NG phase is already realized on the LF in
presence of an exactly conserved current and examine
consequence. Consider the arbitrary NG-boson emission
cessA→B1p, where bothA and B represent one-particle
states which couple with the NG boson. The index of the N
boson associated with the internal symmetry is omitted
simplicity.

Based on the reduction formula, the transition amplitu
may be written as

^B,p~q!uA&[ i E d4xeiqx^Buhp~x!uA&5 i ~2p!4d~pA
22pB

2

2q2!d~3!~pW A2pW B2qW !^Bu j p~0!uA&, ~3.1!

where p(x) and j p(x)5hp(x)5(2]1]22]'
2 )p(x) are

the interpolating field of NG boson, which is exactly mas
less, and the source function of the NG boson, respectiv
andqm5pA

m2pB
m is the NG-boson four momenta.

Taking the collinear momentum frame@22# q15q'50
andq2Þ0 which is not the soft momentumfor the on-shell
NG boson withq250, we find that the NG-boson emissio
vertex does vanish as follows:

~2p!3d~3!~pW A2pW B!^Bu j p~0!uA&

5E d3xW ^Bu~2]1]22]'
2 !puA&

5E d2x' lim
L→`

^BuS E
2L

L

dx22]1]2p D uA&50,

~3.2!

where the periodic boundary condition was used for the N
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boson fieldp as before. As seen from Eq.~2.27!, the last line
is nothing but a zero-mode constraint for the massless fi
and hencethe zero-mode constraint itself dictates that t
NG boson vertex should vanish. Thus we have establishe
that the solution of the zero-mode constraint, whether per
bative or nonperturbative or even exact, does not lead to
NG phase at all.

Another symptom of this disease is the vanishing of
current vertex for the SSB current as a direct consequenc
the LF charge conservation, which again comes from
periodic boundary condition through the local current co
servation. The current vertex is an analogue ofgA for the
nucleon matrix element and is related to the NG boson v
tex ~gNNp for the nucleon case! in the usual SSB argumen
through the analogue of the Goldberger-Treiman relati
~Caveat for the nucleon case will be given later.! Now that
we have seen that the NG-boson vertex vanishes due to
periodic boundary condition, we may naturally guess that
current vertex also should for the same reason. In what
lows we shall argue that this is indeed the case. In the
phase the currentJm is divided into the pole term consistin
of an interpolating field of the NG boson and the remain
nonpole term

Jm52 f p]mp1 Ĵm , ~3.3!

where f p is the ‘‘decay constant’’ of the NG boson andĴm
denotes the nonpole term which yields the current ver
Now, integrating the local current conservation over the L
we find that the NG-boson pole term drops out, leaving o
the nonpole term due to the periodic boundary condition
before. Then we establish the vanishing current vertex
follows @15#:

05^Bu E d3xW]mĴm~x!uA&x150

52 i ~2p!3d~3!~qW !
mA

22mB
2

2pA
1 ^BuĴ1~0!uA&, ~3.4!

whereq25pA
22pB

25(mA
22mB

2)/2pA
1 , which implies

^BuĴ1~0!uA&50, ~3.5!

as far as2 mA
2ÞmB

2 . The current vertex̂BuĴ1(0)uA& at q2

50 is nothing but the matrix element of LF chargeQ̂
[*d3xW Ĵ1 constructed only from the nonpole term~well-
defined charge even in the SSB phase! and is essentially the
same as the ‘‘X matrix’’ of Weinberg @22#. The chiral alge-
bra of LF charge actually yields the celebrated Adl

2For the case where the two particlesA andB have a degenerat
mass, i.e.,mA5mB , Eq.~3.4! by itself does not imply the vanishing

current vertex̂ BuĴ1(0)uA&50. However, in this caseq2→0 cor-
responds to the soft momentum limitqm→0, which implies that
even in the usual equal-time treatment, the NG-boson emission
tex vanishes anyway by the low-energy theorem, even when
current vertex is nonzero~for the nucleon case, the current vertex
also zero for kinematical reason, althoughgA is nonzero, see the
discussion in Sec. IV! @23#.
d,

r-
he

e
of
r
-

r-

.

he
e
l-
G

g

x.
,
y
s
s

-

Weisberger sum rule@24# and its extensions as an algebra
realization of the chiral symmetry in terms of the notion
representation mixings among hadronic states with non
generate massesmA

2ÞmB
2 @22,25,26#. Hence the vanishing o

the current vertex invalidates whole success of the Ad
Weisberger sum rules and the associated representation
ings. Actually, vanishing of the current vertex means cons
vation of the LF chargeQ̂ which immediately follows from
conservation of the full LF chargeQ[*d3xWJ1, sinceQ al-
ways reduces toQ̂, with the pole part being dropped out o
Q due to the integration over the LF:

@Q̂,P2#5@Q,P2#50. ~3.6!

We again emphasize that conservation of the LF charges
direct consequence of the periodic boundary condition
are using, provided that the local current is conserved as
imposed.

So, what went wrong? One might use other boundary c
ditions than the periodic one. In Appendix B we shall arg
that beside the periodic boundary condition, only the anti
riodic one can be consistent in DLCQ, which, howev
yields no SSB because of the obvious absence of the
mode. One might then give up DLCQ and consider the c
tinuum theory from the onset, in which case, however,
still need to specify the boundary condition in order to ha
a consistent LF theory@18# as we shall discuss also in Ap
pendix B. The best we can do in the continuum theory w
be described in Sec. V, which, although it can give nonz
NG boson vertex and current vertex~i.e., nonconservation o
the LF charge! due to the boundary condition, will result i
another disaster, namely, the LF charge does not annih
the vacuum, thus invalidating the trivial vacuum as the gre
est advantage of the whole LF approach. One also m
suspect that the finite volume in thex2 direction in DLCQ
could be the cause of this NG-boson decoupling, since
well known that SSB does not occur in finite volume. How
ever, we actually take theL→` limit in the end, and such a
limit in fact must realize SSB as was demonstrated in
equal-time quantization in the infinite volume limit of th
finite box quantization@27#. Moreover, in the case at hand i
four dimensions, the transverse directionsx' extend to infin-
ity. Hence this argument is totally irrelevant any way.

Therefore the above result isnot an artifactof the peri-
odic boundary condition and DLCQ but is deeply connec
to the very nature of the LF quantization, namely, the z
mode. Thus, as far as the trivial property of the LF vacuum
to be maintained, the only way to recover the NG pha
seems to break the symmetry explicitly. By the various
guments to follow along this line both in this section a
Sec. IV, we actually conclude@15# that the NG phase can b
realized in DLCQ only when the NG-boson massmp is in-
troduced into the theory. The non-vanishing NG-boson em
sion vertex as well as the corresponding current vertex
q250 is recovered through the explicit symmetry-breaki
term in themp→0 limit, which is characterized by the sin
gular behavior of the NG-boson zero modevp :

E d3xWvp;
1

mp
2 . ~3.7!
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We can easily confirm Eq.~3.7! with the help of the
PCAC hypothesis]mJm(x)5 f pmp

2 p(x). Since the current

divergence of the nonpole termĴm(x) reads ]mĴm(x)
5 f p(h1mp

2 )p(x)5 f p j p(x), we obtain

^Bu E d3xW]mĴm~x!uA&5 f pmp
2 ^Bu E d3xWp~x!uA& ~3.8!

5^Bu E d3xW f p j p~x!uA&,

~3.9!

where the integration of the pole termhp(x) is dropped out
as before. On the RHS of Eq.~3.8!, one can replacep(x) by
the zero modevp[ (1/2L) *2L

L dx2p(x) because the oscil
lating modes drop out due to the periodic boundary con
tion. Suppose that*d3xWvp(x)5*d3xWp(x) is regular when
mp

2→0, this does not lead to the NG phase at all, because
remaining two terms then become vanishing. In order
have the nonzero NG-boson emission vertex~3.9! as well as
the nonzero current vertex@LHS of Eq. ~3.8!# at q250, the
zero modevp must behave as Eq.~3.7!.

This implies that at the quantum level the LF chargeQ

5Q̂ is not conserved or the current conservation does
hold for its particular Fourier component withqW 50 even in
the symmetric limit:

Q̇5
1

i
@Q,P2#5]mJmuqW 505 f p lim

mp
2→0

mp
2 E d3xWvpÞ0,

~3.10!

although we can recover the conserved current at the cla
cal level.

The situation may well be clarified when we consider t
general expression for the current matrix element in mom
tum space with explicit symmetry breaking:

mp
2 f p j p~q2!

mp
2 2q2 5]mJm~q!5

q2f p j p~q2!

mp
2 2q2 1]mĴm~q!,

~3.11!

which is a weaker condition than the operator relation
PCAC hypothesis. What we have done in proving the
sence of NG phase for the exactly conserved current@~false!
no-go theorem# is summarized as follows: We first set th
LHS of Eq.~3.11! to zero, or equivalently, assume implicitl
the regular behavior of*d3xWvp(x) in the massless limit in
accord with the current conservation]mJm50. Second, the
first term ~NG-boson pole term! on the RHS of Eq.~3.11!
vanishes rigorously due to the periodic boundary condit
or the zero-mode constraint in the DLCQ withqW 50 (q2

50). Thus we arrived at]mĴm(q)50 in addition to the van-
ishing of the NG-boson vertex. However, this procedure
equivalent to claiming the nonsensical relation

15 lim
mp

2 ,q2→0

S mp
2 2q2

mp
2 2q2D 50, ~3.12!
i-

he
o

ot

si-

n-

f
-

n

s

as far as f p j pÞ0 ~NG phase!. Therefore the ‘‘mp
2 [0’’

theory with vanishing LHS is ill defined in DLCQ and w
should define the symmetric limit after introducing the e
plicit symmetry-breaking term.

