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The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using
near-extremab -brane thermodynamics is examined. It is found that the regime in which this approach is valid
actually describes black strings stretched across the longitudinal direction, near the transition where black
strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other
(black hole side of the transition is that of the zero modes of the corresponding super Yang-Mills theory. A
suggestive mean field theory argument is given for the entropy of black holes in all dimensions. Consequences
of the analysis for matrix theory and the holographic principle are discugS8856-282198)06408-X
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I. INTRODUCTION In two recent interesting papers, Banks, Fischler, Kle-
banov, and Susskind 4,15 have argued that the entropy of
String theory has recently provided a statistical descrip-Schwarzschild black holes can be computed from the SYM
tion of many aspects of black hole thermodynaniics re-  theory of near-extremal branes, at the special point where the
views, seg1]). D-braneq 2] have enabled a precise compu- number of matrix partonsl equals the entrop®. There are
tation of the spectrum and interactions of a wide variety ofthree main claims:
near-extremal chargd@®] and rotatind 4] holes. In addition, (1) To fit a large black hole of size,>R into the longi-
the black hole correspondence principtd gives a general tydinal box, one must boost it so that its longitudinal size is
relation (though not as preciséetween the entropy of es- contracted:
sentially any black hole and that of weakly coupled strings
andD-branes. However, in all cases, the quantum states are
described in weakly coupled string theory, and the connec- R>AXgy~ @ ro. (1.
tion to large black holes is obtained by increasing the string N
coupling and taking a low energy semiclassical limit. In or-
der to_obtain.a description of the.quantum states of a black (2) Therefore N>N,~Mrg~S N~S is the minimal
hole directly in the black hole regime one presumably needs mper of matrix constituents required to describe the states
a nonperturbative formulation of the theory. Matrix theory of piack holes. At this lower bound, the black hole “just fits
[6] purports to be such a formulation in the discrete light;side the box”"; moreover, this value is “optimal” in the
cone gaugd7]. In- its eleven dimension_al incarqation, the ganse of the renormalization group, in that increasini-
quantum mechanics &f D-zerobranes with coupling ap-  5quces a needlessly large number of degrees of freedom,
pears to reproduce eleven dimensional supergravitjth most of which are in their ground state.
one direction compactified on a circle of radiRsand the (3) One can apply SYM statistical mechanics to calculate
total momentunP =N/R. We will refer toN as the number  he thermodynamic properties of the system at this threshold.
of matrix “partons.” Cpmpacnfylng further d|men3|c_)ns For D=8 it was argued ifi14] that the thresholtN~ S was
leads to a super Yang-MilkSYM) theory. The SYM Hamil- st on the borderline of validity of this approach, since the
tonian yields the invariant mass of the system Wa  gffective temperature was so low that the typical wavelength
=M?“R/N. This prescription can be motivat¢io,11] via a  \yas comparable to the size of the systémthe appropriate
c_ham of .dualmles. Given tha’g the maitrix theory pre_scrlptlonhomnomy sector corresponding to multiply wrapped branes
(in the dimensions where it is knowiis so closely tied to A ¢loser inspection yields a number of puzzles. First of
physics ofD-branes in the large charge limit, it is not sur- 5| e will show that black holes do not contract longitudi-
prising that theD-brane results on black holes can be carriedya|ly when boosted. If they did, it is likely that there would
over quite successfulljl2,13, although the reinterpretation pe 3 problem with black hole thermodynamics. This is be-
of the calculations from this perspective is quite illuminating. cayse the transverse size is presumably invariant, so a Lor-
In particular, one is led to the idgd3] that the statistical entz contraction would cause the horizon area to decrease.
mechanics of(generalizefl SYM theory could reproduce Byt this area is related to the black hole entropy which is a
black hole thermodynamics. physical quantity and should not change under the boosts.
We will see that the horizon remains fixed and spherical with
radiusr, because the boost is effectively undone by the in-
'Recent calculation8,9] indicate that there are subtleties in es- finite gravitational redshift there. How then can a large black
tablishing this connection. hole fit inside the longitudinal box? Secondly, the gluons and

