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Non-Abelian black holes in Brans-Dicke theory
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We find a black hole solution with a non-Abelian field in Brans-Dicke theory. It is an extension of a
non-Abelian black hole in general relativity. We discuss two non-Abelian fields: an2BYang-Mills field
with a masgProca field and the SW2) X SU(2) Skyrme field. In both cases, as in general relativity, there are
two branches of solutions, i.e., two black hole solutions with the same horizon radius. The masses of both
black holes are always smaller than those in general relativity. A cusp structure in the mass-horizon radius
(Mg-ry,) diagram, which is a typical symptom of stability change in catastrophe theory, does not appear in the
Brans-Dicke frame but is found in the Einstein conformal frame. This suggests that catastrophe theory may be
simply applied for a stability analysis as it is if we use the variables in the Einstein frame. We also discuss the
effects of the Brans-Dicke scalar field on black hole structi$6556-282(198)01108-4

PACS numbg(s): 04.70.Bw, 04.50th, 95.30.Tg, 97.60.Lf

I. INTRODUCTION priate model based on particle physics has not been found, it
is important to recognize that the introduction of a scalar
For many years, there have been various efforts to find &ield can make a big change in scenarios of the very early
theory of “everything.” The Kaluza-Klein theory was one of universe.
the candidates, which is constructed in a five-dimensional Black holes are also important in gravitational physics.
space-time. Jordan noticed in 1955 that in our four-We may expect that such a scalar field also affects some
dimensional space-time a scalar field appears by a compafeathers of a black holgs]. However, since the gravity part
tification in the Kaluza-Klein theory and gives a nonminimal in BD theory is conformally equivalent to that in GR, black
coupling to gravity, meaning that this theory violates evenhole solutions are not modified by the introduction of the BD
the weak equivalence principle. Dicke thought that the wealscalar field for the case without matter or with a traceless
equivalence principle must be guaranteed based on sevenalatter field such as the electromagnetic fi@Hl As a result,
experiments. Then, from the weak equivalence prindiftle for the vacuum case or the case with an electromagnetic
and Mach’s principle, which insists that an inertial force isfield, a conventional Kerr or Kerr-Newman black hole turns
determined by the distribution of matter all over the Uni- out to be a unique solution even in BD theory because of the
verse, he and Brans constructed a scalar-tensor theory, i.@lack hole no-hair theorem in GR]. Hence, here we shall
Brans-Dicke(BD) theory, in 1961 3]. Since then the differ- discuss a non-Abelian black hole in BD theory, which so far
ence between general relativitsR) and BD theory has has not been studied so much. For the case with the Yang-
been discussed in many aspects. Although BD theory itself iMills (YM) field, however, we again find the same colored
strongly constrained by several experimeftke BD param-  black hole as that in GIR8], because its energy-momentum
etero=500), we believe that the theory may still be impor- tensor is traceless. Then we discuss a ‘“massive” non-
tant from the following points of view. Abelian field, i.e., a massive YMProca field, and the
(1) BD theory can be an effective field theory of a unified Skyrme field. We consider only the globally neutral case in
theory of fundamental forces. In particular, the BD-type scathis paper.
lar field appears as a dilaton field in superstring theory. After the introduction of basi@&nsadze and conditions in
(2) BD theory is one of the simplest extensions of GR. SoSec. I, we present the Proca black hole solution and its
if we wish to discuss something in a generalized theory oforoperties in Sec. Ill. We find some difficulty in adopting
gravity, BD theory can be the best model to see a differenceatastrophe theory to the stability analysis. To resolve such a
from GR. difficulty, we introduce variables defined in the Einstein con-
Moreover, a scalar field such as the BD scalar field mayformal frame in Sec. IV. We find quite similar properties of
have an effect on many aspects in gravitational physics. Fdilack hole solutions to those in GR: In particular, a cusp
example, the inflationary scenario would be modified by arstructure appears in the mass-horizon radius diagram. This
introduction of such a scalar fie[d]. Although the inflation-  allows simple application of catastrophe theory in the stabil-
ary scenario was discussed originally in GR, since an apprdty analysis as it is. The effects of the BD scalar field on
black hole structure are investigated in Sec. V. In Sec. VI,
we discuss a Skyrme black hole, showing that its properties

*Electronic address: tamaki@gravity.phys.waseda.ac.jp are quite similar to those in the Proca black hole. The con-
'Electronic address: maeda@gravity.phys.waseda.ac.jp cluding remarks will follow in Sec. VII. Throughout this
*Electronic address: torii@th.phys.titech.ac.jp paper we use units af=#=1. The notation and definitions
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such as Christoffel symbols and curvatures follow those of

Ih

Misner, Thorne, and Wheel¢8]. my=m(ry) = G Oh=6(rp) <ce. (2.6)

Il. NON-ABELIAN BLACK HOLES We also require that no singularity exists outside the horizon,
IN BRANS-DICKE THEORY ie.,
The action of BD theory is written as r
<= >r. .
. m(r) °G for r>ry 2.7
_ 4., [_ _ _ 2 @
S_f o' ngz( $R ¢Va¢V ¢|FLm|, For our numerical calculation, we introduce the dimension-
(2.2) less variables
wherex?=8=G, with G being Newton’s gravitational con- r=riry,, m=Gmry,. (2.8

stant. The BD parameter is andL, is the Lagrangian of
the matter field. The dimensionless BD scalar figlis nor-
malized byG.

