
PHYSICAL REVIEW D 15 APRIL 1998VOLUME 57, NUMBER 8
Quantum correction to the entropy of the „211…-dimensional black hole
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The thermodynamics of the~211!-dimensional nonrotating black hole of Ban˜ados, Teitelboim, and Zanelli
is discussed. The first quantum correction to the Bekenstein-Hawking entropy is evaluated within the on-shell
Euclidean formalism, making use of the related Chern-Simons representation of three-dimensional gravity.
Horizon and ultraviolet divergences in the quantum correction are dealt with by a renormalization of the
Newton constant. It is argued that the quantum correction due to the gravitational field shrinks the effective
radius of a hole and becomes more and more important as the evaporation process goes on, while the area law
is not violated.@S0556-2821~98!00908-4#
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I. INTRODUCTION

It is well known that we do not have yet at our disposa
consistent and complete four-dimensional quantum grav
nevertheless, a large number of interesting issues have
investigated, mainly within the semiclassical approximati
One of the most important issues is related to black h
physics and deals with the origin of entropy, its quantu
corrections, the information loss paradox, and the validity
the area law~see, for example, Ref.@1#!. However, it is well
known that in 311 dimensions black hole quantum physi
needs several approximations.

Recently, three-dimensional gravity has been studied
detail. Despite the simplicity of the three-dimensional ca
~no propagating gravitons!, it is a common belief that it de
serves attention as a useful laboratory. In fact, surprisingl
black hole solution has been found by Ban˜ados, Teitelboim,
and Zanelli@2#. In particular, the simple geometrical stru
ture of this black hole allows exact computations since
Euclidean counterpart is locally isomorphic to the consta
curvature three-dimensional hyperbolic spaceH3.

In this paper, we shall compute a quantum correction
the semiclassical Bekenstein-Hawking entropy for
Bañados-Teitelboim-Zanelli~BTZ! black hole due to the
one-loop gravitational fluctuations in an attempt to elucid
the statistical origin of black hole entropy@3–6# and to ex-
plore the possible relevance of quantum fluctuations du
the late stages of the black hole evaporation process.

With regard to these issues, we recall that many pap
have appeared in which the quantum entropy of matter fie
propagating in a black hole background, has been evalu
by means of several different techniques~see, for example
Refs.@7–17# and reference therein!. We would like to stress
here that we shall compute the one-loop contribution due
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the quantization of the gravitational field itself. The tre
level approximation to the partition function has been d
cussed at length in@18#, using Brown and York’s approach
to quasilocal thermodynamics for asymptotically anti–de S
ter black holes. It is found that in 211 dimensions there is a
thermodynamically stable black hole solution and no ne
tive heat capacity instantons. Thus one expects the quan
corrections to be well defined.

As far as the computation of these corrections is c
cerned, some work has been done in@19,20# and a motiva-
tion of our paper is to present a detailed and possibly co
plete discussion on this point. The quantum correction of
BTZ black hole will be evaluated by making use of the r
lated Chern-Simons representation of three-dimensio
gravity @21,22#. It should be stressed that within this a
proach a preliminary statistical mechanics explanation of
Bekenstein-Hawking entropy, counting boundary states
the horizon, has been given in Ref.@23#.

The organization of the paper is as follows. In Sec. II w
briefly review the geometry of the Euclidean BTZ blac
hole. In Sec. III we present a derivation of the Selberg tra
formula, starting from an elementary derivation of the he
kernel trace related to the Laplace operator, which is nec
sary for our regularization. In Sec. IV the computation of t
quantum correction to the entropy is outlined. The pa
ends with some concluding remarks in Sec. V. In the App
dix some explicit computations are included.

