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Comments on black holes in matrix theory
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The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using
near-extremalD-brane thermodynamics is examined. It is found that the regime in which this approach is valid
actually describes black strings stretched across the longitudinal direction, near the transition where black
strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other
~black hole! side of the transition is that of the zero modes of the corresponding super Yang-Mills theory. A
suggestive mean field theory argument is given for the entropy of black holes in all dimensions. Consequences
of the analysis for matrix theory and the holographic principle are discussed.@S0556-2821~98!06408-X#

PACS number~s!: 04.70.Dy, 04.50.1h, 04.65.1e
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I. INTRODUCTION

String theory has recently provided a statistical desc
tion of many aspects of black hole thermodynamics~for re-
views, see@1#!. D-branes@2# have enabled a precise comp
tation of the spectrum and interactions of a wide variety
near-extremal charged@3# and rotating@4# holes. In addition,
the black hole correspondence principle@5# gives a genera
relation ~though not as precise! between the entropy of es
sentially any black hole and that of weakly coupled strin
andD-branes. However, in all cases, the quantum states
described in weakly coupled string theory, and the conn
tion to large black holes is obtained by increasing the str
coupling and taking a low energy semiclassical limit. In o
der to obtain a description of the quantum states of a bl
hole directly in the black hole regime one presumably ne
a nonperturbative formulation of the theory. Matrix theo
@6# purports to be such a formulation in the discrete lig
cone gauge@7#. In its eleven dimensional incarnation, th
quantum mechanics ofN D-zerobranes with couplingR ap-
pears to reproduce eleven dimensional supergravity,1 with
one direction compactified on a circle of radiusR and the
total momentumP5N/R. We will refer toN as the number
of matrix ‘‘partons.’’ Compactifying further dimension
leads to a super Yang-Mills~SYM! theory. The SYM Hamil-
tonian yields the invariant mass of the system viaH
5M2R/N. This prescription can be motivated@10,11# via a
chain of dualities. Given that the matrix theory prescripti
~in the dimensions where it is known! is so closely tied to
physics ofD-branes in the large charge limit, it is not su
prising that theD-brane results on black holes can be carr
over quite successfully@12,13#, although the reinterpretatio
of the calculations from this perspective is quite illuminatin
In particular, one is led to the idea@13# that the statistical
mechanics of~generalized! SYM theory could reproduce
black hole thermodynamics.

1Recent calculations@8,9# indicate that there are subtleties in e
tablishing this connection.
570556-2821/98/57~8!/4935~7!/$15.00
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In two recent interesting papers, Banks, Fischler, K
banov, and Susskind@14,15# have argued that the entropy o
Schwarzschild black holes can be computed from the S
theory of near-extremal branes, at the special point where
number of matrix partonsN equals the entropyS. There are
three main claims:

~1! To fit a large black hole of sizer 0@R into the longi-
tudinal box, one must boost it so that its longitudinal size
contracted:

R.DXBH;
MR

N
r 0 . ~1.1!

~2! Therefore N.Nmin;Mr0;S; N;S is the minimal
number of matrix constituents required to describe the st
of black holes. At this lower bound, the black hole ‘‘just fi
inside the box’’; moreover, this value is ‘‘optimal’’ in the
sense of the renormalization group, in that increasingN in-
troduces a needlessly large number of degrees of freed
most of which are in their ground state.

~3! One can apply SYM statistical mechanics to calcul
the thermodynamic properties of the system at this thresh
For D58 it was argued in@14# that the thresholdN;S was
just on the borderline of validity of this approach, since t
effective temperature was so low that the typical wavelen
was comparable to the size of the system~in the appropriate
holonomy sector corresponding to multiply wrapped brane!.

