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Quantum inequalities and singular negative energy densities

L. H. Ford,* Michael J. Pfenning,† and Thomas A. Roman‡

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 12 November 1997; published 16 March 1998!

There has been much recent work on quantum inequalities to constrain negative energy. These are
uncertainty-principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We
consider several examples of apparent failures of the quantum inequalities, which involve passage of an
observer through regions where the negative energy density becomes singular. We argue that this type of
situation requires one to formulate quantum inequalities using sampling functions with compact support. We
discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.
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PACS number~s!: 04.62.1v, 03.70.1k, 04.60.2m
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I. INTRODUCTION

It has been known for some time that, unlike in classi
physics, quantum field theory allows the local energy den
to be negative@1,2# and even unboundedly negative at
single spacetime point. These situations imply violation
the weak energy condition@3# Tmnumun>0, for all causal
vectorsum. On the other hand, if field theory places no co
straints on negative energy, then it might be possible to p
duce gross macroscopic effects. Such effects might incl
violation of the second law of thermodynamics@4,5#, viola-
tion of the cosmic censorship hypothesis@6,7#, traversable
wormholes @8#, warp drives @9,10#, and time machines
@11,12,13#, to name a few. As a result, there has been m
activity in recent years to determine what constraints, if a
quantum field theory places on negative energy.

One approach involves averaging the local energy co
tions over timelike or null geodesics~see Refs.@14, 15# for a
discussion and references!. Another approach@4,16,17,18#
entails multiplying the renormalized expectation value of
energy density~or flux! by a sampling function, i.e., a
peaked function of time whose time integral is unity. O
convenient choice is the Lorentzian function peaked aro
t50,

q~t!5
t0

@p~t21t0
2!#

, ~1!

wheret0 is the characteristic width of the sampling functio
i.e., the ‘‘sampling time.’’

Let Tmn be the renormalized expectation value of t
stress tensor taken in an arbitrary quantum stateuc&. Then
Tmnumun is the local energy density measured by an obse
with four-velocity um. For a quantized massless, minima

*Electronic mail address: ford@cosmos2.phy.tufts.edu
†Electronic mail address: mitchel@cosmos2.phy.tufts.edu
‡Permanent address: Department of Physics and Earth Scie

Central Connecticut State University, New Britain, CT 06050
Electronic mail address: roman@ccsu.edu
570556-2821/98/57~8!/4839~8!/$15.00
l
ty

f

-
o-
e

h
,

i-

e

d

er

coupled scalar field in four-dimensional Minkowski spac
time, the following inequality has been derived@17,18# for
timelike geodesic observers:

r̂5
t0

p E
2`

` Tmnumundt

t21t0
2 >2

3

32p2t0
4 , ~2!

for all t0 , wheret is the observer’s proper time.~Our units
are taken to be\5G5c51.! Similar bounds have also bee
derived for the massive scalar and electromagnetic fie
@18#. These constraints, which have come to be known
‘‘quantum inequalities’’~QIs!, are uncertainty-principle-like
bounds which restrict the magnitude and duration of nega
energy effects. However, it should be noted that the ene
time uncertainty principle was not used as input to derive
QIs; they arise directly from quantum field theory. More r
cently, QI bounds have been proved in static curved spa
times as well@19,20,21#. For the massless scalar field
two-dimensional Minkowski spacetime, generalized
bounds have been derived for arbitrary sampling functio
@22#.

The original QI bounds were derived for Minkowsk
spacetime, and shown to hold for all choices of sampl
time t0 . It was argued in Ref.@23# that the flat spacetime QI
should also hold in a curved spacetime and/or one w
boundaries, if one restricts the choice of sampling time to
much less than either the smallest local proper radius of
vature or the smallest proper distance to any boundaries
particular, it was shown that in this limit the Casimir effe
satisfies the QI bound. This argument essentially says
one does not have to know the large-scale curvature of
universe in order to use flat space quantum field theory
predict the outcome of a laboratory-scale experiment. If
QI is applied in general spacetimes in the short samp
time limit, then it was shown that the bound severely co
strains the geometry of traversable wormholes. More spe
cally, either the wormhole must be no larger than a f
thousand Planck lengths in size, or, if the wormhole is m
roscopic, there must be large discrepancies in the len
scales which characterize the wormhole geometry, e.g.,
negative energy must be confined to a band around the th
which can be no thicker than a few thousand Planck leng
It was argued in Ref.@23# that, on dimensional grounds, on

