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Non-Abelian black holes in Brans-Dicke theory
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We find a black hole solution with a non-Abelian field in Brans-Dicke theory. It is an extension of a
non-Abelian black hole in general relativity. We discuss two non-Abelian fields: an ‘‘SU~2!’’ Yang-Mills field
with a mass~Proca field! and the SU~2!3SU~2! Skyrme field. In both cases, as in general relativity, there are
two branches of solutions, i.e., two black hole solutions with the same horizon radius. The masses of both
black holes are always smaller than those in general relativity. A cusp structure in the mass-horizon radius
(Mg-r h) diagram, which is a typical symptom of stability change in catastrophe theory, does not appear in the
Brans-Dicke frame but is found in the Einstein conformal frame. This suggests that catastrophe theory may be
simply applied for a stability analysis as it is if we use the variables in the Einstein frame. We also discuss the
effects of the Brans-Dicke scalar field on black hole structure.@S0556-2821~98!01108-4#

PACS number~s!: 04.70.Bw, 04.50.1h, 95.30.Tg, 97.60.Lf
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I. INTRODUCTION

For many years, there have been various efforts to fin
theory of ‘‘everything.’’ The Kaluza-Klein theory was one o
the candidates, which is constructed in a five-dimensio
space-time. Jordan noticed in 1955 that in our fo
dimensional space-time a scalar field appears by a com
tification in the Kaluza-Klein theory and gives a nonminim
coupling to gravity, meaning that this theory violates ev
the weak equivalence principle. Dicke thought that the we
equivalence principle must be guaranteed based on se
experiments. Then, from the weak equivalence principle@1#
and Mach’s principle, which insists that an inertial force
determined by the distribution of matter all over the Un
verse, he and Brans constructed a scalar-tensor theory,
Brans-Dicke~BD! theory, in 1961@3#. Since then the differ-
ence between general relativity~GR! and BD theory has
been discussed in many aspects. Although BD theory itse
strongly constrained by several experiments~the BD param-
eterv>500), we believe that the theory may still be impo
tant from the following points of view.

~1! BD theory can be an effective field theory of a unifie
theory of fundamental forces. In particular, the BD-type s
lar field appears as a dilaton field in superstring theory.

~2! BD theory is one of the simplest extensions of GR.
if we wish to discuss something in a generalized theory
gravity, BD theory can be the best model to see a differe
from GR.

Moreover, a scalar field such as the BD scalar field m
have an effect on many aspects in gravitational physics.
example, the inflationary scenario would be modified by
introduction of such a scalar field@4#. Although the inflation-
ary scenario was discussed originally in GR, since an ap
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priate model based on particle physics has not been foun
is important to recognize that the introduction of a sca
field can make a big change in scenarios of the very e
universe.

Black holes are also important in gravitational physic
We may expect that such a scalar field also affects so
feathers of a black hole@5#. However, since the gravity par
in BD theory is conformally equivalent to that in GR, blac
hole solutions are not modified by the introduction of the B
scalar field for the case without matter or with a tracele
matter field such as the electromagnetic field@6#. As a result,
for the vacuum case or the case with an electromagn
field, a conventional Kerr or Kerr-Newman black hole tur
out to be a unique solution even in BD theory because of
black hole no-hair theorem in GR@7#. Hence, here we shal
discuss a non-Abelian black hole in BD theory, which so
has not been studied so much. For the case with the Ya
Mills ~YM ! field, however, we again find the same color
black hole as that in GR@8#, because its energy-momentu
tensor is traceless. Then we discuss a ‘‘massive’’ n
Abelian field, i.e., a massive YM~Proca! field, and the
Skyrme field. We consider only the globally neutral case
this paper.

After the introduction of basicAnsätzeand conditions in
Sec. II, we present the Proca black hole solution and
properties in Sec. III. We find some difficulty in adoptin
catastrophe theory to the stability analysis. To resolve suc
difficulty, we introduce variables defined in the Einstein co
formal frame in Sec. IV. We find quite similar properties
black hole solutions to those in GR: In particular, a cu
structure appears in the mass-horizon radius diagram.
allows simple application of catastrophe theory in the sta
ity analysis as it is. The effects of the BD scalar field
black hole structure are investigated in Sec. V. In Sec.
we discuss a Skyrme black hole, showing that its proper
are quite similar to those in the Proca black hole. The c
cluding remarks will follow in Sec. VII. Throughout this
paper we use units ofc5\51. The notation and definitions
4870 © 1998 The American Physical Society
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57 4871NON-ABELIAN BLACK HOLES IN BRANS-DICKE THEORY
such as Christoffel symbols and curvatures follow those
Misner, Thorne, and Wheeler@9#.

II. NON-ABELIAN BLACK HOLES
IN BRANS-DICKE THEORY

The action of BD theory is written as

S5E d4xA2gF 1

2k2S fR2
v

f
¹af¹af D1LmG ,

~2.1!

wherek2[8pG, with G being Newton’s gravitational con
stant. The BD parameter isv and Lm is the Lagrangian of
the matter field. The dimensionless BD scalar fieldf is nor-
malized byG.

For the BD fieldf, the field equation becomes

hf5
k2

2v13
Tm

m . ~2.2!

Then, if the right-hand side of this equation vanishes, tha
the energy-momentum tensor of the matter field is tracel
f5const turns out to be a solution, meaning that a bla
hole solution in GR is also a solution in BD theory. Henc
for the SU~2! YM field, we find that the colored black hol
@8# is a solution in BD theory too. Although we have n
proof, we expect that for the case with a massless n
Abelian gauge field, no new type of black hole solution a
pears in BD theory.