II. THE EUCLIDEAN BTZ BLACK HOLE

Following @19# we summarize here the geometrical a
pects of the nonrotating BTZ black hole@2# that are relevant
for our discussion. In the coordinates (t,r ,f), the static
Lorentzian metric reads (8G51 is assumed for the momen
thus the mass is dimensionless!

dsL
252S r 2

s2
2M D dt21S r 2

s2
2M D 21

dr21r 2df2, ~1!

a.
4917 © 1998 The American Physical Society
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4918 57BYTSENKO, VANZO, AND ZERBINI
whereM is the standard Arnowitt-Deser-Misner mass ands
is a dimensional constant. A direct calculation shows that
above metric is a solution of the three-dimensional vacu
Einstein equation with a negative cosmological constant,

Rmn52Lgmn , R56L52
6

s2
. ~2!

Thus the sectional curvaturek is constant and negative
namely,k5L521/s2. The metric~1! has a horizon radius
given by

r 15AMs ~3!

and describes a space-time locally isometric to the anti
Sitter space.

The Euclidean section is obtained by the Wick rotatiot
→ i t and reads

ds25S r 2

s2
2M D dt21S r 2

s2
2M D 21

dr21r 2df2. ~4!

Changing the coordinates (t,r ,f)→(y,x1 ,x2) by means of

y5
r 1

r
e~r 1 /s! f,

x11 ix25
1

r
Ar 22r 1

2 expS i
r 1

s2
t1

r 1

s
f D , ~5!

the metric becomes the one of the upper-half space repre
tation of H3, i.e.,

ds25
s2

y2
~d2y1dx1

21dx2
2!. ~6!

As a consequence, the metric~4! describes a manifold locally
isometric to the hyperbolic spaceH3.

It is known that the group of isometries ofH3 is SL~2,C!.
We shall consider a discrete subgroupG,PSL(2,C)
[SL(2,C)/$6I % (I is the identity element!, which acts dis-
continuously at the pointz belonging to the extended com
plex planeCø$`%. We recall that a transformationgÞI ,
gPG, with

gz5
az1b

cz1d
, ad2bc51, a,b,c,dPC, ~7!

is called elliptic if (Trg)25(a1d)2 satisfies 0<(Trg)2,4,
hyperbolic if (Trg)2.4, parabolic if (Trg)254, and loxo-
dromic if (Trg)2PC\@0,4#. The elementgPSL(2,C) acts on
z5(y,w)PH3, w5x11 ix2 , by means of the linear
fractional transformation

gz5S y

ucw1du21ucu2y2
,
~aw1b!~ c̄w̄1d̄!1ac̄y2

ucw1du21ucu2y2 D .

~8!

The periodicity of the angular coordinatef allows one to
describe the BTZ black hole manifold as the quotie
e
m
.,

e

en-

t

H3[H3/G, G being a discrete group of isometry possess
a primitive elementghPG defined by the identification

gh~y,w!5~e2pr 1 /sy,e2pr 1 /sw!;~y,w!. ~9!

According to Eq.~8!, this corresponds to the matrix

gh5S epr 1 /s 0

0 e2 pr 1 /sD , ~10!

namely, to a hyperbolic element (trgh.2) consisting in a
pure dilatation. Furthermore, since in Euclidean coordina
t becomes an angular-type variable with periodb, one has
the identification

ge~y,w!5~y,eibr 1 /s2
w!;~y,w!. ~11!

This identification is generated by an elliptic element in t
groupG,

ge5S eib ~r 1/2s2! 0

0 e2 ib ~r 1/2s2!D , ~12!

as soon as (trge)
2,4, and a conical singularity will be

present. However, if

b
r 1

2s2
5p, ~13!

thenge[I and the conical singularity is absent. As a resu
the period is determined to be

bH52p
s2

r 1

, ~14!

which is interpreted as the inverse of the Hawking tempe
ture @5#. Therefore, the on-shell BTZ black hole can be r
garded as a strictly hyperbolic noncompact manifoldH3.
The mass, as a function of the black hole temperat
T5bH

21 , reads

M54p2s2T2, ~15!

which shows that the stability condition]M /]T.0 is satis-
fied. The tree-level Bekenstein-Hawking entropySH may be
simply obtained by making use of the relation

bH5
]SH

]M
. ~16!