0556-2821/98/5(B)/49357)/$15.00 57 4935 © 1998 The American Physical Society



4936 GARY T. HOROWITZ AND EMIL J. MARTINEC 57

other excitations being counted in the SYM thermodynamicscale canonically with longitudinal boosts, and therefore ap-
carry field momentum, and in the matrix dictionafgf. pear to provide a counterexample to the claim$&df

[16]), the field momentum is We conclude in Sec. V with some speculations about how
our results extend to the reginé>S, and discuss some

1 Ry general consequences of our _analysis for matrix theory apd

Pi:f TOiocz—le (1.20  black holes. Since our goal is to understand how matrix

i pl theory reproduces the familiar scaling of black hole entropy

and size with mass, we will often ignore numerical factors of

whereL; are the lengths of the compact dimensichsare ~ order one, such as the solid angle of spheres, etc.
the lengths of the dual torus, arg, is the eleven dimen-
sional Planck length. So these SYM momentum modes on |I. BOOSTING BLACK HOLES AND BLACK STRINGS
the dual torus represent longitudinally stretched membranes ] o ) ] )
in the original spacetime, which are translationally invariant. L€t us begin by considering B-dimensional spacetime
They cannot represent a localized object like a black hole. With one direction compactified on a circle of radiBsat

We resolve these puzzles below. While a boosted blackinity. A Schwarzschild black hole in this spacetime corre-
hole does not contract, it does expand the geometry near tfPONds to an infinite periodic chain Bf-dimensional black
horizon. In Sec. Il below, we show that this effect is suchholes in the original uncompactified space, and is not trans-
that, precisely aN=S, the geometry expands to the extent lationally invgriant along the circle. A black string is t.he
that the longitudinal box sizat the horizonis preciselyr,. ~ Product of a circle and aX—1)-dimensional Schwarzschild
Thus it is not the black hole that shrinks to fit in the box, black hole. It is easy to show that for equal masses, th(_a black
rather the box which expands to accommodate the blacRole has greater entropy than the black string whenBvisr
hole. Moreover, it is clear that when the black hole fills thegreater than the Schwarzschild radius of the black hglen
box, it is on the verge of becomingkdack stringstretched fact, the black string is I_<nown to be unstable in th|§ regime
across the box. Indeed, for zero momentum, it is known thak17]- For R<ro, the chain of black holes becomes indistin-
a black string becomes unstable whét exceeds its guishable from the black string, which is now staple.
Schwarzschild radiu§l7]. We give an entropic argument SO far we have assumed that the momentum is zero. We
that the same phenomenon happens for the boosted bla8@W azsk how things change when we apply a boost along the
holes and black strings. The analysis[&#,15 actually de- ~ circle” For the black string, one is boosting along a symme-
scribes black strings, close to the transition point; we will sedy direction, so the metric is the same up to the usual coor-
that this corresponds thl slightly smaller tharS. As N is  dinate substitutiordt=dx,_,=e*#(dt=dxp_,). The rel-
increased, the temperature of the SYM ensemble decreasé&yant piece of the metric transforms as
and forN>S the system is frozen into the dynamics on the Ddr 5 | a2 5 )
space of zero modes. Indeed, these zero modes on the dual —[1=(po/p)~ "]dt*+dXp_;=—dt*+dx5_;
torus represent objects which are not longitudinally stretched D-4 ; 2
in the original spacetime, and are therefore the appropriate *(po/p)™"Lcoshpdttsinh fdxp 4 ]% (2.1
degrees of freedom to describe black holes rather than bla

> %ith the transverse part of the metric unchanged. If we peri-
strings.

odically identify the coordinatep_;, the proper distance

rolgcﬁi?\& Iiltl’f:’;?nresﬁoﬂald?;rth:r t:/Zlesglsor(]jﬁp(\)/vn:]:ri, zaepr-o along this circle grows from 2R at infinity to 2R coshpg
P 9 ghtly farg at the horizonp=py. In a sense, the momentum exerts a

mode quantum mechanics should prevail. A simple mean » T
field theory analysis in the spirit ¢6] yields the black hole h%rrtiezs;#re on the geometry causing it to expand near the

sizer, and entropys as a function of the magd, uniformly Now consider théD-dimensional black hole. If this were

for any dimension D . - . X
This result leads us in Sec. IV to a reexamination of the ordinary object, one might expect it to Lorentz contract

