
PHYSICAL REVIEW D 15 APRIL 1998VOLUME 57, NUMBER 8
de Broglie–Bohm interpretation for the wave function of quantum black holes
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We study the quantum theory of spherically symmetric black holes. The theory yields the wave function
inside the apparent horizon, where the role of time and space coordinates is interchanged. The de Broglie–
Bohm interpretation is applied to the wave function and then the trajectory picture on the minisuperspace is
introduced in the quantum as well as the semiclassical region. Around the horizon large quantum fluctuations
on the trajectories of metricsU andV appear in our model, where the metrics are functions of the time variable
T and are expressed asds252(a2/U)dT21UdR21VdV2. On the trajectories, the classical relationU5

2V1/212Gm holds, and the event horizonU50 corresponds to the classical apparent horizon onV52Gm. In
order to investigate the quantum fluctuation near the horizon, we study a null ray on the dBB trajectory and
compare it with the one in the classical black hole geometry.@S0556-2821~98!06108-6#

PACS number~s!: 04.70.Dy, 03.65.Bz, 04.60.Ds, 97.60.Lf
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I. INTRODUCTION

A quantum state with fluctuations of spacetime is d
scribed by a state vectorC, which is a solution to the
Wheeler-DeWitt ~WD! equationHC50, where H is the
Hamiltonian of the gravitating system@1,2#. This equation
implies that the wave function is a stationary state with z
energy, and there is no Schro¨dinger evolution of the physica
state; that is, we cannot get the dynamical picture from
equation. This is called the problem of time in quantum gr
ity and has been researched extensively@3#. In addition to
this, there are other problems on the interpretation for
wave function to be considered@4#. In particular, problems
occur when we apply the ordinary Copenhagen interpreta
to the wave function of the whole universe. The first one
that the observer is also an element of the quantum mech
cal system. The second one is that in the Copenhagen i
pretation one must consider many measurements perfor
on a pure ensemble, each element of which is character
by the same stateuC&, and when a measurement of obse
able A is made by an external observer described by
classical mechanics, the measurement causes the discon
ous change brought about by the collapse of the wave fu
tion into an eigenstateua& with eigenvaluea. It is assumed
that the quantityu^auC&u2 gives the probability for obtaining
the measured valuea. In quantum cosmology, howeve
since the wave function given by the WD equation descri
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a unique and whole system, one cannot accept the conce
probability.

Many people use the Wentzel-Kramers-Brillouin~WKB!
approach to quantum cosmology to overcome the problem
time @5,6#. In the standard WKB approach, the system
assumed to separate into two parts: the gravitational par
the semiclassical system and the matter part as the qua
system. The time is introduced through the identification
the gradient of the classical action with the velocity variab
The Hamiltonian of quantum matter plays the time develo
ing operator and the Schro¨dinger-like equation holds, thoug
the total system does not develop the time. Some ambigu
and difficulties of this method were pointed out@7–9#.
Though the WKB approach successfully introduces the ti
and the Schro¨dinger equation, the problem of observatio
remains unsolved because the standard WKB approach g
no alternative to the stand point of the Copenhagen inter
tation.

The de Broglie–Bohm~dBB! interpretation@10,11# intro-
duces the time in a very similar way to the WKB approac
whereas it takes very different interpretation to the wa
function. The dBB interpretation defines a kind of trajecto
by identifying the momentum with the gradient of the pha
of the wave function. We shall call it the dBB or quantu
trajectory. This interpretation seems to be able to avoid so
of the problems mentioned above@12,13#. For the problem of
the dynamical evolution, we can obtain it through the dB
trajectories, which describe the quantum evolution using
time coordinate appearing in the original Lagrangian. Th
trajectories are assumed to be the real entity. The quan
effects on the trajectories are represented by the quan
potential quantitatively which is defined by the second d
rivative of the amplitude of the wave function. By this qua
tum potential the dBB trajectories are modified from t
4925 © 1998 The American Physical Society
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classical ones. If the quantum potential is small enough c
pared with the ordinary potential, the classical system is
alized whether the observer exists or not. Therefore the d
interpretation needs no observer and no collapse of the w
function. When we apply the dBB interpretation to quantu
cosmology, it naturally represents how the classical unive
emerges for a large cosmic scale factor@14,15,8,16#.

