PHYSICAL REVIEW D VOLUME 57, NUMBER 8 15 APRIL 1998

Quantum correction to the entropy of the (2+1)-dimensional black hole
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The thermodynamics of th@+1)-dimensional nonrotating black hole of Bados, Teitelboim, and Zanelli
is discussed. The first quantum correction to the Bekenstein-Hawking entropy is evaluated within the on-shell
Euclidean formalism, making use of the related Chern-Simons representation of three-dimensional gravity.
Horizon and ultraviolet divergences in the quantum correction are dealt with by a renormalization of the
Newton constant. It is argued that the quantum correction due to the gravitational field shrinks the effective
radius of a hole and becomes more and more important as the evaporation process goes on, while the area law
is not violated[S0556-282(198)00908-4

PACS numbegps): 04.70.Dy, 04.60.Kz, 97.60.Lf

[. INTRODUCTION the quantization of the gravitational field itself. The tree-
level approximation to the partition function has been dis-
It is well known that we do not have yet at our disposal acussed at length ifil8], using Brown and York’s approach
consistent and complete four-dimensional quantum gravitytO quasilocal thermodynamics for asymptotically anti—de Sit-
nevertheless, a large number of interesting issues have bet&f black holes. It is found that in421 dimensions there is a
investigated, mainly within the semiclassical approximationthermodynamically stable black hole solution and no nega-
One of the most important issues is related to black holdive heat capacity instantons. Thus one expects the quantum
physics and deals with the origin of entropy, its quantumcorrections to be well defined.
corrections, the information loss paradox, and the validity of As far as the computation of these corrections is con-
the area law(see, for example, Ref1]). However, it is well ~ cerned, some work has been dond 19,20 and a motiva-
known that in 31 dimensions black hole quantum physics tion of our paper is to present a detailed and possibly com-
needs several approximations. plete discussion on this point. The quantum correction of the
Recently, three-dimensional gravity has been studied i8TZ black hole will be evaluated by making use of the re-
detail. Despite the simplicity of the three-dimensional casdated Chern-Simons representation of three-dimensional
(no propagating gravitonsit is a common belief that it de- gravity [21,22. It should be stressed that within this ap-
serves attention as a useful laboratory. In fact, surprisingly, &/0ach a preliminary statistical mechanics explanation of the
black hole solution has been found by Baos, Teitelboim, Bekenstein-Hawking entropy, counting boundary states at
and Zanelli[2]. In particular, the simple geometrical struc- the horizon, has been given in Rg23].
ture of this black hole allows exact computations since its The organization of the paper is as follows. In Sec. Il we
Euclidean counterpart is locally isomorphic to the constantbriefly review the geometry of the Euclidean BTZ black
curvature three-dimensional hyperbolic spate hole. In Sec. lll we present a derivation of the Selberg trace
In this paper, we shall compute a quantum correction tdormula, starting from an elementary derivation of the heat-
the semiclassical Bekenstein-Hawking entropy for thekernel trace related to the Laplace operator, which is neces-
Barados-Teitelboim-ZanelliBTZ) black hole due to the sary for our regularization. In Sec. IV the computation of the
one-loop gravitational fluctuations in an attempt to elucidateduantum correction to the entropy is outlined. The paper
the statistical origin of black hole entropg—6] and to ex- ends with some concluding remarks in Sec. V. In the Appen-
plore the possible relevance of quantum fluctuations duringlix some explicit computations are included.
the late stages of the black hole evaporation process.
With regard to these issues, we recall that many papers
have appeared in which the quantum entropy of matter fields, Il. THE EUCLIDEAN BTZ BLACK HOLE
propagating in a black hole background, has been evaluated

gﬁg??Ei;])faiﬁvg?elrg:]f‘f:eer?r?;:gizw:eqvtfgﬁ% Ifi?(re ?giﬂgfs’ pects of the nonrotating BTZ black hdlg] that are relevant
' for our discussion. In the coordinates,r(,¢), the static

here that we shall compute the one-loop contribution due t?_orentzian metric reads =1 is assumed for the moment
thus the mass is dimensionlg¢ss