es,
;
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would not expect nonlocal curvature terms to produce s
nificant contributions to the renormalized energy dens
over macroscopic length scales unless one introduced l
dimensionless coupling constants into the theory or en
mous numbers~e.g.,;1062! of fields. In this sense, the con
clusions of Ref.@23# are not at odds with some recent claim
@24,25#. Similar analyses apply the flat spacetime QI, in t
short sampling time limit, to the ‘‘warp drive’’ spacetime o
Alcubierre @9,26# and to the ‘‘superluminal subway’’ space
time of Krasnikov@10,27#, and arrive at even more stringe
constraints on the physical realizability of these spacetim
Strong evidence for the validity of the short sampling tim
approximation has been provided by recent analyses@20,21#.
These show that for any static observer~geodesic or not! in
any static spacetime, the QI reduces to the Minkowski spa
time form, Eq.~2!, in the short sampling time limit.

Krasnikov @10# has recently pointed out that, in certa
circumstances, the QIs might fail even in the short samp
time limit. He cites the specific example of a massless sc
field in the conformal vacuum state in two-dimensional M
ner spacetime. For any geodesic observer andany sampling
time, t0 , he observes thatr̂52` on the Cauchy horizon
and thatr̂ diverges to2` as the observer approaches t
Cauchy horizon. Krasnikov concludes that the QIs do
hold in this situation, and argues that similar failures sho
occur in the case where one ‘‘almost transforms’’ a trave
able wormhole into a time machine@28#.

In this paper we give other examples of apparent failu
of the QIs, which arise when there are singular energy d
sities. We argue that the problem arises when one emplo
sampling function, such as the Lorentzian function, with
infinite ‘‘tail.’’ If one formulates the quantum inequalities i
terms of sampling functions with compact support, then
relevant integrals are finite, as long as one samples outsid
the region where the energy density becomes singular.
further argue that the physical content of the quantum
equalities as restrictions on the magnitude and exten
negative energy is essentially the same as found in prev
work.

II. SAMPLING FUNCTIONS AND DIVERGENT ENERGY
DENSITIES

A. Representative example: The flat plate

Consider a minimally coupled scalar field in fou
dimensional Minkowski spacetime with a single pla
boundary, which is located atz50. We assume that the fiel
is in the vacuum state, and that an observer approache
boundary at constant velocity along thez-axis. We take the
observer’s equation of motion to be

z~t!5vg~t2tc!, ~3!

wheret is the observer’s proper time,tc is the proper time at
which the observer collides with the plate, andg
51/A12v2. The corresponding four-velocity isum

5g(1,0,0,v). The renormalized expectation values of t
stress-tensor components for the quantum field are give
@29#
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Ttt52Txx52Tyy52
1

16p2z4 , ~4!

and

Tzz50. ~5!

We see that the energy density diverges asz24. ~Such a
divergence does not occur for the massless conform
coupled scalar field or for the electromagnetic field, in t
plane boundary case. However, divergences do occur in
case of curved boundaries in flat spacetime@30#.!

The energy density in this observer’s frame is

Tmnumun5g2Ttt52
1

16p2v4g2~t2tc!
4 . ~6!

If we insert this expression into Eq.~2!, we obtain

r̂52
t0

16p3v4g2 E
2`

` dt

~t2tc!
4~t21t0

2!
. ~7!

This integral apparently diverges due to the singularity of
integrand ast→tc , corresponding toz→0. This is indepen-
dent of the choices both oft0 and oftc .