IV. THE SIGMA MODEL

Based on DLCQ discussed in Sec. II, let us now dem
strate Eq.~3.7! by explicitly solving the zero-mode con
straints with the NG-boson mass in a concrete model the
@15#. As the simplest but a nontrivial example, we consid
the O~2!-symmetric linears model defined by the Lagrang
ian

L5c̄ igm]mc2gc̄~s1 ig5p!c1
1

2
~]ms!21

1

2
~]mp!2

2
1

2
m2~s21p2!2

l

4
~s21p2!21cs, ~4.1!

wherem2,0, c is the symmetry-breaking parameter andc is
the ‘‘nucleon’’ (N) field. We takec→0 at the final stage.

In equal-time quantization the NG phase is well describ
even at the tree level. It is then sufficient to demonstrate,
solving the constraints, that such a situation is realized a
on LF. Two kinds of vertices will be examined below: th
spp vertex and theNNp vertex.

A. spp vertex

In this case it is adequate to restrict ourselves to
bosonic sector. The relevant Lagrangian is

L5
1

2
~]ms!21

1

2
~]mp!22

1

2
m2~s21p2!

2
l

4
~s21p2!21cs. ~4.2!

As in Sec. II, we adopt the periodic boundary condition
DLCQ in order to allow the non-vanishing vacuum expec
tion value. The quantization can be done in the way sim
to that in the one-component case given in Sec. II. There
two kinds of zero modesp0[ (1/2L) *2L

L dx2p(x) and s0

[ (1/2L) *2L
L dx2s(x) which are separated clearly from

other oscillating modeswp[p2p0 and ws[s2s0 , re-
spectively. The canonical commutation relation for the os
lating modes~2.28! now reads

@w i~x!,w j~y!#52
i

4 H e~x22y2!2
x22y2

L J
3d i j d

~2!~x'2y'!, ~4.3!

where each index (i ) stands forp or s. By making use of
this commutation relation, it is shown that the creation a
annihilation operators are simply constructed from the F
rier coefficients ofw i with respect tox2:
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w i~x!5 (
n.0

1

A4np
@an

~ i !~x1,x'!e2 i ~pn/L ! x2

1an
~ i !†~x1,x'!ei ~np/L ! x2

#, ~4.4!

where the coefficients satisfy

@an
~ i !~x1,x'!,am

†~ j !~x1,y'!#5dn,md i , jd
~2!~x'2y'!,

~4.5!

in spite of the presence of interaction. The trivial Fo
vacuum is defined asan

( i )u0&50 for anyn.
Instead of one zero-mode constraint~2.26! here we have

two coupled zero-mode constraints

xp[
1

2L E
2L

L

dx2@~m22]'
2 !p1lp~p21s2!#50,

~4.6!

xs[
1

2L E
2L

L

dx2@~m22]'
2 !s1ls~p21s2!2c#50,

~4.7!

which are also represented by

xp52
1

2L E
2L

L

dx22]1]2p50, ~4.8!

xs52
1

2L E
2L

L

dx22]1]2s50, ~4.9!

through the equation of motion@see Eq.~2.27!#.
Our next task is to solve these constraints within so

approximation. As explained in the beginning of this secti
it is sufficient to obtain a solution corresponding to the p
turbation theory around the classical~tree level! SSB
vacuum in equal-time quantization. For this purpose it
convenient to further divide the zero modes as

p05vp1vp , ~4.10!

s05vs1vs , ~4.11!

wherevp and vs are the classical constant pieces andvp

and vs are their operator parts. Then the zero-mode c
straints are split into the classical and the operator parts.
classical parts of the zero-mode constraints are given by

m2vp1lvp
3 1lvpvs

250, ~4.12!

m2vs1lvs
31lvsvp

2 5c, ~4.13!

which are nothing but the condition determining the minim
of the classical potential. The conventional choice of the
lution is vp50 andvs5v, wherem2v1lv35c.

The operator zero modes are solved by substituting
perturbative expansion

v i5 (
k51

lkv i
~k! , ~4.14!
e
,
-

s

-
he

-

e

into the operator constraints. The nontrivial problem whi
we encounter in solving them is the choice of operator
dering, especially the ordering between the zero modes
the nonzero modes. As mentioned in Sec. II, weassumethe
Weyl ordering. In the present context this ordering has
advantage that it gives a correct description of the symme
phase @m2.0, c→0# from the view point of equal-time
quantization. This is closely examined in Appendix C.

The operator part of the zero-mode constraints are exp
itly written down under the Weyl ordering as follows:

~2mp
2 1]'

2 !vp5
l

2L E
2L

L

dx2~wp
3 1wpws

212vwpws!

1
l

2L E
2L

L

dx2H ~vpwp
2 1wp

2 vp

1wpvpwp!1
1

2
~vpws

21ws
2vp!

1
1

2
~vswswp1wpvsws1wsvswp

1wswpvs!J 1lS vp
3 1

1

2
vpvs

2

1
1

2
vs

2vp1vvpvs1vvsvpD , ~4.15!

~2ms
21]'

2 !vs5
l

2L E
2L

L

dx2~ws
31wswp

2 1vwp
2 13vws

2 !

1
l

2L E
2L

L

dx2H ~vsws
21ws

2vs

1wsvsws!1
1

2
~vswp

2 1wp
2 vs!

1
1

2
~vpwswp1wpvpws1wsvpwp

1wswpvp!J 1lS vs
31

1

2
vsvp

2

1
1

2
vp

2 vs1vvp
2 13vvs

2 D , ~4.16!

where each mass term is defined asms
25m213lv2 and

mp
2 5m21lv2, respectively. Here it is worth referring to th

scaling property of the zero mode with respect tox2 direc-
tion. The explicit form of the constraints shows that the ze
modes are implicitly composed of the complicated combi
tion of the following type of integrals:

1

2L E
2L

L

dx2w i
n~x,L !w j

m~x,L !, ~4.17!

where the explicitL dependence is labeled andn,m are some
non-negative integers. The important feature of Eq.~4.17! is
its invariance under the scale transformationL→sL,
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1

2sL E
2sL

sL

dx2w i
n~x,sL!w j

m~x,sL!

5
1

2L E
2L

L

dx2w i
n~x,L !w j

m~x,L !, ~4.18!

which is on account of the relation

w~sx,sL!5w~x,L !, ~4.19!

derived from Eq.~4.3! or Eq. ~4.4!. Thus the zero mode
have no explicit dependence on the box sizeL and the naive
continuum limit L→` may be safely taken at least for th
zero-mode sector.

Using the explicit form of the zero-mode constraints, t
lowest order solution of the perturbative zero modes forvp

andvs is now easily obtained@15#:

~2mp
2 1]'

2 !vp
~1!5

l

2L E
2L

L

dx2~wp
3 1wpws

212vwpws!,

~4.20!

~2ms
21]'

2 !vs
~1!5

l

2L E
2L

L

dx2~ws
31wswp

2 1vwp
2 13vws

2 !,

~4.21!

where there is no operator-ordering ambiguity between
zero modes and the nonzero modes. Let us briefly see
feature of these explicit solutions. One can find that ther
no divergence invp

(1) due to the positivity of longitudina
momentum. Moreover this feature is valid beyond the le
ing approximation, that is,vp

( i ) has no divergence for anyi
PN, and leads to

^p&5K (
i 51

`

vp
~ i !L 1^wp&50, ~4.22!

which is expected from equal-time perturbation theory. W
will see that this well-defined zero mode solution is used
the actual calculation. On the other hand,vs

(1) contains the
divergence which is similar to the tadpole divergence in
equal-time perturbation theory. This divergence is essenti
the same as the one discussed by Robertson@13# in the dis-
crete symmetry breaking off2

4 model and can be formally
renormalized intov through the mass renormalization.

We are now in a position to examine the consequenc
the explicit solutions~4.20! and~4.21!. In order to emphasize
the importance ofc, we first examine the casec[0 ~or
mp[0! again which turns out to have internal inconsisten
We will then study the casecÞ0 ~or mpÞ0!, c→0 and
show that the singular behavior of the zero mode~3.7! re-
covers the correctspp vertex @15#.

1. c[0

The equation of motion forp is given by

hp~x!5 j p~x![2l~p31ps8212vps8!, ~4.23!

wheres85s2v and v5A2m2/l. Rewriting Eq.~3.2! in
the present context leads to
e
he
is

-

e
n

e
ly

of

.

~2p!3d~3!~qW !^pu j p~0!us&5E d3xW ^pu~2]1]22]'
2 !pus&

52E d3xW ^puxp~x!us&50,

~4.24!

whereqW 5qW s2pW p is the momentum of the NG boson. Th
relation leads to an internal inconsistency: the NG-bos
emission vertexs→pp at q250 is vanishing due to the
RHS of Eq.~4.24! or equivalently the zero-mode constrai
xp50, while the LHS of Eq.~4.24! gives the nonvanishing
result as will be shown later.

Furthermore this inconsistency is connected with the c
rent conservation which also means the charge conserva

Q̇5
d

dx1 E d3yWJ1

52E d3yW ~]2J21]'J'!

52E d2y'$J2~x251L !2J2~x252L !%50,

~4.25!

where the periodic boundary condition was used. In o
model we have an explicit form of the O~2! current

Jm5]msp2]mps. ~4.26!

The LF charge defined byQ5*d3xWJ1 reduces to

Q5E d3xW~]2wswp2]2wpws!, ~4.27!

which contains only the oscillating modes, because the
erator part of the zero mode in addition to the pole term
dropped by the integration overx2 @5#. Thus the LF charge
is well defined even in the NG phase and always annihila
the vacuum simply by theP1 conservation

Qu0&50, ~4.28!

which supports the trivial property of the LF vacuum. Th
will also be checked in later discussions, see Eqs.~4.41! and
~4.43!.

The charge conservation can also be checked through
explicit calculation including the zero modes. In fact th
straightforward but tedious calculation using the perturbat
solution of the zero modes leads to

@Q,P2#5 i E d3xW~vxp1vsxp2vpxs!1~divergence!,

~4.29!

where the divergence arises from the operator ordering
should be renormalized in an appropriate way. If we sim
neglect this divergence, or the commutator is understood
Dirac bracket, the RHS of Eq.~4.29! becomes zero owing to
the zero-mode constraints.

