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We study the quantum theory of spherically symmetric black holes. The theory yields the wave function
inside the apparent horizon, where the role of time and space coordinates is interchanged. The de Broglie—
Bohm interpretation is applied to the wave function and then the trajectory picture on the minisuperspace is
introduced in the quantum as well as the semiclassical region. Around the horizon large quantum fluctuations
on the trajectories of metridd andV appear in our model, where the metrics are functions of the time variable
T and are expressed a@s’=—(a?/U)dT?+UdR?>+VdQ2?. On the trajectories, the classical relation=
—V¥2+ 2Gm holds, and the event horizdh=0 corresponds to the classical apparent horizoW s2Gm. In
order to investigate the quantum fluctuation near the horizon, we study a null ray on the dBB trajectory and
compare it with the one in the classical black hole geom¢89556-282(98)06108-9

PACS numbg(s): 04.70.Dy, 03.65.Bz, 04.60.Ds, 97.60.Lf

[. INTRODUCTION a unigue and whole system, one cannot accept the concept of
probability.
A quantum state with fluctuations of spacetime is de- Many people use the Wentzel-Kramers-BrilloyWKB)
scribed by a state vecto¥, which is a solution to the approach to quantum cosmology to overcome the problem of

Wheeler-DeWitt (WD) equationHW =0, whereH is the tme [5.6]. In the standard WKB approach, the system is
’ assumed to separate into two parts: the gravitational part as

the semiclassical system and the matter part as the quantum
) - X : ststem. The time is introduced through the identification of
energy, and there is no Schilioger evolution of the physical a0 gradient of the classical action with the velocity variable.
state; that is, we cannot get the dynamical picture from thisrhe "Hamiltonian of quantum matter plays the time develop-
equation. This is called the problem of time in quantum graving gperator and the Schiimger-like equation holds, though

ity and has been researched extensij@y In addition 0 the total system does not develop the time. Some ambiguities
this, there are other problems on the interpretation for theind difficulties of this method were pointed ofif—9.
wave function to be considerdd]. In particular, problems Though the WKB approach successfully introduces the time
occur when we apply the ordinary Copenhagen interpretatioand the Schrdinger equation, the problem of observation
to the wave function of the whole universe. The first one isremains unsolved because the standard WKB approach gives
that the observer is also an element of the quantum mechanio alternative to the stand point of the Copenhagen interpre-
cal system. The second one is that in the Copenhagen intefation.

pretation one must consider many measurements performed The de Broglie—BohntdBB) interpretatior{ 10,11] intro-

on a pure ensemble, each element of which is characterizeflices the time in a very similar way to the WKB approach,
by the same statgV'), and when a measurement of observ-whereas it takes very different interpretation to the wave
able A is made by an external observer described by theéunction. The dBB interpretation defines a kind of trajectory
classical mechanics, the measurement causes the discontirpy identifying the momentum with the gradient of the phase
ous change brought about by the collapse of the wave funaf the wave function. We shall call it the dBB or quantum
tion into an eigenstatga) with eigenvaluea. It is assumed trajectory. This interpretation seems to be able to avoid some
that the quantity(a|¥)|? gives the probability for obtaining of the problems mentioned abojt2,13. For the problem of

the measured valua. In quantum cosmology, however, the dynamical evolution, we can obtain it through the dBB
since the wave function given by the WD equation describesrajectories, which describe the quantum evolution using the
time coordinate appearing in the original Lagrangian. These
trajectories are assumed to be the real entity. The quantum

*Email address:kenmoku@cc.nara-wu.ac.jp effects on the trajectories are represented by the quantum
"Email address:kubotani@aquarius.nara-edu.ac.jp potential quantitatively which is defined by the second de-
*Email address:takasugi@phys.wani.osaka-u.ac.jp rivative of the amplitude of the wave function. By this quan-
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classical ones. If the quantum potential is small enough comblack hole under a general consideration of the operator or-
pared with the ordinary potential, the classical system is redering. In Sec. IV, we consider the implication of the wave
alized whether the observer exists or not. Therefore the dBBunction with the help of the dBB interpretation. A summary
interpretation needs no observer and no collapse of the waw&nd discussion are given in Sec. V.
function. When we apply the dBB interpretation to quantum
cosmology, it naturally represents how the classical universe Il. CANONICAL FORMALISM IN SPHERICALLY
emerges for a large cosmic scale fadib4,15,8,16. SYMMETRIC SPACETIME