Thus one has

SH54pr 152A. ~17!

Note thatA52pr 1 is the perimeter of the horizon. If we
chooseG51 instead of 8G51, the entropy becomesA/4,
which is the well-known ‘‘area law’’ for black hole entropy

Another important thermodynamical quantity is the o
shell Euclidean action of a black hole, namely, the act
evaluated atbÞbH ~see Ref.@18# for the quasilocal formal-
ism of black-hole thermodynamics!:
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I 52
1

2pEM~R22L!Agd3x2
1

pE]M
KAhd2x. ~18!

The boundary]M5S1
^ S1 ~a torus! is identified with pe-

riod b ~the first circle! at some fixed radiusr 5R ~the second
circle!, which will go to the infinity at the end, andK is the
trace of the extrinsic curvature of the boundary. The Euc
ean action~18! is a divergent function of the boundary loc
tion and therefore it is necessary to subtract the action
chosen background@24#. This will be the related ground
state solution, i.e., theM50 line element

ds0
25

r 2

s2
dt21

s2

r 2
dr21r 2df2, ~19!

which also corresponds to the zero-temperature state
quantities referring to this reference background will be
noted by the subscript 0. As mentioned above, atbÞbH
there exists a conical singularity whose contribution to
action is given by the Gauss-Bonnet theorem for a disk@25#,
which reads

1

2pEMRAgd3x5
2A

bH

~bH2b!1~volume contribution!.

~20!

The conical singularity contribution of the background va
ishes sinceA050. The volume contribution of the differenc
of two actions can be computed by matching the coordin
of the boundary location in the backgroundr 5R0 to the
coordinate of the boundary location in the black hole me
r 5R in such a way that the two metrics asymptotica
agree. Finally, the surface contribution is seen to van
Therefore, the off-shell Euclidean action becomes

I 52
2A

bH

~bH2b!2
r 1

2 b

s2
5Mb22A, ~21!

where (M ,b) are now independent thermodynamics va
ables and r 15sAM . On shell we haveb5bH and
I 522pr 1 . If one identifiesI with 2 lnZ @5#, the partition
function of the black hole, then the mean energy in the
nonical ensemble will be

^E&52]blnZ5M , ~22!

as expected, and the entropy will be aga
S52A54pr 154psAM . BecauseS;AM , the partition
function as a ‘‘sum over states’’ in semiclassical quant
211 gravity will converge and the canonical ensemble fo
black hole in equilibrium with thermal radiation will lead t
a stable thermodynamics.

We conclude this section with a comment on the glo
geometry of the ground state. Looking at Eq.~19!, it is clear
thatt can be identified to any periodb ~in particularb5`)
and that f has period 2p. Changing the coordinates a
r 5s2/y, t5x1 , andf5x2 /s, one gets the metric of hyper
bolic space
-

a

all
-

e

-

te

c

h.

-

-

a

l

ds0
25s2

dx1
21dx2

21dy2

y2
~23!

and the identificationgp(w,y)5(w1b1 i2ps,y).(w,y).
This identification is generated by elements ofG of the form

gp1
5S 1 b

0 1D , gp2
5S 1 2p is

0 1 D , ~24!

which are parabolic. Thus our reference manifold can
regarded as the quotientH05H3/G0, where a subgroupG0
has primitive parabolic elementsgp1

andgp2
.

We note that for negative mass, one gets solutions w
naked conical singularity@26# unless one arrives atM521,
namely, H3, the Euclidean counterpart of the thre
dimensional anti–de Sitter space-time. This solution is a p
missible solution and can be regarded as a ‘‘bound sta
@2#.

III. THE TRACE FORMULA AND SPECTRAL
z FUNCTION

In this section we investigate the spectral properties as
ciated with the Laplace-type operator acting in a noncomp
hyperbolic manifoldH3. To go further, it is convenient to
introduce spherical hyperbolic coordinates

y5rcosu, w5x11 ix25rsinueiw. ~25!