If a non-Abelian field is massive or effectively massiv
however,f 5 const is no longer a solution. We will find
another type of black hole solution and can discuss so
differences from black hole solutions in GR. This is the re
son for us to study a massive non-Abelian field here.

We assume that a black hole is static and spherically s
metric, in which case the metric is written as

ds252F12
2Gm~r !

r Ge22d~r !dt21F12
2Gm~r !

r G21

dr2

1r 2dV2. ~2.3!

The boundary condition for a black hole solution at spa
infinity is @10#

lim
r→`

m5M,`, lim
r→`

d50, lim
r→`

f5f0[
2~21v!

312v
.

~2.4!

Note that a test particle far from a black hole does not m
under the influence of this ‘‘mass’’M , but ‘‘feels’’ a gravi-
tational attractive force given by a gravitational massMg .
Mg is defined from the asymptotic behavior of the time-tim
component of the metric and given as

Mg5M1
1

G
lim
r→`

~rd!. ~2.5!

For the existence of a regular event horizonr h , we have
f

s,
s,
k
,

n-
-

,

e
-

-

l

e

mh[m~r h!5
r h

2G
, dh[d~r h!,`. ~2.6!

We also require that no singularity exists outside the horiz
i.e.,

m~r !,
r

2G
for r .r h . ~2.7!

For our numerical calculation, we introduce the dimensio
less variables

r̄ 5r /r h , m̄5Gm/r h . ~2.8!

To write down the explicit equations of motion, we hav
to specify our models. In what follows we discuss the Pro
field and the Skyrme field, separately.

III. PROCA BLACK HOLE

We first consider a massive ‘‘SU~2!’’ YM field ~Proca
field!. The matter LagrangianLm is now

Lm52
1

16pgc
2
TrF22

m2

8pgc
2
TrA2, ~3.1!

where gc and m are the gauge coupling constant and t
mass of the Proca field, respectively.F is the field strength
expressed by its potentialA as F5dA1A`A. For the
spherically symmetric case, we can write the vector poten
as

A5a~r ,t !trdt1
b~r ,t !

r
trdr

1$d~r ,t !tu2@11w~r ,t !#tf%du

1$@11w~r ,t !#tu1d~r ,t !tf%sinudf, ~3.2!

as Witten showed@11#, wheretr , tu , and tf are the gen-
erators of su~2! Lie algebra. We adopt the ’t Hooft ansat
i.e., a[0, which means that only a magnetic component
the Proca field exists. We also setb50 @12#. In the static
case, we can setd50. Now, our potential is

A5@11w~r !#~2tfdu1tusinudf!. ~3.3!

The boundary condition of the Proca field for its total ener
to be finite is

lim
r→`

w521. ~3.4!

We define dimensionless parameters as

m̄5m/gcmp , lh5r h /~ l p /gc!. ~3.5!

l p[G1/2 andmp[G21/2 are the Planck length and mass d
fined by Newton’s gravitational constant, respectively. U
der the aboveAnsätze, we find the basic equations
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dm̄

d r̄
5S 2f1 r̄

df

d r̄
D 21F S 12

2m̄

r̄
D H v12

2f S r̄
df

d r̄
D 2

1
2

lh
2S dw

d r̄
D 2J 2m̄

df

d r̄
1

1

lh
2S 12w2

r̄
D 2S 11

r̄

f

df

d r̄
D

12~11w!2m̄2H 2v11

2v13
1

2~v11! r̄

~2v13!f

df

d r̄
J G , ~3.6!

dd

d r̄
52

r̄

fS 2f1 r̄
df

d r̄
D 21H ~v11!S df

d r̄
D 2

1
4

lh
2

f

r̄ 2S dw

d r̄
D 2J 2 r̄ S 2f1 r̄

df

d r̄
D 21S 12

2m̄

r̄
D 21

3F 1

lh
2

r̄

f

df

d r̄
H S 12w2

r̄ 2 D 2

1
4~v11!m̄2lh

2

2v13 S 11w

r̄
D 2J 2

2

r̄
S 12

m̄

r̄
D df

d r̄
2

4m̄2

2v13S 11w

r̄
D 2G , ~3.7!

d2f

d r̄ 2
5

1

fS df

d r̄
D 2

1S 12
2m̄

r̄
D 21F 1

lh
2

r̄

f

df

d r̄
H S 12w2

r̄ 2 D 2

1
4~v11!m̄2lh

2

2v13 S 11w

r̄
D 2J 2

2

r̄
S 12

m̄

r̄
D df

d r̄
2

4m̄2

2v13S 11w

r̄
D 2G ,

~3.8!

d2w

d r̄ 2
5

1

f

dw

d r̄

df

d r̄
1S 12

2m̄

r̄
D 21F ~11w!H m̄2lh

22
w~12w!

r̄ 2 J 2
2m̄

r̄ 2

dw

d r̄
1

1

lh
2

r̄

f

dw

d r̄

3H S 12w2

r̄ 2 D 2

1
4~v11!m̄2lh

2

~2v13! S 11w

r̄
D 2J G . ~3.9!