Following [19] we summarize here the geometrical as-
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4918 BYTSENKO, VANZO, AND ZERBINI 57

whereM is the standard Arnowitt-Deser-Misner mass and +3=H3T, I" being a discrete group of isometry possessing
is a dimensional constant. A direct calculation shows that the, primitive elementy,,eI" defined by the identification
above metric is a solution of the three-dimensional vacuum

Einstein equation with a negative cosmological constant, i.e., Yr(Y, W)= (e2™+ /7y 2™+ low) ~ (y,w). 9
6 According to Eq.(8), this corresponds to the matrix
R.,=2A0,,, R—6A——?. (2) ot o 0
. . . ‘}/h:( O — oy /0—) ’ (10)
Thus the sectional curvaturk is constant and negative, e

namely,k= A= —1/o%. The metric(1) has a horizon radius

given by namely, to a hyperbolic element §4/>2) consisting in a

pure dilatation. Furthermore, since in Euclidean coordinates
ro= WMo 3) 7 becomes an angular-type variable with per@done has
the identification
and describes a space-time locally isometric to the anti—de

Sitter space. ey, W) =(y,€P+ 7 w) ~ (y,w). (13)
The Euclidean section is obtained by the Wick rotation o S o )
_ir and reads This identification is generated by an elliptic element in the
groupT’,
r2 r2 -1
dszz(—z—M dr*+| —-M| dr?+r?d¢®  (4) gif (r4120%) 0
o o Ye= —i 2y | (12)
0 e iB(r/l20%)

Changing the coordinatesf, ¢)—(y,X;,X,) by means of
as soon as (#.,)?><4, and a conical singularity will be

y- r_+e(r+/0) n present. However, if

r gt (13
LE
202

1 r r
x1+ix2:F\/r2—riexp<ia—+27+ iqﬁ), (5)

theny.=I and the conical singularity is absent. As a result,

. the period is determined to be
the metric becomes the one of the upper-half space represen-

tation of H3, i.e., o2
Bu=2m—, (14
a? ) ’ I
ds’=— (d’y+dxj+dx;). (6)
y which is interpreted as the inverse of the Hawking tempera-

; . ) ture [5]. Therefore, the on-shell BTZ black hole can be re-
As a consequence, the met(#) describes a manifold locally garded as a strictly hyperbolic noncompact manifad.

i i i 3
Isometric to the hyperbolic Spa@‘ . . The mass, as a function of the black hole temperature
It is known that the group of isometries B is SL(2,C). T=8,1, reads
H »

We shall consider a discrete subgrodpC PSL(2,C)

=SL(2,C)/{=1} (I is the identity element which acts dis- M = 47252T2, (15)
continuously at the point belonging to the extended com-
plex planeCU{»}. We recall that a transformatiog#1,  which shows that the stability conditiofM/JT>0 is satis-
yel, with fied. The tree-level Bekenstein-Hawking entrdfly may be
b simply obtained by making use of the relation
az+
yz=m, ad—bc=1, a,b,c,de(, (7) 5 oSy 19
YR

is called elliptic if (Try)?=(a+d)? satisfies 6<(Try)?<4,
hyperbolic if (Try)?>4, parabolic if (Tr)?=4, and loxo-
dromic if (Try)?e C\[0,4]. The elementye SL(2,C) acts on
z=(y,w) eH? w=x;+ix,, by means of the linear- Sy=4mr . =2A. 17
fractional transformation

Thus one has

o Note thatA=27r, is the perimeter of the horizon. If we
B y (aw+b)(cw+d)+acy? chooseG=1 instead of &=1, the entropy becomea/4,
- lcw-+d|2+|c|2y?’ lcw+d|2+|c|2y? ' which is the well-known “area law” for black hole entropy.
Another important thermodynamical quantity is the off-
shell Euclidean action of a black hole, namely, the action
The periodicity of the angular coordinai allows one to evaluated a3+ By (see Ref[18] for the quasilocal formal-
describe the BTZ black hole manifold as the quotientism of black-hole thermodynamics

74
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, X+ dxG+dy?

1 1
- _ 3y 2
|= ZWJM(R 2A)\Jgdx 7TLMIC\/hol x. (18) d=0c .