It is easy to show that the fundamental domain ofH3 is
noncompact and reads@19#

F5$1<r<N, 0<u,p/2, 0,w,2p%, ~26!

where lnN52pr1 /s. Note thatz85ghz5Nz and the corre-
sponding transformation law for a scalar fieldF reads
F(gz)5xF(z),gPG, wherex is a finite-dimensional uni-
tary representation~a character! of G.

Let us consider an arbitrary integral operator, defined b
kernel k(z,z8). The operator is invariant@i.e., the operator
commutes with all operators of the quasiregular represe
tion of the groupPSL(2,C) in the spaceC0

`(H3)], if its
kernel satisfies the conditionk(gz,gz8)5k(z,z8) for any
z,z8PH3. Thus the kernel of the invariant operator, for e
ample, the Laplace operator, is a function of the geode
distance betweenz andz8, namely,

d~z,z8!5cosh21F11
~y2y8!21~x12x18!21~x22x28!2

2yy8
G .

~27!

In our case, the geodesic length between the pointz and
z85ghz is

l 05 inf d~z,ghz!5 ln N52p
r 1

s
. ~28!

It is convenient to replace such a distance with the fun
mental invariant
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4920 57BYTSENKO, VANZO, AND ZERBINI
u~z,z8!5
1

2
@coshd~z,z8!21#, u~z,z!50, ~29!

and thereforek(z,z8)5k@u(z,z8)#. Finally, for the sake of
simplicity, we sets51; thusuku51/s251 and all the quan-
tities are dimensionless~the physical dimensions can be r
stored by dimensional analysis at the end of the calc
tions!.

A. The heat-kernel trace formula

Let us start with the heat kernel of the Laplace opera
acting inH3. We shall use the method of images. The h
kernel reads~see, for example, Refs.@27# and @28#!

Kt
H3

~z,z8!5
exp~2t2 d2~z,z8!/4t !

~4pt !3/2

d~z,z8!

sinhd~z,z8!
. ~30!

With regard to the heat kernel onH3, the method of images
gives

Kt~z,z8!5(
n

xnKt
H3

~z,gh
nz8!

5Kt
H3

~z,z8!1 (
nÞ0

xnKt
H3

~z,gh
nz8!xn, ~31!

where the separation between the identity and the nontr
periodic geodesic contribution has been done. In our c
the volumeV(F3) of the fundamental domainF3 is diver-
gent and we must introduce a regularization. The simp
one is to limit the integration in the variableu between
0,u,p/22«, with « suitable. Thus we have

V«~F !5E
1

Ndr

r E
0

2p

dwE
0

p/22« sinu

~cosu!3
du

52p2r 1~cot«!252p2r 1S 1

«2
2

2

3
1O~«!D .

~32!

We may determine« choosing

1

«2
5

R2

r 1
2

2
1

3
. ~33!

Thus

VR~F !52p2
R2

r 1

22p2r 15E
0

bH
dtE

0

2p

dfE
r 1

R

r dr ,

~34!

where the cutoff parameterR has been introduced~see Sec.
II for notation!. The integration over the regularized~funda-
mental! domain of the diagonal part leads to
-

r
t

al
e,

st

Tre2tD0~R![TrKt~R!

5VR~F !
e2t

~4pt !3/2
12p l 0e2t (

nÞ0

xn

~4pt !3/2

3E
0

p/2 ~sinu!d~z,gh
nz!

~cosu!3sinh@d~z,gh
nz!#

e2 d2~z,gh
nz!/4tdu,

~35!

where D0 is a scalar Laplacian and d(z,gh
nz)

5cosh21(11bn
2cos22u). The integral overu can be per-

formed by changing the integration variableu→u given by
2Aut5cosh21(11bn

2cos22u). As a consequence, the resultin
integral becomes elementary, i.e.,

TrKt~R!5VR~F !
e2t

~4pt !3/2

14p l 0(
n51

`
xne2t

bn
2~4pt !3/2En2l 0

2/4t

`

e2tudu ~36!

since cosh21(11bn
2)5nl0. As a result, one obtains

TrKt~R!5VR~F !
e2t

~4pt !3/2
1

l 0

2
(
n51

`
xn

~sinhnl0/2!2

e2t2 l 0
2n2/4t

~4pt !1/2
.