As for the boundary condition at the event horizon, in order for the horizon to be regular, the terms in square bra
Eqs.~3.7!–~3.9! must vanish at the horizonr̄ 51. Hence we find that

dw

d r̄
u r̄ 5152

fhlh
2~2v13!~11wh!$m̄2lh

22wh~12wh!%

~2v13!$~12wh
2!22fhlh

2%14m̄2~v11!lh
2~11wh!2

, ~3.10!

df

d r̄
u r̄ 515

4m̄2~11wh!2lh
2fh

~2v13!$~12wh
2!22fhlh

2%14m̄2~v11!lh
2~11wh!2

, ~3.11!
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wherewh[w(r h) and fh[f(r h). As a result,wh and fh
turn out to be shooting parameters and should be determ
iteratively so that the boundary conditions~2.4! and~3.4! are
satisfied.

In Fig. 1 we present a numerical solution withr h
50.5l p /gc andm50.15gcmp @13#. We setv50. Although
this is not consistent with the present limit from experimen
we choose this value because we wish to clarify the diff
ence from black holes in GR. For a massive non-Abel
field, the node number of the potentialw(r ) is limited by
some finite integer. Here the node number is chosen to be
smallest value, i.e., one. The dotted line denotes the P
black hole in GR@14# with the same parameters, i.e.,r h
50.5l p /gc and m50.15gcmp , which we show as a refer
ence.

As seen from Fig. 1~a!, the BD scalar field decrease
monotonically as

f;f0S 11
2GMs

r D , ~3.12!

whereMs is a constant and called the scalar mass@15#. Fig-
ure 1~c! shows that the nontrivial structure of the no
ed

,
-
n

he
ca

Abelian field extends to the scale of the Compton wa
length of the Proca field (;1/m), which is shown by an
arrow. From Fig. 1~d!, one may not see a clear differenc
between the lapse functiond in BD theory and that in GR,
but d in BD theory falls as 1/r as r→`, while d in GR
vanishes much faster than 1/r . In fact, from Eq.~3.7! we find

dd

dr
;

1

f

df

dr
;2

2GMs

r 2
~3.13!

near spatial infinity. This gives the relation betweenM and
Mg as

Mg5M12Ms . ~3.14!

To see a property of a family of black hole solutions, w
show the relation between the gravitational massMg and
horizon radiusr h in Fig. 2. The dotted lines denote the Pro
black hole in GR with the same parameters, i.e.,m
50.1gcmp or m50.15gcmp , and the dot-dashed lines repr
sent the Schwarzschild and colored black holes, respectiv
which we show as references.
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FIG. 1. Solution of the Proca black hole in BD theory withv50 for r h50.5l p /gc andm50.15gcmp : ~a! f(r ), ~b! m̄(r ), ~c! w(r ), and
~d! d(r ). The Proca black hole in GR is also depicted as a reference by a dotted line. The arrow in~c! shows the Compton wavelength o
the Proca field (1/m).
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As we have shown in Fig. 1~c!, the nontrivial structure of
the non-Abelian field is as large as the scale of the Comp
wavelength (;1/m). This is responsible for the existence
a maximum horizon radius (;1/m) as in GR. That is, be-
yond this critical horizon radius, a nontrivial structure

FIG. 2. Mg-r h diagram of the Proca black holes. The solid lo
lines denote Proca black holes withm50.1gcmp and 0.15gcmp in
BD theory (v50). We depict those in GR with the same para
eters by dotted lines. The Schwarzschild and colored black h
are also shown as references.
n
swallowed into the horizon and then cannot exist, result
in a trivial Schwarzschild space-time.

The Schwarzschild black hole is a trivial solution (m
5Mg , d50, f5f0, and w521), which has no upper
bound for a mass or a horizon radius. If the YM field
massless, a family of colored black holes also exists a
nontrivial black hole, where the BD scalar field isf5f0

5 const. There is also no upper bound for horizon radius
in GR.

The mass of the Proca black hole in BD theory is alwa
smaller than that in GR@see also Fig. 1~b!#. This is just
because the value of the BD scalar field near the black ho
larger than that at infinity, which means that the effecti
gravitational constant is always smaller thanG. Therefore,
the mass concentration by gravitational attractive force m
get smaller.

In GR, there are two branches of black hole solutio
One is stable and the other is unstable. Those two bran
coincide at a critical horizon radius or at a critical mas
where we find a cusp structure on the gravitational massMg :
horizon radiusr h diagram. This cusp structure is a typic
symptom of stability change in catastrophe theory@16#. The
stability analysis by catastrophe theory agrees with that
linear perturbations.

es
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To see the detail and compare our solution with that
GR, we depict the enlarged diagram form50.15gcmp in Fig.
3. No cusp structure appears in BD theory. Though the
lution curves seems to merge at the pointD, we find two
solutions exist atD, which can be distinguished from fiel
distributions. In GR, the maximum points of horizon radi
r h and of gravitational massMg are the same, i.e., the poin
C in Fig. 3. In BD theory, however, those two pointsA ~the
maximum horizon radius! andB ~the maximum gravitationa
mass! are different. This result does not depend on the cho
of the BD parameterv and the mass of the Proca fieldm. In
particular, a cusp structure disappears in BD theory as m
tioned above. One may wonder whether catastrophe th
can be simply applied to stability analysis as it is in B
theory, although it works quite well in GR@17#. For fixing
r h , we still have two solutions in BD theory as in GR.
there any correspondence of those two solutions to
branches in GR? We expect that there are two types of b
holes in BD theory as well.