For the BD field¢, the field equation becomes

To write down the explicit equations of motion, we have
to specify our models. In what follows we discuss the Proca
field and the Skyrme field, separately.

K2 Ill. PROCA BLACK HOLE

O¢= TA, 2.2
¢ 20+3 # 2.2 We first consider a massive “SP)” YM field (Proca

field). The matter Lagrangiah,, is now
Then, if the right-hand side of this equation vanishes, that is,
the energy-momentum tensor of the matter field is traceless,

¢=const turns out to be a solution, meaning that a black 1 ) 2 )
hole solution in GR is also a solution in BD theory. Hence, Lm=— 6 STIFE — 8 STTAY, (3.1
for the SU2) YM field, we find that the colored black hole T9c Q¢

[8] is a solution in BD theory too. Although we have no
proof, we expect that for the case with a massless no
Abelian gauge field, no new type of black hole solution a
pears in BD theory.

If a non-Abelian field is massive or effectively massive,
however,¢ = const is no longer a solution. We will find
another type of black hole solution and can discuss some

where g, and u are the gauge coupling constant and the
"hass of the Proca field, respectively.is the field strength
p'expressed by its potentiah as F=dA+A/AA. For the
spherically symmetric case, we can write the vector potential

differences from black hole solutions in GR. This is the rea- b(r,t)
son for us to study a massive non-Abelian field here. A=a(r,t)rndt+ ——mdr
We assume that a black hole is static and spherically sym- r
metric, in which case the metric is written as +H{d(r,H) 7p—[1+w(r,1)]7,}d6
2Gm(r 2Gm(r)] +{[1+w(r,t)]7+d(r,t)7,}sinddp, (3.2
dszz—[l—#}e—%(r)dt&,_ 1— ( )} er { 0 ¢}

as Witten showed11], wherer, 7,, and 7, are the gen-
+r2d02. 2.3 erators of s(2) Lie algebra. We adopt the 't Hooft ansatz,
i.e.,a=0, which means that only a magnetic component of
The boundary condition for a black hole solution at spatialthe Proca field exists. We also det0 [12]. In the static

infinity is [10] case, we can set=0. Now, our potential is
. : . 2(2+w) .
ImMmm=M<o, Ilimé=0, IliMmeo=cdo=——7—. A=[1+wW(r)](—74d0+ 74s8iN0d ). 3.3
r—o r—o r—oo 3+2(1)
(2.4  The boundary condition of the Proca field for its total energy
to be finite is
Note that a test particle far from a black hole does not move
under the influence of this “massM, but “feels” a gravi- limw=—1. (3.9
tational attractive force given by a gravitational magg. e

My is defined from the asymptotic behavior of the time-time

component of the metric and given as We define dimensionless parameters as

1 M:M/gcmpr )\h:rh/(lp/gc)- (3.5

—lim (r §). (2.5

(CH l,=GY2andm,=G~? are the Planck length and mass de-
fined by Newton’s gravitational constant, respectively. Un-

For the existence of a regular event horizgn we have der the aboveAnsaze we find the basic equations

Mg=M+
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_do\ om\ [w+2[ _dg¢)\? dw\?] _d¢ 1{1-w?\? T d¢
dr dr r 2¢ 2\ dr dr N2\ ¢ dr
—[20+1 2(w+1)r do¢
2 2 -
+2(1+w)%u [2w+3+ 2ot e dr_] , (3.6)
— -1 2 2 -1 -1
ds  r _d¢ do\° 4 ¢<dw) ﬂ( _d¢) ( 2ﬂ
—=——| 2d+r— +1)| —=| +—==| = —r| 2d+r— 1-—
dr ¢ ¢ dr) [(w ) dr) N2 r2\dr ¢ dr r
11 def[1-w? 2+ 4o+ N 14w\ ?] 2 L m|d¢ 42 [1+w)? .
arrniir: 20+3 | 1 ) [0 Tlar 2e+3\ 7 ) | @9
d2¢  1{d¢ 2+ L 2m 1 v def[1-w? 2+ 4(w+1),u,2)\ 1+w)?
dr2 &\ dr r) A2 dr|\ r? 20+3 2w+3 ro )]
(3.9
d2w Ldwde [ zﬂ‘l w2z w(l—w)] 2mdw 1 r dw
R - W I —— - e T — s T T
dr2 ¢ dr dr r o r2 2dr A\ od
1-w?\? 4(o+1)un31+w)?
X = + ( Ju h/ — . (3.9
r (20)+3) \ r

As for the boundary condition at the event horizon, in order for the horizon to be regular, the terms in square brackets in
Egs.(3.7—(3.9 must vanish at the horizon=1. Hence we find that

d_w|7 o AA2(20+3)(L+wp){ A2 —Wh(1—wy)} 310
dr Y 2e+3){(1-wd)2— pA2 +4uZ(w+ DNE(1+wy)2] '
de 4p(1+wp) 2N

== 5 = 5 5 (3.10)
dr (2w+3){(1-wW?)2— ppA2} +4p2(w+ N2+ W)

wherew,=w(ry) and ¢,=¢(ry). As a resultw, and ¢,,  Abelian field extends to the scale of the Compton wave-
turn out to be shooting parameters and should be determinddngth of the Proca field € 1/x), which is shown by an

iteratively so that the boundary conditio(&4) and(3.4) are
satisfied.