From this example, one can see that the apparent fai
of the QI occurs because the tail of the sampling funct
intersects the region of singular negative energy density. F
thermore, this problem may arise in more general cases
sampling functions which do not have compact support.
any sampling function which has a tail, one can always c
struct a quantum state designed so that the temp
asymptotic growth of the magnitude of the negative ene
density overcomes any falloff of the chosen sampling fu
tion. However, the original choice of the Lorentzian sa
pling function, Eq.~1!, was made simply for mathematica
convenience. In this paper we will argue that the probl
posed above can be remedied by using compactly suppo
sampling functions, that is, functions which are identica
zero outside of a finite interval.

First, it is of interest to note that in some cases an al
native solution is available. Although the integral in Eq.~7!
is apparently divergent, it can in fact be defined as a ‘‘ge
eralized principal value’’ integral@31#. The basic idea is to
perform successive integrations by parts. Consider the i
gral

I 5E
2`

` f ~t!

~t2tc!
4 dt, ~8!

where f (t) and its first three derivatives are finite ever
where, including asutu→`. If we perform three successiv
integrations by parts, the boundary terms all vanish and
result is

I 5
1

6 E
2`

` f -~t!

t2tc
dt, ~9!
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where the remaining integral may be defined as a conv
tional principal value. For the integral in Eq.~7!, f (t)5(t2

1t0
2)21, and we find~with the aid of the symbolic algebr

routineMACSYMA!

I 5p
~tc

222t0tc2t0
2!~tc

212t0tc2t0
2!

t0~tc
21t0

2!4 . ~10!

Equation~7! now becomes

r̂52
~b222b21!~b212b21!

16p2v4g2t0
4~b211!4 , ~11!

whereb5tc /t0 . We want to choose the sampling time to
small compared to the proper spatial distance to the pl
t0!vtc,tc . In this limit,

r̂'2
1

16p2v4g2tc
4 @2

1

16p2t0
4 . ~12!

Thus a quantum inequality of the form of Eq.~2! is in fact
satisfied. This method can be used whenever the obse
passes through an energy density which diverges symm
cally as an inverse integral power of proper time on eit
side of a boundary. It would not work, for example, if th
observer were to stop abruptly atz50.

B. Two-dimensional QI with a compactly supported sampling
function

Flanagan has shown@22# that for a massless scalar field
two-dimensional Minkowski spacetime

r̂>2~1/24p!E
2`

`

dt
@g8~t!#2

g~t!
, ~13!

whereg(t) is an arbitrary sampling function. As a specifi
example, consider the sampling function given by

f ~t!5H 0, t,2t0/2

~1/t0!@11cos~2pt/t0!#, 2t0/2<t<t0/2

0, t.t0/2

.

~14!

If we substitute this sampling function into Eq.~13!, we
obtain the following QI:

r̂>2
p

6t0
2 . ~15!

Although a similar inequality using a compactly support
sampling function in four-dimensional Minkowski spacetim
is not yet in hand, it is quite plausible to conjecture that su
a QI exists. We now turn to showing that compactly su
ported sampling functions may be used to resolve the ap
ent difficulties posed by divergent energy densities.
n-

e,

er
ri-
r

h
-
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III. APPLICATIONS OF QIs WITH COMPACTLY
SUPPORTED SAMPLING FUNCTIONS

A. Flat spacetime with boundaries

1. Two-dimensional plate

In a two-dimensional flat spacetime, unlike in the case
four dimensions, the energy density for a minimally coupl
scalar field does not diverge at a boundary, under the im
sition of Dirichlet boundary conditions. However, a no
minimally coupled field does have such a divergence. T
stress tensor is given by

Ttt52
A

z2 , ~16!

Tzz50, ~17!

whereA52j/2p, andj is the conformal coupling param
eter. Here we assume thatA.0 (j,0) and of order 1. Con-
sider a geodesic observer whose equation of motion is g
by Eq. ~3!. The energy density in this observer’s frame
given by

r~t!5Tmnumun52
A

v2~t2tc!
2 . ~18!

If we fold this into the compactly supported sampling fun
tion given by Eq.~14!, we obtain

r̂52
A

v2t0
E

2t0/2

t0/2 dt

~t2tc!
2 @11cos~2pt/t0!#. ~19!