(23

The boundarygM=S'®S! (a torus is identified with pe- and the identificationy,(w,y) = (W+ B+i2ma,y)=(w,y).
riod B (the first circle at some fixed radius=R (the second  This identification is generated by elements'0bf the form
circle), which will go to the infinity at the end, ank is the

trace of the extrinsic curvature of the boundary. The Euclid- 1 B 1 27io

ean action(18) is a divergent function of the boundary loca- Yo, = ( 0 1), Yo, = ( 0 1 ) (24)
tion and therefore it is necessary to subtract the action of a

chosen backgroun{24]. This will be the related ground-

. . . which are parabolic. Thus our reference manifold can be
state solution, i.e., tht&1=0 line element P

regarded as the quotiefit,=H?3/T',, where a subgroup'o
) 5 has primitive parabolic elemem;'q,1 and Ypy:

dsﬁzr—d7-2+ ‘T_drzﬂzd(ﬁz, (19) We note that for negative mass, one gets solutions with

o? r2 naked conical singularitf26] unless one arrives & = —1,
namely, H3, the Euclidean counterpart of the three-
which also corresponds to the zero-temperature state; aflimensional anti—de Sitter space-time. This solution is a per-
quantities referring to this reference background will be de-missible solution and can be regarded as a “bound state”
noted by the subscript 0. As mentioned abovegBats,  [2]
there exists a conical singularity whose contribution to the

action is given by the Gauss-Bonnet theorem for a {24, ll. THE TRACE FORMULA AND SPECTRAL
which reads ¢ FUNCTION
In this section we investigate the spectral properties asso-
1 2A o ) . e
— | R\Jgd*x=——(By— B)+ (volume contribution ciated with the Laplace-type operator acting in a noncompact
2m ) m H hyperbolic manifold*3. To go further, it is convenient to

(200 introduce spherical hyperbolic coordinates

The conical singularity contribution of the background van- y=pcosd, W=X;+iX,=psinge'®. (25
ishes sincé\,= 0. The volume contribution of the difference

of two actions can be computed by matching the coordinatét is easy to show that the fundamental domain?¢t is
of the boundary location in the backgroumé=R, to the  noncompact and read49]

coordinate of the boundary location in the black hole metric

r=R in such a way that the two metrics asymptotically F={l<p=<N, 0s0<m/2, 0<o<2m7}, (26)
agree. Finally, the surface contribution is seen to vanish.
Therefore, the off-shell Euclidean action becomes where IlN=2m1, /o. Note thatz' = y,z=Nz and the corre-
sponding transformation law for a scalar fieft reads
oA r28 O(yz)=xP(2),yel', wherey is a finite-dimensional uni-
l=——(By—B)— = MB—2A, (22) tary representatiofa characterof I.
B o Let us consider an arbitrary integral operator, defined by a

kernel k(z,z'). The operator is invariarfi.e., the operator
where M,B) are now independent thermodynamics vari-commutes with all operators of the quasiregular representa-
ables andr,=¢JM. On shell we haveB=pg, and tion of the groupPSL(2,C) in the spaceCy(H3)], if its
| =—2ar . If one identifiesl with —InZ [5], the partition  kernel satisfies the conditiok(yz,yz')=k(z,z') for any
function of the black hole, then the mean energy in the caz,z’ e H3. Thus the kernel of the invariant operator, for ex-
nonical ensemble will be ample, the Laplace operator, is a function of the geodesic
distance betweem andz’, namely,
(E)=—dgInZ=M, (22

. _ g (Y=Y )2+ (Xg = x1)?+ (Xa— Xp)?
as expected, and the entropy will be again d(zz')=cosh | 1+ - :
S=2A=4xr,=4mwc\M. BecauseS~ M, the partition 2yy @7
function as a “sum over states” in semiclassical quantum

2+1 gravity will converge and the canonical ensemble for g, o, case, the geodesic length between the ppiand
black hole in equilibrium with thermal radiation will lead to . _ Yz iS

a stable thermodynamics.