In Fig. 1 we present a numerical solution with,
=0.9,/g; and u=0.159.m, [13]. We setw=0. Although

arrow. From Fig. 1d), one may not see a clear difference
between the lapse functiof in BD theory and that in GR,
but 6 in BD theory falls as ¥/ asr—o, while § in GR
vanishes much faster tharr 1In fact, from Eq.(3.7) we find

this is not consistent with the present limit from experiments,

we choose this value because we wish to clarify the differ-
ence from black holes in GR. For a massive non-Abelian

field, the node number of the potentialr) is limited by

ds 1d¢

2GM,
L

2

(3.13

r

some finite integer. Here the node number is chosen to be the o o .
smallest value, i.e., one. The dotted line denotes the Prodagar spatial infinity. This gives the relation betwednand

black hole in GR[14] with the same parameters, i.&,
=0.9,/g. and u=0.15.m,, which we show as a refer-
ence.
As seen from Fig. (a), the BD scalar field decreases
monotonically as
Ms
r L

whereM is a constant and called the scalar mdsy. Fig-

1+

¢~ o (3.12

Mgas

Mg=M+2M;. (3.19

To see a property of a family of black hole solutions, we
show the relation between the gravitational masg and
horizon radiug, in Fig. 2. The dotted lines denote the Proca
black hole in GR with the same parameters, i.g.,
=0.1gcm, or u=0.15.m,, and the dot-dashed lines repre-
sent the Schwarzschild and colored black holes, respectively,

ure 1c) shows that the nontrivial structure of the non- which we show as references.
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FIG. 1. Solution of the Proca black hole in BD theory with=0 forr,=0.9,/g. andu=0.159.m,: (@ &(r), (b) ﬁ(r), (c) w(r), and
(d) &(r). The Proca black hole in GR is also depicted as a reference by a dotted line. The atmwhows the Compton wavelength of
the Proca field (14).

As we have shown in Fig.(it), the nontrivial structure of swallowed into the horizon and then cannot exist, resulting
the non-Abelian field is as large as the scale of the Comptoin a trivial Schwarzschild space-time.
wavelength (~1/u). This is responsible for the existence of  The Schwarzschild black hole is a trivial solutiom (
a maximum horizon radius~1/u) as in GR. That is, be- =My, 6=0, ¢=¢,, and w=—1), which has no upper
yond this critical horizon radius, a nontrivial structure is pound for a mass or a horizon radius. If the YM field is
massless, a family of colored black holes also exists as a

P A c/ B nontrivial black hole, where the BD scalar field ¢s= ¢,
- * colorgd BH = const. There is also no upper bound for horizon radius as
15 . / 1  inGR.
L / 7. 1 The mass of the Proca black hole in BD theory is always
__:_a ; _ % ’ & pigm)=0.1 smaller than that in GRsee also Fig. (b)]. This is just
o L ., . because the value of the BD scalar field near the black hole is
= [ Schwarzschild . ] larger than that at infinity, which means that the effective
0.5 [ ‘ g m)=0.15 ] gravitational constant is always smaller th@n Therefore,
L 7 &0 ] the mass concentration by gravitational attractive force may
L ',"/‘:".-‘ ] get smaller.
0 0 '0'2‘ ' '0'4' "'0'6' ' '0'8"' 1' - '1'2' T4 In GR, there are two branches of black hole solutions:
Mg(gc/mp) One is stable and the other is unstable. Those two branches

coincide at a critical horizon radius or at a critical mass,

FIG. 2. M-, diagram of the Proca black holes. The solid loop Where we find a cusp structure on the gravitational nhags
lines denote Proca black holes with=0.1g.m, and 0.1§,m, in  horizon radiusr, diagram. This cusp structure is a typical
BD theory (w=0). We depict those in GR with the same param- Symptom of stability change in catastrophe theld§]. The
eters by dotted lines. The Schwarzschild and colored black holestability analysis by catastrophe theory agrees with that by
are also shown as references. linear perturbations.
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FIG. 3. Mg}, diagram for Proca black holes in BD theory (
=0) and in GR. The mass of the Proca fieldus-0.15g.m; .

To see the detail and compare our solution with that in
GR, we depict the enlarged diagram for= 0.15g.m, in Fig.