By substitutings5s81v into Eq. ~4.26!, we have

Jm5 Ĵm2v]mp, ~4.30!
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whereĴm5]ms8p2]mps8. From the current conservation
we obtain

^pu E d3xW]mĴm~x!us&x15052v^pu E d3xWxpus&x150

52 i ~2p!3d~3!

3~qW !
ms

22mp
2

2ps
1 ^puĴ1~0!us&,

~4.31!

which meanŝ puĴ1(0)us&50 (ms
2Þmp

2 ) due to the charge
conservation or the zero-mode constraint. The charge con
vation does not lead to the NG phase at all.

This pathology suggests that the zero-mode constr
without mass term is ill defined. Up to the operator orderi
the zero-mode constraint forvp with mp[0 is given by

]'
2 vp5

l

2L E
2L

L

dx2~wp
3 1wpws

212vwpws!

1
l

2L E
2L

L

dx2~vpws
212vswswp13vpwp

2 !

1l~vp
3 1vpvs

212vvpvs!. ~4.32!

Note that it is notvp but *d3xWvp which is used to calculate
the spp vertex. Thus the real quantity to be considered
the integration of Eq.~4.32! over the LF which has the simi
lar structure as that in two dimensions, because the LHS
Eq. ~4.32! vanishes by the transverse integration. Howev
in two dimensions, the zero-mode constraint without m
term is ill defined in the interacting theory. The reason c
be easily understood as follows. The overall factorl appear-
ing on the RHS of Eq.~4.32! is canceled and dropped ou
The solutionvp is then independent ofl. Equation~4.32!
~before the transverse integration! dictates thatvp does de-
pend onl. Therefore it is necessary to introduce the N
boson mass to make the theory well defined.

2. cÞ0 and c̃ 0

Having the explicit breaking NG boson mass, we no
derive the tree-level matrix element for thespp scattering
@15#. The singular behavior of the NG-boson zero mode p
posed in the previous section is in fact derived from E
~4.20!:

lim
mp

2→0

mp
2 E d3xWvp

~1!52lE d3xW~wp
3

1wpws
212vwpws!Þ0,

~4.33!

which is not restricted to the lowest order but is valid f
higher order solutions

E d3xWvp
~n!;

1

mp
2 . ~4.34!
er-

nt
,

s

of
r,
s
n

-

-
.

See Appendix D for more details.
This actually ensures the corrects→pp vertex as well as

the nonvanishing current vertex. Indeed thes→pp vertex
at q250 is evaluated as follows:

^p,p~q250!us&5 lim
mp

2→0

i E d4xeiqx^pu~h1mp
2 !p~x!us&

5 lim
mp

2→0

i E dx1

3eiq2x1
^pump

2 E
2`

1`

d3xWvp
~1!us&

5 i ~2p!4d~q21pp
22ps

2!

3d~3!~pW s2pW p!~22lv !, ~4.35!

whereqm5ps
m2pp

m is the four momentum of the NG boson
The current vertex is also obtained by using the opera
relation

]mJm~x!5vmp
2 p~x!, ~4.36!

which leads to

]mĴm~x!5v~h1mp
2 !p~x!5v j p~x!, ~4.37!

where j p(x)52l(p31ps8212vps8) with s85s2v.
Then we can confirm the following relations:

^pu E d3xW]mĴm~x!us&5E d3xW ^puv j p~x!us&

5vmp
2 ^pu E d3xWvp

~1!~x!us&

522lv2~2p!3d~q1!d~2!~q'!

~4.38!

in the limit of mp→0 or v→A2m2/l. Throughout the cal-
culations we have used the covariant normalization of sta

^pbupa&5(2p)32pa
1d (3)(pW a2pW b) and the on-shell mode

expansion forw in the continuum limit.
Let us see the property of the LF charge in this casec

Þ0). As already mentioned, the LF charge is well defin
even in the NG phase and always annihilates the vacu
simply by P1 conservation

Qu0&50, ~4.39!

which supports the trivial property of the LF vacuum. Th
trivial LF vacuum is also consistent with the explicit comp
tation of the commutators. We can show that the oscillat
modes are transformed under the action ofQ as

@Q,ws#52 iwp

and

@Q,wp#5 iws , ~4.40!

where use has been made of Eqs.~4.3! and ~4.27!. Then we
have

^@Q,ws#&5^@Q,wp#&50, ~4.41!
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which is consistent with the trivial vacuumQu0&50. On the
other hand, the lowest order solution of the zero mo
yields rather complicated transformation property of the z
modes

@Q,vs#5~2ms
21]'

2 !21
il

2L E
2L

L

dx2

3~wp
3 1wpws

214vwpws!Þ2 ivp ,

@Q,vp#5~2mp
2 1]'

2 !21
il

2L E
2L

L

dx2

3~ws
31wswp

2 22vwp
2 12vws

2 !Þ ivs .

~4.42!

Nevertheless, it is straightforward to confirm that

^@Q,p#&5^@Q,s#&50 ~4.43!

by putting together Eqs.~4.40! and ~4.42!. Equation~4.43!
can also be checked by use of the commutator for the
fields ~2.29! or ~2.31! up to operator ordering: The would-b
nonvanishing term arising from the sign function is precis
canceled by that from the extra term in the commuta
Then we conclude that our LF charge does annihilate
vacuum in accord with the general argument@5# for the
trivial vacuum based on the zero-mode constraint thro
which the zero mode can be solved away out of the phys
Fock space. We should remark that@Q,p#Þ is and @Q,s#
Þ2 ip even in themp→0 limit which are on account of the
effect of zero modes. They are contrasted to those in
usual equal-time case@Qet,s#52 ip, and @Qet,p#5 is.
Since the information of the equal-time vacuum symbolica
denoted byQetu0&etÞ0 is expected to be carried into the ze
mode in DLCQ, the unusual transformation property of t
zero modes in the NG phase seems to be natural.

Finally, we can show from Eq.~4.38! that the regularized
zero mode leads to nonconservation of the LF charge in
symmetric limit ofmp

2→0 @15#:

Q̇5
1

i
@Q,P2#5v lim

mp
2→0

mp
2 E d3xWvpÞ0. ~4.44!

Therefore the SSB in DLCQ is realized as if it were
explicit symmetry breaking. Actually, there exists no N
theorem on the LF. Instead, the singular behavior~4.34! es-
tablishes the existence of the massless NG boson couple
the current whose charge satisfiesQu0&50 and Q̇Þ0, in
much the same way as the NG theorem in the equal-t
quantization which ensures existence of the massless NG
son coupled to the current whose charge satisfiesQetu0&et

Þ0 andQ̇et50.

B. NNp vertex

As was shown in the previous subsection, the class
part of the zero mode fors is given byv which contributes
to the vacuum expectation value^s&5v in the trivial LF
s
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vacuum. Rewriting the Lagrangian~4.1! by the shifted field
s85s2v, we find the standard Lagrangian in the brok
phase

L5c̄$ igm]m2M ~x!%c1
1

2
~]ms8!21

1

2
~]mp!22

1

2
ms

2s2

2
1

2
mp

2 p22
l

4
~s8!42

l

4
~p!42lv~s8!32lvs8p2

2
l

2
~s8!2p2, ~4.45!

whereM (x)5mc1g@s8(x)1 ig5p(x)# and the ‘‘nucleon’’
field c acquired the ‘‘degenerate’’ massmc5gv.

Let us first clarify the fermion contribution to the NG
boson zero mode. By integrating the equation of motion o
x2,

~22]1]21]'
2 2mp

2 !p2l$p31p~s8!212vs8p%

2gc̄ ig5c50, ~4.46!

we can easily derive the zero-mode constraint for the
boson:

~2mp
2 1]'

2 !vp5
g

2L E
2L

L

dx2c̄ ig5c

1~scalar and pseudoscalar parts!.

~4.47!

Henceforth we shall omit both scalar and pseudo-scalar p
for simplicity.

As we have seen in thespp vertex, theNNp vertex at
q250 is essentially given by

2mp
2 E d3xWvp5gE d3xW c̄ ig5c, ~4.48!

which is consistent with our proposal~3.7! as long as the
RHS is nonvanishing. Let us estimate the RHS of Eq.~4.48!
in detail. We assume the antiperiodic boundary condition
the fermion field and neglect the fermion zero mode. Int
ducing the projection operatorL (6)5(1/&) g0g6 where
g65(1/&) (g06g3), the fermion field can be decompose
into the dynamical plus the nondynamical componentsc
5c (1)1c (2) , where c (6)5L (6)c. Note that (g1)2

5(g2)250 impliesL (1)L (2)5L (2)L (1)50. The relevant
part of the Lagrangian can be written in terms of the tw
kinds of fermion projections:

L5c̄~x!$ igm]m2M ~x!%c~x!

5 i&c~1 !
† ]1c~1 !1 i&c~2 !

† ]2c~2 !

1c~1 !
† ~ ig0gk]k2g0M !c~2 !

1c~2 !
† ~ ig0gk]k2g0M !c~1 ! . ~4.49!

The equation of motion forc (2) leads to the constraint equa
tion

i&]2c~2 !1~ ig0gk]k2g0M !c~1 !50, ~4.50!
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whose solution is readily obtained as

c~2 !~x!5
i

2&
E

2L

L

dy2e~x22y2!$ ig0gk]k

2g0M ~y!%c~1 !~y!. ~4.51!

By substituting the solution ofc (2) into the RHS of Eq.
~4.48!, one obtains

E d3xW c̄ ig5c5
1

2&
E d3xWdy2e~x22y2!c~1 !

† ~x!