In this paper, we apply the dBB interpretation to the qua
tum geometry of the Schwarzschild black hole, which is o
of many other interesting issues in quantum gravity, beca
the quantum effect may become large near the singularit
the horizon. The quantum mechanical property of black h
geometry may affect the Hawking radiation@17–20# and the
phenomenon of the smearing of a black hole singularity@21#.
In order to treat the quantum theory of the black ho
Nambu and Sasaki@22# have proposed canonical quantu
gravity inside the horizon of the black hole and introduc
the mass scale using a dust collapse model. Nakam
Konno, Oshiro and Tomimatsu~NKOT! @23# solve the WD
equation with the limitation of the mass eigenstate to stu
the quantum fluctuation of the horizon and found an ex
wave function for the minisuperspace model of the inter
geometry of the black hole. They researched the quan
effect on horizon geometry on the basis of the WKB a
proach. The quantum fluctuation may become very la
near the horizon, where the WKB method cannot be adop
In order to estimate quantum fluctuation quantitatively b
yond the semiclassical region, we study the dBB interpre
tion for the wave function of the Schwarzschild black hol

In the classical theory, a spherically symmetric gravi
tional field in empty space must be static with its met
given by the Schwarzschild solution by the Birkhoff theore
@24#. In order to study the quantum theory, the canoni
formalism must be formulated within the horizon region a
the mass function must be expressed by canonical varia
The mass eigenvalue equation plays an important role
order to argue the quantum theory of empty space. Instea
imposing the momentum constraint, the mass eigenva
equation guarantees the diffeomorphism invariance not o
inside but also the outside of the horizon. The mass eig
value equation strongly restricts the solution space of
WD equation and plays the role of a kind of initial or boun
ary condition. We use the canonical definition of mass fu
tion considered by Fischler, Morgan, and Polchinski@25# and
by Kuchař@26#, who has examined the canonical quantiz
tion formalism by Dirac@27#, and by Arnowitt, Deser and
Misner @28# for the spherically symmetric spacetime. Th
have shown that mass function can be described by the
nonical variables and is a constant of motion. We solved
WD equation and the mass eigenstate equation simu
neously and obtained the general wave function, which
essentially the same as that by NKOT but the general form
operator ordering is taken into account. We apply the d
interpretation to this wave function and obtain the dBB t
jectories on the minisuperspace, which represents the q
tum feature of the geometry of the Schwarzschild black ho
We investigate the light ray on this quantum geometry.

This paper is organized as follows. In Sec. II, we revie
the canonical formalism in spherically symmetric spacetim
In Sec. III, we perform the canonical quantization of th
system and obtain the wave function for the Schwarzsc
-
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black hole under a general consideration of the operator
dering. In Sec. IV, we consider the implication of the wa
function with the help of the dBB interpretation. A summa
and discussion are given in Sec. V.

II. CANONICAL FORMALISM IN SPHERICALLY
SYMMETRIC SPACETIME

In this section, we review the canonical formalism in t
spherically symmetric spacetime in four dimensions. T
metric of the general spherically symmetric spacetime is

ds252u~r !dt21
a~r !2

u~r !
dr21r 2dV2, ~2.1!

where the each metric depends only on the space variabr
and dV25du21sin2udf2 denotes the line element on th
unit sphere. The unique solution of the vacuum Einst
equation for this metric is known as the Schwarzschild so
tion for

a51, and u~r !512
2Gm

r
, ~2.2!

whereG denotes the gravitational constant. The integrat
constantm represents the asymptotically observed mass o
spherically symmetric matter. The metric becomes singu
when r 50 and r 5r g[2Gm. Here r 50 is a real physical
singularity, whereasr 5r g is a coordinate singularity and
corresponds to the event horizon. Inside the black holer
,r g), the metricgtt becomes positive andgrr negative, and
so the roles of time and space coordinate are interchan
We denote this situation as

t→R, r→T, u~r !→2U~T!, a~r !→a~T!.
~2.3!

Then the interior metric of a spherically symmetric bla
hole is represented as

ds252
a~T!2

U~T!
dT21U~T!dR21V~T!dV2, ~2.4!

where the range of the variables areT.0, 2`,R,`. The
metricV(T) is introduced in order to represents the quant
geometry of the spherically symmetric spacetime. In t
metric, the classical solution is written as

a51, U52S 12
r g

T D , V1/25T. ~2.5!

The vacuum Einstein action

S5
1

16pGE d4xA2 ~4!g~4!R ~2.6!

is written in the form of~311! decomposition in terms of the
Arnowitt-Deser-Misner~ADM ! analysis as

S5E dTL, ~2.7!

whereL is the Lagrangian
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L5
1

16pG
E d3xNA ~3!g@KabK

ab2~Ka
a!21 ~3!R#,

~2.8!

whereN andKab denote the lapse function and the extrins
curvature, and(3)g and (3)R denote the metric and the cu
vature in three dimensional manifold respectively. By inse
ing the metric in Eq.~2.4!, the Lagrangian Eq.~2.8! becomes

L5
v0

4G
F2

1

a
S U̇V̇1

UV̇2

2V
D 12aG , ~2.9!

where the dot denotes the derivative with respect toT. The
volume of the systemv0[*0

`dR is treated to be finite.
Here we change the variables fromU,V to z1 ,z2 as fol-

lows:

z1[UAV, z2[AV. ~2.10!