A closer inspection yields a number of puzzles. First
all, we will show that black holes do not contract longitud
nally when boosted. If they did, it is likely that there wou
be a problem with black hole thermodynamics. This is b
cause the transverse size is presumably invariant, so a
entz contraction would cause the horizon area to decre
But this area is related to the black hole entropy which i
physical quantity and should not change under the boo
We will see that the horizon remains fixed and spherical w
radiusr 0 because the boost is effectively undone by the
finite gravitational redshift there. How then can a large bla
hole fit inside the longitudinal box? Secondly, the gluons a
4935 © 1998 The American Physical Society
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4936 57GARY T. HOROWITZ AND EMIL J. MARTINEC
other excitations being counted in the SYM thermodynam
carry field momentum, and in the matrix dictionary~cf.
@16#!, the field momentum is

Pi5E T0i}
1

( i
5

RLi

l pl
3 ~1.2!

whereLi are the lengths of the compact dimensions,S i are
the lengths of the dual torus, andl pl is the eleven dimen-
sional Planck length. So these SYM momentum modes
the dual torus represent longitudinally stretched membra
in the original spacetime, which are translationally invaria
They cannot represent a localized object like a black hol

We resolve these puzzles below. While a boosted bl
hole does not contract, it does expand the geometry nea
horizon. In Sec. II below, we show that this effect is su
that, precisely atN5S, the geometry expands to the exte
that the longitudinal box sizeat the horizonis preciselyr 0 .
Thus it is not the black hole that shrinks to fit in the bo
rather the box which expands to accommodate the b
hole. Moreover, it is clear that when the black hole fills t
box, it is on the verge of becoming ablack stringstretched
across the box. Indeed, for zero momentum, it is known t
a black string becomes unstable whenR exceeds its
Schwarzschild radius@17#. We give an entropic argumen
that the same phenomenon happens for the boosted b
holes and black strings. The analysis of@14,15# actually de-
scribes black strings, close to the transition point; we will s
that this corresponds toN slightly smaller thanS. As N is
increased, the temperature of the SYM ensemble decre
and forN.S the system is frozen into the dynamics on t
space of zero modes. Indeed, these zero modes on the
torus represent objects which are not longitudinally stretc
in the original spacetime, and are therefore the appropr
degrees of freedom to describe black holes rather than b
strings.

In Sec. III, we reconsider the transition pointN;S, ap-
proaching it from slightly larger values ofN where zero
mode quantum mechanics should prevail. A simple m
field theory analysis in the spirit of@6# yields the black hole
sizer 0 and entropyS as a function of the massM , uniformly
for any dimension D.

This result leads us in Sec. IV to a reexamination of
‘‘holographic principle’’ @19#. In its mildest form~which we
will call the ‘‘weak holographic principle’’!, this principle
states that the dynamics of the theory depends only on
defined on a (D22)-dimensional spatial surface. This ma
well be true in the matrix model, given the intricate relati
between the dynamics of the transverse and longitudinal
grees of freedom embodied in the matrices themselves.
more virulent form of the conjecture~which we shall call the
‘‘strong holographic principle’’! asserts that the physical siz
of objects increases with boosting. This idea is motivated
Bekenstein’s proposal that objects should respect a boun
one bit of information per Planck area, and was in fact one
the prime motivations for matrix theory. It is not a necess
consequence of the weak holographic principle, nor is it n
essary in order to account for black hole entropy in ma
theory. We construct examples of objects in matrix theory
ensembles of discretized membranes, to be specific—w
s
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scale canonically with longitudinal boosts, and therefore
pear to provide a counterexample to the claims of@6#.

We conclude in Sec. V with some speculations about h
our results extend to the regimeN@S, and discuss some
general consequences of our analysis for matrix theory
black holes. Since our goal is to understand how ma
theory reproduces the familiar scaling of black hole entro
and size with mass, we will often ignore numerical factors
order one, such as the solid angle of spheres, etc.

II. BOOSTING BLACK HOLES AND BLACK STRINGS

Let us begin by considering aD-dimensional spacetime
with one direction compactified on a circle of radiusR at
infinity. A Schwarzschild black hole in this spacetime corr
sponds to an infinite periodic chain ofD-dimensional black
holes in the original uncompactified space, and is not tra
lationally invariant along the circle. A black string is th
product of a circle and a (D21)-dimensional Schwarzschild
black hole. It is easy to show that for equal masses, the b
hole has greater entropy than the black string wheneverR is
greater than the Schwarzschild radius of the black holer 0 . In
fact, the black string is known to be unstable in this regim
@17#. For R,r 0 , the chain of black holes becomes indisti
guishable from the black string, which is now stable.