3$M ~x!g52g5M ~y!%c~1 !~y!, ~4.52!

where the RHS is nonvanishing as is seen from the exp
form of M (x)5mc1gs8(x)1 igg5p(x). Thus our proposa
for the singular behavior of the NG-boson zero mode is c
firmed.

It is worth mentioning that an exceptional situation ha
pens for the tree-levelNNp coupling, in which case we
should keep only thex-independent part ofM (x), i.e.,mc in
Eq. ~4.52!, because the rest gives higher order contributio
Keeping onlymc is equivalent to applying the free equatio
of motion to the RHS of Eq.~4.48!. It is a well-known pe-
culiarity on the LF that the pseudoscalar density forfree
massivefermion, when integrated over the LF, vanishe
This is what the RHS of Eq.~4.52! implies for g50 and
M5mc . Owing to this specific property on the LF, th
physical amplitude for the tree-levelNNp scattering atq2

50 becomes zero, which is of course consistent with tha
the equal-time quantization. Note thatq250 is nothing but
the soft momentum limitqm50 for the ‘‘degenerate nucleo
mass’’ and the physical amplitude of the NG-boson emiss
vertex as well as the associated current vertex is known t
zero in such a limit for kinematical reason from the low
energy theorem, even whenNNp coupling constant andgA
are nonzero@23#.

V. ZERO-MODE PROBLEM IN THE CONTINUUM
LF QUANTIZATION

The issue of symmetry breaking is important not only
the DLCQ but also in the continuum LF framework such
the renormalization-group approach. Wilsonet al. @3# stud-
ied the s model ‘‘without zero mode’’ in the continuum
framework and described the broken phase at the tree l
by constructing the corresponding ‘‘effective Hamiltonian
without zero modeand with the ‘‘unusual counter terms
which compensate the ‘‘removal of the zero mode.’’ Inste
of comparing our result with theirs in a direct manner, w
here examine the sames model in the broken phase in th
general continuum framework,paying special attention to
the boundary condition. As we emphasized in Sec. II~also in
Appendix B!, the boundary condition in the LF quantizatio
contains dynamical information and is crucial to define
theory. Then we shall demonstrate that it is actuallyimpos-
sible to remove the zero mode in the continuum theoryin a
manner consistent with the trivial vacuum. The point is th
the real problem with the zero mode in the continuum the
is not a single modewith p1[0, which is just measure zero
it

-

-

s.

.

in

n
be

s

el

d

e

t
y

but the accumulating point p1→0 @17#. This is in sharp
contrast to our result in DLCQ where the trivial vacuum
always guaranteed thanks to the clean separation and ex
removal of the zero mode through the zero-mode constra

Let us illustrate this by starting with the canonical com
mutator for the fieldss,p in the bosonic part of the O~2! s
model~4.2! ~without explicit symmetry breaking termc[0!
in continuum theory:

@s~x!,s~y!#x15y152
i

4
e~x22y2!d~2!~x'2y'!,

~5.1!

@p~x!,p~y!#x15y152
i

4
e~x22y2!d~2!~x'2y'!,

~5.2!

where the sign function

e~x2!5
i

p
PE

2`

1` dp1

p1 e2 ip1x2
~5.3!

is defined by the principal value prescription and hence
no p1[0 mode but does have an accumulating pointp1

→0. This accumulating point is really a trouble as we w
see in the following. Then,as far as we use this sign functio
for the commutator,we cannot really remove the zero mod
in this sense.

We first look at the transformation property of the fiel
s,p. The conserved current associated with the symmetr
the Lagrangian is given by

Jm5p]ms2s]mp, ~5.4!

and the LF charge is defined by

Q5E d3xW~p]2s2s]2p!. ~5.5!

From the canonical commutation relations~5.1! and~5.2! we
can easily find

@Q,s~x!#52 ip~x!1
i

4
@p~x25`!1p~x252`!#,

~5.6!

@Q,p~x!#5 is~x!2
i

4
@s~x25`!1s~x252`!#.

~5.7!

To obtain a sensible transformation property of the fun
mental fields, the surface terms must vanish as operator

p~x25`!1p~x252`!5s~x25`!1s~x252`!50.
~5.8!

However, this condition, antiperiodic boundary conditio
means that the zero mode is not allowed to exist and he
its classical part, condensate^s&, does not exist at all. Thus
we have no spontaneous symmetry breaking contrary to
initial assumption.

We then seek for a modification of the boundary con
tion to save the condensate and vanishing surface term
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multaneously. The lesson from the above argument is
we cannot impose the canonical commutation relation for
full fields, because then not only the surface term but also
zero mode~and hence condensate! are required to vanish du
to the relation~5.8!. So, let us first separate the constant p
or condensate~classical zero mode! v from s and then im-
pose the canonical commutation relations for the fields w
out zero modes,p, and the shifted fieldf5s2v5s8 ~here
we usef instead ofs8!, which are now consistent with th
antiperiodic boundary condition and Eq.~5.8!. This actually
corresponds to the usual quantization around the clas
SSB vacuum in the equal-time quantization. The cons
part v should be understood to be determined by the m
mum of the classical potential

V5
1

2
m2~s21p2!1

l

4
~s21p2!2,

5
1

2
mf

2 f21lvf~f21p2!1
l

4
~f21p2!2, ~5.9!

where v5A2m2/l, m2,0 and mf
2 52lv2. In the renor-

malization group approach, the potential~5.9! appears as an
‘‘effective Hamiltonian’’ @3#, while the same potential can b
obtained simply through shiftings to f5s2v. The canoni-
cal commutation relation fors is now replaced by

@f~x!,f~y!#x15y152
i

4
e~x22y2!d~2!~x'2y'!.

~5.10!

Now that the quantized fields have been arranged to o
the antiperiodic boundary condition, one might consider t
we have removed the zero mode. It is not true, howeveras
far as we are using the commutator with the sign funct
~5.10!, in which the zero mode as an accumulating po
persists to exist.

Let us look at the LF charge which is given by

Q5E d3xW~p]2f2f]2p2v]2p!. ~5.11!

The straightforward calculation leads to

@Q,f~x!#52 ip~x!1
i

4
@p~x25`!1p~x252`!#,

~5.12!

@Q,p~x!#5 if~x!1
i

2
v2

i

4
@f~x25`!1f~x252`!#,

~5.13!

where the surface terms should vanish:

f~x25`!1f~x252`!5p~x25`!1p~x252`!50
~5.14!

for the same reason as before. Thus we find

@Q,f~x!#52 ip~x!, ~5.15!

@Q,p~x!#5 if~x!1
i

2
v. ~5.16!
at
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The constant term on the RHS of Eq.~5.16! has its origin in
the commutation relation~5.2!, or equivalently,

@]2p~x!,p~y!#52
i

2
d~3!~xW2yW !. ~5.17!

Namely,

^0u@Q,p~x!#u0&5 i ^0uf~x!u0&1
i

2
v,

5
i

2
vÞ0. ~5.18!

Then we find that theLF charge does not annihilate th
vacuum Qu0&Þ0 and we have lost the trivial vacuum whic
is a vital feature of the LF quantization. There actually exi
an infinite number of zero-mode statesua&[eiaQu0& such
that P1ua&5eiaQP1u0&50, where we have used@P1,Q#
50 and a is a real number: All these states satisfy t
‘‘Fock-vacuum condition’’a(p1)ua&50 and hence the true
unique vacuum cannot be specified by this condition in c
trast to the usual expectation. This implies that the zero m
has not been removed, even though the Hamiltonian
been rearranged by shifting the field into the one witho
exact zero modep1[0. This is in sharp contrast to DLCQ in
Sec. IV where the surface terms in Eqs.~5.12! and~5.13! and
the constant term in Eq.~5.16! do vanish altogether thanks t
the additional term2(x22y2)/L ~‘‘subtraction of the zero
mode’’! besides the sign functione(x22y2) in the canoni-
cal commutator~4.3!.

It should be noted that a somewhat peculiar situation h
pens to the LF charge due to this boundary condition at
surface term: Although the local current is conserved, the
charge is not. In fact, integrating the equation of the curr
conservation]mJm50, we have

dQ

dx1 52E d3xW~]2J21]'J'!5vE d3xW]1]2p

5vE d2x'@]1p~x25`!2]1p~x252`!#

52vE d2x']1p~x25`!Þ0, ~5.19!

where the antiperiodic boundary condition~5.14! has been
used. Thus in continuum theoryLF charge is not conserved
in spite of the conservation of the local current. This cha
nonconservation can also be checked by direct calculatio

i
dQ

dx1 5@Q,H#

52
i

2
lvE d3xW @p~f21p2!12vfp#

5 ivE d2x'@]1p~x25`!2]1p~x252`!#,

~5.20!

where use has been made of the equation of motion

22]1]2p1]'
2 p52lvfp1lp~f21p2! ~5.21!
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as well as the antiperiodic boundary condition(5.14).
The resulting Hamiltonian via the field shifting coincide

with the ‘‘effective Hamiltonian’’ of Ref.@3# which was ob-
tained by ‘‘removing the zero mode and adding unus
counter terms’’ for it. The above peculiarity of the L
charge, nonconservation of the LF charge and conserva
of the local current, was also claimed in Ref.@3# for com-
pletely different reasons than ours. They implicitly assum
vanishing surface terms altogether:

f~x25`!5f~x252`!5p~x25`!5p~x252`!50.
~5.22!

However, it is actually not allowed, because it contradicts
commutation relations~5.2! and ~5.10!. For instance, the
commutation relation~5.17! yields

F E d3xW]2p~x!,p~y!G
x15y1

5E d3xW @]2p~x!,p~y!#x15y152
i

2
Þ0,

~5.23!

while Eq. ~5.22! requires the LHS to vanish. If one illegiti
mately assumed Eq.~5.22! and neglected all surface term
then the LF charge would have been conserved as is e
read off from Eq.~5.20!, in contradiction to@3#.