By using these new variables, the Lagrangian@Eq. ~2.9!#
becomes the simpler and symmetric form@29#

L5
v0

2GF2
1

a
ż1ż21a G . ~2.11!

The canonical momentum conjugate toz1 , z2 and a are
obtained from this Lagrangian:

P1[
]L

] ż1

52
v0

2Ga
ż2 , ~2.12!

P2[
]L

] ż2

52
v0

2Ga
ż1 , ~2.13!

Pa[
]L

]ȧ
50. ~2.14!

The variablea plays the role of the lapse function and so
canonical conjugate momentum~2.14! becomes zero, which
is the primary constraint. The Hamiltonian for this syste
becomes the form

H52aF2G

v0
P1P21

v0

2GG . ~2.15!

The development of the primary constraint~2.14! by this
Hamiltonian~2.15! yields the secondary constraint:

Hua51'0, ~2.16!

which is called the Hamiltonian constraint.
Next we discuss the mass of the system. In the us

classical theory, the unique solution of the vacuum Einst
equation for spherically symmetric spacetime is t
Schwarzschild solution with one integration constant, wh
represents the mass of the black hole. In the canonical
malism for spherically symmetric spacetime, the mass ca
a dynamical function, which has been introduced by F
chler, Morgan, and Polchinski@25# and extensively discusse
by Kuchar̆@26#. The spherically symmetric hypersurface o
-

al
in

h
r-

be
-

which the canonical data is given is supposed to be emb
ded in a Schwarzschild black hole spacetime whose me
are given by Eq.~2.5!. This identification of the spacetim
with the canonical data enables us to connect the Schwa
child massM with the canonical data on any small piece
a spacelike hypersurface. As result, the mass function is
pressed by the canonical variablesz1 ,z2 as

M5
2G

v0
2

z1~P1!21
z2

2G
. ~2.17!

The Poisson brackets of this mass function withH vanishes
weakly:

$H,M %p52 i\
2G

v0
2

P1H'0, ~2.18!

which shows that the mass is a constant of motion. There
we can consistently impose two equations: the Hamilton
constraint and the mass constraintM5m ~constant! on the
canonical data.

III. QUANTIZATION

In this section, we proceed with the canonical quanti
tion treatment of spherically symmetric spacetime, that
the Schwarzschild black hole system. We do not discuss
Hilbert space of quantum gravity. Instead of this, we co
sider a general form of the operator ordering for the cano
cal operators.

In the Schro¨dinger representation, the canonical mome
are quantized as

P̂1p[z1
p P̂1z1

2p5P̂11
i\p

z1
, ~3.1!

P̂2s[~z22r g!sP̂2~z22r g!2s

5P̂21
i\s

z22r g
, ~3.2!

whereP̂1 andP̂2 are usual differential operators

P̂152 i\
]

]z1
, P̂252 i\

]

]z2
, ~3.3!

andp, s are integers in order to take account of the opera
ordering. The Hamiltonian constraint~2.16! gives a condi-
tion imposed on the state vectorC

ĤC52S 2G

v0
P̂1rP̂2s1

v0

2GDC50, ~3.4!

where r and s are arbitrary integers. This is the Wheele
DeWitt ~WD! equation for the geometry of the Schwarz
child spacetime. In addition, we confine the state vector
the mass eigenvalue equation. Therefore,
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~M̂2m!C5S 2G

v0
2

P̂1pz1P̂1q1
z2

2G
2mD C50,

~3.5!

wherep,q are arbitrary integers.
We note that the commutation relation between

Hamiltonian and the mass operator is calculated to be

@Ĥ,M̂2m#5
22i\G

v0
2

P̂1r Ĥ1
4iG2\2

v0
3 ~r 2p!~r 2q!

3
1

z1
2

P̂2s . ~3.6!

For r 5p or r 5q, the commutation relation vanishes weak
and the simultaneous requirement of the WD equation
the mass eigenvalue equation becomes compatible. In
following, we take the case ofr 5q. The case ofr 5p is
obtained by replacingq↔p in the following calculation.

Instead of solving the mass eigenvalue equation direc
we consider the eigenvalue equation derived from the lin
combination of the Hamiltonian and the mass operator:

@ L̂2\~p2s!#C50, ~3.7!

where the operatorL̂ is defined as

L̂[22iGF 1

v0
P̂1pz1Ĥ1P̂2s~M̂2m!G1\~p2s!

5 i @z1P̂12~z22r g!P̂2#. ~3.8!