However, since the energy density is decreasing monot
cally, as shown in Fig. 1, thenr̂ must be greater than th
energy density at the end of the sampling interval, i.e.,

r̂.r~t0/2!. ~20!

We can now ask under what circumstances will it be true t

FIG. 1. The compactly supported sampling functionf (t), and
the energy density,r, seen by an ingoing geodesic observer, plot
as a function of the proper time,t. The width of the sampling
function, i.e., the sampling time, ist0 . The energy density seen b
the observer diverges negatively ast→tc .
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r~t0/2!>2
p

6t0
2 . ~21!

Using the fact that the proper distance toz50, as measured
from the end of the sampling interval, is given by

l 5v@tc2t0/2#, ~22!

and that in the present case

r~t0/2!52
A

v2@tc2t0/2#2 52
A

l 2 , ~23!

we see that Eq.~21! will be satisfied when

l >S 6A

p D 1/2

t0 . ~24!

Hence we see that our two-dimensional flat spacetime
Eq. ~15!, will be satisfied when

t0!l , ~25!

that is, when the observer’s sampling time is much sma
than the proper distance to the boundary. Although we h
used the particular form given in Eq.~14!, this conclusion
should not depend upon the specific choice of sampling fu
tion, as long as it is compactly supported.

2. Four-dimensional plate

Although a QI which uses a compactly supported sa
pling function has not been derived in four-dimensional fl
spacetime as yet, it is reasonable to assume that an ana
of Eq. ~15! exists. On dimensional grounds, a QI for a ma
less scalar field in four dimensions should have the form

r̂>2
a

t0
4 , ~26!

wherea is a positive constant. For the purposes of the f
lowing argument we shall assume the existence of such a
valid for all quantum states, witha of the order of or less
than unity.

Let us return to the case of the observer approaching a
plate in four-dimensional flat spacetime, discussed in S
II A, and fold Eq.~6! into the compactly supported samplin
function given by Eq.~14!. The energy density in the observ
er’s frame now decreases as21/(t2tc)

4. Repeating the ar-
gument for the two-dimensional case, we find that our c
jectured QI will hold if

r̂>r~t0/2!>2
a

t0
4 . ~27!

From Eq.~6!, we find that this will be true if

t0<~16p2ag2!1/4l , ~28!
I,

r
e

c-

-
t
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-

-
I,

at
c.

-

wherel is again the proper distance to the plate.~Unlike in
the two-dimensional case, the factors ofg do not cancel out.!
When v→0, g→1, and therefore the QI is satisfied whe
t0!l . As g gets larger, the condition, Eq.~28!, becomes
easier to satisfy.

Note that in this and the previous subsection, we ha
defined the proper distance to the plate to be measured
the end of the sampling interval. However, ift0!l , this is
approximately the distance from the middle of the sampl
interval. In subsequent subsections, we shall use the la
definition.

B. Boulware vacuum at r 52M

1. Two dimensions

The two-velocity of an ingoing geodesic observer in tw
dimensional Schwarzschild spacetime is given by

um5~ut,ur !5S dt

dt
,
dr

dt D5S k

C
,2Ak22CD , ~29!

whereC5122M /r andk is the energy per unit rest mass
the observer. From Eq.~33! of Ref. @15#, we have that

Tmnumun5
1

24p
C22H k2F6M2

r 4 2
4M

r 3 G1
CM2

r 4 J . ~30!

Note that this quantity is negative everywhere forr>2M
@32#, and diverges atr 52M .

From r 5` to r 52M , C varies from 1 to 0. Consider the
ultrarelativistic limit, k@1, corresponding to an observe
shot inward at high velocity. Then from Eq.~29!, we have, to
first order ink21,

t;tc2
rC

k
, ~31!

wheretc is the proper time at which the observer reacher
52M . As the observer approaches the horizon, the lo
energy density varies as

Tmnumun;2
1

48p~tc2t!2 . ~32!