In this paper, we apply the dBB interpretation to the quan-

tum geometry of the Schwarzschild black hole, which is one In t.h's section, We review the ca_nonlcal f(_)rmah_sm in the
%pherlcally symmetric spacetime in four dimensions. The

of many other interesting issues in quantum gravity, becaus etric of the general spherically symmetric spacetime is
the quantum effect may become large near the singularity ar 9 P y sy P

the horizon. The quantum mechanical property of black hole a(r)?
geometry may affect the Hawking radiatiphi7—2( and the ds?=—u(r)dt?>+ ——dr2+r2dQ? (2.3
phenomenon of the smearing of a black hole singul@fity. u(r)

In order to treat the quantum theory of the black hole,nere the each metric depends only on the space variable
Nambu and Sasal22] have proposed canonical quantum g4 d02=d¢?+sifdd¢? denotes the line element on the

gravity inside the horizon of the black hole and introduced, it sphere. The unique solution of the vacuum Einstein

the mass scale using a dust collapse model. Nakamurgqation for this metric is known as the Schwarzschild solu-
Konno, Oshiro and TomimatsiNKOT) [23] solve the WD 400 ¢or

equation with the limitation of the mass eigenstate to study
the quantum fluctuation of the horizon and found an exact
wave function for the minisuperspace model of the interior a=1, and u(r)=1-——, (2.2
geometry of the black hole. They researched the quantum

effect on horizon geometry on the basis of the WKB ap-whereG denotes the gravitational constant. The integration
proach. The quantum fluctuation may become very larg@onstanim represents the asymptotically observed mass of a
near the horizon, where the WKB method cannot be adoptedpherically symmetric matter. The metric becomes singular
In order to estimate quantum fluctuation quantitatively be\yhenr=0 andr=r =2Gm. Herer=0 is a real physical

yond the semiclassical_ region, we study the _dBB interpretasingwarity, whereas =r is a coordinate singularity and
tion for the wave function of the Schwarzschild black hole. corresponds to the event horizon. Inside the black hole (
In the classical theory, a spherically symmetric gravita—<rg), the metricg,, becomes positive ang}, negative, and

tional field in empty space must be static with its metricsg the roles of time and space coordinate are interchanged.
given by the Schwarzschild solution by the Birkhoff theorem\ye denote this situation as

[24]. In order to study the quantum theory, the canonical

formalism must be formulated within the horizon region and t—R, r—T, u(n)——-U(T), a(r)—a(T).

the mass function must be expressed by canonical variables. (2.3
The mass eigenvalue equation plays an important role in o ) . )

order to argue the quantum theory of empty space. Instead a'fhen. the interior metric of a spherically symmetric black
imposing the momentum constraint, the mass eigenvaluBole is represented as

equation guarantees the diffeomorphism invariance not only a(T)?

inside but also the outside of the horizon. The mass eigen- d<2=— dT2+U(T)dR 4+ V(T)dQ2, (2.9
value equation strongly restricts the solution space of the U(T)

WD equation and plays the role of a kind of initial or bound-
ary condition. We use the canonical definition of mass func
tion considered by Fischler, Morgan, and Polchifg&] and

by Kuchar[26], who has examined the canonical quantiza-
tion formalism by Dirac[27], and by Arnowitt, Deser and
Misner [28] for the spherically symmetric spacetime. They
have shown that mass function can be described by the ca- a=1, U=-
nonical variables and is a constant of motion. We solved the
WD equation and the mass eigenstate equation simulta- The vacuum Einstein action
neously and obtained the general wave function, which is
essentially the same as that by NKOT but the general form of 1
operator ordering is taken into account. We apply the dBB S= RJ d*xy—=@g“R (2.6
interpretation to this wave function and obtain the dBB tra-
jectories on the minisuperspace, which represents the quags written in the form of(3+1) decomposition in terms of the
tum feature of the geometry of the Schwarzschild black holearnowitt-Deser-MisnefADM) analysis as
We investigate the light ray on this quantum geometry.

This paper is organized as follows. In Sec. I, we review
the canonical formalism in spherically symmetric spacetime. S= J dTL, 27
In Sec. Ill, we perform the canonical quantization of this
system and obtain the wave function for the SchwarzschildvherelL is the Lagrangian

where the range of the variables are-0, — o <R<w, The
metricV(T) is introduced in order to represents the quantum
geometry of the spherically symmetric spacetime. In this
metric, the classical solution is written as

;
1— ?9) vi2=T, (2.5



57 de BROGLIE-BOHM INTERPRETATION FOR THE WAVE ... 4927

1 which the canonical data is given is supposed to be embed-
L=—— d3%Ny@g[K, K- (K,2)2+ )R], ded in a Schwarzschild black hole spacetime whose metrics
167G are given by Eq(2.5). This identification of the spacetime