We conclude this section with a comment on the global .
geometry of the ground state. Looking at E&9), it is clear lo=infd(z,yn2)=INN=27—. (28)
that 7 can be identified to any perig8l (in particularB= «) o
and that¢ has period 2zr. Changing the coordinates as
r=o?ly, =X, and¢=x, /o, one gets the metric of hyper- It is convenient to replace such a distance with the funda-
bolic space mental invariant
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u(z,z’)=%[cosrd(z,z’)—1], u(z,z)=0, (29

and thereforek(z,z') =k[u(z,z’)]. Finally, for the sake of
simplicity, we setor=1; thus|k|=1/0?=1 and all the quan-
tities are dimensionlesdhe physical dimensions can be re-
stored by dimensional analysis at the end of the calcula-

tions).

A. The heat-kernel trace formula
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Tre™'%o(R)=TrK(R)
-t n

loe >, X

70 (477t)3/2

=Vr(F) ————+27
"F) o

y r/z (sind)d(z, ypz)
0 (cos)3sinjd(z,ypz)]

e dz(z,yﬂz)/4td 0,
(39

where A, is a scalar Laplacian andd(z, yhz)

Let us start with the heat kernel of the Laplace operator_ cosh {(1+b%cos 26). The integral overd can be per-
. . 3 . n .
acting inH®. We shall use the method of images. The heaf,meq by changing the integration variatfe-u given by

kernel readgsee, for example, Reff27] and[28])

_exp(—t—d*(z,2')/4t) d(z,2)

3
KM (z,z' .
¢ (22) (4rt)32 sinhd(z,2")

(30

With regard to the heat kernel d®, the method of images

gives
3
Kt<z,z'>=; XK (z,%z')

3 3
=K{' (z,z'>+n§0 XK (zhz)x" (3D

where the separation between the identity and the nontrivia
periodic geodesic contribution has been done. In our case,

the volumeV(F;) of the fundamental domaik; is diver-

2Jut=cosh }(1+b’cos 26). As a consequence, the resulting
integral becomes elementary, i.e.,

-t

TrKy(R)=Vg(F)

(4mt)¥2
*© na—t
xX'e F _
+4ml - e "“du (36
o, b2(4rt)32) n21da (39

since cosh1(1+bﬁ)=nlo. As a result, one obtains

et lo < X" e t— 8%/t

rK(R)=Vg(F) ———=+ — .
(R =Val )(47Tt)3/2 20=1 (sinmnly/2)? (4mt)1?

(37)

gent and we must introduce a regularization. The simplest

one is to limit the integration in the variablé between
0<6<m/2— ¢, with & suitable. Thus we have

Ndp 2w ml2—e  sSind
V)= [ Tae | do
1 pJo 0 (cod)

—9.2 2_9n, 2 1 E
27r L (cote) =27r +0(e)

&2 3
(32
We may determine choosing
1 R 1 a3
2 23 (33
Thus
R2 BH 2 R
VR(F)=2772——2772I’+=J dTJ d¢f rdr,
ry 0 0 ry
(34)

where the cutoff parametd® has been introduce@ee Sec.

Il for notation). The integration over the regularizéfinda-
menta) domain of the diagonal part leads to

The above heat-kernel trace has also been computed recently
in Ref.[29].

B. The Selberg-like trace formula

In the preceding subsection we have derived the heat-
kernel trace formula. For our purpose it is important that Eq.
(37) looks (formally) like the Selberg trace formula associ-
ated with the Laplace operator acting in a compact spéte
(a groupI’ is cocompagt This statement is formal enough;
nevertheless, let us verify it through a common style of pre-
sentation.

First of all, we may consider a givemegularized com-
pact Riemannian manifold as conformally equivalent to one
of constant scalar curvature. This is known as the Yamabe
problem[30]. This problem has been solved for the case of
nonpositive scalar curvature in RdB1]. Furthermore, let
{\j};=o denote the nonzero isolated eigenvaltaspearing
the same number of times as its multipligityf the positive
self-adjoint Laplace operator. Let us introduce a suitable ana-
Iytic function h(r), whererjz=)\j—1. It can be shown that
h(r) is related to the quantitifu(z,yz)] by means of the
Selberg transfornfsee, for example, Reff32] and[28] and

references therejn Let h(p) be the Fourier transform of
h(r),

“ 1 (= .
h(p)=ZJ’ e "Ph(r)dr. (38

— o
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For the derivation of the Selberg trace formula, one has td’he trace formula(44) is valid for a large class oh(r)
consider the contributions coming from the identity elementfynctions. In particular, choosin@(r)=e*‘(r2“) in Eq.