“holographic principle” [19]. In its mildest form(which we when boosted. But as mentioned in the Introduction, this
1olograp “p P s . . L would lead to problems with black hole thermodynamics.
will call the “weak holographic principleY, this principle

. ortunately, black holes do not Lorentz contract. This fol-
states that the dynamics of the theory depends only on da Bws from the fact that every cross section of the event ho-
defined on a D —2)-dimensional spatial surface. This may

) . . Lo .2 rizon has the same area. So in every reference frame, the area
well be true in the matrix model, given the intricate relation

: o f the horizon is th me. T n explicit exampl n-
between the dynamics of the transverse and longitudinal d of the horizon Is the same. To see an explicit example, co

grees of freedom embodied in the matrices themselves. Thg'(;joerrd;[g:t;%ur dimensional Schwarzschild metric in isotropic
more virulent form of the conjectur@vhich we shall call the

“strong holographic principle asserts that the physical size Fora)2
of objects increases with boosting. This idea is motivated by gg2= _( 0) di?+
Bekenstein’s proposal that objects should respect a bound of r+ro

one bit of information per Planck area, and was in fact one of 2.2

the prime motivations for matrix theory. It is not a necessary

consequence of the weak holographic principle, nor is it nec-

essary in order to account for black hole entropy in matrix ?The compactification is different after the boost. Strictly speaking
theory. We construct examples of objects in matrix theory—one applies the boost to the uncompactified spacetime, and then
ensembles of discretized membranes, to be specific—whicidentifies points along the new spatial direction.

r 4
1+ TO) [d5+dp?+ p?d¢?]
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wherer?=7%+ p2. These coordinates cover both asymptoti-at the horizon the size ig,—indeed the box just expands to

cally flat regions, with the horizon at=r,. We now want to

accommodate the black hole for this magic value of the

apply a boost along the direction. Since this is not a sym- boost.

metry direction, there is some ambiguity about how one de-

Now let us compare this with the behavior of a boosted

fines the boost in the interior of the spacetime. A naturablack string stretched across the longitudinal direction. Its

choice is to simply setit+dz=e**(dt=dz). The new ho-
rizon geometry defined bl=const,r =r, is the surface in

ds’=16cosit adz?+dp?+ p?d¢?] (2.3
given by
r3=r2=(coshaz+sinh at)?+ p?. (2.4
Differentiating this equatioriwith t constank yields
Zd 2
(coshadz 2:_92_”2 (2.5
ro—p
so the induced metric on the horizon is
2 2
rod
dsz=16( op +p2dd)2) 2.6
ro—p

energy, momentum, and entropy #f]
Estring™| &ngRpg_4[a+ cosh 23],

Ping= i "L?Rpg ~* sinh 28, (2.9

Sstring™ | ;:IngRp(?73 cosh,

wherea is a constant of order one. The black string will be
stable provided the length of the horizon is less than its
Schwarzschild radiug,. Since this length increases leff
(for large B) as we boost, the instability begins whef
~po/R. This impliesP~S/R. So we see from both black
hole and black string considerations, that the condifibn
=S (whereP=N/R) marks the transition between these two
configurations. Clearly, wheR=S/R, if the black hole and
black string have the same momentum, then they have the
same entropy as well.