(2.8 ith the canonical data enables us to connect the Schwarzs-

whereN andK,;, denote the lapse function and the extrinsic cMild ma;sM with the canonical data on any small piecg of
curvature, and®g and ®R denote the metric and the cur- a spacelike hypersurface. As result, the mass function is ex-

vature in three dimensional manifold respectively. By insert.PréSsed by the canonical variables,z_ as
ing the metric in Eq(2.4), the Lagrangian Eq2.8) becomes

2G 5, Z-
M= —22+(H+) +—=

. (2.17
02 2G

L gys 92
2 VT oy

Ug

L:4G +2a

: (2.9

The Poisson brackets of this mass function vkithvanishes

where the dot denotes the derivative with respect tdhe weakly:

volume of the systenn = [;dR is treated to be finite.
Here we change the variables frdhV to z, ,z_ as fol-

. 2G
lows: {H,M}p=—ifi —TI,H~0, (2.18
v
2.=UW, z =V (2.10 0

By using these new variables, the Lagrang[&y. (2.9)]
becomes the simpler and symmetric fof2®]

which shows that the mass is a constant of motion. Therefore
we can consistently impose two equations: the Hamiltonian
constraint and the mass constraMt=m (constant on the

vol 1. . canonical data.
Z% —EZ+Z_+a’ . (2.11)
Ill. QUANTIZATION
The canonical momentum conjugate 20, z_ and a are ) ) ] ) )
obtained from this Lagrangian: In this section, we proceed with the canonical quantiza-
tion treatment of spherically symmetric spacetime, that is,
Il Vo - the Schwarzschild black hole system. We do not discuss the
hn,=—=- 2Ga (2.12 Hilbert space of quantum gravity. Instead of this, we con-
i @ sider a general form of the operator ordering for the canoni-
cal operators.
o= &_ R (213 In the Schrdinger representation, the canonical momenta
e 2Ga’t ' are quantized as
- ~ A inp
Hazizo_ (2.14 H+pEZgH+Z+p:H++Z_- 3.
Ja *
The variablex plays the role of the lapse function and so its f[,ss(z, - rg)sﬁ,(z, —rg)°
canonical conjugate momentut®.14) becomes zero, which ]
is the primary constraint. The Hamiltonian for this system 0+ ihs 3.2
becomes the form A '
2G Uo bt bt . .
H=—qa| —II,II_+ 2G| (2.15  wherell andII_ are usual differential operators
Uo
The development of the primary constraif.14) by this ﬁ+=—iﬁi n :_iﬁi (3.3
Hamiltonian(2.15 yields the secondary constraint: gz, dz_’
H|,=1~0, (2.19 andp, s are integers in order to take account of the operator

hich i lled th iitoni ) ordering. The Hamiltonian constraif2.16 gives a condi-
which is called the Hamiltonian constraint. t‘on imposed on the state vectdr

Next we discuss the mass of the system. In the usua
classical theory, the unique solution of the vacuum Einstein °G
equation for spherically symmetric spacetime is the Awv=—|Z201 rfLSJrﬂ V=0, (3.4)
Schwarzschild solution with one integration constant, which Vo 2G
represents the mass of the black hole. In the canonical for-
malism for spherically symmetric spacetime, the mass can b&herer ands are arbitrary integers. This is the Wheeler-
a dynamical function, which has been introduced by Fis-DeWitt (WD) equation for the geometry of the Schwarzs-
chler, Morgan, and Polchinsk25] and extensively discussed child spacetime. In addition, we confine the state vector to
by Kuchar[26]. The spherically symmetric hypersurface onthe mass eigenvalue equation. Therefore,



4928

- 2G -~ - Z
(M=—m)W¥=| —I1,,z, 11,4+ m|W¥=0,

Uo %_
(3.9

wherep,q are arbitrary integers.

We note that the commutation relation between the

Hamiltonian and the mass operator is calculated to be

N —2ihG~ . 4iG%h?
[HlM_m]: 2 H+FH+ 3 (r_p)(r_Q)
Uo Uo
1 -
XTI . (3.9
an

Forr=p orr=q, the commutation relation vanishes weakly
and the simultaneous requirement of the WD equation and
the mass eigenvalue equation becomes compatible. In t
following, we take the case af=q. The case off=p is

obtained by replacing+« p in the following calculation.