We can think of the horizon in the Boulware vacuum as
singular boundary analogous to the flat space examples
cussed in Sect. III A. Note that in the infalling observer’s re
frame near the horizon, ther 52M boundary is approaching
at nearly the speed of light. As the horizon is approached,
proper distance in this observer’s frame to the boundary fr
the point t50 ~which is always the midpoint of our sam
pling interval! is approximatelyl 5tc . If we select a sam-
pling time t0!l , the sampling function is zero at the hor
zon and the flat space form of the quantum inequality,
~15!, is satisfied, just as in the example in Sec. III A 1.

2. Four dimensions

Visser has recently given an approximate analytic expr
sion for the renormalized stress-tensor components of a
formally coupled scalar field in the Boulware vacuum sta
in four-dimensional Schwarzschild spacetime@33#. Our
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original QI was proved for the minimally coupled, rath
than the conformally coupled scalar field. In light of the r
cent proofs of similar QIs for the massive scalar field and
electromagnetic field@18,19#, it seems highly likely that such
a bound should also hold for the conformally coupled sca
field as well. For the sake of the following argument, we w
assume this to be true.

If Visser’s equations~8! and~9! are transformed from the
static orthonormal frame back into the usual Schwarzsc
t,r coordinates, one obtains

Ttt523p`x6
@40272x133x2#

~12x!
, ~33!
y
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Trr 5p`x6
@8224x115x2#

~12x!3 , ~34!

wherex[2M /r , and

p`5
1

90~16p!2~2M !4 . ~35!

For an infalling geodesic observer withum5„k/(12x),
2Ak22(12x),0,0…, we have that
Tmnumun5
2p`x6~15x3284k2x2239x21192k2x132x2112k228!

~x21!3
. ~36!
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If take k@1, and use Eq.~31!, we can express the energ
density near the horizon as

Tmnumun'2
32M3p`

k~tc2t!3 . ~37!

As discussed in the previous subsection, near the horizon
observer’s proper distance tor 52M is l 'tc . If t0!l ,
then the quantum inequality~26! will be satisfied if

t0,@45~16p!2kaM l 3#1/4. ~38!

However, this will in fact be the case becausek@1 andt0
!l ,M .

C. Singularity at r 50 in black hole spacetimes

Perhaps the most serious example of a singular en
density arises atr 50, the curvature singularity of a blac
hole. Unlike the other examples discussed in this paper,
singular energy density cannot be explained away as b
due to an unphysical choice of quantum state, as is the
of the Boulware vacuum at the horizon, or an unphysi
boundary condition, as in the case of the perfectly reflect
plate in Sect. III A 2. This singular energy density is ess
tially independent of the quantum state. In this case, the g
eralized principal value method discussed in Sect. II A c
not be utilized, as the observer cannot pass beyondr 50.
However, the use of compactly supported sampling functi
is still successful. We will restrict our attention to the case
a two-dimensional black hole, as the form of the stress ten
nearr 50 is not known in the four-dimensional case. Fro
Eq. ~30!, or from the corresponding expression for the Unr
vacuum state, one finds that, near the origin of a tw
dimensional black hole,

Tmnumun;2
M

48pr 3 . ~39!

The geodesic equation~29! implies that for smallr
he

gy

is
ng
se
l
g
-
n-
-

s
f
or

-

r ~t!'F3A2M

2
~tc2t!G2/3

, ~40!

wheretc is again the proper time at which the singularity
reached. The energy density can be expressed in terms o
proper time as

Tmnumun;2
1

216p~tc2t!2 . ~41!

Note that this result has the same form as Eqs.~18! and~32!.
A two-dimensional spacetime is characterized by a sin
component of the Riemann tensor, which we may take to
the scalar curvature. In the case of 2D Schwarzschild sp
time, this is

R5
4M

r 3 . ~42!

Define the proper local radius of curvature by

r c5
1

AR
;

3&

4
~tc2t! as t→tc . ~43!

We see that nearr 50, this local radius of curvature and th
proper time for an observer to reach the singularity,tc2t,
are proportional to one another. Thus if we require that
sampling time satisfyt0!r c , we again find that the fla
space form of the quantum inequality~15! is satisfied.