in I' and all y-type conjugacy classeshe method of im-
ages, namely,

Trh(Ag)=2 h(\j))=C(1)+C(H)
J

=V(F3)k(0)+ >, X(?’)f K[u(z,yz)]dus.
{7 F3
(39

The first term on the right-hand side of E§9), C(l), is the
contribution of the identity element, whi(F5) is the (fi-

nite) volume of the fundamental domain with respect to the

Riemannian measumu;=dx,;dx,dyy 3. Formally, for the

noncompact manifold3, whose fundamental domain is

given by Eq. (26), one may setV(F;)~Vg(F), where
Vgr(F) is given by Eq.(34).
Let us consider now the hyperbolia topologically non-

trivial) contribution and show that it is finite. First it reduces

to
CH)=3 x(y)f Ku(z,y2)lda
{7} F3

-3 | quespol. @0
n#0 F3
Noting thaty"=x"" and

n 1 n 2
u(z,yhz)= E[coshﬂ(z, ypz)—1]=b:(1+tarfd), (41)

with b2=sint?(nly/2), one has

@2 sind
09)*

C(H)=47T|0n§l X"f k[b2(1+tarf6)]d6

o (c

=2 — | _k(x)dx. 42
nzl b2 J b2 (x)dx “42

(44), one obtains the result of E(37).
Finally, the related function can be calculated by means
of the Mellin transform

1 ” s—1
L(s|Ag)(R)= mfo 57 TrK (R)dt, (45)

valid for Res>3/2. A direct computation gives the analytic
continuation of the function in the neighborhood of the
points=0, i.e.,

T'(s— 3/2) I

Ag)(R)=VR(F
§(5| o) (R) r( )(477)3/2F(S) I'(s)I'(1—s)

xf (2t+t%) " SW(2+1)dt, (46)
0
where the function
oo Xn
V(=2 e (s lon (47)

n=1 (sinmly/2)?

has been introduced.

For transverse one-forms, there exists a similar trace for-
mula (see, for example, Ref34]) and we quote here only
the results: There is no gap in the spectrum of Laplace op-
eratorA7, the Plancherel measure is?¢+1)/272, and the
heat-kernel trace formula reads

Tre "1(R)

2,2
— nélglat

=Q(t) vR<F>+2lo<4wt>n§ X" (48)

17 (sinmly/2)2)’
with

3 1 1
a 4(7Tt)3/2Jr 2 302102

Q(t) (49

Recalling the Selberg transform in the three-dimensional IV. THE QUANTUM CORRECTION TO THE ENTROPY

case[32,28 one gets

o rz
k(O):f 2—772h(l’)dl',

0

(43
jwk dx= 16 2
2 (X) X—E (n2r ).
Thus the final trace formula reads
=<} r‘2
Trh(Ao)(R)=VR(F)J —h(r)dr
0272
h(n2r
i (n2r,) )

=1 (sinmiy2)?

OF THE BTZ BLACK HOLE

The on-shell quantum correction to the Bekenstein-
Hawking entropy may be computed within the Euclidean
semiclassical approximatid®] and we shall follow this ap-
proach in this section. We have to mention that a more so-
phisticated approach has been proposed in B8, where
the canonical and microcanonical partition functions of the
black hole in a cavity with suitable boundary conditions have
been investigated. This approach has the merit of a more
direct physical understanding and has been applied to
anti—de Sitter black holes in Rgfl18].