Instead of solving the mass eigenvalue equation directly,
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whereu(z) is an arbitrary function of. By substituting the
new variableg3.12 and the wave function Eq3.14) into
Eg. (3.10, the WD equation is reduced to

19 a9 y3[1 9 1|yp-a
2t glyayYay TH NP
19 a9 (p—q)?
—yP | - — 5 _
y Z 9z 9z 2 +1|u(2)
=0. (3.15

The equation fou is the Bessel's differential equation with
orderp-q. Then we obtain the eigenfunction for the WD and
the mass eigenvalue equations

W =yP 29", HY (2) +¢,H P ((2)],

(3.1

rVv';herecl,cz are integration constants. The Hankel functions

H® H®@ are linearly independent and complex conjugate
each other.
NKOT have derived the quantum wave function for the

we consider the eigenvalue equation derived from the "neaéchwarzschild black hole. As the variableg in Eq. (3.12

combination of the Hamiltonian and the mass operator:
[L-#i(p—9)]¥=0, (3.7
where the operatdt is defined as

A 1- .o -
L=-2iG U—H+pZ+H+H_s(M—m) +A(p—S5)
0

=i[z. 11, —(z_—rTI_]. (3.9

As this equation is the first order differential equation, we

can treat it easier. If we define the wave functign

WEZ?P(Zf_rg)S‘//(ZJr ,Z,), (39)

take real values for the physical metridsV in Eq.(2.4), the
complex phase factor comes only from the Hankel function.
Note that our solution includes NKOT's soluti¢B0].

IV. IMPLICATION OF WAVE FUNCTION

NKOT have discussed the quantum evolution of the met-
ric variables from the wave function of the black hole in the
WKB approacH 23]. They further argued the possibility of a
tunneling solution across the horizon, where the quantum
fluctuation becomes large and the WKB approach is not ap-
plicable. In order to make the quantitative estimation of the
guantum fluctuation, we apply the de Broglie—BokaiBB)
interpretation to the wave function of the quantum black hole
which is obtained in the previous section. This dBB interpre-
tation has been applied to quantum cosmology by several
authors in order to solve the problems of time and the ob-

the equations we have to solve become the following two: server[8,14—18.

G O ALl IV 3.1
v—0+—+%¢—, (3.10

(L—%(p—q))y=0. (3.1D

If we make change of variables

Gh Gh
(3.12
Eq. (3.11) becomes
i =0 3.1
whose general solution is given by
P(y,2)=yP"(2), (3.14

In the following, we apply the dBB interpretation to the
wave function of the spherically symmetric black hole. For
this purpose, we rewrite the WD equation and the mass
eigenequation explicitly in terms of the real phase and the
real amplitude of the wave function:

V(z,,z2.)=R(z,,z_)exdiS(z, ,z_)/h]. (4.1

Inserting this expression into the WD equati@+), we ob-
tain the real part equation:

26 S 4 wo -
vo 9z, dz_  2G Q=0 “.2

where Q denotes the quantum potential for the quantum
black hole as

. Z__r>R, 4.3

g

and the imaginary part equation:
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9 q obtained by integrating Eq$4.11) and (4.12. We empha-
((97 - z_) ( size that they are the differential equations with respedt, to
+ Zs oo : : o
which is the notion of time parameter appearing in £4),
so that the notion of time is introduced even if the WD
If Q tends to zero, the real part of the WD equat{di?) is  equation does not depend on the time explicitly. We shall
reduced to the Hamilton-Jacobi equation for the black holecall these trajectories the dBB trajectories hereafter.
This means that the quantum potential indicates the quantum (2) Consider a statistical ensemble of the trajectories. The
effect quantitatively. In our quantum back hole model, weprobability distribution is assumed to be given BY. Note

4.9

also demanded the mass eigenvalue equd8ds. The real
part of this equation can be rewritten as

2

2G (&S Z__rg+M 0 4
02 2\ Gz 2G Q™ 49
whereMg, is defined as
2Gh%[ 9 p d q
Mom TR o P L AL
and the imaginary part is given as
d g+p .. 9S|
(&Z+ 7 Rz, 9z, =0. 4.7

If Mg tends to zero, Eq(4.5 is reduced to the classical
relation:M in Eq. (2.17 equals a constamb. ThereforeM o

that the imaginary part equation guarantees the continuity for
the probability densityR?.

(3) The quantum potentidD denotes the quantum effect
quantitatively. This is not a usual local potential because it is
defined through a wave function. is negligible compared
with the classical potential or kinetic term, the trajectory co-
incides with the classical one. This means that the quantum
system behaves like the classical one spontaneously. It is
indeed this situation that we call “classical.” Therefore, we
need no classical observer which is an essential element in
Copenhagen interpretation. On the other han@, dannot be
negligible, the dBB trajectory is modified by any quantum
probe. In this case, we should explicitly include a specific
quantum observer in the dynamical system to get informa-
tion of the dBB trajectory. When the observer becomes clas-
sical, it plays the role of an observer in the Copenhagen
interpretation which is classical by nature.