D. Misner space

A further example of a singular energy density arises
Misner space. The two-dimensional version of this exam
was cited by Krasnikov as the possible counterexample
quantum inequalities based upon noncompactly suppo
sampling functions. The stress tensor in this two-dimensio
version has recently been discussed in detail by Cramer
Kay @34#. Hiscock and Konkowski@35# have calculated the
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quantum stress tensor for a massless conformally cou
scalar field in the four-dimensional version of Misner spa
so we may use their results to demonstrate that quan
inequalities using compactly supported sampling functio
are meaningful in this space. Misner space is a locally
spacetime with periodic identifications. It may be rep
sented by the metric

ds252dt21t2dx21dy21dz2, ~44!

with the points (t,x,y,z) and (t,x1na,y,z) identified with
one another, wheren is any integer anda is a positive con-
stant. Misner space is a portion of Minkowski space, and
metric may be transformed to the Minkowski form

ds252dy0
21dy1

21dy2
21dy3

2 ~45!

by means of the transformation

y05t coshx, y15t sinh x, y25y, y35z. ~46!

The quantum stress tensor is divergent everywhere on
Cauchy horizon att50 ~see Fig. 2!, including the ‘‘quasi-
regular singularity’’ at y05y1 . Hiscock and Konkowski
show that the expectation value of the stress tensor in
conformal vacuum state is given in the coordinates of
~44! by

Tmn5
K

12p2t4 diag~21,23t2,1,1!, ~47!

where

K5 (
n51

`
21cosh~na!

@cosh~na!21#2 . ~48!

They further show that in the frame of a geodesic obser
the energy density diverges on the Cauchy horizon ast23,
wheret is proper time measured from the horizon. Note th
here we are discussing a situation where the divergent en
density is in the observer’s past, as illustrated in Fig. 2. Ho
ever, one could equally well discuss the time-reversed si
tion where the singular energy is encountered in the futu
In the special case in which a geodesic observer meets
quasiregular singularity, the energy density diverges ast24.
As this case seems to pose the strongest challenge for q
tum inequalities, we will focus our attention here.

The observer in question moves along the path

y15vxy0 , y25vyy0 , y35vzy0 . ~49!

In the coordinates of Eq.~44!, vx5tanhx, and hence the
observer’s path is a line of constantx. The components o
the observer’s four-velocity in these coordinates are

ut5
g

coshx
, ux50, uy5gvy , uz5gvz , ~50!

where, as usual,g51/A12(vx
21vy

21vz
2). ~Note that His-

cock and Konkowski use an unconventional definition ofg.!
The local energy density in this observer’s frame near
singularity is
ed
:
m
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t

-

e

he

e
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r,
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gy
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an-

e

r5Tmnumun52
K

12p2g4~12vx
2!2t4 . ~51!

Note that

1

g4~12vx
2!2 5S 12vx

22vy
22vz

2

12vx
2 D 2

<1, ~52!

so that unlessK@1, the quantum inequality~26! is satisfied
whenever the sampling time is chosen so thatt0!t.

The latter condition is certainly necessary in order that
spacetime be Minkowskian over the time of the samplin
but it is by no means sufficient. Space is compact in
x-direction, with a proper periodicity length which goes
zero neart50. We see this from the following conside
ations. The element of proper length in thex-direction is
dl 5tdx, and from the first relation in Eq.~50!, we have that
t5tg/coshx. Thus, the proper periodicity length is

l 5gtE
x

x1a dx

coshx
52gt@ tan21~ex1a!2tan21~ex!#.

~53!

In the limit of smalla, this may be expressed as

l 'gt
a

coshx
. ~54!