As this equation is the first order differential equation, w
can treat it easier. If we define the wave functionc:

C[z1
q ~z22r g!sc~z1 ,z2!, ~3.9!

the equations we have to solve become the following tw

S 2G

v0
P̂1P̂21

v0

2GDc50, ~3.10!

„L̂2\~p2q!…c50. ~3.11!

If we make change of variables

y[
v0

G\
A2z1 /~z22r g!, z[

v0

G\
A2z1~z22r g!,

~3.12!

Eq. ~3.11! becomes

Fy
]

]y
2~p2q!Gc~y,z!50, ~3.13!

whose general solution is given by

c~y,z!5yp2qu~z!, ~3.14!
e

d
he

y,
ar

whereu(z) is an arbitrary function ofz. By substituting the
new variables~3.12! and the wave function Eq.~3.14! into
Eq. ~3.10!, the WD equation is reduced to

F1

z

]

]z
z

]

]z
2

y2

z2S 1

y

]

]y
y

]

]yD11Gyp2qu~z!

5yp2qF1

z

]

]z
z

]

]z
2

~p2q!2

z2
11Gu~z!

50. ~3.15!

The equation foru is the Bessel’s differential equation wit
orderp-q. Then we obtain the eigenfunction for the WD an
the mass eigenvalue equations

C5yp2szq1s@c1Hp2q
~1! ~z!1c2Hp2q

~2! ~z!#, ~3.16!

wherec1 ,c2 are integration constants. The Hankel functio
H (1),H (2) are linearly independent and complex conjuga
each other.

NKOT have derived the quantum wave function for t
Schwarzschild black hole. As the variablesy,z in Eq. ~3.12!
take real values for the physical metricsU,V in Eq. ~2.4!, the
complex phase factor comes only from the Hankel functi
Note that our solution includes NKOT’s solution@30#.

IV. IMPLICATION OF WAVE FUNCTION

NKOT have discussed the quantum evolution of the m
ric variables from the wave function of the black hole in t
WKB approach@23#. They further argued the possibility of
tunneling solution across the horizon, where the quant
fluctuation becomes large and the WKB approach is not
plicable. In order to make the quantitative estimation of t
quantum fluctuation, we apply the de Broglie–Bohm~dBB!
interpretation to the wave function of the quantum black h
which is obtained in the previous section. This dBB interp
tation has been applied to quantum cosmology by sev
authors in order to solve the problems of time and the
server@8,14–16#.

In the following, we apply the dBB interpretation to th
wave function of the spherically symmetric black hole. F
this purpose, we rewrite the WD equation and the m
eigenequation explicitly in terms of the real phase and
real amplitude of the wave function:

C~z1 ,z2!5R~z1 ,z2!exp@ iS~z1 ,z2!/\#. ~4.1!

Inserting this expression into the WD equation~3.4!, we ob-
tain the real part equation:

2G

v0

]S

]z1

]S

]z2
1

v0

2G
1Q50, ~4.2!

where Q denotes the quantum potential for the quantu
black hole as

Q52
2G\2

v0R S ]

]z1
2

q

z1
D S ]

]z2
2

s

z22r g
DR, ~4.3!

and the imaginary part equation:
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S ]

]z1
2

q

z1
D S R2

]S

]z2
D1S ]

]z2
2

s

z22r g
D S R2

]S

]z1
D50.

~4.4!

If Q tends to zero, the real part of the WD equation~4.2! is
reduced to the Hamilton-Jacobi equation for the black ho
This means that the quantum potential indicates the quan
effect quantitatively. In our quantum back hole model,
also demanded the mass eigenvalue equation~3.5!. The real
part of this equation can be rewritten as

2G

v0
2

z1S ]S

]z1
D 2

1
z22r g

2G
1MQ50, ~4.5!

whereMQ is defined as

MQ52
2G\2

v0
2R

S ]

]z1
2

p

z1
D Fz1S ]

]z1
2

q

z1
DRG , ~4.6!

and the imaginary part is given as

S ]

]z1
2

q1p

z1
D S R2z1

]S

]z1
D50. ~4.7!

If MQ tends to zero, Eq.~4.5! is reduced to the classica
relation:M in Eq. ~2.17! equals a constantm. ThereforeMQ
represents the quantum effect to the mass function. The
eratorL̂ in Eq. ~3.8!, which is the linear combination of th
Hamiltonian and the mass operator, is easy to analyze,
cause it is the first order differential operator. Its real a
imaginary parts are rewritten respectively as

Fz1

]

]z1
2~z22r g!

]

]z2
2p1sGR50, ~4.8!

Fz1

]

]z1
2~z22r g!

]

]z2
GS50.

~4.9!