Within the Euclidean approach, making use of the Chern-
Simons representation of the three-dimensional gravity
[21,27], the one-loop approximation gives

InZ®=In(TY?)—1, (50
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where, if one is dealing with a compact three-manifMd  larization(the {-function regularization gives the same finite
the quantum prefactdF is the Ray-Singer torsion associated par, in order to deal explicitly with the ultraviolet diver-
with M (see a more precise definition belpwn our case, we gences.

assume the quantum prefactor to be the same, but, according In the case of zero-forms, one can compute a functional

the discussion of Sec. I, we write determinant by means of E(37). Thus we have
w2 L Indet\o=— | t~Tre~todt
InZ :EInT_(IBTZ_IO)_(BBTZ_BO):ElnT_lFD’ naet,= . re
(51 .
N _ VR 3 X" i
in which Bgt; is the usual boundary term that depends on == 4—3,2F T8 + 21 leze 0
the extrinsic curvature at a large spatial distance. We recall (4m) n=1 n(sintnlo/2)
that the total classical action is divergent; the geometry is v 3
H “ " R
noncompact and we have introduced the “reference” back- =— —3/2r< ——,e|+InZy(2), (57)
ground3 at the tree level24] and the related volume cut- (4m) 2

offs R andR,. With this proposal, in Eq51) the two bound- s L _ _ .
ary terms of the classical contribution cancel for laRjand ~ WhereI'(—3,¢) is the incomplete Gamma function, which
the difference of the on-shell Euclidean classical actiondias two divergent terms as—0, namely,

gives rise to(see Sec. )|
1

2 r(—§s>—r<—§ - + +0(&'?)
lp=lgrz—lo=— =[V(R)=V(R)]— 27T, = —InZ"?. 2 2] 4(me)¥?  (4m)¥%1?
" (52 8
and
Restoring the correct physical dimension in EgR), it is
easy to show that the on-shell tree-level partition function ” otk 1) (1 ]
Z(O), Eq (52)’ becomes InZO(Z)ZkZ:l kln(l_Xe ( ) (e U)) (59)
InZ(O)—4W2r+ (59) In a similar way, using Eq(48), one has
167G’ .
1
_ _ _ _ _ IndetA; = —J t Tre 1dt
which leads to the semiclassical Bekenstein-Hawking en- e
tropy
VR__,__Vr InZ,(1)
= — — 1N 1 s
S(°)=SH=(r+i+l InZ(O):E 27rr+. 54) 8(4me)¥2  2(4m)¥2102
s 4 (60)
So far, we have neglected quantum fluctuations. The onwith
shell quantum correction of the gravitational quantum fluc-
tuations is given by the square root of the Ray-Singer torsion * X" 1 r. 2
of the manifold3. For a compact hyperbolic manifold the InZ;(1)= 21 Tentnr oz Stenl—| . (6
Ray-Singer torsion is the ratio between functional determi- n=L [sinh(nr /o] a
nants of Laplace operatons, acting onk-forms on (see, As a result
for example, Refs[21], [22], and[34]); i.e., ’
4?r
L deth, (55 InzW=——+g(r,)—F,, (62
= —(detAf)”Z' 167G
: , . where
However, in our case a manifold is noncompact and a vol-
ume regularization previously introduced will be used. Thus 1 1
we have 9(r+)=35InZo(2)+ 7In2,(1) (63
1 1
InZW=ZIndeth o~ 7 Indet; ~ 1. (56) and
. . . 3 1
For the tree-level term it is necessary to introduce the bare F.=Vgr —3/2I‘ — 58 t
quantity Gy since the quantum correction is plagued by the 2(4m) 324me)

ultraviolet divergences and a renormalization procedure must 1
be used. The functional determinants are then calculated by EE—— (64)
means of a regularization. We shall use the proper-time regu- 8(4)32%12
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If we define the renormalized quantity valid for the gravitational case we are dealing with. In par-
ticular, it appears that the quantum gravitational corrections

1 1 N F. 65 could become more and more important as the evaporation
167G, 167G 472,’ process continues and thus they cannot be neglected.
we arrive at V. CONCLUDING REMARKS
InZ(1)=E+g(r ). 66) In this paper the quantum correction of the BTZ black
4G * hole has been evaluated making use of the appropriate

' Chern-Simons representation of three-dimensional gravity.