~37!

The above heat-kernel trace has also been computed rec
in Ref. @29#.

B. The Selberg-like trace formula

In the preceding subsection we have derived the h
kernel trace formula. For our purpose it is important that E
~37! looks ~formally! like the Selberg trace formula assoc
ated with the Laplace operator acting in a compact spaceH3

~a groupG is cocompact!. This statement is formal enough
nevertheless, let us verify it through a common style of p
sentation.

First of all, we may consider a given~regularized! com-
pact Riemannian manifold as conformally equivalent to o
of constant scalar curvature. This is known as the Yam
problem@30#. This problem has been solved for the case
nonpositive scalar curvature in Ref.@31#. Furthermore, let
$l j% j 50

` denote the nonzero isolated eigenvalues~appearing
the same number of times as its multiplicity! of the positive
self-adjoint Laplace operator. Let us introduce a suitable a
lytic function h(r ), wherer j

25l j21. It can be shown tha
h(r ) is related to the quantityk@u(z,gz)# by means of the
Selberg transform~see, for example, Refs.@32# and@28# and
references therein!. Let ĥ(p) be the Fourier transform o
h(r ),

ĥ~p!5
1

2pE2`

`

e2 irph~r !dr. ~38!
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For the derivation of the Selberg trace formula, one has
consider the contributions coming from the identity elem
in G and all g-type conjugacy classes~the method of im-
ages!, namely,

Trh~D0!5(
j

h~l j !5C~ I !1C~H !

5V~F3!k~0!1(
$g%

x~g!E
F3

k@u~z,gz!#dm3 .

~39!

The first term on the right-hand side of Eq.~39!, C(I ), is the
contribution of the identity element, whileV(F3) is the ~fi-
nite! volume of the fundamental domain with respect to t
Riemannian measuredm35dx1dx2dyy23. Formally, for the
noncompact manifoldH3, whose fundamental domain i
given by Eq. ~26!, one may setV(F3);VR(F), where
VR(F) is given by Eq.~34!.

Let us consider now the hyperbolic~a topologically non-
trivial! contribution and show that it is finite. First it reduce
to

C~H !5(
$g%

x~g!E
F3

k@u~z,gz!#dm3

5 (
nÞ0

xnE
F3

k@u~z,gh
nz!#dm3 . ~40!

Noting thatxn5x2n and

u~z,gh
nz!5

1

2
@coshd~z,gh

nz!21#5bn
2~11tan2u!, ~41!

with bn
25sinh2(nl0/2), one has

C~H !54p l 0(
n51

`

xnE
0

p/2 sinu

~cosu!3
k@bn

2~11tan2u!#du

52(
n51

`
xn

bn
2Ebn

2

`

k~x!dx. ~42!

Recalling the Selberg transform in the three-dimensio
case@32,28# one gets

k~0!5E
0

` r 2

2p2
h~r !dr,

~43!

E
bn

2

`

k~x!dx5
1

4p
ĥ~n2r 1!.

Thus the final trace formula reads

Trh~D0!~R!5VR~F !E
0

` r 2

2p2
h~r !dr

1 l 0(
n51

`

xn
ĥ~n2r 1!

~sinhnl0/2!2
. ~44!
to
t

l

The trace formula~44! is valid for a large class ofh(r )
functions. In particular, choosingh(r )5e2t(r 211) in Eq.
~44!, one obtains the result of Eq.~37!.

Finally, the relatedz function can be calculated by mean
of the Mellin transform

z~suD0!~R!5
1

G~s!
E

0

`

ts21TrKt~R!dt, ~45!

valid for Res.3/2. A direct computation gives the analyt
continuation of thez function in the neighborhood of the
point s50, i.e.,

z~suD0!~R!5VR~F !
G~s2 3/2!