One might be puzzled by the different scaling of the en-

which is completely independent of the boost and describes &gy and momentum if2.7) and (2.9 under a boost. The

round sphere. So the event horizon does not Lorentz conitference arises due to what is implicitly held fixed.(17),
tract. This is different from boosting a sphere in flat spaceyne starts with an infinite chain of black holes of ma&sn

time, since then the co8k factor in(2.3) is absent(lt com-
bines with a—sini? a factor coming fromg;;. It is the

the spacetime with the longitudinal direction uncompactified.
If the initial separatiorfasymptotically is R, after the boost,

infinite gravitational redshift at the horizon which removes energy of each black holeié cosha and the new sepa-

this cancelling term.

ration will be Lorentz contracte®/cosha. If we insist that

Having established that the black hole does not Lorent3, e senaration after the boosRs there are two options. One

contract, we now ask if the proper length of the circle ex-
pands near the horizon. It is clear frg@3) that the answer

is yes. In fact, att=0 the horizon is given byr3
=coslt aZ+p?, so in terms of the coordinateg,p), there

can periodically identify afte©(coshe) black holes are in-
cluded. This produces another factor of caesn (2.7) and
(2.8 so that the energy, momentum, and entropy now scale
like the black string2.9). Alternatively, one can increase the

is an apparent Lorentz contraction. It is the expansion of the,ig) separation between the black holesRi@osha, which

metric nearr=ro which ensures that the horizon remains jhgyres that the separation after the boost wilRo& his was
spherical. Thus the net effect is similar to a real Lorentzimpncmy assumed in(2.7) and (2.8).

contraction: One can fit large black holes into small compac-

tified spaces by boosting.

In terms of matrix theory, the natural variables to hold
fixed areR and the invariant madd .2 The light cone energy

We now turn to eleven-dimensional supergravity compac;g E.c=E—P andP=N/R, soM2=E, cN/R. Eliminating

tified to D=11—d dimensions on a torug? of volumeL®.

Consider a black hole of masél=1,°L%g " which is

given a large boost in one of th2 directions which is then

compactified on a circle of radiuR. (The factorIF?'/Ld
=Gp is just the D-dimensional Newton constantThe
boosted black hole has energy and momentum

Ehotle=M cosha=1,°L%5~° cosha,

(2.7

Phole=M sinh a=I ’;9Ldr873 sinh

the parameters,, «a, py, and B in favor of P=N/R and
ELC: E_ P yleldS

Shote™ (1 g|/Ld)1/(D_3)M(D—Z)/(D—3)

[E c|(@-2m2D-4)
SstringNNl/Z(I?JI/Ld)ll(D 4)(?)

_ N—l/(D—4)(|gI/Ld)l/(D—4)M (D-2)/(D-4)

(2.10

along the longitudinal direction. The boost does not change

the number of internal states of the hole, which remains

Shole™ i L% g 2. (2.9

Now choose the boost so th@®=S/R. This fixes e
~ro/R, and since the asymptotic longitudinal box siz&is

SWe assume thaR is the radius of a spacelike circle, as[ii.
However, since we are always in the regime of very large boosts,
the distinction(in this Lorentz framgbetween spacelike and light-
like compactification in the longitudinal direction is not expected to
be important.
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If Shole= Sstring fOr some choice of madd and boosN, then The dynamics determined by this Lagrangian is rather
clearly increasing\ causes the black hole to have greatercomplicated, but mean field theory arguments indicate that
entropy and decreasiny causes the black string to have there are solutions where the partons remain in a bounded
greater entropy. region of space of radiug, for an extended period of time.
This behavior is perfectly compatible with our expecta-The virial theorem then tells us that the two terms in the

tions from SYM statistical mechanics. There, for fiX@énd  effective Lagrangian are of the same order. We will assume
M, E . c=M?R/N decreases asN/ i.e., the ensemble be- that the partons saturate the uncertainty bound:

comes colder with increasing. At high temperature, corre-
sponding to smalN, the SYM theory is roughly a gas of rov