3. No cusp structure appears in BD theory. Though the so- 0.001

lution curves seems to merge at the pdnt we find two
solutions exist aD, which can be distinguished from field
distributions. In GR, the maximum points of horizon radius
r, and of gravitational mash! 4 are the same, i.e., the point
C in Fig. 3. In BD theory, however, those two poirs(the
maximum horizon radiysandB (the maximum gravitational

mass are different. This result does not depend on the choice

of the BD paramete® and the mass of the Proca figld In

particular, a cusp structure disappears in BD theory as men
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tioned above. One may wonder whether catastrophe theory

can be simply applied to stability analysis as it is in BD
theory, although it works quite well in GRL7]. For fixing

r/rh

FIG. 4. Distributions of the energy density fta) the solid-line

and (b) the dotted

-line branches of the Proca black holes with

ry, we still have two solutions in BD theory as in GR. Is =0.159,m, both in BD theory (=0) and in GR. The horizon
there any correspondence of those two solutions to tW@agii of the black holes are,=0.01,/g..

branches in GR? We expect that there are two types of black

holes in BD theory as well.

As we discussed in our previous papgtg], if we divide
the total energy density,,:, into a kinetic termpg2 and a
mass ternp,2, one of the main differences between the two
branches in GRthe solid-line and the dotted-line branches
[18] in Fig. 3 comes from the difference of dominant ingre-
dient, i.e., in the solid-line brancp,2 is dominant compared
to pg2, stabilizing a black hole solution. In the dotted-line
branch, the situation is opposite. The stable solid-line branc

is Schwarzschild type, while the unstable dotted-line branch Pe

is colored black hole type, in which the non-Abelian field
and gravity balance each other.

In BD theory, if we divide the total energy densibyy:a
as

protal= — To=pazt pr2tpy, (3.15
where
rn )2 2(1+w)2u? _do| H20+1
Pl T 2T |20+
2(w+1)r d
(2w+3)d dr

AR TN T R TS e
N el 2 1+L_d—¢) (3.17
r ddr/|’ '
h [ra)? 1 dg\ fw+2( 2m)(_d¢|’
(m_p) 2 2¢+rdr_> [ 2¢ Q rdr_)
—rﬁd—f] (3.18
dr

we find similar behavior to the case in GR, i.gs2 is domi-

nant topgz in the

solid-line branch, while the opposite is true

in the dotted-line brancksee Fig. 4.

In the solid-line branch, the black hole and non-Abelian
structure are rather independent. In fact, a particlelike solu-
tion in this branch can exist without gravity. On the other
hand, in the dotted-line branch, we need both the non-
Abelian field and gravity. Then we can divide the family of
solutions into two: a solid-line branch fro® to L (solid
line) and a dotted-line branch frorR to A (dotted ling,
respectively(see Fig. 3. In the solid-line branch, the exis-
tence of the BD scalar field may not change the black hole
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FIG. 5. r,-Mg (scalar magsdiagram of the Proca black holes h 'S¢ Tp
with 4= 0.15.m, in BD theory (w=0). The dotted and solid lines . .

correspond to those in Fig. 3. FIG. 7. r,-By, diagram for Proca black holes withu

=0.15:m, in BD theory (w=0) and in GR.

structure, but it may affect a lot in the dotted-line branch.
This is because the non-Abelian field in the solid-line branch IV. PROCA BLACK HOLE IN THE EINSTEIN
does not give a dominant contribution to the black hole CONFORMAL FRAME

structure. As we will see later, this becomes more clearinthe The gravity part of BD theory is conformally equivalent
Einstein conformal frame, in which the effect of the BD to that of GR[19] and a description by use of the Einstein
scalar field is reduced to matter coupling. conformal frame sometimes gives us simpler basic equations
For these two branches, we depict the scalar mass igng easier analysis because the coupling of the BD scalar to
terms of the horizon radius in Fig. 5. The scalar milssin gravity is moved to a matter term and the gravity part is just
the solid-line branch is always larger than that in dotted-linejescribed as in the Einstein frame, which is already familiar
branch. We also show the inverse tempel’atuﬂ'eiﬂ/terms [20] Hence, here we shall reana|yze our present prob|em in

of Mg and the field strength at the horiz&j in terms ofr,  the Einstein conformal frame. We consider a conformal
of Proca black holes withu=0.15.m, in Figs. 6 and 7, transformation

which are quite similar to those in GR.andB, are defined

by . &
gabzd)—gab- 4.1
1 dm 0
T=ﬂe‘5 1—2(3W o (3.19 i
m r=1 The equivalent actio’s=S/ ¢, is given as
V2(1-wp)
_ 12—  _ " = 1 . 1. . 1 1
Bh—(TI'F ) |r=l—r—2. (32@ S:f d4X /_g _ZR_ —VQQDVQQD__ ZTrFZ
h 2k? 2 ®o\ 16792
Those also suggest that a stability may change somewhere in 2
betweenA (the maximum horizon radijisand B (the maxi- + 2ex;:(—;<,8<p)TrA2 , (4.2
mum gravitational mass c
\ 1 | ((p) 20+3| 17 @3
=—In| —/|, = .
25 [T T e (PKB bo B 2
20 - E For a black hole solution, if we define spherically symmetric
<A c coordinates in the Einstein frame as
<5 ' ] 2G i)
o L J N m(r ~ A
2 r BD ; ] d325£d52=— 1- ———|e 2°dt?
= 10 | : . bo r
=~ r ]
S ] 26m(i)]}
5 ] +|1-———=| dr?+r4dQ? (4.4)
N : ; ] r
0'L.. "KlR‘.,.l.."..m...l.. ]
0.7 0.75 0.8 0.85 0.9 0.95 1 we find
Mg(gc/mp) .
FIG. 6. My1T diagram for Proca black holes wittu MEJim m(r)=Mg—Ms, Tp=ry, -2 (45