To summarize, in the general continuum LF quantizat
based on the canonical commutation relationwith sign func-
tion, the LF charge doesnot annihilatethe vacuum and isnot
conservedfor the conserved local current. It corresponds
impossibility to remove the zero mode as an accumula
point in the continuum theory in a manner consistent w
the trivial vacuum. Thus, in the continuum theory the gre
est advantage of the LF quantization, the simplicity of t
vacuum, is lost, although the NG-boson emission vertex
be nontrivial without such a manipulation as via the expli
NG-boson mass in contrast to DLCQ.

Here it is worth suggesting that even in the continuu
theory there exists a prescriptionn theory @17#, which may
give rise to the same result that we obtained in DLCQ
this paper: the trivial vacuumQu0&50, and the nondecou
pling NG boson through the explicit breaking mass of t
NG boson or the singular behavior of the global zero mo
of the NG boson. Then theory modifies the sign function in
the commutator into a certain function which vanishes
x256`, by shaving the vicinity of the zero mode to tam
the 1/p1 singularity as up1un/p1(n.0). The limit of n
→0 is taken only after whole calculation. Then there is
surface term nor constant term@( i /2) v# in the commutators
~5.12! and ~5.13!, and hence the transformation property
the fields and the trivial vacuum should be both realiz
Also, the LF charge conservation is expected to follow u
less we introduce the explicit symmetry breaking, which is
fact the same situation as in DLCQ. Thus, in order to rea
the NG phase we could use the same method as we use
DLCQ, namely, introduce the explicit breaking mass of t
NG boson in such a way that the global zero mode of the
boson behaves singular as 1/mp

2 in the symmetric limit.
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VI. SUMMARY AND DISCUSSIONS

We have studied how the continuous symmetry break
in 311 dimensions is described on the LF within the fram
work of DLCQ. We have shown that it is necessary to intr
duce an explicit symmetry-breaking mass of the NG bos
mp in order to realize the NG phase in DLCQ. The N
phase is reproduced in the limit ofmp→0, where the pecu-
liar behavior of the NG-boson zero mode is derived: T
NG-boson zero mode, when integrated over the LF, m
behave as;1/mp

2 . This ensures the nonvanishing matr
elements associated with the NG boson. However, we
counter as an inevitable consequence that the LF charg
not conserved or even the current conservation breaks d
even in the limit ofmp→0.

Here we emphasize thatthe NG theorem does not exist o
the LF. Instead we found the singular behavior~3.7! which
in fact establishes existence of the massless NG bo

coupled to the current such that Qu0&50 and Q̇Þ0, quite
analogously to the NG theorem in the equal-time quanti
tion which proves the existence of the massless NG bo
coupled to the current such thatQetu0&etÞ0 andQ̇et50 ~op-
posite to the LF case!. Thus the singular behavior of th
NG-boson zero mode~3.7! @or ~4.34!# may be understood a
a remnant of the Lagrangian symmetry, an analogue of
NG theorem in the equal-time quantization.

The zero-mode problem was also discussed in the c
tinuum theory with careful treatment of the boundary con
tion. It was demonstrated that as far as the sign functio
used for the commutator, the LF charge does not annihi
the vacuum in sharp contrast to DLCQ, since the zero m
as an accumulating point cannot be removed by simply dr
ping the exact zero mode withp1[0 which is just measure
zero. We also suggested that then theory might give a pos-
sible way out of this nontrivial vacuum problem in the co
tinuum theory and give rise to the same result as tha
DLCQ.

The nonconservation of the SSB charge on the LF w
also stressed by Ida@26# and Carlitzet al. @28# long ago in
the continuum theory but not in DLCQ. Their way to defin
the LF charge is somewhat similar to ours, namely, the
plicit mass of the NG boson is kept finite in order to pick u
the current matrix element with the NG-boson pole te
dropped. However, they discussed it in the continuum the
without consistent treatment of the boundary condition a
without realizing the zero-mode problem. If they were ca
ful enough about the boundary condition in the continuu
theory, they would have arrived at difficulty of the nontrivi
vacuum as we mentioned before. So it is essentially differ
from our argument in DLCQ.

Finally, we should mention that there is a more serio
zero-mode problem in the continuum LF theory, namely,
no-go theorem found by Nakanishi and Yamawaki@17#. The
LF canonical commutator~5.10! gives explicit expression o
two-point Wightman function on LF:

^0uf~x!f~0!u0&ux1505
1

2p E
0

` dp1

2p1 e2 ip1x2
d~2!~x'!,

~6.1!

which is logarithmically divergent atp150 and local inx'
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and, more importantly, is independent of the interaction a
the mass. We can easily check this result in the free the
@29# where the theory is explicitly solved in all space-tim
and the two-point Wightman function is given at any poinx
by the well-known invariant delta functionD (1)(x;m2)
which is written in terms of the Hankel functionK1 in the
spacelike regionx2,0:

^0uf~x!f~0!u0&5D~1 !~x;m2!5
1

~2p!3 E
0

` dp1

2p1 E
2`

`

3dp'e2 ip2x12 ip1x21 ip'x'

5
m

4p2A2x2
K1~mA2x2! ~x2,0!.

~6.2!

Restricting Eq.~6.2! to the LF,x150, yields

^0uf~x!f~0!u0&ux1505
m

4p2Ax'
2

K1~mAx'
2 !, ~6.3!

which is finite~positive definite!, nonlocal inx' and depen-
dent on mass, in obvious contradiction to the above re
~6.1!. Hence, already for the free field the LF quantizati
fails to reproduce the Lorentz-invariant theory. Actually, t
latter Lorentz-invariant result~6.3! is a consequence of th
mass-dependentregularization of 1/p1 singularity at p1

→0 by the infinitely oscillating~mass-dependent! phase fac-

tor e2 ip2x1
5e2 i (m21p'

2 )/2p1
•x1

in the integral of Eq.~6.2!
before taking the LF restriction x150. The LF quantization,
restricting tox150 beforehand, in fact kills such a regula
izing factor and leads to a wrong result~6.1!. Thus the LF
restriction from the beginning loses all the information
dynamics carried by thezero mode as the accumulatin
point. This implies thateven a free theory does not exist o
the LF @17#.

One might suspect that this conclusion could be an a
fact of too formal argument and irrelevant to the actual ph
ics, since one can construct free particle states, name
free Fock space, with the correct spectra, as far as the
mentum space consideration is concerned. However,
above result implies thatquantum field on LF is ill defined a
the operator-valued distribution and so is the operator pro
uct on LF. Then it is rather difficult to construct arealistic
LF Hamiltonian~with interaction! in terms of the products o
local fields on the same LFin a way consistent with the
Lorentz invariance, which would be a serious problem ev
for practical physicists.

In fact, the above difficulty also applies to the interacti
theory satisfying the Wightman axioms~no-go theorem!
@17#, in which case we have a spectral representa
~Umezawa-Kamefuchi-Ka¨llen-Lehmann representation! for
the commutator function:
d
ry

lt

i-
-
a

o-
he

-

n

n

^0u@f~x!,f~0!#u0&5 i E
0

`

dm2r~m2!D~x;m2!,

E
0

`

dm2r~m2!51, r~m2!>0. ~6.4!

If one assumed that the LF restrictionx150 of the theory was
well defined, then it would follow that

^0u@f~x!,f~0!#u0&ux1505 i E
0

`

dm2r~m2!D~x;m2!ux150

52
i

4
e~x2!d~2!~x'!, ~6.5!

since iD(x;m2)ux15052 ( i /4) e(x2)d (2)(x') is indepen-
dent ofm2. Taking thep1.0 part of the Fourier componen
of the commutator function~6.5!, one would further obtain
exactly the same result as Eq.~6.1! for the two-point Wight-
man function atx150, this time f being the interacting
Heisenberg field instead of the free field. On the other ha
the same Wightman axioms yield the spectral representa
also for the two-point Wightman function:

^0uf~x!f~0!u0&5E
0

`

dm2r~m2!D~1 !~x;m2!. ~6.6!

Now, the LF restriction of Eq.~6.6! depends onr(m2) and
does not agree with Eq.~6.1!, sinceD (1)(x;m2)ux150 given
as Eq.~6.3! does depend onm2, in sharp contrast to Eq.~6.1!
which was derived from Eq.~6.5!. Thus we have arrived a
self-contradiction within the framework of Wightman ax
oms under the assumption that LF restriction is well defin

An immediate way to resolve this trouble would be
define the theory on the ‘‘near LF’’x1Þ0, slightly away
from the exact LFx1[0, and then take the LF limit
x1→0 only in the end of whole calculation as in Eq.~6.3!.
In fact such a prescription was first proposed by Nakan
and Yabuki@29# in the continuum framework and later b
Prokhvatilovet al. and others@30# in the context of DLCQ.
However, it was noted@17# that the price to pay in this ap
proach isnonvanishing vacuum polarizationas in the equal-
time quantization and hencewe must give up the trivia
vacuum, or physical Fock space, which is the most importan
feature of the LF quantization. Then there is no advantag
this approach over the equal-time quantization, concern
the simplicity of the vacuum in nonperturbative studies.
deed, it was demonstrated more explicitly@31# that the
vacuum is nontrivial and there exists nontrivial renormaliz
tion in the LF Hamiltonian in this approach: It is no long
simple to solve dynamics compared with the equal-ti
quantization.

