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Quantum inequalities and singular negative energy densities
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There has been much recent work on quantum inequalities to constrain negative energy. These are
uncertainty-principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We
consider several examples of apparent failures of the quantum inequalities, which involve passage of an
observer through regions where the negative energy density becomes singular. We argue that this type of
situation requires one to formulate quantum inequalities using sampling functions with compact support. We
discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.
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I. INTRODUCTION coupled scalar field in four-dimensional Minkowski space-
time, the following inequality has been derivet7,18 for
It has been known for some time that, unlike in classicaltimelike geodesic observers:
physics, quantum field theory allows the local energy density
to be negativg[1,2] and even unboundedly negative at a ~_To [* TMVU"U”dT>_ 3
single spacetime point. These situations imply violation of P | P12 T 32mPr
the weak energy conditiof@] T,,u*u”=0, for all causal
vectorsu®. On the other hand, if field theory places no con-for all 7,, wherer is the observer’s proper timéOur units
straints on negative energy, then it might be possible to proare taken to bé& =G=c=1.) Similar bounds have also been
duce gross macroscopic effects. Such effects might includderived for the massive scalar and electromagnetic fields
violation of the second law of thermodynamieg5], viola-  [18]. These constraints, which have come to be known as
tion of the cosmic censorship hypothe$&7], traversable “quantum inequalities”(Qls), are uncertainty-principle-like
wormholes [8], warp drives[9,10], and time machines bounds which restrict the magnitude and duration of negative
[11,12,13, to name a few. As a result, there has been muclenergy effects. However, it should be noted that the energy-
activity in recent years to determine what constraints, if anytime uncertainty principle was not used as input to derive the
quantum field theory places on negative energy. Qls; they arise directly from quantum field theory. More re-
One approach involves averaging the local energy condieently, QI bounds have been proved in static curved space-
tions over timelike or null geodesi¢see Refs[14, 15 fora times as well[19,20,2]. For the massless scalar field in
discussion and referengesAnother approach4,16,17,18  two-dimensional Minkowski spacetime, generalized QI
entails multiplying the renormalized expectation value of thebounds have been derived for arbitrary sampling functions
energy density(or flux) by a sampling function, i.e., a [22].
peaked function of time whose time integral is unity. One The original QI bounds were derived for Minkowski
convenient choice is the Lorentzian function peaked aroundpacetime, and shown to hold for all choices of sampling
=0, time 74. It was argued in Ref23] that the flat spacetime Qls
should also hold in a curved spacetime and/or one with
boundaries, if one restricts the choice of sampling time to be
q(r)= 7o 1) much less than either the smallest local proper radius of cur-
[77(7-7+ 7-02)] ' vature or the smallest proper distance to any boundaries. In
particular, it was shown that in this limit the Casimir effect
satisfies the QI bound. This argument essentially says that
wherer, is the characteristic width of the sampling function, one does not have to know the large-scale curvature of the
i.e., the “sampling time.” universe in order to use flat space quantum field theory to
Let T,, be the renormalized expectation value of thepredict the outcome of a laboratory-scale experiment. If the
stress tensor taken in an arbitrary quantum st#te Then QI is applied in general spacetimes in the short sampling
T,,u*u”is the local energy density measured by an observetime limit, then it was shown that the bound severely con-
with four-velocity u#. For a quantized massless, minimally strains the geometry of traversable wormholes. More specifi-
cally, either the wormhole must be no larger than a few
thousand Planck lengths in size, or, if the wormhole is mac-
*Electronic mail address: ford@cosmos2.phy.tufts.edu roscopic, there must be large discrepancies in the length
"Electronic mail address: mitchel@cosmos2.phy.tufts.edu scales which characterize the wormhole geometry, e.g., the
*Permanent address: Department of Physics and Earth Sciencetegative energy must be confined to a band around the throat
Central Connecticut State University, New Britain, CT 060505; which can be no thicker than a few thousand Planck lengths.
Electronic mail address: roman@ccsu.edu It was argued in Ref.23] that, on dimensional grounds, one
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would not expect nonlocal curvature terms to produce sig- 1
nificant contributions to the renormalized energy density Tu=—To= —Tyy=— 7527 (4)

over macroscopic length scales unless one introduced large

dimensionless coupling constants into the theory or enor-

mous numberge.g.,~ 1072 of fields. In this sense, the con- 2Nd

clusions of Ref[23] are not at odds with some recent claims

[24,25. Similar analyses apply the flat spacetime QlI, in the T,~0. 5
short sampling time limit, to the “warp drive” spacetime of

Alcubierre[9,26] and to the “superluminal subway” space- We see that the energy density divergesza$. (Such a
time of Krasnikov[10,27], and arrive at even more stringent divergence does not occur for the massless conformally
constraints on the physical realizability of these spacetimesoupled scalar field or for the electromagnetic field, in the
Strong evidence for the validity of the short sampling timeplane boundary case. However, divergences do occur in the
approximation has been provided by recent analf2@21.  case of curved boundaries in flat spaceti®@].)