As we discussed in our previous papers@17#, if we divide
the total energy densityr total into a kinetic termrF2 and a
mass termrA2, one of the main differences between the tw
branches in GR~the solid-line and the dotted-line branch
@18# in Fig. 3! comes from the difference of dominant ingr
dient, i.e., in the solid-line branch,rA2 is dominant compared
to rF2, stabilizing a black hole solution. In the dotted-lin
branch, the situation is opposite. The stable solid-line bra
is Schwarzschild type, while the unstable dotted-line bra
is colored black hole type, in which the non-Abelian fie
and gravity balance each other.

In BD theory, if we divide the total energy densityr total
as

r total52T0
05rA21rF21rf , ~3.15!

where

rA2S r h

mp
D 2

5
2~11w!2m̄2

r̄ 2 S 2f1 r̄
df

d r̄
D 21H 2v11

2v13

1
2~v11! r̄

~2v13!f

df

d r̄
J , ~3.16!

FIG. 3. Mg-r h diagram for Proca black holes in BD theory (v
50) and in GR. The mass of the Proca field ism50.15gcmp .
n
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e
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o
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h

rF2S r h

mp
D 2

5
1

r̄ 2lh
2S 2f1 r̄

df

d r̄
D 21H 2S 12

2m̄

r̄
D S dw

d r̄
D 2

1S 12w2

r̄
D 2S 11

r̄

f

df

d r̄
D J , ~3.17!

rfS r h

mp
D 2

5
1

r̄ 2S 2f1 r̄
df

d r̄
D 21H v12

2f S 12
2m̄

r̄
D S r̄

df

d r̄
D 2

2m̄
df

d r̄
J , ~3.18!

we find similar behavior to the case in GR, i.e.,rA2 is domi-
nant torF2 in the solid-line branch, while the opposite is tru
in the dotted-line branch~see Fig. 4!.

In the solid-line branch, the black hole and non-Abeli
structure are rather independent. In fact, a particlelike so
tion in this branch can exist without gravity. On the oth
hand, in the dotted-line branch, we need both the n
Abelian field and gravity. Then we can divide the family
solutions into two: a solid-line branch fromA to L ~solid
line! and a dotted-line branch fromR to A ~dotted line!,
respectively~see Fig. 3!. In the solid-line branch, the exis
tence of the BD scalar field may not change the black h

FIG. 4. Distributions of the energy density for~a! the solid-line
and ~b! the dotted-line branches of the Proca black holes withm
50.15gcmp both in BD theory (v50) and in GR. The horizon
radii of the black holes arer h50.01l p /gc .
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structure, but it may affect a lot in the dotted-line branc
This is because the non-Abelian field in the solid-line bran
does not give a dominant contribution to the black h
structure. As we will see later, this becomes more clear in
Einstein conformal frame, in which the effect of the B
scalar field is reduced to matter coupling.

For these two branches, we depict the scalar mas
terms of the horizon radius in Fig. 5. The scalar massMs in
the solid-line branch is always larger than that in dotted-l
branch. We also show the inverse temperature 1/T in terms
of Mg and the field strength at the horizonBh in terms ofr h
of Proca black holes withm50.15gcmp in Figs. 6 and 7,
which are quite similar to those in GR.T andBh are defined
by

T5
1

4pr
e2dS 122G

dm

dr D U
r̄ 51

, ~3.19!

Bh5~TrF2!1/2u r̄ 515
A2~12wh

2!

r h
2

. ~3.20!

Those also suggest that a stability may change somewhe
betweenA ~the maximum horizon radius! andB ~the maxi-
mum gravitational mass!.

FIG. 5. r h-Ms ~scalar mass! diagram of the Proca black hole
with m50.15gcmp in BD theory (v50). The dotted and solid lines
correspond to those in Fig. 3.

FIG. 6. Mg-1/T diagram for Proca black holes withm
50.15gcmp in BD theory (v50) and in GR.
.
h

e

in

e

in

IV. PROCA BLACK HOLE IN THE EINSTEIN
CONFORMAL FRAME

The gravity part of BD theory is conformally equivalen
to that of GR@19# and a description by use of the Einste
conformal frame sometimes gives us simpler basic equat
and easier analysis because the coupling of the BD scala
gravity is moved to a matter term and the gravity part is j
described as in the Einstein frame, which is already fami
@20#. Hence, here we shall reanalyze our present problem
the Einstein conformal frame. We consider a conform
transformation

ĝab5
f

f0
gab . ~4.1!

The equivalent actionŜ[S/f0 is given as

Ŝ5E d4xA2ĝF 1

2k2
R̂2

1

2
¹̂aw¹̂aw2

1

f0
S 1

16pgc
2
TrF2

1
m2

8pgc
2

exp~2kbw!TrA2D G , ~4.2!

w[
1

kb
lnS f

f0
D , b[S 2v13

2 D 21/2

. ~4.3!

For a black hole solution, if we define spherically symmet
coordinates in the Einstein frame as

dŝ2[
f

f0
ds252F12

2Gm̂~ r̂ !

r̂
Ge22d̂~ r̂ !dt2

1F12
2Gm̂~ r̂ !

r̂
G21

dr̂21 r̂ 2dV2, ~4.4!

we find

M̂[ lim
r̂→`

m̂~ r̂ !5Mg2Ms , r̂ h5r hAfh

f0
, ~4.5!