~4p!3/2G~s!
1

l 0

G~s!G~12s!

3E
0

`

~2t1t2!2sC~21t !dt, ~46!

where the function

C~s!5 (
n51

`
xn

~sinhnl0/2!2
e2~s21!l 0n ~47!

has been introduced.
For transverse one-forms, there exists a similar trace

mula ~see, for example, Ref.@34#! and we quote here only
the results: There is no gap in the spectrum of Laplace
eratorD1

' , the Plancherel measure is (r 211)/2p2, and the
heat-kernel trace formula reads

Tre2tD1
'

~R!

5Q~ t !S VR~F !12l 0~4pt ! (
n51

`

xn
e2 n2l 0

2/4t

~sinhnl0/2!2D , ~48!

with

Q~ t !5
1

4~pt !3/2
1

1

2p3/2t1/2
. ~49!

IV. THE QUANTUM CORRECTION TO THE ENTROPY
OF THE BTZ BLACK HOLE

The on-shell quantum correction to the Bekenste
Hawking entropy may be computed within the Euclide
semiclassical approximation@5# and we shall follow this ap-
proach in this section. We have to mention that a more
phisticated approach has been proposed in Ref.@33#, where
the canonical and microcanonical partition functions of t
black hole in a cavity with suitable boundary conditions ha
been investigated. This approach has the merit of a m
direct physical understanding and has been applied
anti–de Sitter black holes in Ref.@18#.

Within the Euclidean approach, making use of the Che
Simons representation of the three-dimensional gra
@21,22#, the one-loop approximation gives

lnZ~1!5 ln~T1/2!2I , ~50!



d

rd

o
ca

ck
-

n

io

en

o
c
io
e
m

o
u

a
he
u

d
g

te
-

nal

h

4922 57BYTSENKO, VANZO, AND ZERBINI
where, if one is dealing with a compact three-manifoldM ,
the quantum prefactorT is the Ray-Singer torsion associate
with M ~see a more precise definition below!. In our case, we
assume the quantum prefactor to be the same, but, acco
the discussion of Sec. II, we write

lnZ~1!5
1

2
lnT2~ I BTZ2I 0!2~BBTZ2B0![

1

2
lnT2I P ,

~51!

in which BBTZ is the usual boundary term that depends
the extrinsic curvature at a large spatial distance. We re
that the total classical action is divergent; the geometry
noncompact and we have introduced the ‘‘reference’’ ba
groundH0

3 at the tree level@24# and the related volume cut
offs R andR0. With this proposal, in Eq.~51! the two bound-
ary terms of the classical contribution cancel for largeR and
the difference of the on-shell Euclidean classical actio
gives rise to~see Sec. II!,

I P5I BTZ2I 052
2

p
@V~R!2V0~R!#→22pr 152 lnZ~0!.

~52!

Restoring the correct physical dimension in Eq.~52!, it is
easy to show that the on-shell tree-level partition funct
Z(0), Eq. ~52!, becomes

lnZ~0!5
4p2r 1

16pG
, ~53!

which leads to the semiclassical Bekenstein-Hawking
tropy

S~0!5SH5S r 1

]

]r 1

11D lnZ~0!5
1

4

2pr 1

G
. ~54!

So far, we have neglected quantum fluctuations. The
shell quantum correction of the gravitational quantum flu
tuations is given by the square root of the Ray-Singer tors
of the manifoldH3. For a compact hyperbolic manifold th
Ray-Singer torsion is the ratio between functional deter
nants of Laplace operatorsDk acting onk-forms onH3 ~see,
for example, Refs.@21#, @22#, and@34#!; i.e.,

T5
detD0

~detD1
'!1/2

. ~55!

However, in our case a manifold is noncompact and a v
ume regularization previously introduced will be used. Th
we have

lnZ~1!5
1

2
ln detD02

1

4
ln detD1

'2I P . ~56!