interacting supergluons. As mentioned in the Introduction, =+ L (3.2
these modes correspond to longitudinal membrafzes
fivebranes ifd=4) in the original spacetime, and thus should
describe states of a black string. This is the situation de
scribed for instance ifil3]. As we increaséN, this descrip-
tion remains valid until the temperature of the gas drops t
the point that the thermal wavelength is comparable to th
effective size of the dual torus on which the SYM is defined.
Then the gluonic degrees of freedom freeze out, leaving
quantum mechanics on the space of zero modes. The statis- N~(I;°LNrg 2. (3.3
tical mechanics is that of this quantum mechanical system
(including the various global fluxes on the internal tgrus The typical energy scale is then
These states describe objects which are not longitudinally
wrapped in the original spacetime, and which can thus be M2
localized in the longitudinal direction. This system describes Ec= N
black hole states. From the above analysis, we see that the
transition occurs whehN~S.
The calculations 0{14,15 attempt to exp|ain the black Ieading to a typlcal size of the bound state in terms of the

hole entropy by approaching the black hole—black stringmass:
transition from the “wrong” side, using the equality of the
density of states at the transition to infer the entropy on the M~(I&9Ld)r8’3. (3.5
other side. The procedure is similar in spirit to the black hole
correspondence princ!ple, in which one infers_ the blgck ho'.eSinceIF;ngzllGD, we recognize the relation between the
;pect][um from tf;}e string §pefctrum by ma:}chmﬁ the'r(;jen.s"mass and Schwarzschild radius of a black hole. Now con-
es of states at the transition from one to the other, and usingye - ;¢ mass-entropy relation fdd-dimensional black
the known string spectrum. Here however, one is on muc oles; using3.3), (3.5), we have
shakier ground; much less is known about how to compute ' AT
the SYM entropies from first principlgglthough the case of
3+1 SYM corresponding t® =8 is on a somewhat firmer
footing). 3.9

[Since(3.1) is derived under the assumption of nonrelativis-
tic motion, v<<1, the size of the bound state must be much
arger than the longitudinal box size as measured at infinity.
LiIhese assumptions determine a relation betwdend the

size of the bound state:

R
~(I5°LR)rg ™, (3.4

S~(|F]ng)ll(D_g)M(D_Z)/(D_3)~|,;9Ldrg_2~N_

Ill. A DIRECT APPROACH TO BLACK HOLE ENTROPY This is already clear front3.3—the r_lumber of partons is
the surface area of the bound state in Planck units. In other

One might hope to arrive at the black hole entropy morewords, the black hole entropy is the number of partons up to
directly, by an analysis of the zero-mode quantum mechanicsoefficients of order unity. One can argue that the entropy in
that begins to dominate just above the transition. Indeed, the partons is also of ordeN if they are effectively
mean field analysifg] appears to capture the essential phys-distinguishablé, since each parton has several polarization
ics. When the matrix partons are sufficiently far apart, thestates. Notice that this argument works uniformly in all di-
“fast” off-diagonal matrix element dynamics can be inte- mensionsD, and does not require independent conjectures
grated out. Treating the partons in mean-field approximationabout the SYM thermodynamics. The basic assumptions are
the one-loop effective Lagrangian for the zero modes simply (1) mean field theory3.1) is applicable; and?2) the
matrix theory compactified ofiY, with D=11—d) has the system is in a minimal uncertainty bound state.

structure As we saw in the last section, sinBe-N, one is again at
the transition between black holes and black strings. How-
2 N2|9 4 . .
~Nv plV ever since the above analysis only concerns the quantum
Lef= R RO 4 (31 mechanics of the zero modes, it approaches the black hole—

black string transition from the black hole side, rather than
The parton mass is R/due to the origin of matrix theory in the black string side as ifi4,15.
ten-dimensionaD-zerobrane physics. Recall that the factor
Ig|/LdEGD is just theD-dimensional Newton constant, so
the second term can be interpreted as the gravitational self*Recently, the importance of using Boltzmann statistics was
energy of the partons due to their relative motion. stressed if20].
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IV. ZERO MODE DYNAMICS AND THE HOLOGRAPHIC slow heavy probes. For example, macroscopic strings appear
PRINCIPLE local down to the string scalg23], and D-branes in slow

What can we expect for the zero mode quantum mechanr—elatlve motion may be localized down to the Planck scale

. . o . and beyond 24]. In the largeN limit, the quantum mem-
ics as we increas to move away from the transition point? X
; brane considered here should resemble-awo-brane.
The answer depends crucially on what happens to the boun . i .
; S . ) ; A membrane is not a black hole, of course; frofb), its
state’s characteristics, in particular its transverse size, as we

. ) . ; o Size scales aM?R/N~x*R/N; the mass is quadratic in the
boost it by increasindN. The strong holographic principle S . . D_3\ -
would predict that the transverse sizeincreases withN, radius in any dlmens_lofas opposed tMBHNrO. ) simply .
leaving us with two scales—the holographic sizeand the because the mass is the membrane area in Planck units.