FIG. 7. r h-Bh diagram for Proca black holes withm
50.15gcmp in BD theory (v50) and in GR.
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where variables with a caret denote those in the Eins
frame. We also introduce dimensionless variables and
rameters as

r̄̂ 5 r̂ / r̂ h , m̂̄5Gm̂/ r̂ h , l̂h5 r̂ hgc / l p , w̄5w/mp .
~4.6!

The basic equations are now

dm̂̄

d r̄̂
5H 1

f0l̂h
2S dw

d r̄̂
D 2

12p r̄̂ 2S dw̄

d r̄̂
D 2J S 12

2m̂̄

r̄̂
D

1
1

2f0l̂h
2S 12w2

r̄̂
D 2

1
m̄2

f0
exp~2A8pbw̄!~11w!2,

~4.7!

dd̂

d r̄̂
524p r̄̂ S dw̄

d r̄̂
D 2

2
2

f0l̂h
2 r̄̂
S dw

d r̄̂
D 2

, ~4.8!

d2w̄

d r̄̂ 2
52

2

r̄̂
1S 12

2m̂̄

r̄̂
D 21F S dw̄

d r̄̂
D H 2

2m̂̄

r̄̂ 2

1
r̄̂

f0l̂h
2S 12w2

r̄̂ 2 D 2

12 r̄̂
m̄2

f0
exp~2A8pbw̄!

3S 11w

r̄̂
D 2J 2

m̄2bA8p

4pf0
exp~2A8pbw̄!

3S 11w

r̄̂
D 2G , ~4.9!

d2w

d r̄̂ 2
5S 12

2m̂̄

r̄̂
D 21F dw

d r̄̂
H 2

2m̂̄

r̄̂ 2
1

r̄̂

f0l̂h
2S 12w2

r̄̂ 2 D 2

12 r̄̂
m̄2

f0
exp~2A8pbw̄!S 11w

r̄̂
D 2J 2

w~12w2!

r̄̂ 2

1m̄2l̂h
2exp~2A8pbw̄!~11w!G . ~4.10!

As we expected, these are simpler than those described i
BD frame. The boundary conditions are similar to the one
the BD frame. From our numerical calculation, we can sh
that M̂5M̂g becaused̂ vanishes faster thanr̂ 21.

First, in Fig. 8, we show theM̂g-r̂ h diagram in the Ein-
stein frame that is related to Fig. 3 by conformal transform
tion. Surprisingly, we recover a cusp structure even in
theory. The solid-line branch is always located above
dotted-line branch as in GR. We also show the inverse t
perature 1/T in terms of the gravitational massM̂g in Fig. 9.
Both figures show that the properties of the Proca bl
in
a-

the
n

-

e
-

k

holes in BD theory are quite similar to those in GR. Th
suggests that catastrophe theory will be simply applied i
stability analysis for non-Abelian black holes in BD theo
as well.

From the point of view of catastrophe theory@16#, stabil-
ity changes at a cusp point in the control parameter-poten
function diagram. In GR, if we regard gravitational mass a
black hole entropy~or, equivalently, the area of the eve
horizon! as a control parameter and a potential function,
spectively, we find a cuspC in the Mg-r h (M̂g-r̂ h) diagram
~Figs. 3 and 8!, which is a symptom of stability change i
catastrophe theory. In fact, the stability of the black ho
does change at this cusp pointC. In BD theory, however, a
cusp structure does not appear in Fig. 3, while it does in F
8. This suggests that if we use the variables in the Eins
frame, we can simply apply catastrophe theory to the sta
ity analysis in BD theory as it is. From Fig. 8 catastrop
theory predicts that stability change can occur at the poinA.
From Fig. 3, however, no such prediction is possible.

To study stability, we have another method, i.e., a turn
point method for thermodynamical variables@23#. Stability
will change at the point whered(1/T)/dM5`. In GR, we
understand that a stability change occurs at the pointC in
Figs. 6 and 9. This is consistent with analysis by catastro

FIG. 8. M̂g-r̂ h diagram in the Einstein frame for Proca blac
holes in BD theory (v50) and in GR. The mass of the Proca fie
is m50.15gcmp . We find a cusp structure, which indicates a s
bility change via catastrophe theory.

FIG. 9. M̂g-1/T diagram in the Einstein frame for Proca blac
holes in BD theory (v50) and in GR. The mass of the Proca fie
is m50.15gcmp .
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theory. In BD theory,d(1/T)/dM5` occurs at pointB in
Fig. 6 ~the BD frame!, which is inconsistent with the stability
analysis by catastrophe theory. However, if we use theM̂g-
1/T diagram in the Einstein frame, the divergence occurs
point A, which is consistent with catastrophe theory. To u
derstand this inconsistency, we have to remember that v
ables in the turning point method should satisfy thermo
namical laws, in particular the ‘‘mass’’ of a black ho
should satisfy the first law of black hole thermodynamics.
fact, the gravitational mass in the BD frame does not sat
the first law of black hole thermodynamics, while it does
for the variables in the Einstein frame~Fig. 9! @24# and there-
fore the turning point method could be applied. We exp
that a stability change occurs at pointA, but not at pointB,
which is consistent with catastrophe theory. These con
tures for stability should be justified by analyzing linear p
turbations of black holes and black hole thermodynam
@25#.