These show that for any static obserygeodesic or ngtin The energy density in this observer's frame is
any static spacetime, the QI reduces to the Minkowski space-
time form, Eq.(2), in the short sampling time limit. 1
Krasnikov [10] has recently pointed out that, in certain T U=y Ty=— 7 7 (6)
circumstances, the Qls might fail even in the short sampling 167 0"y (1= 7c)
time limit. He cites the specific example of a massless scalar
field in the conformal vacuum state in two-dimensional Mis- If we insert this expression into E), we obtain
ner spacetime. For any geodesic observer amgdsampling
time, 7,, he observes thagi=— on the Cauchy horizon, - To o dr
and thatp diverges to— as the observer approaches the P= " 167302 j,x (1— 1o)X (P4 10%) " ™

Cauchy horizon. Krasnikov concludes that the Qls do not

hold in this situation, and argues that similar failures shoulotl-hiS integral apparently diverges due to the singularity of the

occur in the case Where one a'T“OSt transforms™ a traVers'lntegrand as— 7, corresponding ta—0. This is indepen-
able wormhole into a time machirj28].

. . . dent of the choices both af; and of 7. .
In this paper we give other examples of apparent failures ¢, g example, one can see that the apparent failure
of the QIs, which arise when there are singular energy den- i

ities. W hat th bl ; h | of the QI occurs because the tail of the sampling function
smes.. € argue that the problem arises when one employs;garsects the region of singular negative energy density. Fur-
sampling function, such as the Lorentzian function, with a

infinite “tail.” If ‘ lates th um i lities i Tthermore, this problem may arise in more general cases for
Infinite “tail. I one formuiates the quantum INequalities N - gy p)ing functions which do not have compact support. For

terms of_sampling fungti_ons with compact support, then_ thea y sampling function which has a tail, one can always con-
relevant integrals are finite, as long as one samples OUtS'degruct a quantum state designed éo that the temporal

the region where the energy density becomes singular. Wgq, o iotic growth of the magnitude of the negative energy

furthe_r_argue that _thg physical content .Of the quantum in¢ ensity overcomes any falloff of the chosen sampling func-
equalities as restrictions on the magnitude and extent on. However, the original choice of the Lorentzian sam-

negative energy is essentially the same as found in previOLE“ng function, Eq.(1), was made simply for mathematical

work. convenience. In this paper we will argue that the problem
posed above can be remedied by using compactly supported
sampling functions, that is, functions which are identically
1. SAMPLING FUNCTIONS AND DIVERGENT ENERGY zero outside of a finite interval.
DENSITIES First, it is of interest to note that in some cases an alter-
A. Representative example: The flat plate native solution is available. Although the integral in K@)
is apparently divergent, it can in fact be defined as a “gen-
eralized principal value” integrdl31]. The basic idea is to

dimensional Minkowski spacetime with a single planepertorm successive integrations by parts. Consider the inte-
boundary, which is located at=0. We assume that the field o,

is in the vacuum state, and that an observer approaches the
boundary at constant velocity along theaxis. We take the - f(r)
observer's equation of motion to be | :f T ®)

—o (T— Tc)4dT’
Z(r)=vy(1— 1), )

Consider a minimally coupled scalar field in four-

where f(7) and its first three derivatives are finite every-
where, including asr|—o. If we perform three successive
integrations by parts, the boundary terms all vanish and the
result is

whereris the observer’s proper time, is the proper time at
which the observer collides with the plate, ang
=1/J/1-v2% The corresponding four-velocity isu*
=%(1,0,0p). The renormalized expectation values of the 1

oo "
stress-tensor components for the quantum field are given by |== f F"(7)
—o T T¢

2] 3 dr, 9)
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where the remaining integral may be defined as a conven- f (1)

tional principal value. For the integral in E(7), f(7)= (72

+ ré)‘l, and we find(with the aid of the symbolic algebra
routine MACSYMA)

2 2\ 2 2
(7c 2797 70)(7c 2797¢ 70)

(10 T

- 7o( Tg+ 7'3)4 ' -T/2 To/2 e
Equation(7) now becomes
p
R (b?2—2b—1)(b%+2b—1)
p=- (11

16772v4y273( b2+1)*

_ . . FIG. 1. The compactly supported sampling functigr), and
whereb=7./7,. We want to choose the sampling time to bethe energy densityy, seen by an ingoing geodesic observer, plotted

small compared to the proper spatial distance to the platey 5 function of the proper time. The width of the sampling
To<vTc<7¢. In this limit, function, i.e., the sampling time, ig,. The energy density seen by
the observer diverges negatively as 7 .