Schwarzschild radius,. This seems awkward, since slow However, one could imagine assembling a black hole from a

scattering experiments will presumably depend onlyrgn sufficient numbgr of I'ttl.e nuggets c_)f membrane, Sapf
and not onry,. them, each looking semiclassically liké.1), and collapsing

. : : in on one another under gravitational attraction. In other
A set of classical solutions studied by Hogd24] reveals N .
a more canonical boost behavior, at least at the classic Iorcli(s, t?e.fu:ll'i\lﬁ k;\lthma:ctrlx )24 ‘gm#]d deco.rtngoselln:o
level. These solutions are matrix discretizations of those oo Of SIz€  of the form (2.2, the gravitationa’ at-
found in[22]. Consider the ansatz raction between different blocks comes from integrating out
the off-diagonal blocks. The entire system appears to obey

Xi(t)=x(t)rij(t)Mi, (4.1  canonical scaling under boodts—e“N.
with x(t) an overall pulsationrij(t) =1e>2<F{<p(t)Q] a rotation V. DISCUSSION AND SPECULATIONS
of constant angular momentulm= R~ *x*(t) ¢(t); and M’ a
fixed matrix Let us now consider what happens to the black hole states

in matrix theory in the limitN>S. The following remarks
will necessarily be rather speculative, since reliable calcula-

M= >3 (U+Uh—i(u-u=hH,v+vH tions are not yet available in this regime. If the transverse
2v2 size remains constant under boosts, as suggested by the pre-
—i(V-v1H0,...,0 (4.2)  ceding analysis, then the partons become denseM as-

creases. It seems likely that strongly interacting clusters will
in terms of the 't Hooft matricedJ, V, satisfying UV ~ form. Within each cluster, the Born-Oppenheimer approxi-
=wVU, o=exd27i/N]. One may take the rotation to have mation will no longer be valid. This is because a given ma-

M as an eigenvectof)? M= — u M. The algebra of the 't trix parton is close enough to the other partons in the cluster
Hooft matrices gives so that the non-Abelian degrees of freedom can no longer be