So far we have assumed that the momentum is zero.
now ask how things change when we apply a boost along
circle.2 For the black string, one is boosting along a symm
try direction, so the metric is the same up to the usual co
dinate substitutiondt̂6dx̂D215e6b(dt6dxD21). The rel-
evant piece of the metric transforms as

2@12~r0 /r!D24#dt̃21dx̂D21
2 52dt21dxD21

2

1~r0 /r!D24@coshbdt1sinh bdxD21#2 ~2.1!

with the transverse part of the metric unchanged. If we p
odically identify the coordinatexD21 , the proper distance
along this circle grows from 2pR at infinity to 2pR coshb
at the horizonr5r0 . In a sense, the momentum exerts
‘‘pressure’’ on the geometry causing it to expand near
horizon.

Now consider theD-dimensional black hole. If this were
an ordinary object, one might expect it to Lorentz contra
when boosted. But as mentioned in the Introduction, t
would lead to problems with black hole thermodynamic
Fortunately, black holes do not Lorentz contract. This f
lows from the fact that every cross section of the event
rizon has the same area. So in every reference frame, the
of the horizon is the same. To see an explicit example, c
sider the four dimensional Schwarzschild metric in isotro
coordinates

ds252S r 2r 0

r 1r 0
D 2

dt̃ 21S 11
r 0

r D 4

@dx̂21dr21r2df2#

~2.2!

2The compactification is different after the boost. Strictly speak
one applies the boost to the uncompactified spacetime, and
identifies points along the new spatial direction.
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wherer 25 ẑ21r2. These coordinates cover both asympto
cally flat regions, with the horizon atr 5r 0 . We now want to
apply a boost along theẑ direction. Since this is not a sym
metry direction, there is some ambiguity about how one
fines the boost in the interior of the spacetime. A natu
choice is to simply setdt̂6dẑ5e6a(dt6dz). The new ho-
rizon geometry defined byt5const,r 5r 0 , is the surface in

ds2516@cosh2 adz21dr21r2df2# ~2.3!

given by

r 0
25r 25~coshaz1sinh at !21r2. ~2.4!

Differentiating this equation~with t constant! yields

~coshadz!25
r2dr2

r 0
22r2 ~2.5!

so the induced metric on the horizon is

ds2516S r 0
2dr2

r 0
22r2 1r2df2D ~2.6!

which is completely independent of the boost and describ
round sphere. So the event horizon does not Lorentz c
tract. This is different from boosting a sphere in flat spa
time, since then the cosh2 a factor in ~2.3! is absent.~It com-
bines with a2sinh2 a factor coming fromgt̂ t̂ . It is the
infinite gravitational redshift at the horizon which remov
this cancelling term.!

Having established that the black hole does not Lore
contract, we now ask if the proper length of the circle e
pands near the horizon. It is clear from~2.3! that the answer
is yes. In fact, at t50 the horizon is given byr 0

2

5cosh2 az21r2, so in terms of the coordinates (z,r), there
is an apparent Lorentz contraction. It is the expansion of
metric nearr 5r 0 which ensures that the horizon remai
spherical. Thus the net effect is similar to a real Lore
contraction: One can fit large black holes into small comp
tified spaces by boosting.

We now turn to eleven-dimensional supergravity comp
tified to D5112d dimensions on a torusTd of volumeLd.
Consider a black hole of massM5 l pl

29Ldr 0
D23 which is

given a large boost in one of theD directions which is then
compactified on a circle of radiusR. ~The factor l pl

9 /Ld

[GD is just the D-dimensional Newton constant.! The
boosted black hole has energy and momentum

Ehole5M cosha5 l pl
29Ldr 0

D23 cosha,
~2.7!

Phole5M sinh a5 l pl
29Ldr 0

D23 sinh a

along the longitudinal direction. The boost does not cha
the number of internal states of the hole, which remains

Shole; l pl
29Ldr 0

D22. ~2.8!