V. EFFECTS OF THE BRANS-DICKE SCALAR FIELD

By use of the Einstein frame, we also understand ea
the qualitative difference between black holes in BD the
and in GR. As we see in the action~4.2!, the coupling of the
BD scalar field appears in the mass term. This coupling
duces effectively the mass of the Proca field by a fac
exp(2kbw/2) becausew is monotonically decreasing to zer
as r→` @see Fig. 1~a!#. In GR, as the mass is reduced, t
Proca black hole shifts in the left upper direction in theMg-
r h diagram~see Fig. 2!. In fact, in the limit of zero mass, we
recover Schwarzschild and colored black hole branches.
result, for a fixed Proca field massm, the black hole solution
in BD theory also shifts in the left upper direction from th
in GR because of the coupling. Another contribution isf0,
which appears in the matter Lagrangian. Sincef0

21 is its
overall factor, this effect is renormalized by a redefinition
the gauge coupling constantgc , i.e., gc85Af0gc . As f0

changes monotonically from 1 tò for `.v.23/2, the
effective gauge coupling constantgc8 changes fromgc to `.

The effects of the BD scalar field are divided into two:~1!
The gauge coupling constant is renormalized asgc8
5Af0gc , which gives a stronger coupling than that in G
~2! the Brans-Dicke scalar field decreases asr→`, which
gives an effective change of the mass of the Proca field,
m85m exp(2kbw/2).

In order to see the difference between BD theory and
more clearly, we show thev dependence of the black ho
solutions in Figs. 10–12. From Fig. 12, in which the effect
absorbed in normalization bygc8 , we find that the deviation
from GR is quite similar to the behavior when changing
mass of the Proca field in GR~see Fig. 2!. This means that
effects~1! and ~2! really explain the deviation from GR.

In Fig. 13 we depict the gravitational mass and the la
function in terms of v for fixed horizon radius (r h
50.5l p /gc) and fixed mass of the Proca field (m
50.15gcmp). The solid and dotted lines correspond to tho
in the solid-line and in the dotted-line branches, respectiv
Note that when we fix the horizon radius in the BD frame~or
in the Einstein frame!, the horizon radius in the Einstei
frame ~or in the BD frame! will change for different values
of v.
at
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We can see that the gravitational mass approaches s
constants asv→`, which correspond to those in GR. In th
Einstein frame, the horizon radii in both branches appro
the Schwarzschild radius in the limit ofv523/2, resulting
in a trivial Schwarzschild black hole~Fig. 14!.

This is because the matter contribution will vanish in th
limit as we discussed above (f0

21→0). In the BD frame,
however, we find that the dotted-line branch changes fa
than the solid-line branch and both horizon radii in the lim
of v523/2 are different from the Schwarzschild radiu
Then nontrivial black holes can exist even forv523/2.
This is consistent with the above result in the Einstein fra
because the conformal transformation becomes singular
v523/2.

Although any value ofv.23/2 does not give a ghost
we find a negative mass contribution in the BD frame, res
ing in that M becomes negative forv,(vcr,21). We
showm(r ) for several values ofv in Fig. 15. This does not
mean, however, that we have a negative-mass black h
because the gravitational massMg is still positive. A test
particle moving around a black hole feels an attractive fo
given byMg , which is always positive. The effect of nega
tive M could be observed in a time delay, which changes
sign for negativeM @15#.

In the Einstein frame,m̂(r ) is monotonically increasing a
r→`, resulting in a positive massM̂ , which is the same as
the gravitational massM̂g ~Fig. 16!. As we know, in BD

FIG. 10. ~a! Mg-r h diagram in the BD frame and~b! M̂g-r̂ h

diagram in the Einstein frame for several values ofv. The mass of
the Proca field ism50.15gcmp .
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theory, we can define several masses@15#. The reason why
we have several masses is because the BD scalar field
creases asr 21, which is responsible for having differen
masses in each frame, and the scalar field itself also giv
contribution into a mass energy as a scalar massMs . In the
vacuum case, we find a negativeM for v,21. In our case,
however, the BD scalar field is concentrated by the grav
tional attractive force of the black hole. This changes
sensitivity s just as for a self-gravitating star. From th
asymptotic behavior ofg00 and grr , we find a relation be-
tweenM andMg as

Mg

M
5

v122s

v111s
, ~5.1!

wheres is a sensitivity@see Eq.~11.83! in @15##. Then the
sensitivitys could be evaluated as

s5
1

2
2

~2v13!~Mg2M !

2~M1Mg!
. ~5.2!

For a Schwarzschild black hole (M5Mg), s51/2. If v5
23/2, however,s51/2 even ifMÞMg . We show the sen-
sitivity s in Fig. 17. From Eq.~5.1!, M becomes negative fo
v,2(11s)(,21). Then for a givenv(,21), M of the
Proca black hole with smaller sensitivity thanscr[2(1
1v) becomes negative. It may correspond to smaller bl

FIG. 11. ~a! Mg-1/T diagram in the BD frame and~b! M̂g-1/T
diagram in the Einstein frame for several values ofv. The mass of
the Proca field ism50.15gcmp .
de-

a

-
e

k

holes in the solid-line branch from Fig. 17. Whenv→`, we
find M5Mg but sÞ1/2. The reason is that the mass diffe
enceMg2M ~or 2Ms) decreases asv21 for v→` @see Eq.
~11.85! in @15##, while, asv→23/2, s→1/2 butMgÞM ~or
MsÞ0) ~see Fig. 18!. This is consistent with the previou
fact that there still exists a nontrivial black hole in the lim
of v→23/2.