Using Eq.~4.9!, the quantum effect of the mass operatorMQ
can be expressed as proportional to the quantum potentiaQ:

MQ5
z22r g

v0
Q, ~4.10!

so that all the quantum effect vanishes whenQ tends to zero.
Here we introduce the dBB interpretation, which is bas

on the following assumptions.
~1! The trajectory picture on the minisuperspace is int

duced. The momenta of the quantum geometry of the bl
holes are assumed to be given by

P152
v0

2G
Ż25

]S

]z1
U

z15Z1 ,z25Z2

, ~4.11!

P252
v0

2G
Ż15

]S

]z2
U

z15Z1 ,z25Z2

, ~4.12!

where the velocities are determined by the classical relat
~2.12! and ~2.13! with a51. The trajectoriesZ1 ,Z2 are
.
m

p-

e-
d

d

-
k

ns

obtained by integrating Eqs.~4.11! and ~4.12!. We empha-
size that they are the differential equations with respect toT,
which is the notion of time parameter appearing in Eq.~2.4!,
so that the notion of time is introduced even if the W
equation does not depend on the time explicitly. We sh
call these trajectories the dBB trajectories hereafter.

~2! Consider a statistical ensemble of the trajectories. T
probability distribution is assumed to be given byR2. Note
that the imaginary part equation guarantees the continuity
the probability densityR2.

~3! The quantum potentialQ denotes the quantum effec
quantitatively. This is not a usual local potential because i
defined through a wave function. IfQ is negligible compared
with the classical potential or kinetic term, the trajectory c
incides with the classical one. This means that the quan
system behaves like the classical one spontaneously.
indeed this situation that we call ‘‘classical.’’ Therefore, w
need no classical observer which is an essential elemen
Copenhagen interpretation. On the other hand, ifQ cannot be
negligible, the dBB trajectory is modified by any quantu
probe. In this case, we should explicitly include a spec
quantum observer in the dynamical system to get inform
tion of the dBB trajectory. When the observer becomes c
sical, it plays the role of an observer in the Copenhag
interpretation which is classical by nature.

We note that in the dBB interpretation, an existence
nature is a dBB trajectory, and therefore, predictability
quantum mechanics is based on the probability distribut
of their statistical ensemble. As a result, the reduction of
wave function or the loss of the quantum coherence by
measurement is not the matter with the dBB interpretatio

Next we insert the explicit form of the Hankel functio
~3.16! into the general form of the wave function~4.1!:

C5yp2szq1sHn
~2!~z!. ~4.13!

Here we have chosen the Hankel function of the second k
H (2) with the indexn[p2q, which denotes the freedom o
the operator ordering, since from the dBB point of view
corresponds to the classical relationV1/25T in Eq. ~2.5! in
the semiclassical region, as will be seen in Fig. 2. Physic
the selection ofH (2) corresponds to solve the trajectory fro
the singularity at the origin to the outside. On the ansatz
dBB trajectory for the wave function of the linear combin
tion of both H (1) and H (2) in Eq. ~3.16! is shown not to
approach a classical trajectory.

After inserting Eq.~4.13!, the quantum potential is ex
pressed by the Hankel function as

Q52
v0

2GS 12
4

p2z2uHn
~2!~z!u4D . ~4.14!

Similarly, the continuity equations~4.4!, ~4.7!, and~4.9! are
reduced to one equation:

]

]zS zuHn
~2!~z!u2

]

]z
SD50, ~4.15!

which corresponds to the identity of the Hankel function:
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H ~2!
]

]z
H ~1!2H ~1!

]

]z
H ~2!5

4i

pz
. ~4.16!

Noticing that the phaseS comes only from the Hankel func
tion and that the derivative of the phase can be expresse
the identity equation~4.16!, a couple of equations on th
velocities~4.11! and ~4.12! are obtained as

Ż25
2\G

pv0

1

Z1uHn
~2!~Z!u2

, ~4.17!

Ż15
2\G

pv0

1

~Z22r g!uHn
~2!~Z!u2

.

~4.18!

We take the ratio of Eq.~4.17! to Eq. ~4.18! to cancel the
time dependence, and integrate it to get theZ12Z2 relation:

Z15c0~Z22r g!, ~4.19!

wherec0 is the integration constant. With the choice ofc0
521 this relation is translated back to that of the origin
metric variablesU,V in Eq. ~2.4!:

U52S 12
r g

V1/2D , ~4.20!

which corresponds to the classical relation in Eq.~2.5!. The
U-V1/2 relation is shown in Fig. 1, where the boundary of t
classical region is also shown. We take the natural unitc
5\5G51 andv052 in this and the following figures.

Using theU-V1/2 relation ~4.17!, the remaining indepen
dentT-V1/2 relation is obtained in the integral form:

T5
p

2E ZuHn
~2!~Z!u2dV1/2 with Z5

v0

G\
uV1/22r gu.

~4.21!