=0.159,m, in BD theory (w=0) and in GR. F oo bo
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where variables with a caret denote those in the Einstein 1 . ! . .
frame. We also introduce dimensionless variables and pa-
rameters as 0.8 |- .
F:F/Fh, A:Gli\n/’r\h, Xh:thcllpi ;=(p/mp ;n. 0.6 - B
(4.9 o
] ] <:.= 0.4 -
The basic equations are now
0.2 -
= 2 2 ~
dm 1 [dw [ de 2m , ;
—= T =] t2mrt — 1-— 0 — '
dr | ®oril gt dr P 0.5 0.6 0.7 0.8 0.9 1

r

+;1_—WZZ+Z —87Be)(1+w)?
2ol = ¢0exp( mBe)(1+w)s,

4.7
ds
dr qbo}\r
— =
dr2 r r dr r2
Fof1-w?)\? w2
+¢0Xﬁ< = ) +2r%exp(—\/ﬁﬂgp)
N —
1+w PN
X( F_) T and, exp(— 87 B¢)
(1+W)2
X[ — , (4.9
'r‘
o[y 58] oo 8, Ty
dr? 7] lar| T2 eohh| T2
w2
+2r—exp( J8mBe) +W) —M
®o ; 72
+ ulhZexp(— V8w Be)(1+W) |. (4.10

As we expected, these are simpler than those described in th%‘D
BD frame. The boundary conditions are similar to the ones in &
the BD frame. From our numerical calculation, we can show =

thatM = M, becaused vanishes faster tham *

M, (g /m )

FIG. 8. M-r, diagram in the Einstein frame for Proca black
holes in BD theory =0) and in GR. The mass of the Proca field
is u=0.155.m,. We find a cusp structure, which indicates a sta-
bility change via catastrophe theory.

holes in BD theory are quite similar to those in GR. This
suggests that catastrophe theory will be simply applied in a
stability analysis for non-Abelian black holes in BD theory
as well.

From the point of view of catastrophe thedi6], stabil-
ity changes at a cusp point in the control parameter-potential
function diagram. In GR, if we regard gravitational mass and
black hole entropy(or, equivalently, the area of the event
horizon as a control parameter and a potential function, re-
spectively, we find a cus@ in the My-r, (My-Tp,) diagram
(Figs. 3 and 8 which is a symptom of stability change in
catastrophe theory. In fact, the stability of the black hole
does change at this cusp pofdt In BD theory, however, a
cusp structure does not appear in Fig. 3, while it does in Fig.
8. This suggests that if we use the variables in the Einstein
frame, we can simply apply catastrophe theory to the stabil-
ity analysis in BD theory as it is. From Fig. 8 catastrophe
theory predicts that stability change can occur at the pdint
From Fig. 3, however, no such prediction is possible.

To study stability, we have another method, i.e., a turning
point method for thermodynamical variablgz3]. Stability
will change at the point wherd(1/T)/dM=. In GR, we
understand that a stability change occurs at the p@iri
Figs. 6 and 9. This is consistent with analysis by catastrophe

20 | R

Y
=%

p—

S
d

First, in Fig. 8, we show thé/,-ry, diagram in the Ein-
stein frame that is related to Fig. 3 by conformal transforma-
tion. Surprisingly, we recover a cusp structure even in BD
theory. The solid-line branch is always located above the

dotted-line branch as in GR. We also show the inverse tem-

perature IT in terms of the gravitational madfﬂg in Fig. 9.

0.5 0.6 0.7 0.8 0.9 1
ICIg(gclmp)

FIG. 9. |\7|g-1rr diagram in the Einstein frame for Proca black

holes in BD theory =0) and in GR. The mass of the Proca field

Both figures show that the properties of the Proca blacks x=0.15.m,.
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theory. In BD theoryd(1/T)/dM=« occurs at poinB in
Fig. 6 (the BD frame, which is inconsistent with the stability

analysis by catastrophe theory. However, if we useI\Aﬂbe

1/T diagram in the Einstein frame, the divergence occurs at
point A, which is consistent with catastrophe theory. To un-
derstand this inconsistency, we have to remember that vari-gﬂ
ables in the turning point method should satisfy thermody- s
namical laws, in particular the “mass” of a black hole =
should satisfy the first law of black hole thermodynamics. In
fact, the gravitational mass in the BD frame does not satisfy
the first law of black hole thermodynamics, while it does so

for the variables in the Einstein franf€ig. 9) [24] and there-

fore the turning point method could be applied. We expect
that a stability change occurs at po#at but not at pointB,

which is consistent with catastrophe theory. These conjec-
tures for stability should be justified by analyzing linear per-
turbations of black holes and black hole thermodynamics
[25].