Thus, in spite of its difficulties with the above no-go the
rem, we must take the quantization on the exact LFx1[0
from the beginning in order to keep the trivial vacuum a
physical Fock space. Actually, the no-go theorem impl
that the LF restriction is not compatible with the Wightma
axioms. Therefore, in order to make thetheory well defined
on the exact LF, we are forced togive up some of the Wight
man axioms, most naturally the Lorentz invariance. Indeed,
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DLCQ defined on the exact LF is such a theory: The the
itself explicitly violates the Lorentz invariance forL,` and
never recovers it even in the limit of L→` @17#, as we shall
see later. At the sacrifice of the Lorentz invariance, the triv
vacuum is in fact realized in DLCQ@5# as we have seen in
this paper. The same is true in then theory @17# as we dis-
cussed in Sec. V and further demonstrate in the followin

In the n theory the two-point Wightman function for th
free theory is given by@17#

Dn
~1 !~x;m2!5

cn

~2p!3 E
0

` dp1

2p1 up1un

3E
2`

`

dp'e2 ip2x12 ip1x21 ip'x'

5
cn@eip/2~x12 i0!#n

4p2 S m

r D 11n

K11n~mr!,

cn~5const!.0 ~c051!,

r5@22~x12 i0!~x22 i0!1x'
2 #1/2, ~6.7!

where the extra factorcnup1un is the regularization of the
zero-mode singularity 1/p1 as was mentioned in Sec. V. Th
previous noncommutativity between the integral of Eq.~6.2!
and x1→0 is now traded for that betweenn→0 and x1

→0. If we taken→0 first and thenx1→0, we can reproduce
correct Lorentz-invariant result~6.3!, which is the same as
the procedure to take the ‘‘near LF’’ to the LF lim
x1→0 @29–31#. If, on the other hand, we takex1→0 and
thenn→0, we arrive at the non-invariant answer~6.1! again.
Thus the theory itself~operator, Fock space, etc.! violates
Lorentz invariance andnever reproduces a Lorentz-invarian
field theory even in the limitn→0. Conversely, then theory
is well-defined on the exact LF at the sacrifice of the Lore
invariance~a part of Wightman axioms!.

Now, the real problem is how torecover Lorentz invari-
ance of the physical quantity (c-number) such as the S ma
trix which, unlike the Wightman function,has no reference
to the fixed LF, even though the theory itself, defined on
fixed exact LF, has no Lorentz-invariant limit. Indeed, it was
pointed out@17# that as far as the perturbation theory i
concerned, theS matrix coincidesin the limit of n→0 with
the conventional Feynman rule resultwhich is Lorentz in-
variant, with one notable exception, namely, the vanish
vacuum polarization graphdue to the modification of the
zero-mode contribution. Note thatn→0 is to be takenafter
whole calculation, since then theory is defined on the exac
LF only for n.0 ~no n50 theory exists on the exact LF, a
dictated by the no-go theorem!. In fact, the Feynman propa
gator of then theory takes the form@17#

DF,n~x;m2!5
icn

~2p!4 E dpW up1un

3E dp2
e2 ip2x11 ipW xW

2p2p12p'
2 2m21 i0

. ~6.8!

Then the vacuum polarization graph calculated by the s
dard LF method@32# does vanish@17#:
y

l

z

e

g

n-

E dp1up1unE dp2
F~p1p2!

2p1p22m21 i0

5E
2`

`

dlF̃~l!E
0

`

dj
e2 im2j

i E dp1up1un

3E dp2ei2p1p2~j1l!

5CE dp1up1und~p1!50, ~6.9!

whereF and F̃ are a certain function and its Fourier tran
form with respect to l, respectively and C5

2p i *dldje2 im2jF̃(l)/(l1j) a numerical constant, an
we have disregarded the transverse part which is irrelev
Note that thezero-mode contributiond(p1) has been modi-
fied by the extra factorup1un (n.0) so as to yield zero
vacuum polarization. This is consistent with the previou
argument in Sec. V on the trivial vacuumQu0&50 in then
theory. In contrast,all other graphs having nod(p1) would
be unaffected by the extra factorup1un and thus reproduce
the usual Lorentz-invariant result in then→0 limit. The
vanishing vacuum polarization~6.9! is in sharp contrast to
the case where we taken→0 beforehand~no up1un factor!,
which actually corresponds to the prescription@29–31# ap-
proaching from ‘‘near LF’’ to LF, withn50: In such a case
we have a nonvanishing vacuum polarization as in the eq
time quantization, the whole contribution coming from th
zero mode*dp1d(p1)Þ0, as was noted by Chang and M
@32#.

We can also expect the same situation in DLCQ. T
theory itself is not Lorentz invariant, since the two-poi
Wightman function in the free theory takes the form

DDLCQ
~1 ! ~x;m2!ux1505

1

2p (
n.0

p

L

1

2pn
1 e2 ipn

1x2
d~2!~x'!,

pn
15

np

L
~n51,2,...!, ~6.10!

which coincides with Eq.~6.1! in the continuum limit ofL
→` ~with pn

15np/L5fixed), again in disagreement wit
the Lorentz invariance@17#. Note that thesum does not in-
clude the zero mode n50, since the zero modein the free
theoryvanishes through the zero-mode constraint~2.26!. Al-
though thetheory itself is not Lorentz invariant, we would
reproduce the Lorentz-invariant result for the S matrix e
cept for the vacuum polarizationin the continuum limit of
L→`, as far as perturbation theory is concerned. In fact,
Feynman propagator in DLCQ takes the form

DF,DLCQ~x;m2!5
i

~2p!4 (
n561,62,...

p

L

3E dp'dp2
e2 ip2x12 ipn

1x21 ip'x'

2p2pn
12p'

2 2m21 i0
,

~6.11!

where againthe zero mode n50 is not included in the sum.
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When this is used in the Feynman rule for the perturbati
the absence of the zero mode n50 actually dictates that the
vacuum polarization graph does vanishsimilarly to Eq.
~6.9!:

(
n561,62,...

p

L E dp2
F~p1p2!

2p1p22m21 i0

5C (
n561,62,...

p

L
d~pn

1!50, ~6.12!

which is consistent with the trivial vacuum already esta
lished @5# through the zero-mode constraint~see Sec. II!.
Note that the continuum limit (Ł→`) of Eq. ~6.12! obvi-
ously disagree with the covariant result@32#
C*dp1d(p1) (Þ0). In contrast,all other graphs having
no d(pn

1) are insensitive to the zero mode n50 and hence
would coincide with the covariant result in such a limit.

To summarize, the no-go theorem forbids the well-defin
LF restriction of the Lorentz-invariant field theory due to t
peculiarity of the zero mode as an accumulating point in
continuum framework. Conversely, the theory defined on
exact LF such as DLCQ orn theory, although realizing the
trivial vacuum and no vacuum polarization, would never
cover the Lorentz-invariance even in the limit ofL→` or
n→0. Thus the Lorentz-invariant limit in such a theory c
only be realized on thec-number physical quantity such a
the S matrix which has no reference to the fixed LF but n
on the theory itself~Fock space, operator, etc!. In fact, we
have discussed that as far as the perturbation theory is
cerned, both DLCQ andn theory would reproduce the
Lorentz-invariantS matrix, while keeping the vacuum pola
ization absent~no zero-mode contribution! in accordance
with the trivial vacuum. This was shownthrough the explicit
solution of the perturbative dynamicswhich is based on the
interaction picture with the propagator being given by t
free theory whose solution is completely known not only
a fixed LFx150 but also on the other regionx1Þ0.

However, the real purpose of the LF quantization is
solve the dynamicsnonperturbativelyin a way much simpler
than the equal-time quantization, based on the trivial vacu
and the physical Fock space for the interacting Heisenb
field. Then, in order to reproduce the Lorentz invarian
without recourse to the perturbation theory, we actua
would need an explicit solution of the nonperturbative d
namicsitself, particularly the zero-mode solution. Thus, r
covering the Lorentz invariance is ahighly dynamical issue
in the LF quantization, the situation being somewhat ana
gous to lattice gauge theories. Therefore, it remains a
challenge for the LF quantization to overcome the no
theorem in a nonperturbative way. Particularly in DLCQ w
would need to find the nonperturbative solution to the ze
mode constraint which might play a crucial role in taking t
continuum limit L→` so as to recover the Lorentz invar
ance in the physical quantity~c number!.

In this paper we did not attempt to solve the above no
theorem in the nonperturbative sense. Instead, in DLCQ~or
in the n theory!, we only made a rather modest attempt
solve the easier one, namely, to formulate the SSB in a m
ner consistent with the trivial LF vacuum. No doubt, a fu
nonperturbative solution to the no-go theorem is highly
,
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-

sired. Much work needs to be done in order to reveal
nonperturbative structure of the LF theory through the z
mode.
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APPENDIX A: DLCQ CANONICAL COMMUTATOR

Here we give a detailed derivation of the DLCQ canonic
commutator~2.29!.

There are three constraints~2.9!, ~2.10!, and~2.19!:

F1~x![pw~x!2]2w~x!'0, ~A1!

F2~x![p0~x!'0, ~A2!

F3~x![
1

2L E
2L

L

dx2F ~m22]'
2 !f1

]V

]fG'0. ~A3!

Using Eqs. ~2.12!–~2.14!, we compute Ci , j (x,y)
[$F i(x),F j (y)%, whose nonzero matrix elements are giv
by

C1,1~x,y!5~]2
y 2]2

x !d~3!~xW2yW !, ~A4!

C1,3~x,y!52
1

2L H a~xW !2
1

2L
b21~x'!J d~2!~x'2y'!

52C3,1~y,x!, ~A5!

C2,3~x,y!52
1

4L2 b21~x'!d~2!~x'2y'!52C3,2~y,x!,

~A6!

where x15y1 is understood anda(xW ) and b21(x') are
given in Eq.~2.30!. Note that (1/2L) b21 is the zero mode of
a.

Let us now calculate the inverse matrixMi , j (x,y)
[(C21) i , j (x,y), which is the essential step to obtain th
Dirac brackets~2.22!. It is easy to see that nonzero matr
elements ofMi , j are given by

M1,1~x,y!5~C1,1!
21~x,y!

52
1

4 Fe~x22y2!2
x22y2

L Gd~2!~x'2y'!,

~A7!

M1,2~x,y![p~xW ,y'!, ~A8!

M2,1~x,y![q~x',yW !, ~A9!

M2,2~x,y![r ~x',y'!, ~A10!
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M2,3~x,y!5~C3,2!
21~x,y!54L2b~y'!d~2!~x'2y'!