consistently integrated out. The coherent interaction within a
) cluster should be more “membrane-like” than “graviton-
; (M M MI=AM;,  N=2sirf(7/N), like,” since the commutator term in the matrix Hamiltonian
(4.3 is the membrane area element. The interaction between clus-
ters might still be treatable in the Born-Oppenheimer ap-
and the solution to the classical equations of motion of theproximation.
matricesX' boils down to that of the overall pulsation The typical size of a cluster can be estimated using Hawk-
ing radiation. In the rest frame of the black hole, the Hawk-
ing radiation has characteristic wavelength of order the
uRL2 Schwarzschild radiusy. A boost to the transition poin®®
§+)\Rx3— 3 =0. (4.4 =S/R is such that the longitudinal component of this radia-
tion is Lorentz contracted to the box sike[14]. An addi-
(In this section we measure in Planck units). At large N, tional boost toP=N/R (N>S) will make the characteristic
one has\~N~2, and the conserved energy is simply longitudinal momentum of a Hawking quantupp=N/SR
. In matrix theory, this corresponds to (¢hreshold bound
¥ R _, pRL? state ofN/S partons. Partons in the black hole must therefore
Elc~N|=+ = X"+ ——|. 45 | ; e .
R N X e strongly correlated over domains containing approxi
mately this many partons. This observation leads one to ex-
SinceE, = 1/N, the relevant scales ase~1, t~N/R, and  pect that there will be roughl$ clusters, each with approxi-
L~ 1/N. In other words, the transverse size remains constantnately N/S partons.
and the motion slows down as the system is boosted— For a fixed mass black hole, the ener§yc=M?R/N
canonical boost behavior. Of course, the true test of the syslecreases abl increases and the system becomes colder.
tem vis avis the strong holographic principle is what hap- Since the partons are becoming denser, colder, and more
pens when quantum fluctuations are turned on. Naivelystrongly interacting, one can think of this phase as a “parton
these ought simply to lead to the gravitational interactiondiquid” (in contrast to the “gas” phase of the Born-
between the various bits of membrane. There will, of courseDppenheimer approximation that governs well-separated
also be zero-point fluctuations which grow without bound aspartong. If the transverse size remains constant under boosts,
the cutoffN is removed; however, these do not usually affectas suggested above, the typical virial velocities decrease as
the size of objects as seen in scattering experiments with/N. For largeN, this appears to violate the uncertainty
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bound(3.2). However, the bound on the velocity of a cluster one might wonder whether there is a truncation of the dy-
of N/S partons is decreased b§/N (since the mass is namics to the zero mode sector which respects the dualities
largen, so there is no contradiction. Of course, individual while throwing away all the troublesome aspects of the non-
partons’ velocities cannot violate the uncertainty principle.zero mode dynamics. What would change with dimension
In order not to contribute too much to the overall energy, theyould be the combinatorics of the bound states of various
partons within each cluster or domain must be very nearly ifluxes.
their ground statéso their energy approximately cancels be-  The zero mode sector of matrix theory at finkeis (so
tween bosons and fermions due to supersymmeliljis is  far) a theory of the electrically charged objectsMftheory,
in accord with the assertion ¢14], that most of the partons containing a finite number of gravitons and/or discretized
must be in their ground state fof>S. membranes. A complete theory must include the fluxes cor-
The total energyE ¢ will be distributed among kinetic responding to the magnetic objects as well—the five-brane
energy of the clusters, gravitational potential enefgfter  and six-brangKaluza-Klein “monopole”). Since these ob-
integrating out fast non-Abelian modesand “membrane jects are solitonic in nature, it is unlikely that they will be
stretching energy” from the slow non-Abelian modes of present in the finité\ theory; rather, they are “condensates”
nearby (and strongly correlatgdpartons. Computing the of a nonperturbative number of partons. This may explain
properties of the black hole in this regime will require un- the difficulties encountered to date with matrix theoryToh
derstanding how the system apportions its energy budgefith transverse five-branes, and the apparent lack of a can-
among these, and perhaps other, aspects of the dynamics.didate for the theory at finitsl on T® and beyond. While the
We have argued that matrix theory can describe somegcaling analysis of Sec. Ill seems to work in any dimension,
essential properties of Schwarzschild black holes. This mayt is likely that a proper understandirgspecially forlN>S)
seem surprising in light of recent indications that matrixwill have to incorporate these fluxes in the dynamics Bor
theory has difficulty reproducing eleven dimensional super<g, where the continuuril— theory may be needed.
gravity [8,9] We believe that the black hole results indicate Even without an understanding of such magnetic ﬂUXES,
that matrix theory does capture the essential degrees of freghere remains a fascinating condensed matter problem to de-
dom of the theory. It is possible that some detailed aspects Q&rmine the thermodynamics of the “parton liquid” whose
the matrix dynamics may need to be modified, but the grosgroperties appear to govern black hole thermodynamics in
features are not likely to be affected. quantum gravity. Reproducing properties of black holes
We believe our analysis contains other lessons about mgghen N>S will teach us a great deal about the Lorentz
trix theory as well. It shows that the localized states of maovariance properties of matrix theory, and should be some-

trix theory are encoded in the zero mode dynamics of thgyhat simpler than the threshold bound state problem for
generalized SYM theory that defines matrix theory in a pargravitons.

ticular compactification. All the nonzero modes which are

the source of ultraviolet difficulties in the quantum theory

(and an apparent stumbling block in defining the theory in ACKNOWLEDGMENTS
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