FIG. 1. TheU-V1/2 relation is shown. The semiclassical regio
is bounded by the dashed line. The event horizon (U50) and the
apparent horizon (V1/252Gm) coincide on the dBB trajectory. The
natural unitsc5\5G51 andv052 are taken.
by

l

Considering the asymptotic form of the Hankel function

Hn
~2!~Z!→exp~2 iZ !A 2

pZ
for Z@1, ~4.22!

we can show that theT-V1/2 relation approaches the classic
relationT5V1/2 in the semiclassical region. Near the horizo
Z'0, the Hankel function is approximately expressed as

uHn
~2!~Z!u2'5

4

p2
~ lnZ!2 for n50,

22n~n21!! 2

p2Z2n
for n5positive integer.

~4.23!

In the following, we discuss the case ofn50 andn51. In
the case forn.1 the behavior of the physical quantities
similar to the case forn51. We estimate theT-V1/2 relation
~4.21! near the horizon using the approximate equat
~4.23! as

T2T0'H 2
v0

pG\
~V1/22r g!2~ lnuV1/22r gu!2 for n50,

2
2G\

pv0
lnuV1/22r gu for n51,

~4.24!

whereT0 is the integration constant. From these expressio
we can see thatT shows flat behavior forn50 and steep
behavior forn51 near the horizonV1/2'r g . In Figs. 2~a!

and 2~b!, numerical estimations on theT-V1/2 relation~4.21!
are shown. Figure 2 implies that the net region of the horiz
extends widely forn51 whereas some part of the horizo
region is cut off forn50, in comparison with the classica
relation V1/25T. We note that the inner metric forn51
cannot connect the outside metric asT diverges near the
horizon. In Fig. 2~b!, the double wavy mark denotes th
discontinuity between the inside and the outside. TheU-T
relation can be obtained from theU2V1/2 relation in Fig. 1
by combining theT-V1/2 relation in Fig. 2.

We next estimate the quantum potentialQ, Eq. ~4.14!.
Using the asymptotic behavior of the Hankel function in E
~4.22!, the quantum potential becomes zero forZ@1. The
nonzero structure, which shows the quantum effects, ex
only near the horizonZ'0. The quantum potential Eq
~4.14! is estimated approximately near the horizon, using
relation ~4.23!, as

Q'5
p2v0

8G

1

Z2~ lnZ!4
for n50,

2
v0

2G
for n51.

~4.25!

The quantum potential diverges positively forn50 and is
negative finite forn51. In Figs. 3~a! and 3~b!, the graphical
representation of the quantum potential is shown. The qu
tum effect behaves very differently for each value of t
index of the operator orderingn50 andn51.
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Now we consider the horizons. The event horizon, wh
has the global meaning, is located at the null surfaceU50.
On the other hand, the apparent horizon, which has the l
meaning, and is defined by the expansion for outgoing n
rays becomes zero:u150. The product of the expansion fo
outgoing and incoming null rays can be written as@23,31#

u2u15UV21~AV
.

!25
1
VS 12

2GM̂

V1/2 D . ~4.26!

In the classical theory, the apparent horizon takes onV1/2

52Gm and agrees with the event horizon through the re
tion U52V1/212Gm. In quantum theory,u2u1 is an op-

FIG. 2. TheT-V1/2 relation is shown. The ordering parameter
takenn50 in ~a! andn51 in ~b!. The classical relationT5V1/2 is
denoted by the dashed line. The double wavy mark in~b! indicates
the discontinuity between the inside and the outside of the hori
The axis unit is the same as in Fig. 1.
h

al
ll

-

erator, and the quantum fluctuation becomes very large n
V1/252Gm. Then the estimation of the apparent horizon
not straightforward. Following by NKOT@23#, we require
the apparent horizon in the quantum theory as

u2u1C50, ~4.27!

whereC denotes the simultaneous solution of the WD eq
tion and the mass eigenstate equation. By this requirem
the mass operatorM̂ in Eq. ~4.26! is reduced to the eigen
valuem and the quantum apparent horizon takes on the c
sical valueV1/252Gm. Then the relationU-V1/2, Eq. ~4.20!

n.

FIG. 3. The quantum potentialQ is shown with respect to the
variableV1/2. The ordering parameter is taken;n50 in ~a! and n
51 in ~b!. The large positive effect is apparent forn50 and the
negative constant effect is apparent forn51 near the horizon. The
axis unit is the same as in Fig. 1.
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means that the two horizons, the event horizon and the
parent horizon, coincide from the view point of the dB
interpretation.

In order to understand the property of the horizon,
consider the motion of the light ray on the geometry of t
quantum black holes. In principle, the light ray as well as
black hole geometry should be treated in the quantum the
It is because the massless particle curves the space
where it propagates, while it propagates in the curved sp
time. Instead of this, we treat the light ray as a test particle
order to probe the quantum property of the geometry
means that we consider the low energy limit of the light r
and the quantum geometry does not take the influence f
this test light ray.