VI. SKYRME BLACK HOLE

In GR, nontrivial black holes with a massive non-Abelia
field have quite similar properties, which we classified
type II in @17#. How about black holes in BD theory? To se
whether or not the above results for the Proca black hole
generic, we shall study the Skyrme field as another exam
of a massive non-Abelian field.

The action of the Skyrme fieldLm is SU(2)3SU(2) in-
variant and is given as@26#

Lm52
1

32gs
2
TrF22

f s
2

4
TrA2, ~6.1!

wheref s andgs are coupling constants.gs is related togc for
the Proca field as

gs5A4pgc . ~6.2!

FIG. 12. ~a! M̂g-r h diagram and~b! M̂g-1/T diagram normalized
by gc85Af0 gc in the Einstein frame for several values ofv. The
mass of the Proca field ism50.15gcmp .
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FIG. 13. v dependence on the gravitational massMg and the
lapse functiond of the Proca black hole in the BD frame for a fixe
r h50.5l p /gc andm50.15gcmp : ~a! and ~c! v<1 and~b! and ~d!
v>1. The dotted and solid lines correspond to the dotted-
solid-line branches in Fig. 10.
d

FIG. 14. v dependence on the gravitational massM̂g and the

lapse functiond̂ of the Proca black hole in the Einstein frame for
fixed r h50.5l p /gc andm50.15gcmp : ~a! and~c! v<1 and~b! and
~d! v>1. The dotted and solid lines correspond to the dotted-
solid-line branches in Fig. 10.
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The mass parameter of the Skyrme fieldm is defined bym
5 f sgs . F and A are the field strength and its potential, r
spectively. They are described by the SU(2)-valued function
U as

F5A`A, A5U†¹U. ~6.3!

In the spherically symmetric and static case, we can setU,

U~x!5cosx~r !1 i sin x~r !si r̂
i , ~6.4!

where si and r̂ i are the Pauli spin matrices and a rad
normal, respectively. The boundary condition for the to
field energy to be finite is

FIG. 15. Mass functionm(r ) with r h50.5l p /gc and m
50.15gcmp in the BD frame for several values ofv.
l
l

lim
r→`

x50. ~6.5!

For simplicity, we solve the present system in the Einst
frame. The equivalent actionŜ[S/f0 is

Ŝ5E d4xA2ĝF R̂

2k2
2

1

2
w ,aw ,a

2
1

f0
S 1

32gs
2
TrF21

f s
2

4
exp~2kbw!TrA2D G . ~6.6!

With the dimensionless parameterf̄ s[ f s /mp , the basic
equations are now

FIG. 16. Mass functionm̂( r̂ ) in the Einstein frame for severa
values of v. As in Fig. 15, we setm50.15gcmp and r h

50.5l p /gc , which means thatl̂h is not fixed in this figure.
dm̂̄

d r̄̂
52pF r̄̂ 2S 12

2m̂̄

r̄̂
D H S dw̄

d r̄̂
D 2

1S dx

d r̄̂
D 2S f̄ s

2

f0
exp~2A8pbw̄!1

sin2x

2pf0l̂h
2 r̄̂ 2D J

1sin2xS 2
f̄ s

2

f0
exp~2A8pbw̄!1

sin2x

4pf0l̂h
2 r̄̂ 2D G , ~6.7!

dd̂

d r̄̂
524p r̄̂ H S dw̄

d r̄̂
D 2

1S dx

d r̄̂
D 2S f̄ s

2

f0
exp~2A8pbw̄!1

sin2x

2pf0l̂h
2 r̄̂ 2D J , ~6.8!

d2w̄

d r̄̂ 2
5S 12

2m̂̄

r̄̂
D 21F dw̄

d r̄̂
H sin2x

r̄̂
S 8p

f̄ s
2

f0
exp~2A8pbw̄!1

sin2x

f0l̂h
2 r̄̂ 2D 2

2m̂̄

r̄̂ 2
J 2A8pb

f̄ s
2

f0
exp~2A8pbw̄!

sin2x

r̄̂ 2
G2

2

r̄̂

dw̄

d r̄̂

2
A8pb f̄ s

2

2f0
exp~2A8pbw̄!S dx

d r̄̂
D 2

, ~6.9!

d2x

d r̄̂ 2
52

exp~2A8pbw̄!

4p r̄̂ 2l̂h
2 f̄ s

2exp~2A8pbw̄!12sin2x
S 8pl̂h

2 f̄ s
2 r̄̂ 24pA8pb r̄̂ 2l̂h

2 f̄ s
2 dw̄

d r̄̂
1

dx

d r̄̂
sin 2x D dx

d r̄̂



2m̂̄
21

sin2x 2 2 sin2x
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1S 12
r̄̂
D F

4p r̄̂ 2l̂h
2 f̄ s

2exp~2A8pbw̄!12sin2x
S 4pl̂h f̄ sexp~2A8pbw̄!1

r̄̂ 2 D
1

dx

d r̄̂
H sin2x

r̄̂
S 8p

f̄ s
2

f0
exp~2A8pbw̄!1

sin2x

f0l̂h
2 r̄̂ 2D 2

2m̂̄

r̄̂ 2
J G . ~6.10!

As in the case of the Proca black hole, the terms in square brackets in Eqs.~6.9! and~6.10! must vanish atr h for the horizon
to be regular. Hence,

dx

d r̄
U

r̄ 51

52
f0l̂h

2sin 2xh~4p f̄ s
2l̂h

2e2A8pbw̄h1sin2xh!