This renormalized one-loop effective action may be thoughThe quantum prefactor, i.e., the Ray-Singer torsion, has been
to describe an effective classical geometry belonging to thevaluated by means of the proper-time regularization.

same class of nonrotating BTZ black hole solution. This In our computation the one-loop ultraviolet and horizon
stems from the results contained in RE35], where it has divergences, generally present in the quantum correction,
been shown that the constraints for pure gravity have &ave also been found and they have been accounted for by
unigque solution. As a consequence, one may introduce a nemeans of the introduction of the standard one-loop renormal-

effective radius by means of ization procedure of the Newton const8}. Also, the semi-
R classical Bekenstein-Hawking entropy has been rederived by
InzZW=——, (67)  the improved Euclidean method suggested in [Ra4].
v With regard to this, we have to stress again that we have

been working within the so-called on-shell Euclidean ap-
proach[5], namely, our one-loop approximation has been
evaluated on the regular Euclidean BTZ instanton. For a
critical comparison between on-shell and off-shell methods
in the black hole entropy issue, see the revi8é|. Here we
mimicking in this way the back reaction of the quantumwould like to mention only that our result for quantum cor-
gravitational fluctuations. As a consequence, the new entropiections to the black hole entropy differs from the one re-
is given by an effective Bekenstein-Hawking term, namely, ported in Ref.[19] and is consistent with the detailed off-
shell computation of the entropy of scalar fields in the BTZ

where

4G,
R.=r +—d9(ry), (68)
T

e 12#R, classical background given in R¢R9]. Horizon divergences
~a G (69) of the entropy for scalar fields in the same background have
r also been investigated in R¢B7].
One can evaluate the asymptotics of the quarg(w+) Fina"y, our I’esult, even though obtained in the One-|00p

for r . —c andr_ . —0 and then compute the effective radius. @PProximation, may be interpreted with a nonviolation of the

Note that Irg,(1) and InZy(2) are exponentially small for area law, but with an effective radius that is the classical one
larger , . Thus for large black hole masses, but that shrinks as the black hole

evaporation goes on. This seems to suggest that the quantum
R.=r, (70 corrections of the gravitational field become more and more
important near the end of the evaporation process. As far as
and nothing of interest is present in this limit. this issue is concerned, we observe that the final effective
Making use of the results of the Appendix, for small,  geometrical configuration is the reference spafe which
one has admits a naked singularity at the origin. As a consequence,
the quantum correction seems to have a tendency to avoid
the appearance of the naked singularity, in agreement with
the “cosmic censorship” hypothesis.

4G,

2r
Ry=r + —

+2y+¥(2)—¢(3)

ko

2
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Grg/(rj): -1 (72) APPENDIX
o

In this appendix we shall investigate the sntall2r , /o
This result is in qualitative agreement with a very recentasymptotics for the quantity(t), making use of the standard
computation of the off-shell quantum correction to the en-Mellin transform techniqué¢38]. For the sake of simplicity
tropy due to a scalar field in the BTZ backgrou®®] and  we sety=1. To begin with, we observe that#i3(2) may be
all the qualitative considerations contained there are alscewritten as
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o0

InZ4(2)= >, nin(1—e ™ —H(t),

n=1

(A1)

whereH(t) is the Hardy-Ramanujan modular function, given

by
H(t)= >, In(1—e™™). (A2)
n=1
It satisfies the functional equation
Ho—- T4 O A3
(t)__a_inﬂ—i_ﬁ_F T . ( )

For the first term, the Mellin transform representation gives

[

> nin(l—e M=— L

- t™ T (2)¢(z+1
n=1 27 JRez>2 ()¢ )

X{¢(z—1)dz (A4)

Shifting the vertical contour to the left, one has a simple pol

atz=2, a double pole a&t=0, and simple poles at=—2m,

m=1,2,.... Theresidue theorem gives, for small

- 3

> nin(l—-e tM=— % +{(—=1)Int=¢'(—1)+O(t?).
n=1

(A5)
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With regard to the quantity If;(1), the same technique
gives

©

InZy(1)= 2, (sinfn t/2)? (ﬁ i Zmz)

dz t1(2)¢(z—1D)[L(1+2)

:m Rez>2
+2t%24(z—1)]
3
= %)—5(—1)lnt+§’(—l)

+ tiz[zwqf(z)—|nt]+O(t2)- (A6)

As a result, for smalt the asymptotics for the quantity(t)

Jsee Eq.(63)] reads

1 w1 ( t)
g(t)—4—F[—Int+2y+W(2)—§(3)]+E-I—Zln >

: +0(t?).
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