Now choose the boost so thatP5S/R. This fixes ea

;r 0 /R, and since the asymptotic longitudinal box size isR,
-

-
l

a
n-
-

tz
-

e

z
-

-

e

at the horizon the size isr 0—indeed the box just expands t
accommodate the black hole for this magic value of
boost.

Now let us compare this with the behavior of a boost
black string stretched across the longitudinal direction.
energy, momentum, and entropy are@18#

Estring; l pl
29LdRr0

D24@a1cosh 2b#,

Pstring; l pl
29LdRr0

D24 sinh 2b, ~2.9!

Sstring; l pl
29LdRr0

D23 coshb,

wherea is a constant of order one. The black string will b
stable provided the length of the horizon is less than
Schwarzschild radiusr0 . Since this length increases byeb

~for large b! as we boost, the instability begins wheneb

;r0 /R. This impliesP;S/R. So we see from both black
hole and black string considerations, that the conditionN
5S ~whereP5N/R! marks the transition between these tw
configurations. Clearly, whenP5S/R, if the black hole and
black string have the same momentum, then they have
same entropy as well.

One might be puzzled by the different scaling of the e
ergy and momentum in~2.7! and ~2.9! under a boost. The
difference arises due to what is implicitly held fixed. In~2.7!,
one starts with an infinite chain of black holes of massM in
the spacetime with the longitudinal direction uncompactifie
If the initial separation~asymptotically! is R, after the boost,
the energy of each black hole isM cosha and the new sepa
ration will be Lorentz contractedR/cosha. If we insist that
the separation after the boost isR, there are two options. On
can periodically identify afterO(cosha) black holes are in-
cluded. This produces another factor of cosha in ~2.7! and
~2.8! so that the energy, momentum, and entropy now sc
like the black string~2.9!. Alternatively, one can increase th
initial separation between the black holes toR cosha, which
insures that the separation after the boost will beR. This was
implicitly assumed in~2.7! and ~2.8!.

In terms of matrix theory, the natural variables to ho
fixed areR and the invariant massM .3 The light cone energy
is ELC5E2P and P5N/R, so M25ELCN/R. Eliminating
the parametersr 0 , a, r0 , and b in favor of P5N/R and
ELC5E2P yields

Shole;~ l pl
9 /Ld!1/~D23!M ~D22!/~D23!

Sstring;N1/2~ l pl
9 /Ld!1/~D24!S ELC

R D ~D22!/2~D24!

;N21/~D24!~ l pl
9 /Ld!1/~D24!M ~D22!/~D24!.

~2.10!

3We assume thatR is the radius of a spacelike circle, as in@6#.
However, since we are always in the regime of very large boo
the distinction~in this Lorentz frame! between spacelike and light
like compactification in the longitudinal direction is not expected
be important.
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4938 57GARY T. HOROWITZ AND EMIL J. MARTINEC
If Shole5Sstring for some choice of massM and boostN, then
clearly increasingN causes the black hole to have grea
entropy and decreasingN causes the black string to hav
greater entropy.

This behavior is perfectly compatible with our expec
tions from SYM statistical mechanics. There, for fixedR and
M , ELC5M2R/N decreases as 1/N, i.e., the ensemble be
comes colder with increasingN. At high temperature, corre
sponding to smallN, the SYM theory is roughly a gas o
interacting supergluons. As mentioned in the Introducti
these modes correspond to longitudinal membranes~and
fivebranes ifd>4! in the original spacetime, and thus shou
describe states of a black string. This is the situation
scribed for instance in@13#. As we increaseN, this descrip-
tion remains valid until the temperature of the gas drops
the point that the thermal wavelength is comparable to
effective size of the dual torus on which the SYM is define
Then the gluonic degrees of freedom freeze out, leav
quantum mechanics on the space of zero modes. The s
tical mechanics is that of this quantum mechanical sys
~including the various global fluxes on the internal toru!.
These states describe objects which are not longitudin
wrapped in the original spacetime, and which can thus
localized in the longitudinal direction. This system describ
black hole states. From the above analysis, we see tha
transition occurs whenN;S.