~4p f̄ s
2l̂h

2e2A8pbw̄h12 sin2xh!$sin2xh~8p f̄ s
2l̂h

2e2A8pbw̄h1sin2xh!2f0l̂h
2%

, ~6.11!

dw̄

d r̄
U

r̄ 51

5
A8pb f̄ s

2l̂h
2e2A8pbw̄hsin2xh

sin2xh~8p f̄ s
2l̂h

2e2A8pbw̄h1sin2xh!2f0l̂h
2

, ~6.12!
y

D

0.
r
e
d

.
r a

r-

d and
wherexh[x(r h) andwh[w(r h). xh andw̄h (5wh /mp) are
shooting parameters and should be determined iterativel
that the boundary conditions~2.4! and ~6.5! are satisfied.

We show a numerical result of a Skyrme black hole in B
theory in Fig. 19. Here we set the parameters

r̂ h51.0l p /gc , f s50.03mp , v521.4. ~6.13!

The dotted lines are those in GR withr̂ h51.0l p /gc and f s
50.03mp . The solutions correspond to solid-line in Fig. 2
We have shown only a solution with one node number. Fo
Skyrme black hole@27,28#, rather than the node number, th
solution is characterized by the ‘‘winding’’ number define
by @29#

Wn[
1

p
uxh2x~`!2sin~xh!u. ~6.14!

FIG. 17. r h-s diagram for several values ofv. The mass of the
Proca field ism50.15gcmp . The dotted and solid lines correspon
to the dotted- and solid-line branches in Fig. 10.
so

a

We show a solution with the ‘‘winding’’ number one
Note that the comparison is made in the Einstein frame fo

fixed r̂ h , which does not mean the horizon radii with diffe
ent v in the BD frame are the same.

d̂ falls faster thanr̂ 21 because Eq.~6.8! is

FIG. 18. v dependence on the sensitivitys of the Proca black
hole for a fixedr h50.5l p /gc andm50.15gcmp : ~a! v<1 and~b!
v>1. The dotted and solid lines correspond to the dotted-
solid-line branches in Fig. 10.
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FIG. 19. Solution of the Skyrme black hole withr̂ h51.0l p /gc

and f s50.03mp in BD theory:~a! f(r ), ~b! m̂(r ), ~c! x(r ), and~d!

d̂(r ). The Skyrme black hole in GR is also depicted as a refere
dd̂

dr̂
;24p r̂ S dw

dr̂
D 2

~6.15!

as r̂→` andw vanishes faster thanr̂ 21 @see Figs. 19~a! and
19~d!#. Then, as in the Proca black hole,M̂5M̂g .

To study the properties of a family of black holes, w
depict theM̂g-r̂ h andMg-r h ~the BD frame! diagrams in Fig.
20 and theMg-1/T andM̂g-1/T diagrams in Fig. 21. We find
that the results are quite similar to those for the Proca bla
holes. We have a cusp structure in theM̂g-r̂ h diagram in the
Einstein frame, but it disappears in the BD frame.

Most properties found for the Proca black hole apply
the Skyrme black hole as well. This suggests that a unive
picture for nontrivial black holes with massive non-Abelia
fields is possible.

VII. CONCLUDING REMARKS

First, we have analyzed non-Abelian black holes~Proca
and Skyrme black holes! in BD theory and shown some dif-
ferences from those in GR. The Einstein conformal fram
makes our analysis easier. The effect of the BD scalar fi
can be reduced into two parts in the Einstein frame: the
fective change of mass of the non-Abelian field, i.e.,m
→m exp(2kbw/2) or f s→ f s exp(2kbw/2), and the renor-
malized coupling gc→Af0gc or gs→Af0gs and f se.

FIG. 20. ~a! Mg-r h diagram in the BD frame and~b! M̂g-r̂ h

diagram in the Einstein frame for Skyrme black holes. We setf s

50.03mp .
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→fs/Af0. As a result, the solutions shift in the left uppe
direction in theMg-r h diagram. Although we recover the
Schwarzschild black hole in the limit ofv→2 3

2 in the Ein-

FIG. 21. ~a! Mg-1/T diagram in the BD frame and~b! M̂g-1/T
diagram in the Einstein frame for Skyrme black holes. We setf s

50.03mp .
c

re
u

la
.

z.
stein frame, we still have nontrivial black holes in the B
frame in the same limit because the conformal transform
tion becomes singular then.

Second, we have analyzed for various values ofv. When
v>500, the difference from GR is so small that we will n
see any difference. The solutions for2 3

2 <v&21 seem to
be somewhat pathological because the mass functionm be-
comes negative in the BD frame, resulting in negative va
of M . However, even in such cases,Mg is always positive;
therefore a test particle around such a black hole still feels
attractive force.

Third, we find that the cusp structure in theMg-r h dia-
gram does not appear in the BD theory, although it w
found in GR and provided us with a different method f
stability analysis via catastrophe theory, while it exists in t
Einstein frame. This suggests that a stability change occ
at a cusp point in the Einstein frame. The justification of th
conjecture and the proper analysis including that by lin
perturbations will be given elsewhere@25#.

In this paper we have studied a globally neutral type
non-Abelian black holes in BD theory. A globally charge
black hole, i.e., a monopole black hole may be much m
interesting. That is because charged black holes are im
tant in the context of cosmology, in particular, in the relati
with a dynamical monopole~topological inflation! @30#. This
is under investigation.
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