For the tree-level term it is necessary to introduce the b
quantityGB since the quantum correction is plagued by t
ultraviolet divergences and a renormalization procedure m
be used. The functional determinants are then calculate
means of a regularization. We shall use the proper-time re
ing

n
ll

is
-

s

n

-

n-
-
n

i-

l-
s

re

st
by
u-

larization~the z-function regularization gives the same fini
part!, in order to deal explicitly with the ultraviolet diver
gences.

In the case of zero-forms, one can compute a functio
determinant by means of Eq.~37!. Thus we have

ln detD052E
«

`

t21Tre2tD0dt

52
VR

~4p!3/2
GS 2

3

2
,« D1 (

n51

`
xn

n~sinhnl0/2!2
e2 l 0n

52
VR

~4p!3/2
GS 2

3

2
,« D1 lnZ0~2!, ~57!

whereG(2 3
2 ,«) is the incomplete Gamma function, whic

has two divergent terms as«→0, namely,

GS 2
3

2
,« D5GS 2

3

2D2
1

4~p«!3/2
1

1

~4p!3/2«1/2
1O~«1/2!

~58!

and

lnZ0~2!5 (
k51

`

kln~12xe22~k11! ~r 1 /s!!. ~59!

In a similar way, using Eq.~48!, one has

ln detD1
'52E

«

`

t21Tre2tD1
'

dt

52
VR

8~4p«!3/2
1

VR

2~4p!3/2«1/2
2 lnZ1~1!,

~60!

with

lnZ1~1!5 (
n51

`
xn

@sinh~nr1 /s!#2 F1

n
18nS r 1

s
D 2G . ~61!

As a result,

lnZ~1!5
4p2r 1

16pG
1g~r 1!2F« , ~62!

where

g~r 1!5
1

2
lnZ0~2!1

1

4
lnZ1~1! ~63!

and

F«5VRF 1

2~4p!3/2
GS 2

3

2
,« D1

1

32~4p«!3/2

2
1

8~4p!3/2«1/2G . ~64!
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If we define the renormalized quantity

1

16pGr

5
1

16pG
1

F«

4p2r 1

, ~65!

we arrive at

lnZ~1!5
pr1

4Gr

1g~r1!. ~66!

This renormalized one-loop effective action may be thou
to describe an effective classical geometry belonging to
same class of nonrotating BTZ black hole solution. T
stems from the results contained in Ref.@35#, where it has
been shown that the constraints for pure gravity hav
unique solution. As a consequence, one may introduce a
effective radius by means of

lnZ~1!5
pR1

4pGr

, ~67!

where

R15r11
4Gr

p
g~r1!, ~68!

mimicking in this way the back reaction of the quantu
gravitational fluctuations. As a consequence, the new entr
is given by an effective Bekenstein-Hawking term, name

S~1!5
1

4

2pR1

Gr

. ~69!

One can evaluate the asymptotics of the quantityg(r 1)
for r 1→` andr 1→0 and then compute the effective radiu
Note that lnZ1(1) and lnZ0(2) are exponentially small fo
large r 1 . Thus

R1.r 1 ~70!

and nothing of interest is present in this limit.
Making use of the results of the Appendix, for smallr 1 ,

one has

R1.r 11
4Gr

p
H s2

16r 1
2 F2 lnS 2r 1

s
D 12g1C~2!2z~3!G

1
sp2

24r 1

1
1

4
lnS r 1

sp
D 1O~r 1!J . ~71!

One can see that forr 1 sufficiently small the effective radiu
becomes larger and positive. This means thatR1 ~as a func-
tion of r 1) reaches a minimum for suitabler 1* , the solution
of the equation

4Gr

p
g8~r 1* !521. ~72!

This result is in qualitative agreement with a very rece
computation of the off-shell quantum correction to the e
tropy due to a scalar field in the BTZ background@29# and
all the qualitative considerations contained there are a
t
e

s

a
ew

py
,

.

t
-

o

valid for the gravitational case we are dealing with. In pa
ticular, it appears that the quantum gravitational correctio
could become more and more important as the evapora
process continues and thus they cannot be neglected.