We note that in the dBB interpretation, an existence in

represents the quantum effect to the mass function. The opiature is a dBB trajectory, and therefore, predictability of

eratorL in Eg. (3.8), which is the linear combination of the

Hamiltonian and the mass operator, is easy to analyze, b
cause it is the first order differential operator. Its real an

imaginary parts are rewritten respectively as

J
(z_ rg)z p+s

R=0, (4.9

Z —
* oz,

Z —_—
oz,

J
- (Z, - rg)&T}SZO.
(4.9

Using Eq.(4.9), the quantum effect of the mass operaiby
can be expressed as proportional to the quantum pot&tial

_Z-TTg

Mo= Q, (4.10

Uo

so that all the quantum effect vanishes wiG@tends to zero.

quantum mechanics is based on the probability distribution

of their statistical ensemble. As a result, the reduction of the
Jvave function or the loss of the quantum coherence by the

measurement is not the matter with the dBB interpretation.

Next we insert the explicit form of the Hankel function
(3.16 into the general form of the wave functidd.l):

W =yPS20+5H(2)(Z), (4.13

Here we have chosen the Hankel function of the second kind
H®) with the indexy=p—q, which denotes the freedom of
the operator ordering, since from the dBB point of view it
corresponds to the classical relatioff>=T in Eq. (2.5 in
the semiclassical region, as will be seen in Fig. 2. Physically
the selection oH(? corresponds to solve the trajectory from
the singularity at the origin to the outside. On the ansatz the
dBB trajectory for the wave function of the linear combina-
tion of both H®) and H® in Eq. (3.16 is shown not to
approach a classical trajectory.

Here we introduce the dBB interpretation, which is based After inserting Eq(4131 the guantum potentia| is ex-

on the following assumptions.

pressed by the Hankel function as

(1) The trajectory picture on the minisuperspace is intro-

duced. The momenta of the quantum geometry of the black

holes are assumed to be given by

M. =— U - _ JS (4 1])
+T T 5T o ’ )
2G 9z, 2.7, 2.7
no--toy S (4.12
T 2GTT gz ’ '

z,=2,,2_=Z_

Ug

Q=-5a (4.14

4
2R ()]

Similarly, the continuity equationgt.4), (4.7), and(4.9) are
reduced to one equation:

d a
— (2) 2__g|=
&Z(leV (2 azs) 0, (415

where the velocities are determined by the classical relations

(2.12 and (2.13 with a=1. The trajectoriesZ, ,Z_ are

which corresponds to the identity of the Hankel function:
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30 Considering the asymptotic form of the Hankel function

H(2(Z)—exp —iZ) \/i for zZ>1, (4.22
2.0 ".| v nZ f .

[ we can show that th&-V*? relation approaches the classical
1.0 relationT=V*2in the semiclassical region. Near the horizon

U Z~0, the Hankel function is approximately expressed as

oo pb—— > 4

. szl —(In2)? for »=0,

L P a

| K H(VZ)(Z) 2
-1.0 \ ] | | 22" (y—1)12 ‘ itive int

: i oz= ————— for wv=positive integer.

| :; 71_2221/ P g
o Lot o S (4.23

0.0 1.0 2.0 3.0 4.0

. In the following, we discuss the case p£0 andv=1. In
Vv the case forv>1 the behavior of the physical quantities is
similar to the case for=1. We estimate th&-V'? relation

FIG. 1. TheU-V*2 relation is shown. The semiclassical region (4.2)) near the horizon using the approximate equation
is bounded by the dashed line. The event horizor=Q) and the (4.23 as

apparent horizon\(*?=2Gm) coincide on the dBB trajectory. The
natural unitsc=A=G=1 andv,=2 are taken. o
(V¥2—r )2(In|[V¥2=r )2 for »=0,

, ~ wGh
H(Z)iHu)_H(l)iH(a:ﬂ, 419 T To~ 2GH
92 9z mz - In|VY2—r | for w=1,
0
Noticing that the phas8 comes only from the Hankel func- (4.29

tion and that the derivative of the phase can be expressed by
the identity equation4.16), a couple of equations on the whereT, is the integration constant. From these expressions,

velocities(4.11) and(4.12 are obtained as we can see thal shows flat behavior for=0 and steep
behavior forv=1 near the horizorvl/2~rg. In Figs. 2a)
7 = 2hG 1 , (417  and 2b), numerical estimations on the V2 relation (4.2
mo Z,|H?(2)|? are shown. Figure 2 implies that the net region of the horizon
extends widely forr=1 whereas some part of the horizon
24 G 1 region is cut off forr=0, in comparison with the classical

relation VY?=T. We note that the inner metric for=1
4.19 cannot connect the outside metric @sdiverges near the
' horizon. In Fig. Zb), the double wavy mark denotes this
We take the ratio of Eq(4.17) to Eq. (4.18 to cancel the discontinuity between the inside and the outside. Th&
time dependence, and integrate it to getZhe-Z _ relation: ~ relation can be obtained from thé— V' relation in Fig. 1
by combining theT-V*?2 relation in Fig. 2.
Z,=co(Z_—ry), (4.19 We next estimate the quantum potent@) Eq. (4.14.