The calculations of@14,15# attempt to explain the black
hole entropy by approaching the black hole–black str
transition from the ‘‘wrong’’ side, using the equality of th
density of states at the transition to infer the entropy on
other side. The procedure is similar in spirit to the black h
correspondence principle, in which one infers the black h
spectrum from the string spectrum by matching their den
ties of states at the transition from one to the other, and u
the known string spectrum. Here however, one is on m
shakier ground; much less is known about how to comp
the SYM entropies from first principles~although the case o
311 SYM corresponding toD58 is on a somewhat firme
footing!.

III. A DIRECT APPROACH TO BLACK HOLE ENTROPY

One might hope to arrive at the black hole entropy m
directly, by an analysis of the zero-mode quantum mecha
that begins to dominate just above the transition. Indee
mean field analysis@6# appears to capture the essential ph
ics. When the matrix partons are sufficiently far apart,
‘‘fast’’ off-diagonal matrix element dynamics can be int
grated out. Treating the partons in mean-field approximat
the one-loop effective Lagrangian for the zero modes~of
matrix theory compactified onTd, with D5112d! has the
structure

Leff5
Nv2

R
1

N2l pl
9 v4

R3Ldr D24 . ~3.1!

The parton mass is 1/R due to the origin of matrix theory in
ten-dimensionalD-zerobrane physics. Recall that the fact
l pl
9 /Ld[GD is just theD-dimensional Newton constant, s

the second term can be interpreted as the gravitational
energy of the partons due to their relative motion.
r
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The dynamics determined by this Lagrangian is rat
complicated, but mean field theory arguments indicate t
there are solutions where the partons remain in a boun
region of space of radiusr 0 for an extended period of time
The virial theorem then tells us that the two terms in t
effective Lagrangian are of the same order. We will assu
that the partons saturate the uncertainty bound:

r 0v
R

;1. ~3.2!

@Since~3.1! is derived under the assumption of nonrelativ
tic motion, v!1, the size of the bound state must be mu
larger than the longitudinal box size as measured at infini#
These assumptions determine a relation betweenN and the
size of the bound state:

N;~ l pl
29Ld!r 0

D22. ~3.3!

The typical energy scale is then

ELC5
M2R

N
;~ l pl

29LdR!r 0
D24, ~3.4!

leading to a typical size of the bound state in terms of
mass:

M;~ l pl
29Ld!r 0

D23. ~3.5!

Since l pl
29Ld51/GD , we recognize the relation between th

mass and Schwarzschild radius of a black hole. Now c
sider the mass-entropy relation forD-dimensional black
holes; using~3.3!, ~3.5!, we have

S;~ l pl
29Ld!1/~D23!M ~D22!/~D23!; l pl

29Ldr 0
D22;N.

~3.6!

This is already clear from~3.3!—the number of partons is
the surface area of the bound state in Planck units. In o
words, the black hole entropy is the number of partons up
coefficients of order unity. One can argue that the entropy
the partons is also of orderN if they are effectively
distinguishable,4 since each parton has several polarizat
states. Notice that this argument works uniformly in all d
mensionsD, and does not require independent conjectu
about the SYM thermodynamics. The basic assumptions
simply ~1! mean field theory~3.1! is applicable; and~2! the
system is in a minimal uncertainty bound state.

As we saw in the last section, sinceS;N, one is again at
the transition between black holes and black strings. Ho
ever since the above analysis only concerns the quan
mechanics of the zero modes, it approaches the black h
black string transition from the black hole side, rather th
the black string side as in@14,15#.

4Recently, the importance of using Boltzmann statistics w
stressed in@20#.
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57 4939COMMENTS ON BLACK HOLES IN MATRIX THEORY
IV. ZERO MODE DYNAMICS AND THE HOLOGRAPHIC
PRINCIPLE

What can we expect for the zero mode quantum mech
ics as we increaseN to move away from the transition point
The answer depends crucially on what happens to the bo
state’s characteristics, in particular its transverse size, as
boost it by increasingN. The strong holographic principle
would predict that the transverse sizer increases withN,
leaving us with two scales—the holographic sizer h and the
Schwarzschild radiusr 0 . This seems awkward, since slo
scattering experiments will presumably depend only onr 0
and not onr h .