The null condition for the metric in Eq.~2.4! becomes

dR

dT
56

1

U
with U5

r g

V1/2
21. ~4.28!

We take the variableV1/2 instead ofT as a independent vari
able, where theT-V1/2 relation is seen in Eq.~4.21!. Then we
obtain the integral expression for the light ray as

R56E 1

US dV1/2

dT D 21

dV1/2

56
pv0

2G\E V1/2uH ~2!~Z!u2dV1/2

with Z5
v0

G\
~V1/22r g!. ~4.29!

The approximate behavior near the horizonV1/2.r g of this
equation is estimated using Eq.~4.23! as

R2R0.5 7
v0

pG\
~V2r g

2! ~ lnuV1/22r gu!2 for n50,

7
G2\m

4pv0

1

V1/22r g

for n51,

~4.30!

where R0 denotes the integration constant. In Fig. 4, t
numerical estimations of theR-V1/2 relation for the light ray
~4.29! are shown. For the comparison, the light ray in t
classical case

Rcl52T22lnuV1/22r gu12lnr g and V1/25T
~4.31!

is also shown in the figures. The integration constant is fi
so that the light ray on the dBB trajectory and that on
classical trajectory coincide at the origin (T50) and the in-
finity (T5`). The classical ray is modified near the horiz
region. In case ofn50 the light ray forms a cusp of a finit
height forR at the horizon positionV1/252Gm. In the case
of n51 though the light ray behaves like that in the classi
case, it diverges as the inverse power (V1/22r g)21 near the
horizon instead of the logarithm in the classical case. In
case the horizon region is just expanded.
p-
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V. SUMMARY AND DISCUSSION

We have studied the dBB interpretation for the quant
theory of the black hole geometry. We have estimated
dBB trajectories and the quantum potential. The dBB traj
tories have been obtained from the phase and the quan
potential from the amplitude of the wave function. By co
sidering both quantities, we can get the total picture of
quantum black holes.

Here we compare the dBB interpretation with the WK
approach. The WKB approach covers the semiclassical
gion. However, by means of the dBB interpretation we c
define the dBB trajectories not only in the classical reg
but also in the quantum region and get the global pict

FIG. 4. The light ray on the dBB trajectory is shown. The lig
ray on the classical geometry is indicated by the dashed line.
ordering parameter is taken;n50 in ~a! andn51 in ~b!. The light
ray forms a cusp and reaches the horizon at finiteR in the case of
n50. The light ray in the case ofn51 behaves like that in the
classical case. The axis unit is the same as in Fig. 1.
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through the dBB trajectories. The quantum effect can be
timated quantitatively and continuously from the quantu
potential and from the difference between the dBB trajec
ries and the classical ones. In the case that the quantum
tential is negligible, the trajectories in the dBB interpretati
agree with those in the WKB approach, but its interpretat
is different. For example, wave functions are peaked ab
strong correlation between coordinates and momenta a
the trajectories in the WKB approach discussed by Halliw
@6# and Kadama@32#. On the other hand, the trajectories
the dBB interpretation have the causal meaning and there
approach the classical ones without the measurement
cess.

In the region where the quantum effects cannot be ne
gible, any probe which plays the role of the observer
Copenhagen’s interpretation may affect the dBB trajector
We have considered the motion of the light ray on quant
geometry in order to study the quantum effect, which b
comes very large near the horizon. In the evaluation in F
4~a! and 4~b!, we treat the light ray as a test particle, whi
means that it does not affect the geometry. In principle,
light ray as well as the black hole geometry should be trea
in the quantum theory, because the light ray curves
spacetime which it propagates. In the Appendix, a model
the quantum theory of the massless particle and black
geometry is considered and its connection to the calcula
of the light ray in Sec. IV is studied.

We concluded that the classicalU-V1/2 relation ~4.20!
holds also in the quantum case on the dBB trajectory. T
the event horizon and the apparent horizon which is defi
in Eq. ~4.27! coincide. The reason why the classical and
quantumU-V1/2 relation become the same is that two co
straints, the Hamiltonian constraint and the mass constr
are imposed on the wave function and then the phase facS
of the wave function becomes the function of the variablz
in Eq. ~3.12!. The ratio of the two equations defining th
momenta of the dBB trajectories, Eqs.~4.11! and~4.12!, can
be calculated unambiguously to derive theU-V1/2 relation.
The possibility of the inequality of the event horizon to t
apparent horizon was discussed by NKOT@23#. Their main
interest lay in the tunneling effect from the outside to t
inside of the horizon. They argued that if the apparent h
zon does not coincide with the event horizon, theU-V1/2

curve outside the horizon can be connected to that inside
horizon through the tunneling of the forbidden region.