V. CONCLUDING REMARKS

In this paper the quantum correction of the BTZ bla
hole has been evaluated making use of the appropr
Chern-Simons representation of three-dimensional grav
The quantum prefactor, i.e., the Ray-Singer torsion, has b
evaluated by means of the proper-time regularization.

In our computation the one-loop ultraviolet and horiz
divergences, generally present in the quantum correct
have also been found and they have been accounted fo
means of the introduction of the standard one-loop renorm
ization procedure of the Newton constant@8#. Also, the semi-
classical Bekenstein-Hawking entropy has been rederived
the improved Euclidean method suggested in Ref.@24#.

With regard to this, we have to stress again that we h
been working within the so-called on-shell Euclidean a
proach @5#, namely, our one-loop approximation has be
evaluated on the regular Euclidean BTZ instanton. Fo
critical comparison between on-shell and off-shell metho
in the black hole entropy issue, see the review@36#. Here we
would like to mention only that our result for quantum co
rections to the black hole entropy differs from the one
ported in Ref.@19# and is consistent with the detailed of
shell computation of the entropy of scalar fields in the BT
classical background given in Ref.@29#. Horizon divergences
of the entropy for scalar fields in the same background h
also been investigated in Ref.@37#.

Finally, our result, even though obtained in the one-lo
approximation, may be interpreted with a nonviolation of t
area law, but with an effective radius that is the classical o
for large black hole masses, but that shrinks as the black
evaporation goes on. This seems to suggest that the qua
corrections of the gravitational field become more and m
important near the end of the evaporation process. As fa
this issue is concerned, we observe that the final effec
geometrical configuration is the reference spaceH0

3, which
admits a naked singularity at the origin. As a consequen
the quantum correction seems to have a tendency to a
the appearance of the naked singularity, in agreement w
the ‘‘cosmic censorship’’ hypothesis.
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APPENDIX

In this appendix we shall investigate the smallt52r 1 /s
asymptotics for the quantityg(t), making use of the standar
Mellin transform technique@38#. For the sake of simplicity
we setx51. To begin with, we observe that lnZ0(2) may be
rewritten as
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lnZ0~2!5 (
n51

`

nln~12e2tn!2H~ t !, ~A1!

whereH(t) is the Hardy-Ramanujan modular function, give
by

H~ t !5 (
n51

`

ln~12e2tn!. ~A2!

It satisfies the functional equation

H~ t !52
p2

6t
2

1

2
lnS t

2pD1 t

24
1HS 4p2

t
D . ~A3!

For the first term, the Mellin transform representation giv

(
n51

`

nln~12e2tn!52
1

2p i ERez.2
t2zG~z!z~z11!

3z~z21!dz. ~A4!

Shifting the vertical contour to the left, one has a simple p
at z52, a double pole atz50, and simple poles atz522m,
m51,2, . . . . Theresidue theorem gives, for smallt,

(
n51

`

nln~12e2tn!52
z~3!

t2
1z~21!lnt2z8~21!1O~ t2!.

~A5!
av

v.

D

e

With regard to the quantity lnZ1(1), the same technique
gives

lnZ1~1!5 (
n51

`
1

~sinhn t/2!2 S 1

n
12nt2D

5
1

2p i ERez.2
dz t2zG~z!z~z21!@z~11z!

12t2z~z21!#

5
z~3!

t2
2z~21!lnt1z8~21!

1
1

t2
@2g1C~2!2 lnt#1O~ t2!. ~A6!

As a result, for smallt the asymptotics for the quantityg(t)
@see Eq.~63!# reads

g~ t !5
1

4t2
@2 lnt12g1C~2!2z~3!#1

p2

12t
1

1

4
lnS t

2p D
1

t

48
1O~ t2!. ~A7!
s.
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