52M3,2~y,x!, ~A11!

where the functionsp, q, andr satisfy the equations

E dyWC1,1~x,y!p~yW ,z'!1E dy'C1,3~x,y!M3,2~y,z!50,

~A12!

E dyWC3,1~x,y!M1,1~y,z!1E dy'C3,2~x,y!q~y',zW !50,

~A13!

E dyWC3,1~x,y!p~yW ,z'!1E dy'C3,2~x,y!r ~y',z'!50.

~A14!

We readily find the solutions

p~yW ,z'!52E dwW 1dw2
'M1,1~y,w1!C1,3~w1 ,w2!M3,2~w2 ,z!

5
L

2 E
2L

L

du2Fe~y22u2!2
y22u2

L G
3b~z'!a~u2,z'!d~2!~y'2z'!, ~A15!

q~y',zW !52E dw1
'dwW 2M2,3~y,w1!C3,1~w1 ,w2!M1,1~w2 ,z!

5
L

2 E
2L

L

du2b~y'!a~u2,y'!Fe~u22z2!

2
u22z2

L Gd~2!~y'2z'!52p~zW,y'!, ~A16!

r ~y',z'!5E dw1
'dwW 2dwW 3dw4

'M2,3~y,w1!C3,1~w1 ,w2!

3M1,1~w2 ,w3!C1,3~w3 ,w4!M3,2~w4 ,z!

52L2E dw2
2dw3

2b~y'!a~w2
2 ,y'!Fe~w2

22w3
2!

2
w2

22w3
2

L Gb~z'!a~w3
2 ,z'!d~2!~y'2z'!,

~A17!

where we have used

E
2L

L

du2Fe~u22v2!2
u22v2

L G
5E

2L

L

dv2Fe~u22v2!2
u22v2

L G50.

~A18!

Now we are ready to derive the Dirac brackets for the f
field f5w1f0 :
l

$f~xW !,f~yW !%DB5$w~xW !,w~yW !%DB1$f0~x'!,w~yW !%DB

1$w~xW !,f0~y'!%DB

1$f0~x'!,f0~y'!%DB . ~A19!

According to Eq.~2.22!, each Dirac bracket is evaluated a
follows:

$w~xW !,w~yW !%DB5M1,1~x,y!52
1

4 Fe~x22y2!

2
x22y2

L Gd~2!~x'2y'!, ~A20!

$w~xW !,f0~y'!%DB5
1

2L
p~xW ,y'!

5
1

4 E
2L

L

du2Fe~x22u2!2
x22u2

L G
3b~y'!a~u2,y'!d~2!~x'2y'!,

~A21!

$f0~x'!,w~yW !%DB5
1

2L
q~x',yW !52$w~yW !,f0~x'!%DB

5
1

4 E
2L

L

du2b~x'!a~u2,x'!

3Fe~u22y2!2
u22y2

L G
3d~2!~x'2y'!, ~A22!

$f0~x'!,f0~y'!%DB5
1

4L2 r ~x',y'!

52
1

4 E du2dv2b~x'!a~u2,x'!

3Fe~u22v2!2
u22v2

L G
3b~y'!a~v2,y'!d~2!~x'2y'!,

~A23!

where use has been made of Eqs.~A15!–~A17! and the Pois-
son brackets~2.12!–~2.14!.

Combining Eqs.~A20!–~A23! into Eq.~A19! and making
replacementi $A,B%DB→@A,B#, we arrive at the DLCQ ca-
nonical commutator~2.29!

@f~x!,f~y!#52
i

4 E du2dv2@b~x'!a~u2,x'!

2d~u22x2!#Fe~u22v2!2
u22v2

L G
3@b~y'!a~v2,y'!2d~v22y2!#

3d~2!~x'2y'!. ~A24!
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Next we demonstrate that the above commutator~2.29! ac-
tually coincides with Eq.~2.31!, the one obtained in Ref.@5#,
up to operator ordering, i.e., in the sense of the Dirac bra
ets. First note that Eq.~A23! is actually vanishing and so i
the zero-mode–zero-mode commutator@f0(x),f0(y)#:

r ~x',y'!50, ~A25!

where use has been made of Eq.~A18! and

E du2E dv2Fe~u22v2!

2
u22v2

L Ga~u2,x'!a~v2,y'!d~2!~x'2y'!50.

~A26!

Equation~A25! also follows from the antisymmetric prop
erty of Mi , j (x,y) and the one dimensionality ofM2,2 in the
x2 (y2) direction: i.e.,M2,2(x,y)5r (x',y')52M2,2(y,x)
50.

The sum of Eqs.~A21! and ~A22! can be rewritten as

1

4 E du2b~x'!a~u2,x'!Fe~u22y2!2
u22y2

L G
3d~2!~x'2y'!1

1

4 E du2Fe~x22u2!2
x22u2

L G
3b~y'!a~u2,y'!d~2!~x'2y'!

5
1

4 E du2@e~u22y2!1e~x22u2!#ba~u2!

3d~2!~x'2y'!2
1

4 E du2Fu22y2

L
1

x22u2

L G
3ba~u2!d~2!~x'2y'!

5
1

2 E
y2

x2

du2ba~u2!d~2!~x'2y'!

2
1

4 Fx22y2

L Gd~2!~x'2y'!, ~A27!

which is combined with Eq.~A20!, yielding

$f~x!,f~y!%DB52
1

4 Fe~x22y2!

22bE
y2

x2

dz2a~z2!Gd~2!~x'2y'!.

~A28!

Upon replacementi $A,B%DB→@A,B#, we finally obtain Eq.
~2.31!.

APPENDIX B:
THE PROBLEM OF BOUNDARY CONDITION

We usually assign the boundary condition in DLCQ, b
cause the ‘‘space’’ coordinates are confined in the finite b
k-

-
x

2L<x2<L. Besides such a practical reason, there is
inevitable reason why the boundary condition onx2 direc-
tion must be specified. This is not a specific problem
DLCQ, but a common problem to the whole LF quantizati
including the ‘‘continuum’’ framework. To emphasize tha
the consistent LF quantization must be accompanied by
boundary condition we reexamine the special role of
boundary condition according to Steinhardt@18# and study
what kind of boundary condition is consistent in DLCQ.

Let us consider the ‘‘continuum’’ or ‘‘discretized’’ LF
quantization of scalar modelwithout boundary conditionin
the context of the Dirac quantization in Sec. II. Because
the no boundary condition, the constraint for zero mode w
not appear. The only constraint appearing in the theory i

F~x!5p~x!2]2f~x!, ~B1!

whose Poisson bracket is given by

$F~x!,F~y!%5~]2
y 2]2

x !d~3!~xW2yW !. ~B2!

Strictly speaking, we have infinitely many constraints whi
are expressible as linear combination of Eq.~B1!.

An important observation in@18# is that there is a subse
of constraints which appears to be not only first class but a
second class. To see this, consider a linear combinatio
the primary constraint

F0[E dx2F~x!, ~B3!

which corresponds to the ‘‘zero mode’’ ofF(x) in the dis-
cretized theory. Suppose that any surface term is negle
throughout the calculation, one can easily find

$F0 ,F~x!%50. ~B4!

This means thatF0 is first class, because it should commu
with any linear combination ofF(x) as a consistency. How
ever, this is not always the case, as the following exam
illustrates:

HF0 ,E e~y!F~y!dy2J 522E dx2dy2]2
y e~y!d~3!~xW2yW !

524d~2!~x'2y'!Þ0, ~B5!

wheree(x) is the sign function. This means thatF0 is sec-
ond class in contradiction with the previous result. Actual
F0 is neither first class nor second class, which represe
inconsistency hidden in the theory. This ambiguity reve
itself as the ambiguity of the inverse matrix of constrain
C21 in Eq. ~2.22!, and that of the Lagrange multiplierv(x).
It is easily shown that all such ambiguities can be remov
once the boundary condition atx256` or x256L is
specified.

Let us then study the possible boundary conditions
DLCQ. Although the same problem was studied by Ste
hardt, he discussed it within the continuum framework a
neglected all surface terms appearing in the partial integ
tions. So we study the same problem by carefully treat
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surface terms in DLCQ. For this purpose, we generalizeF0
and consider the following constraint which appears in
total Hamiltonian:

F@v#5E
2L

L

dx2v~x!F~x!, ~B6!

wherev(x) is a certain function~Lagrange multiplier! which
satisfies the same boundary condition asf(x) @5#. Once the
boundary condition is specified, providingF@v# for all v
becomes equivalent to providingF(x) for all x, which is
nothing but the necessary condition for consistency m
tioned above. Moreover, we demand that the variation
canonical variable generated by Eq.~B6! must satisfy the
same boundary condition. We can derive this condition
writing down the functional variation ofF@v#

dF@v#5E
2L

L

dx2@v~x!dp~x!1]2v~x!df~x!#

2v~x25L !df~x25L !1v~x252L !

3df~x252L !, ~B7!

where the first two terms on the RHS give the canoni
variation of the fields which preserve the same bound
condition as the canonical variables. On the other hand,
surface terms generally violate the boundary condition. O
can thus require the condition

v~x25L !df~x25L !5v~x252L !df~x252L !,
~B8!

which is nothing but the discretized version derived in@18#.
This includes the periodic boundary condition studied in R
@5#.

Based on this condition we investigate what kind
boundary condition can exist consistently. We pick up h
some typical ones other than periodic case:~i! the first
boundary valuef(x25L)5f(x252L)50; ~ii ! the sec-
ond boundary value (d/dx2) f(x25L)5 (d/dx2) f(x2

52L)50; ~iii ! the third boundary value, the mixed type
the above two conditions;~iv! the antiperiodic boundary con
dition, where the right-hand sides of both~i! and ~ii ! can be
generalized to any value. Note thatdf(x) andv(x) obey the
same boundary condition asf(x). Now, in the boundary
condition ~ii ! and ~iii ! f is left arbitrary atx256L and so
aredf(x) andv(x), and hence the boundary condition~ii !
and ~iii ! do not generally satisfy the condition~B8!.