_ ) ) ) ) Using the asymptotic behavior of the Hankel function in Eg.
Wherecol is the_lntggratlon constant. With the choice %f. (4.22), the quantum potential becomes zero ¥ 1. The
=—1 this relation is translated back to that of the originalpnonzero structure, which shows the quantum effects, exists
metric variabledJ,V in Eqg. (2.4): only near the horizorz~0. The quantum potential Eq.
(4.14) is estimated approximately near the horizon, using the

Mo (Z_—1g)|HP(2)[*

g ;
U=—|1— V_1/2 , (4.20 relation (4.23, as
mvg 1

which corresponds to the classical relation in E5). The 8G W =0,
U-V¥2relation is shown in Fig. 1, where the boundary of the Q~ (4.29
classical region is also shown. We take the natural umits Y0 o =1
=h=G=1 andvy=2 in this and the following figures. 2G '

Using theU-V'2 relation (4.17), the remaining indepen-
dentT-V'? relation is obtained in the integral form: The quantum potential diverges positively foe=0 and is

negative finite forr=1. In Figs. 3a) and 3b), the graphical
_m 2) 2 N S1/2 . _ Yo e representation of the quantum potential is shown. The quan-
= ZJ ZIH7(2)*dV with - 2= Gﬁlv rg|. tum effect behaves very differently for each value of the

(4.21) index of the operator ordering=0 andv=1.
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v =0 v =0
4.0 , 4.0 |
[ ——quantum a0 [
------- classical i
3.0 201
10 |
T o 0.0
s 1.0
1.0 20
30 f
ool o 4.0 L= :
' 0.0 10 20 30 40 0.0 1.0 2.0 3.0 4.0
- : : : : 12
1/2 (a) Vv
(a) Vv
v =1
70 [ ——quantum
b ---—--- classical ‘o
6.0 '
50f
T 4ot <~ 0.0
3.0 L
. -1.0
1.0
C 20 '
0.0 0.0 1.0 2.0 3.0 4.0
0.0 1.0 2.0 3.0 4.0 12
1/2 (b) \')
(b) \

FIG. 3. The quantum potenti& is shown with respect to the
FIG. 2. TheT-V 2 relation is shown. The ordering parameter is variable V2 The ordering parameter is taken:=0 in () and »
taken»=0 in (a) andv=1 in (b). The classical relatioff = V2 s =1 in (b). The large positive effect is apparent for=0 and the
denoted by the dashed line. The double wavy martbjrindicates ~ hegative constant effect is apparent for 1 near the horizon. The
the discontinuity between the inside and the outside of the horizorXis unit is the same as in Fig. 1.
The axis unit is the same as in Fig. 1.

erator, and the quantum fluctuation becomes very large near

Now we consider the horizons. The event horizon, which\/12_ 5 m Then the estimation of the apparent horizon is

has the global meaning, is located at the null surfdee0. o graightforward. Following by NKOT23], we require
On the other hand, the apparent horizon, which has the locg}q apparent horizon in the quantum theory as

meaning, and is defined by the expansion for outgoing null
rays becomes zer@., =0. The product of the expansion for
outgoing and incoming null rays can be written[a8,31] 6_6,.¥=0, (4.27

6 6, =UV- (V)= i(1—ZG—M> 4.26
-7+ Vv vz | ' whereW denotes the simultaneous solution of the WD equa-
tion and the mass eigenstate equation. By this requirement
In the classical theory, the apparent horizon takesVd®  the mass operata¥l in Eq. (4.26 is reduced to the eigen
=2Gm and agrees with the event horizon through the relavaluem and the quantum apparent horizon takes on the clas-
tion U= —VY2+2Gm. In quantum theoryf_6, is an op-  sical valueV¥?=2Gm. Then the relatioid-V*2 Eq.(4.20
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means that the two horizons, the event horizon and the ap v =0
parent horizon, coincide from the view point of the dBB 8.0 .
interpretation. F :

In order to understand the property of the horizon, we 701 i ——quantum
consider the motion of the light ray on the geometry of the 6.0 | ----- classical
guantum black holes. In principle, the light ray as well as the 50 f
black hole geometry should be treated in the quantum theory 40 :

It is because the massless particle curves the spacetim .
where it propagates, while it propagates in the curved space 301
time. Instead of this, we treat the light ray as a test particle in R 2.0 f
order to probe the quantum property of the geometry. It