A set of classical solutions studied by Hoppe@21# reveals
a more canonical boost behavior, at least at the class
level. These solutions are matrix discretizations of tho
found in @22#. Consider the ansatz

Xi~ t !5x~ t !r i
j~ t !Mj , ~4.1!

with x(t) an overall pulsation;r i
j (t)5exp@w(t)V# a rotation

of constant angular momentumL5R21x2(t)ẇ(t); andMj a
fixed matrix

MW 5
1

2&
„U1U21,2 i ~U2U21!,V1V21,

2 i ~V2V21!,0, . . . ,0… ~4.2!

in terms of the ’t Hooft matricesU, V, satisfying UV
5vVU, v5exp@2pi/N#. One may take the rotation to hav
MW as an eigenvector,V2MW 52mMW . The algebra of the ’t
Hooft matrices gives

(
j

@@Mi ,Mj #,Mj #5lMi , l52 sin2~p/N!,

~4.3!

and the solution to the classical equations of motion of
matricesXi boils down to that of the overall pulsation

ẍ

R
1lRx32

mRL2

x3 50. ~4.4!

~In this section we measurex in Planck units.! At large N,
one hasl;N22, and the conserved energy is simply

ELC;NF ẋ2

R
1

R

N2 x41
mRL2

x2 G . ~4.5!

SinceELC}1/N, the relevant scales arex;1, t;N/R, and
L;1/N. In other words, the transverse size remains const
and the motion slows down as the system is booste
canonical boost behavior. Of course, the true test of the
tem vis àvis the strong holographic principle is what ha
pens when quantum fluctuations are turned on. Naiv
these ought simply to lead to the gravitational interactio
between the various bits of membrane. There will, of cour
also be zero-point fluctuations which grow without bound
the cutoffN is removed; however, these do not usually affe
the size of objects as seen in scattering experiments
n-
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e
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e
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y,
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s
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th

slow heavy probes. For example, macroscopic strings ap
local down to the string scale@23#, and D-branes in slow
relative motion may be localized down to the Planck sc
and beyond@24#. In the largeN limit, the quantum mem-
brane considered here should resemble aD-two-brane.

A membrane is not a black hole, of course; from~4.5!, its
size scales asM 2R/N;x4R/N; the mass is quadratic in th
radius in any dimension~as opposed toMBH;r 0

D23! simply
because the mass is the membrane area in Planck u
However, one could imagine assembling a black hole from
sufficient number of little nuggets of membrane, sayk of
them, each looking semiclassically like~4.1!, and collapsing
in on one another under gravitational attraction. In oth
words, the full kN3kN matrix Xi would decompose into
blocks of sizeN3N of the form ~4.1!; the gravitational at-
traction between different blocks comes from integrating
the off-diagonal blocks. The entire system appears to o
canonical scaling under boostsN→eaN.

V. DISCUSSION AND SPECULATIONS

Let us now consider what happens to the black hole st
in matrix theory in the limitN@S. The following remarks
will necessarily be rather speculative, since reliable calcu
tions are not yet available in this regime. If the transve
size remains constant under boosts, as suggested by the
ceding analysis, then the partons become denser asN in-
creases. It seems likely that strongly interacting clusters
form. Within each cluster, the Born-Oppenheimer appro
mation will no longer be valid. This is because a given m
trix parton is close enough to the other partons in the clu
so that the non-Abelian degrees of freedom can no longe
consistently integrated out. The coherent interaction withi
cluster should be more ‘‘membrane-like’’ than ‘‘graviton
like,’’ since the commutator term in the matrix Hamiltonia
is the membrane area element. The interaction between c
ters might still be treatable in the Born-Oppenheimer a
proximation.

The typical size of a cluster can be estimated using Ha
ing radiation. In the rest frame of the black hole, the Haw
ing radiation has characteristic wavelength of order
Schwarzschild radiusr 0 . A boost to the transition pointP
5S/R is such that the longitudinal component of this rad
tion is Lorentz contracted to the box sizeR @14#. An addi-
tional boost toP5N/R (N@S) will make the characteristic
longitudinal momentum of a Hawking quantumpi5N/SR.
In matrix theory, this corresponds to a~threshold! bound
state ofN/S partons. Partons in the black hole must therefo
be strongly correlated over domains containing appro
mately this many partons. This observation leads one to
pect that there will be roughlyS clusters, each with approxi
matelyN/S partons.