Let us next consider the case~i!, in which case it is help-
ful to use mode expansion:

f~x!5 (
n51

`

an~x1,x'!sinH np

2L
~x21L !J . ~B9!

The d function should be interpreted as

d~x22y2!5
1

L (
n51

`

sinH np

2L
~x21L !J sinH np

2L
~y21L !J .

~B10!
e

-
f

y

l
y
e
e

f.

f
e

It is shown that the inverse of the Dirac matrixC21(x,y)
satisfying the condition

C21~x,y!52C21~y,x!, C21~L,y!52C21~2L,y!50

does not exist. Therefore the only constraint which may g
the consistent theory is the case of the antiperiodic bound
condition.

Antiperiodic boundary condition@33#. The scalar field
with the antiperiodic boundary condition is expanded by
complete sets$(1/A2L)e2 ( inp/L) x2

%n561/2,63/2̄ , where
there is no zero mode due to the antiperiodic boundary c
dition. For the Lagrangian~2.3!, the only constraint is the
primary constraintF(x)5p(x)2]2f(x) which is second
class. It is easily confirmed that Poisson brackets

$F~x!,F~y!%5~2]2
x 1]2

y !d~x22y2!d~2!~x'2y'!

have their inverse

$F~x!,F~y!%2152
1

4
e~x22y2!d~2!~x'2y'!,

~B11!

in the meaning of thed function

d~x2!5(
n

1

2L
e2 ~ inp/L ! x2 S n56

1

2
,6

3

2
••• D .

~B12!

Then the commutation relation is given by

@f~x!,f~y!#52
i

4
e~x22y2!d~2!~x'2y'!, ~B13!

where both sides of the equation show the consistent be
iors atx256L.

Next we check the Poincare´ invariance of the theory. In
the case of periodic boundary condition it is shown that
Poincare´ invariance is not recovered at least in the na
limit of L→` @5#. Hence it is interesting to study the sam
problem for an antiperiodic boundary condition.

Let us first derive the equation of motion. The tot
Hamiltonian is described by

HT5E d3xW F1

2
$~]'f!21m2f2%1V~f!G

1E d3xWv~x!F~x!, ~B14!

wherev is the Lagrange multiplier.
The consistency condition for the primary constra

F(x) reads

22]2v5~m22]'
2 !f1

]V

]f
[x, ~B15!

where the surface term forv(x) is dropped by the boundar
condition. Combined with

]1f~x!5$f~x!,HT%5v~x!, ~B16!
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we obtain

2]1]2f'2x. ~B17!

By using this relation it is shown that

@f~x!,P2#5E
2L

L

d3yH ~m22]'
2 !f~y!1

]V

]f J @f~x!,f~y!#,

5 i ]1f~x!1
i

2
$]1f~x25L !e~x22L !

2]1f~x252L !e~x21L !%,

5 i ]1f~x!, ~B18!

where

P25E
2L

L

d3xF1

2
$~]'f!21m2f2%1V~f!G . ~B19!

Similar arguments can be applied to other Poincare´ gen-
erators:

@f~x!,Pm#5 i ]mf~x!, ~B20!

@f~x!,Mi j #5 i ~xi] j2xj] i !f~x!, ~B21!

@f~x!,Mi 1#5 i ~xi]12x1] i !f~x!, ~B22!

@f~x!,M 12#5 i ~x1]22x2]1!f~x!, ~B23!

which is compared with the periodic case@5# where Eq.
~B23! does not hold except for the free theory due to the z
mode.

On the other hand, we have

@f~x!,M 2 i #5 i ~x2] i2xi]2!f~x!

2
i

4
@y2e~x22y2!] if~y!#y252L

y25L ,

~B24!

which is dependent on the box sizeL and hence violates th
Lorentz invariance even in the infinite volume limit as in t
case of the periodic boundary condition@5#. Thus the Poin-
caréinvariance does not hold with respect toM2 i . We need
to devise an appropriate continuum limit instead of the na
limit to recover the Poincare´ invariance of the theory.

APPENDIX C:
UNBROKEN PHASE OF O„2…-LINEAR s MODEL

We describe the unbroken phase of the O~2!-linear s
model by treating the zero modes explicitly. In this phase
can explicitly check validity of our operator ordering
namely, the Weyl ordering used for studying the brok
~SSB! phase of thes model in Sec. IV.

For simplicity, let us consider the bosonic part~4.2! with
m2.0 andc[0. To solve the zero modes, it is convenient
divide them into the classical and the operator parts as d
in Sec. IV. The solution of the zero-mode constraints for
classical part is trivial, i.e.,vp5vs50, implying that the
o

e

e

n

ne
e

classical contribution to the vacuum expectation value
zero. On the other hand, the operator part of the zero-m
constraints is still too complicated to solve nonperturb
tively. Then we solve them perturbatively again. The low
order solutions of the operator part of the zero modes
derived as

vp5
l

2L
~2m21]'

2 !21E
2L

L

dy2~wp
3 1wpws

2 !, ~C1!

vs5
l

2L
~2m21]'

2 !21E
2L

L

dy2~ws
31wswp

2 !, ~C2!

both of which include no divergence and thus are we
defined. These explicit solutions confirm the well-know
properties in the unbroken phase.

First of all, the same transformation law as that in t
equal-time quantization

@Q,p#5 is, @Q,s#52 ip, ~C3!

follows from the direct calculation

@Q,vp#5 ivs , @Q,vs#52 ivp , ~C4!

where

Q5E d3xW~]2wswp2]2wpws!. ~C5!

Second, Eq.~C3! is consistent to the trivial property of th
LF vacuum. Actually^vp&5^vs&50 in addition to ^wp&
5^ws&50 lead to

^@Q,p#&5^@Q,s#&50, ~C6!

which is consistent withQu0&50.
Now, let us check the operator ordering by checking

charge conservation which should hold in the unbrok
phase in contrast to the broken phase. In fact an arbit
operator ordering would not necessarily lead to the cha
conservation due to the existence of zero modes. One sh
find such an operator ordering as to satisfy the charge c
servation and theWeyl orderingactually does it. Indeed it is
easy to show

i
dQ

dx1 5@Q,H#50, ~C7!

under the Weyl ordering. It is this property that the We
ordering was assumed even in the case of the broken p
in Sec. IV. Although only the lowest order solution was e
plicitly examined, the same results stated above are v
beyond it.

APPENDIX D:
THE STRUCTURE OF THE ZERO-MODE CONSTRAINT

We reexamine the zero-mode constraint for the NG bo
with the mass term. The crucial feature of the NG phase
the singular behavior of the zero mode~3.7! which is explic-
itly confirmed by the lowest order solution of the line
sigma model. The purpose of this appendix is to confirm
~3.7! beyond the leading approximation. For simplicity, co
sider the bosonic sector of the linears model in Eqs.~4.15!
and ~4.16!. By redefining the lowest order solution
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vp
~1!5

l

2L E
2L

L

dx2~2mp
2 1]'

2 !21~wp
3 1wpws

212vwpws!

[DpFp~x1,x'!, ~D1!

and

vs
~1!5

l

2L E
2L

L

dx2~2ms
21]'

2 !21~ws
31wswp

2 1vwp
2

13vws
2 ![DsFs~x1,x'!, ~D2!

where Dp[(2mp
2 1]'

2 )21 and Ds[(2ms
21]'

2 )21, the
second order perturbative solution of the NG-boson z
mode is given by

vp
~2!5

l

2L E
2L

L

dx2DpH 1

2
@~DsFs!wswp1ws~DsFs!wp

1wp~DsFs!ws1wswp~DsFs!#1@~DpFp!wp
2

1wp
2 ~DpFp!1wp~DpFp!wp#1

1

2
@~DpFp!ws

2

1ws
2~DpFp!#J , ~D3!

which leads to

E d3xWvp
~2!; 2

l

mp
2 E d3xW H 1

2
@~DsFs!wswp

1ws~DsFs!wp1wp~DsFs!ws

1wswp~DsFs!#1@~]'
22Fp!wp

2

1wp
2 ~]'

22Fp!1wp~]'
22Fp!wp#

1
1

2
@~]'

22Fp!ws
21ws

2~]'
22Fp!#J

;
1

mp
2 ,

in the mp→0 limit. Repeating the similar procedure, su
singular behaviors of the zero mode for higher order per
bative solutions (n.1),
n
.
J.

A

o

r-

E d3xWvp
~n!;

1

mp
2 ,

can also be confirmed inductively.
Here it may be interesting to consider the same prob

in two-dimensions where a continuous symmetry cannot
broken spontaneously due to Coleman’s theorem@16#. In two
dimensions, the leading order solution of the zero mode
given by

vp
~1!52

1

mp
2 Fp , ~D4!

vs
~1!52

1

ms
2 Fs , ~D5!

whereFp,s depend onx1 only. Without integral inx', vp
(1)

by itselfbecomes divergent asmp→0 in sharp contrast to the
four-dimensional case. The peculiarity of two dimensio
becomes clearer in the higher order solution. In fact, up
the operator ordering, the second order solution

vp
~2!5

l

2L E
2L

L

dx2
1

mp
2 H 1

mp
2 Fpws

21
2

ms
2 Fs1

3

mp
2 Fpwp

2 J ,

~D6!

leads to

vp
~2!;

1

mp
4 ~mp;0!. ~D7!

In general thenth order perturbative solution of the NG
boson zero mode behaves as

vp
~n!;

1

mp
2n . ~D8!

The singular behavior becomes worse in higher orders
other words, the NG-boson field in two dimensions is
defined due to its wrong ‘‘infrared behavior’’ atp1→0. In
this sense the NG phase cannot be realized in two dim
sions in conformity with Coleman’s theorem@16#, even if we
apply our method by introducing the NG-boson mass a
regulator.
.
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