. . . 10 f
means that we consider the low energy limit of the light ray E

0.0 E

and the quantum geometry does not take the influence fron .
this test light ray. 10 [
The null condition for the metric in Eq2.4) becomes 20 f
30 f
aR_.L i u="2_q (4.28 a0k
——=*— Wi =—-1, . -4. :
dTt U vz 0.0 1.0 2.0 3.0 4.0
o 1/2
We take the variabl®'? instead ofT as a independent vari-
able, where th@-V? relation is seen in Eq4.21). Then we v =1
obtain the integral expression for the light ray as 8.0
1/dvy2 -1 o 70 : —— quantum
RZifU( aT ) dv o0} ---- classical
50 [
_ . Mo 1214 (2) 7|24\ /112 4.0 f
=+ -
_2szJV H2(2)[2dV o
R 2o
ith Z= —>(V2—rg). (4.2 :
wi _Gﬁ( rg). (4.29 1.0 {
0.0 f
The approximate behavior near the hori2éh?=r ; of this A0 f
equation is estimated using E@.23 as 20 f
30 [
T2 (V=r2) (In|Vyp-rg)? for »=0, 40
R_R mGh 0.0 1.0 2.0 3.0 4.0
"1 G6%m 1 (b) v 2
F———— for v=1,
47vq yI2_¢
9 (4.30 FIG. 4. The light ray on the dBB trajectory is shown. The light

ray on the classical geometry is indicated by the dashed line. The
ordering parameter is taken=0 in (a) andv=1 in (b). The light

ray forms a cusp and reaches the horizon at fiRite the case of
v=0. The light ray in the case of=1 behaves like that in the
classical case. The axis unit is the same as in Fig. 1.

where Ry denotes the integration constant. In Fig. 4, the
numerical estimations of thR-V*2 relation for the light ray
(4.29 are shown. For the comparison, the light ray in the
classical case
Ry=—T— 2In|V1’2— rgl +2|nrg and VY2=T V. SUMMARY AND DISCUSSION

(4.31) We have studied the dBB interpretation for the quantum

theory of the black hole geometry. We have estimated the
is also shown in the figures. The integration constant is fixediBB trajectories and the quantum potential. The dBB trajec-
so that the light ray on the dBB trajectory and that on thetories have been obtained from the phase and the quantum
classical trajectory coincide at the origifi€£0) and the in- potential from the amplitude of the wave function. By con-
finity (T=9). The classical ray is modified near the horizon sidering both quantities, we can get the total picture of the
region. In case oi=0 the light ray forms a cusp of a finite quantum black holes.
height forR at the horizon positiov*?=2Gm. In the case Here we compare the dBB interpretation with the WKB
of v=1 though the light ray behaves like that in the classicalapproach. The WKB approach covers the semiclassical re-
case, it diverges as the inverse pow\a‘t”%—rg)‘l near the gion. However, by means of the dBB interpretation we can
horizon instead of the logarithm in the classical case. In thiglefine the dBB trajectories not only in the classical region
case the horizon region is just expanded. but also in the quantum region and get the global picture
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through the dBB trajectories. The quantum effect can be eghen the quantum solutiof8.16) is expressed by the Hankel
timated quantitatively and continuously from the guantumfunction with the ordew=0.

potential and from the difference between the dBB trajecto- Concerning our work, an interesting phenomenon is on
ries and the classical ones. In the case that the quantum pt#he Hawking radiatiof17]. As we have obtained the quan-
tential is negligible, the trajectories in the dBB interpretationtum geometry of the black hole, it will give the effects on the
agree with those in the WKB approach, but its interpretatiorﬁcattefing or the radiation of the electromagnetic and matter
is different. For example, wave functions are peaked abouf€!ds. Using the Vaidya metric black hole radiation in quan-
strong correlation between coordinates and momenta alorfyM geometry was recently discussed by Tomiméjtsa

the trajectories in the WKB approach discussed by Halliwel@"d Hosoya and Ode20]. The black hole radiation in our
[6] and Kadamd32]. On the other hand, the trajectories in @PProach remains a future problem.

the dBB interpretation have the causal meaning and therefore

approach the classical ones without the measurement pro- APPENDIX: MODEL FOR MASSLESS PARTICLE

Cess. _ ~ We consider a quantum model of the massless particle
In the region where the quantum effects cannot be negliand black hole geometry. The action consists of two parts:

gible, any probe which plays the role of the observer inthe gravity part Eq(2.6) and the massless particle action

Copenhagen'’s interpretation may affect the dBB trajectoriess,, , which is

We have considered the motion of the light ray on quantum

geometry in order to study the quantum effect, which be- B 4 \/_(—4)_(4) wv(4) - p

comes very large near the horizon. In the evaluation in Figs. Su= | d'x 9877 9 9op(9uX7) (9, XP),