_

-
p—

\O

By use of the Einstein frame, we also understand easily&f;
the qualitative difference between black holes in BD theory <=
and in GR. As we see in the actig4.2), the coupling of the
BD scalar field appears in the mass term. This coupling re-
duces effectively the mass of the Proca field by a factor
exp(—«B¢/2) because is monotonically decreasing to zero
asr—o [see Fig. 18)]. In GR, as the mass is reduced, the
Proca black hole shifts in the left upper direction in tig-
r, diagram(see Fig. 2 In fact, in the limit of zero mass, we
recover Schwarzschild and colored black hole branches. As &a
result, for a fixed Proca field mags the black hole solution
in BD theory also shifts in the left upper direction from that
in GR because of the coupling. Another contributionpis
which appears in the matter Lagrangian. Sinﬁ@l is its
overall factor, this effect is renormalized by a redefinition o
the gauge coupling constant, i.e., g.=\dode. AS g
changes monotonically from 1 t® for «o>w>—23/2, the
effective gauge coupling constagt changes frong, to .

The effects of the BD scalar field are divided into twb)
The gauge coupling constant is renormalized @$

V. EFFECTS OF THE BRANS-DICKE SCALAR FIELD

0.8

0.4

0.2 0.6

M, (g /m )

FIG. 10. (@ Mgy, diagram in the BD frame an¢b) M-,
gram in the Einstein frame for several valuesvwofThe mass of
the Proca field it =0.15g.m, .

We can see that the gravitational mass approaches some
fconstants ae— o, which correspond to those in GR. In the
Einstein frame, the horizon radii in both branches approach
the Schwarzschild radius in the limit ef= — 3/2, resulting
in a trivial Schwarzschild black holéFig. 14).

This is because the matter contribution will vanish in this
limit as we discussed aboveﬁgl—>0). In the BD frame,
however, we find that the dotted-line branch changes faster

=09, , which gives a stronger coupling than that in GR
(2) the Brans-Dicke scalar field decreasesrasc, which

' than the solid-line branch and both horizon radii in the limit
of w=—3/2 are different from the Schwarzschild radius.

gives an effective change of the mass of the Proca field, i.eq o, nontrivial black holes can exist even for= — 3/2.

' = pexp(—rpel2).

more clearly, we show the dependence of the black hole

solutions in Figs. 10—12. From Fig. 12, in which the effect is

absorbed in normalization by, , we find that the deviation

from GR is quite similar to the behavior when changing a

mass of the Proca field in GRee Fig. 2 This means that
effects(1) and(2) really explain the deviation from GR.

In Fig. 13 we depict the gravitational mass and the laps

function in terms of w for fixed horizon radius «j,
=0.8,/g;) and fixed mass of the Proca fieldu (
=0.15.m,). The solid and dotted lines correspond to thos

in the solid-line and in the dotted-line branches, respectively,

Note that when we fix the horizon radius in the BD frafoe
in the Einstein framg the horizon radius in the Einstein
frame (or in the BD frame will change for different values
of w.

This is consistent with the above result in the Einstein frame
Fbecause the conformal transformation becomes singular for
w=—23/2.

Although any value ofw>—3/2 does not give a ghost,
we find a negative mass contribution in the BD frame, result-
ing in that M becomes negative fov<(wg,<—1). We
showm(r) for several values ob in Fig. 15. This does not
mean, however, that we have a negative-mass black hole,
%ecause the gravitational mabh; is still positive. A test
particle moving around a black hole feels an attractive force
given by Mg, which is always positive. The effect of nega-
€ive M could be observed in a time delay, which changes its
sign for negativeM [15].

In the Einstein framem(r) is monotonically increasing as
r—oo, resulting in a positive mad¥l, which is the same as

the gravitational mas$7lg (Fig. 16. As we know, in BD



4878 TAKASHI TAMAKI, KEI-ICHI MAEDA, AND TAKASHI TORII 57

(a)

25 o T T T T e )

i »=0 GR

20 A
~ L ] -y
— [ | _\
:.)“ 15: ] [Yid

g 1w - ]

= : ]

5 F 3

0 ]

0.3 1

(b)

257"'1"'|"'I"'I i
20 [ 3 ~
- r ] <
o [ 4 12
S, 15 1 N
w L u ~~
= L ] ;

b’ r ]

5 b =

o & ]

0.4 0.6
M, (g /m,)

(=]
-

FIG. 12.(a) M1}, diagram andb) M 4-1/T diagram normalized

FIG. 11. (8) My-1/T diagram in the BD frame antb) |\7|g-1rr by g.= \/¢To gc in thg Eiqstein frame for several values of The
diagram in the Einstein frame for several valuessofThe mass of ~Mass of the Proca field jg=0.15.m, .
the Proca field igu=0.15.m;.