For a fixed mass black hole, the energyELC5M2R/N
decreases asN increases and the system becomes cold
Since the partons are becoming denser, colder, and m
strongly interacting, one can think of this phase as a ‘‘par
liquid’’ ~in contrast to the ‘‘gas’’ phase of the Born
Oppenheimer approximation that governs well-separa
partons!. If the transverse size remains constant under boo
as suggested above, the typical virial velocities decreas
1/N. For large N, this appears to violate the uncertain
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bound~3.2!. However, the bound on the velocity of a clust
of N/S partons is decreased byS/N ~since the mass is
larger!, so there is no contradiction. Of course, individu
partons’ velocities cannot violate the uncertainty princip
In order not to contribute too much to the overall energy,
partons within each cluster or domain must be very nearl
their ground state~so their energy approximately cancels b
tween bosons and fermions due to supersymmetry!. This is
in accord with the assertion of@14#, that most of the partons
must be in their ground state forN@S.

The total energyELC will be distributed among kinetic
energy of the clusters, gravitational potential energy~after
integrating out fast non-Abelian modes!, and ‘‘membrane
stretching energy’’ from the slow non-Abelian modes
nearby ~and strongly correlated! partons. Computing the
properties of the black hole in this regime will require u
derstanding how the system apportions its energy bud
among these, and perhaps other, aspects of the dynami

We have argued that matrix theory can describe so
essential properties of Schwarzschild black holes. This m
seem surprising in light of recent indications that mat
theory has difficulty reproducing eleven dimensional sup
gravity @8,9#. We believe that the black hole results indica
that matrix theory does capture the essential degrees of
dom of the theory. It is possible that some detailed aspect
the matrix dynamics may need to be modified, but the gr
features are not likely to be affected.

We believe our analysis contains other lessons about
trix theory as well. It shows that the localized states of m
trix theory are encoded in the zero mode dynamics of
generalized SYM theory that defines matrix theory in a p
ticular compactification. All the nonzero modes which a
the source of ultraviolet difficulties in the quantum theo
~and an apparent stumbling block in defining the theory
compactifications to low dimensions! are longitudinally
stretched objects which must decouple in the limit of inter
N, R→`. Since the great success of matrix theory seem
stem from its ability to exhibit all the dualities ofM theory,
to
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one might wonder whether there is a truncation of the
namics to the zero mode sector which respects the dual
while throwing away all the troublesome aspects of the n
zero mode dynamics. What would change with dimens
would be the combinatorics of the bound states of vario
fluxes.

The zero mode sector of matrix theory at finiteN is ~so
far! a theory of the electrically charged objects ofM theory,
containing a finite number of gravitons and/or discretiz
membranes. A complete theory must include the fluxes c
responding to the magnetic objects as well—the five-br
and six-brane~Kaluza-Klein ‘‘monopole’’!. Since these ob-
jects are solitonic in nature, it is unlikely that they will b
present in the finiteN theory; rather, they are ‘‘condensates
of a nonperturbative number of partons. This may expl
the difficulties encountered to date with matrix theory onT5

with transverse five-branes, and the apparent lack of a c
didate for the theory at finiteN on T6 and beyond. While the
scaling analysis of Sec. III seems to work in any dimensi
it is likely that a proper understanding~especially forN@S!
will have to incorporate these fluxes in the dynamics forD
<6, where the continuumN→` theory may be needed.

Even without an understanding of such magnetic flux
there remains a fascinating condensed matter problem to
termine the thermodynamics of the ‘‘parton liquid’’ whos
properties appear to govern black hole thermodynamics
quantum gravity. Reproducing properties of black ho
when N@S will teach us a great deal about the Loren
covariance properties of matrix theory, and should be so
what simpler than the threshold bound state problem
gravitons.
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