In our analysis, the quantum fluctuation largely depen
upon the ordering parameter. In case of the ordering par
eter n>1, the net horizon region is enlarged to infinity
seen in Fig. 2~b! and the causal connection between the
side and the outside of the horizon is cut off. Its mathem
cal reason is the strong singular behavior of the Hankel fu
tion at thez50. On the other hand, in case ofn50, the light
ray on the quantum geometry of the black hole forms a c
and reaches the horizon region within the finiteR, which
plays the role of time originally. So then50 case is espe
cially interesting. We also note that if the Hermiticity is r
quired for the quantum operators such as the Hamilton
and the mass operator, even though the Hilbert spac
quantum gravity is not well understood yet, the relati
among the ordering indexesn5p2q50 is preferred and
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then the quantum solution~3.16! is expressed by the Hanke
function with the ordern50.

Concerning our work, an interesting phenomenon is
the Hawking radiation@17#. As we have obtained the quan
tum geometry of the black hole, it will give the effects on th
scattering or the radiation of the electromagnetic and ma
fields. Using the Vaidya metric black hole radiation in qua
tum geometry was recently discussed by Tomimatsu@19#
and Hosoya and Oda@20#. The black hole radiation in ou
approach remains a future problem.

APPENDIX: MODEL FOR MASSLESS PARTICLE

We consider a quantum model of the massless part
and black hole geometry. The action consists of two pa
the gravity part Eq.~2.6! and the massless particle actio
SM , which is

SM5E d4xA2 ~4!g
1

8p
~4!gmn~4!gsr~]mXs!~]n Xr!,

~A1!

where X denotes the coordinate of the massless parti
which are assumed to take only the time and the space c
ponents as functions ofT,

Xs5„X0~T!/a,X1~T!,0,0…. ~A2!

We substitute the metrics Eq.~2.4! into the matter action
~A1! and change the variables to symmetric onesz1 ,z2 ,
Eq. ~2.10!. Then the matter action becomes

SM5E dtdr
V

2a
@~Ẋ0!22U2~Ẋ1!2#. ~A3!

The canonical momenta conjugate toX0 and X1 are calcu-
lated as

P05v0

V

a
Ẋ0, P152v0

VU2

a
Ẋ1. ~A4!

The massless particle HamiltonianHM is obtained as

HM5
a

2v0
S 1

z2
2

P0
22

1

z1
2

P1
2D . ~A5!

Again the total Hamiltonian constraint is obtained:

H1HM'0 with a51. ~A6!

After the canonical quantizationP052 i\]0 and P15
2 i\]1, we obtain the WD equation for the wave functio
C(z1 ,z2 ,X0,X1) as

~Ĥ1ĤM !C~z1 ,z2 ,X0,X1!50. ~A7!

By solving this WD equation we get the total quantum p
ture of the massless particle and the black hole geome
Now we investigate the relation of this equation to the ana
sis which has been done in Sec. IV. First we make the
proximation that the wave function is assumed to be of
form in the separation of the variables
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C~z1 ,z2 ,X0,X1!.C~z1 ,z2!F~X0,X1!. ~A8!

In this approximation, the wave functionsC(z1 ,z2) and
F(X0,X1) satisfy the WD equation separately, which are E
~3.4! and

2
\2

2v0z2
S ]0

22
z2

2

z1
2

]1
2D F~X0,X1!50, ~A9!

where z1 and z2 are assumed to take values of the dB
trajectories: Eqs.~4.11! and ~4.12!. We further make the
WKB approximation for the phase of the wave functio
F(X0,X1).exp(iSM /\) and identify its derivative with the
momenta~A4!, and get the equation for the massless part
as

dX1

dX0
5

z2

z1
5

1

U
. ~A10!

Identifying X0[lT andX1[lR, wherel is introduced as a
scaling parameter, we obtain the light ray equation~4.28! in
h-
r

o

-

ic

ss
.

e

Sec. IV. In this approximation, the massless particle and
geometry do not influence each other. If we improve t
approximation to include the correlation, the mass opera
cannot take constant value. The change of the mass ope
is expressed through the commutation relation between
mass operator and the Hamiltonian as

Ṁ̂5
1

i\
@Ĥ1DĤ,M̂ #

5
22G

v0
2

P̂1Ĥ1
2G

v0
2 S P1HM1

1

v0
~z1

22P1P1z1
22!P1

2D ,

'
2G

v0
2 S P1HM1

1

v0
~z1

22P1P1z1
22!P1

2D , ~A11!

where we take the Weyl operator ordering. This equat
shows that the mass function changes according to the in
action of the masslass particle and the geometry. The an
sis of this model remains our future problem.
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