holes in the solid-line branch from Fig. 17. Whenr-«, we

theory, we can define several mas§es]|. The reason why find M=M, but s+ 1/2. The reason is that the mass differ-
we have several masses is because the BD scalar field denceMq M (or 2M,) decreases a8~ ! for w— [see EQq.
creases as !, which is responsible for having different (11.85 i |n [15]], while, asw— —3/2,5— 1/2 butM4#M (or
masses in each frame, and the scalar field itself also givesM ;#0) (see Fig. 18 This is consistent with the previous
contribution into a mass energy as a scalar nMss In the  fact that there still exists a nontrivial black hole in the limit
vacuum case, we find a negativefor o<—1. In our case, of w— —3/2.
however, the BD scalar field is concentrated by the gravita-
tional attractive force of the black hole. This changes the

sensitivity s just as for a self-gravitating star. From the VI. SKYRME BLACK HOLE

asymptotic behavior ofjoo andg,, , we find a relation be- In GR, nontrivial black holes with a massive non-Abelian
tweenM andMy as field have quite similar properties, which we classified as
type Il in [17]. How about black holes in BD theory? To see

%: wt2-s (5.1) whether or not the above results for the Proca black hole are

M w+1+s’ ' generic, we shall study the Skyrme field as another example

_ o _ of a massive non-Abelian field.
wheres is a sensitivity[see Eq.(11.83 in [15]]. Then the The action of the Skyrme fiell,, is SU(2)x SU(2) in-
sensitivity s could be evaluated as variant and is given af26]

1 (20+3)(Mg—M) ,
s=§— (MM . (5.2 1 fs
(M+Myg) Lm=——TrF2——TrA2 6.1)
3292 4

For a Schwarzschild black holeW(=M,), s=1/2. If o=
—3/2, howevers=1/2 even ifM#M,. We show the sen-
sitivity sin Fig. 17. From Eq(5.1), M becomes negative for
w<—(1+s)(<—1). Then for a giverw(<—1), M of the
Proca black hole with smaller sensitivity tham,=—(1
+ w) becomes negative. It may correspond to smaller black Os= mgc. (6.2

wherefg andgg are coupling constantg, is related tag,. for
the Proca field as
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FIG. 13. » dependence on the gravitational magg and the FIG. 14. w dependence on the gravitational masg and the

lapse functiors of the Proca black hole in the BD frame for a fixed Igpse functions of the Proca black hole in the Einstein frame for a
rh=0.5,/g. and u=0.15g:m,: () and(c) o<1 and(b) and(d)  fixedr,=0.9,/g. andu=0.15.m;: () and(c) =1 and(b) and
w=1. The dotted and solid lines correspond to the dotted- andd) @=1. The dotted and solid lines correspond to the dotted- and
solid-line branches in Fig. 10. solid-line branches in Fig. 10.
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rr, FIG. 16. Mass functiom(r) in the Einstein frame for several
values of w. As in Fig. 15, we setu=0.15:m, and ry
FIG. 15. Mass functionm(r) with r,=0.8,/g. and u =0.9,/g., which means thafth is not fixed in this figure.
=0.159m, in the BD frame for several values of.
) ] lim xy=0. (6.5
The mass parameter of the Skyrme figlds defined byu o

=fs0s. F and A are the field strength and its potential, re- S ) ) )
spectively. They are described by the (@)-valued function ~ For simplicity, we solve the present system in the Einstein
U as frame. The equivalent actioB=S/ ¢, is

F=ANA, A=U'VU. (6.3 . -
SZJ d*xV=g| =~ 5@
In the spherically symmetric and static case, we carlJset 2K
o . 1/ 1 f2
U(x)=cosx(r)+i sin x(r)or', (6.9 q’)_( _-|-er+ —exp( KkBe)TIA2 (6.6)
0

where o, andr' are the Pauli spin matrices and a radial
normal, respectively. The boundary condition for the totalWith the dimensionless parameteﬁrS fs/my, the basic

field energy to be finite is equations are now
|
~ _ ~ 2 f_2 .
P e (d—i) +(d—f) (—exp( VBT Be)+ l)
dr r dr dr 2w hoNir
2 _ in?
+sin2X<2—Sexp(—@3¢)+s'—X_) , 6.7)
%o A pohir?
~ _ 2 _2 n2
D 4t (d—i +<d—i> (—exp(—J_ﬂq:)Jr—l X ) : 6.8
dr dr dr) | ¢ 2 ohir?
dp om| d sir? 12 sir? 2m —sir? 2de
?(PZ - -~ X( 7T¢—8XIO( V8mBp)+ X )—— \/_,B—GXP V87Be) X —j_—(i
dr? r dr| r S FE rdr
V8w pBf2 2
- 27;[3 * exp(— B e)| X ©.9
dr
d’x exp(— 87 B¢) [ de dy dx

= — — 87AZT2T — 478 Br2A2_2—+—sm2X
r2 4wr2)\ﬁ?§exp(—\/8w,8¢)+23inzx\ dr dr dr

o
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2m sin2 . —  sir?
Hli-= — T / 4\ 3T 2exp(— \Brpe) + ——
r 4wr2)\ﬁ?§exp(—\/§,8cp)+25ir?)(\ r2
dy S|n2)( 2 |n2)( 2m
+— waexp( \/_,8<p) + - (6.10
drl t BoNT r2

As in the case of the Proca black hole, the terms in square brackets if6E3jaand(6.10 must vanish at,, for the horizon
to be regular. Hence,

dy| Bon2sin 2y (4 f2R2e BTBen 4 sity,) 6.1

dri—,  (4mfikfe B7Pent2 sirfyp){sirfxn(8mfihfe  B7hent sirbxy) — pohp}’ '
d; \/SWBEX%E_ “ﬁﬁ;hsinth 6.12
dri—, sifxn(8mf2hze B+ siry,) — dokp’ '

wherexp=x(rn) andep=o(ry). xn andgoh (= @n/mp) are o
shooting parameters and should be determined |terat|vely so We show a solution with the “winding” number one.

that the boundary condition®.4) and(6.5) are satisfied. Note that the comparison is made in the Einstein frame for a
We show a numerical result of a Skyrme black hole in BDfixed r\,, which does not mean the horizon radii with differ-
theory in Fig. 19. Here we set the parameters entw in the BD frame are the same.