Spacetime is Minkowskian only on scales small compared
this length; so we must also require thatt0!l . The argu-
ment in the previous paragraph works except whenK@1.
However, a largeK arises only whena is small, which is
precisely whenl !t. From Eq.~48! we see that, whena
!1,

FIG. 2. A two-dimensional section of~four-dimensional! Misner
spacetime, shown as the upper quadrant of Minkowski spacet
The coordinates (y0 ,y1) are Minkowski coordinates, whereas (t,x)
are Misner space coordinates. The straight lines with slope less
45 are lines of constantx. The linesx50 andx5a are identified
with one another. The line labeledl is the worldline of a geodesic
observer who passes through the quasi-regular singularity,Q. The
Cauchy horizon is represented by thet50 lines.~Note that in this
representation the singularity is in the past.! The curve labeled
t5t1.0 is an arbitraryt5const curve.
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K' (
n51

`
12

a4n4 5
12z~4!

a4 . ~55!

The local energy density in the observer’s frame, Eq.~51!,
can be expressed as

r52
K cosh4 x

12p2g4t4 . ~56!

Thus the quantum inequality Eq.~27! is satisfied if

t0,
g~12p2aK21!1/4

coshx
t. ~57!

Equations~55! and ~54!, and the relationz(4)5p4/90, im-
ply that for a!1, Eq. ~57! becomes

t0,S 90a

p2 D 1/4

l , ~58!

which is indeed satisfied ift0!l . This confirms that the
quantum inequality holds in Misner space.

IV. DISCUSSION

In the preceding sections, we have seen that various
amples of singular energy densities obey quantum inequ
ties, provided that these inequalities are formulated us
sampling functions with compact support. In order to sam
the region around a singular energy density, it is desira
that the sampling function be identically zero at the singu
ity. Sampling functions with infinite tails, such as the Loren
zian function, Eq.~1!, lead to divergent integrals because t
tail encounters the singularity. Clearly, this behavior is n
realistic. In the case of a particle falling into a black hole,
example, one will get a divergent integral regardless
where on the worldline one samples. A more reasonable
come would be that the result of sampling while the parti
is still very far away from the black hole is independent
the future fate of the particle. Quantum inequalities ba
upon compactly supported sampling functions achieve
outcome. The generalized principal value method discus
in Sec. II A is capable of rendering the integrals associa
with noncompactly supported sampling functions finite
some cases, but not in the case of the singularity atr 50 in a
black hole.

In any case, one does not expect truly divergent stre
energies to occur in reality. Various effects would be e
f

x-
li-
g
e
le
-

t
r
f
t-

e
f
d
is
ed
d

s-
-

pected to smear out the divergences in physically realiza
cases. For example, in the flat plate case, one expects
perfectly reflecting boundary condition imposed on the qu
tized electromagnetic field to break down for waveleng
smaller than aboutlp51/f p , where f p is the plasma fre-
quency. Similarly, one would not expect the Boulwa
vacuum atr 52M to be physically realizable, since the d
vergent stress-energy would produce a large backreac
which would presumably drastically alter the spacetime.
related argument could be made for the Misner and ‘‘almo
time-machine’’ wormhole spacetimes. These cases are
pathological in the sense that the quantum states do not
the Hadamard form on the horizon@36,37#.

One can understand the origin of singular energy de
ties, such as Eq.~4!, on a surface on which the quantu
scalar field,w, satisfies vanishing boundary conditions as f
lows: w and its time derivative,ẇ, are conjugate variables
Hence they satisfy an uncertainty relation such that ifw is
precisely determined, thenẇ must be completely uncertain
This means that̂ẇ2& and henceTtt must diverge. This situ-
ation is analogous to that of a position eigenstate in sin
particle quantum mechanics; such a state would have to h
a completely uncertain momentum, and hence an infin
mean energy. This suggests that the singular energy de
may disappear if the boundary’s position is uncertain. T
has recently been proved to be the case for the flat p
example of Sec. II A. In Ref.@38# it is shown that if the plate
is in a quantum state where the position has a Gaussian p
ability distribution of finite width, then the mean energy de
sity is finite everywhere and approaches Eq.~4! in the limit
that this width vanishes.

As long as the energy density is bounded below, one
pects that even quantum inequalities based upon noncom
sampling functions, such as Eq.~2!, to hold provided that the
sampling time is sufficiently short. Here sufficiently sho
presumably meanst0!l , wherel ;(rmax)

21/4 andrmax is
the maximum magnitude of the negative energy density.
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