4(a) and 4b), we treat the light ray as a test particle, which (A1)

means that it does not affect the geometry. In principle, the ) )

light ray as well as the black hole geometry should be treate/here X denotes the coordinate of the massless particle,

in the quantum theory, because the light ray curves th&vhich are assum_ed to take only the time and the space com-

spacetime which it propagates. In the Appendix, a model foPONents as functions df,

the quantum theory of the massless particle and black hole o w0 1

geometry is considered and its connection to the calculation X7= (X1 e XX(T),0,0). (A2)

of the light ray in Sec. IV is studied. We substitute the metrics E¢2.4) into the matter action
We concluded that the classichl-VY? relation (4.20 (Al) and Change the variables to Symmetric ozgsz_

holds also in the quantum case on the dBB trajectory. Thelgq. (2.10. Then the matter action becomes

the event horizon and the apparent horizon which is defined

in Eq. (4.27 coincide. The reason why the classical and the B Vo o 12012

quantumU-V*? relation become the same is that two con- SM_f dtdr5— [(X7)*=US(XH)7]. (A3)

straints, the Hamiltonian constraint and the mass constraint,

are imposed on the wave function and then the phase f&ctor The canonical momenta conjugate X8 and X* are calcu-

of the wave function becomes the function of the variable lated as

in Eg. (3.12. The ratio of the two equations defining the

momenta of the dBB trajectories, Eqd.11) and(4.12), can

be calculated unambiguously to derive teV? relation.

The possibility of the inequality of the event horizon to the

apparent horizon was discussed by NKB]. Their main  The massless particle Hamiltoni&t, is obtained as

interest lay in the tunneling effect from the outside to the

Vo, vu?,
P0=voZX y P]_:_U()TX . (A4)

inside of the horizon. They argued that if the apparent hori- a1 , 1,
zon does not coincide with the event horizon, tiev?? HM:m Z O_Z_zpl : (AS5)
- +

curve outside the horizon can be connected to that inside the
horizon through the tunneling of the forbidden region.

In our analysis, the quantum fluctuation largely depend
upon the ordering parameter. In case of the ordering param- H+Hy~0 with a=1. (AB)
eter =1, the net horizon region is enlarged to infinity as
seen in Fig. f) and the causal connection between the in-After the canonical quantizatiolPo=—i%d, and P,=
side and the outside of the horizon is cut off. Its mathemati-—i#g,, we obtain the WD equation for the wave function
cal reason is the strong singular behavior of the Hankel funcy (z, ,z_ X% X%) as
tion at thez=0. On the other hand, in case vf 0, the light
ray on the quantum geometry of the black hole forms a cusp (|:| + |3|M)qf(z+ .z X% xhH=0. (A7)
and reaches the horizon region within the finRe which
plays the role of time originally. So the=0 case is espe- By solving this WD equation we get the total quantum pic-
cially interesting. We also note that if the Hermiticity is re- ture of the massless particle and the black hole geometry.
quired for the quantum operators such as the HamiltoniatNow we investigate the relation of this equation to the analy-
and the mass operator, even though the Hilbert space @is which has been done in Sec. IV. First we make the ap-
guantum gravity is not well understood yet, the relationproximation that the wave function is assumed to be of the
among the ordering indexes=p—q=0 is preferred and form in the separation of the variables

SAgain the total Hamiltonian constraint is obtained:
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W(z,,z_ , XOXH)=W(z, ,z_)P(X° X1). (A8) Sec. IV. In this approximation, the massless particle and the
geometry do not influence each other. If we improve the
In this approximation, the wave function¥(z, ,z_) and approximation to include the correlation, the mass operator
@ (X% x1) satisfy the WD equation separately, which are Eq.cannot take constant value. The change of the mass operator
(3.4 and is expressed through the commutation relation between the
mass operator and the Hamiltonian as

#2 via
_ 2 f- 0 yw1y_
e Kot B(X0,X1)=0, (A9)

1 . n o~
M :E[H +AH,M]
wherez, and z_ are assumed to take values of the dBB

trajectories: Eqgs(4.11) and (4.12. We further make the -2G. . 2G 1 ., o s

WKB approximation for the phase of the wave function =5 1l H+— {1l Hy+ =(z, "Il 11,2, %P1/,

® (X%, X1 =exp(Sy /%) and identify its derivative with the Yo Yo 0

momentaA4), and get the equation for the massless particle G 1

as ~—2(H+HM+—(z:zmmz;z)Pz), (A11)
axt z. 1 oo v
— == (A10) . . .
dx z, U where we take the Weyl operator ordering. This equation

shows that the mass function changes according to the inter-
Identifying X°=\T andX'=\R, where\ is introduced as a action of the masslass particle and the geometry. The analy-
scaling parameter, we obtain the light ray equatié28 in sis of this model remains our future problem.
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