5 falls faster tham ~! because Eq(6.9) is
rh=10,/g;, f=0.03n,, w=-14. (6.13

The dotted lines are those in GR with=1.0,/g. and f 0.5
=0.03m,,. The solutions correspond to solid-line in Fig. 20.
We have shown only a solution with one node number. For a 0.45 0
Skyrme black hol¢27,28, rather than the node number, the
solution is characterized by the “winding” number defined 0.4
by [29] 0.35 |
1 0.3 f
Wi= —|xn—x(%) —sin(xp)|. (6.14 - *
™ 0'25 P S S SN EN RO ST N U S T SO MU BN SO SR S SO AN TR S T
-1.5 -1 -0.5 0 0.5 1
(O]
(b)
0.5 e B et -
0.5 r ;
F ] 0.45 [ ]
0.4 [ B FooTT e Bleeeoeeneeeenn L B
C o= ] 0.4 [ -
0.3 7 “ E ]
“ C ] 0.35 - 3
0.2 F . - 1
L R 0.3 - |
. ; e . * 4
0’1,,,.,,,..,....@...3 025 —— i il ]
0 0.2 0.4 0.6 0.8 1 1 v 100

r(g/l)
ner FIG. 18. w dependence on the sensitivisyof the Proca black
FIG. 17.ry,-s diagram for several values af. The mass of the hole for a fixedr,=0.9,/g. andu=0.15.m,: (8 w=<1 and(b)
Proca field isu=0.15y.m, . The dotted and solid lines correspond w=1. The dotted and solid lines correspond to the dotted- and
to the dotted- and solid-line branches in Fig. 10. solid-line branches in Fig. 10.
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p

—~—4r
dr

~ 2
ds A<d¢) 6.15
dr

asr — and¢ vanishes faster than ! [see Figs. 1&) and

19(d)]. Then, as in the Proca black hol,= M.
To study the properties of a family of black holes, we

depict theM ,-r, andM g-r}, (the BD frame diagrams in Fig.
20 and theM 4-1/T and|\7lg—1fr diagrams in Fig. 21. We find
that the results are quite similar to those for the Proca black

holes. We have a cusp structure in fiig-r, diagram in the
Einstein frame, but it disappears in the BD frame.

Most properties found for the Proca black hole apply to
the Skyrme black hole as well. This suggests that a universal
picture for nontrivial black holes with massive non-Abelian
fields is possible.

VIl. CONCLUDING REMARKS

First, we have analyzed non-Abelian black hol€soca
and Skyrme black holesn BD theory and shown some dif-
ferences from those in GR. The Einstein conformal frame
makes our analysis easier. The effect of the BD scalar field
can be reduced into two parts in the Einstein frame: the ef-
fective change of mass of the non-Abelian field, i.g.,

— uexp(«Bel2) or f—f exp(—«Bel2), and the renor-

3(r). The Skyrme black hole in GR is also depicted as a referencenalized coupling gc— vV¢ode Or gs—Véods and fg
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stein frame, we still have nontrivial black holes in the BD

25 e frame in the same limit because the conformal transforma-
r tion becomes singular then.
20F Second, we have analyzed for various values ofWhen
_ . 1 w=500, the difference from GR is so small that we will not
:: IS0 =14 7 see any difference. The solutions fers<w=-1 seem to
] E . be somewhat pathological because the mass funatidre-
Q 10 a B comes negative in the BD frame, resulting in negative value
=) - . of M. However, even in such cased,; is always positive;
St E therefore a test particle around such a black hole still feels an
Fo Ry ‘ 1 attractive force.
O o 0 s e 0 o o 1 1 Third, we find that the cusp structure in thég-r,, dia-
Mg( gc/mp) gram does not appear in the BD theory, although it was
found in GR and provided us with a different method for
(b) stability analysis via catastrophe theory, while it exists in the
25 : ) Einstein frame. This suggests that a stability change occurs
: ®=0 dR ] at a cusp point in the Einstein frame. The justification of this
20[ el Ty conjecture and the proper analysis including that by linear
N C b perturbations will be given elsewhel25].
=% 1sf - In this paper we have studied a globally neutral type of
o r ] non-Abelian black holes in BD theory. A globally charged
g 10f . black hole, i.e., a monopole black hole may be much more
= r . interesting. That is because charged black holes are impor-
5 B tant in the context of cosmology, in particular, in the relation
- _ : : . with a dynamical monopol&opological inflation [30]. This
0 T 02 04 o os 1 Tl is under investigation.
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