A 1
P~ T A 24> A 2d (12 lll. APPLICATIONS OF QIs WITH COMPACTLY
16m vy e 16770 SUPPORTED SAMPLING FUNCTIONS
Thus a quantum inequality of the form of E@) is in fact A. Flat spacetime with boundaries

satisfied. This method can be used whenever the observer
passes through an energy density which diverges symmetri-
Ca||y as an inverse integra| power of proper time on either Ina two-dimensional flat spacetime, unlike in the case of
side of a boundary. It would not work, for example, if the four dimensions, the energy density for a minimally coupled
observer were to stop abruptly ¢ 0. scalar field does not diverge at a boundary, under the impo-
sition of Dirichlet boundary conditions. However, a non-
minimally coupled field does have such a divergence. The
stress tensor is given by

1. Two-dimensional plate

B. Two-dimensional QI with a compactly supported sampling

function
Flanagan has show@2] that for a massless scalar field in A
two-dimensional Minkowski spacetime Tu=— 72’ (16)
. ’ 2
p=—(1/24m) f dr [gg%;], (13 T.7=0, 17

where A= —¢&/27, and ¢ is the conformal coupling param-
whereg(7) is an arbitrary sampling function. As a specific eter. Here we assume that-0 (£<0) and of order 1. Con-

example, consider the sampling function given by sider a geodesic observer whose equation of motion is given
by Eq. (3). The energy density in this observer's frame is
0, T<—17o/2 given by
f(r)=4 (Urg)[1+cog277/7y)], — Tol2sT=T7(/2, A
0, 7> 10/2 PD=T U= =Tz (18)

(14
If we fold this into the compactly supported sampling func-
If we substitute this sampling function into E¢L3), we tion given by Eq.(14), we obtain
obtain the following QI:

h= AF’IZ T i+ cog2m 19
X - P= ﬂolzm[ cog2w/7g)]. (19

p?- 67'02. (15)

However, since the energy density is decreasing monotoni-

Although a similar inequality using a compactly supportedcally, as shown in Fig. 1, thep must be greater than the
sampling function in four-dimensional Minkowski spacetime €nergy density at the end of the sampling interval, i.e.,

is not yet in hand, it is quite plausible to conjecture that such R

a QI exists. We now turn to showing that compactly sup- p>p(7/2). (20
ported sampling functions may be used to resolve the appar-

ent difficulties posed by divergent energy densities. We can now ask under what circumstances will it be true that
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T where/ is again the proper distance to the platénlike in
p(1/2)=— . (21)  the two-dimensional case, the factorsyaflo not cancel ouy.
0 Whenv—0, y—1, and therefore the QI is satisfied when

Using the fact that the proper distancezte 0, as measured 70</- AS v gets larger, the condition, E§28), becomes

from the end of the sampling interval, is given by easier to satisfy. - . _
Note that in this and the previous subsection, we have

defined the proper distance to the plate to be measured from
the end of the sampling interval. However,f</, this is
approximately the distance from the middle of the sampling
interval. In subsequent subsections, we shall use the latter
definition.

/' =v[ 7.~ 1/2], (22

and that in the present case

(23

p(7o/2)=— v2 2[ To— 7.0/2]2 = yZzA B. Boulware vacuum atr=2M

we see that Eq21) will be satisfied when 1. Two dimensions
The two-velocity of an ingoing geodesic observer in two-

6A)1’2 dimensional Schwarzschild spacetime is given by
7o

/2(_ 24 dt dr\ [k
= 6,—\/k2—c , (29
Hence we see that our two-dimensional flat spacetime QI,

a
dr’dr
Eq. (15), will be satisfied when whereC=1—2M/r andk is the energy per unit rest mass of
the observer. From Eq33) of Ref.[15], we have that

u“:(u‘,ur)z(

’To</’/, (25) CM2
_4]- (30

r

6M2  4M

r4 r3

1
My ¥ — -2 2
T,u”u 24WC [k

that is, when the observer’'s sampling time is much smaller
than the proper distance to the boundary. Although we have ) o )
used the particular form given in EGl4), this conclusion Note that this quantity is negative everywhere fer2M
should not depend upon the specific choice of sampling fund-32, and diverges at=2M.

ultrarelativistic limit, k>1, corresponding to an observer
2. Four-dimensional plate shot inward at high velocity. Then from E®9), we have, to

; i~ 1
Although a QI which uses a compactly supported samflrSt order ink~~,

pling function has not been derived in four-dimensional flat rC

spacetime as yet, it is reasonable to assume that an analogue T T
of Eq. (15) exists. On dimensional grounds, a QI for a mass-
less scalar field in four dimensions should have the form

(31)

where 7. is the proper time at which the observer reaches
=2M. As the observer approaches the horizon, the local

- @ energy density varies as
p=——7, (26)
) 1
. y T AU~ — (32)
where « is a positive constant. For the purposes of the fol- 48w (1.~ 7)

lowing argument we shall assume the existence of such a Ql, ) _ )
valid for all quantum states, witlx of the order of or less We can think of the horizon in the Boulware vacuum as a

than unity. singular boundary analogous to the flat space examples dis-

Let us return to the case of the observer approaching a flussed in Sect. Il A. Note that in the infalling observer’s rest
plate in four-dimensional flat spacetime, discussed in Sedrame near the horizon, thre=2M boundary is approaching
Il A, and fold Eq.(6) into the compactly supported sampling at nearly the speed of light. As the horizon is approached, the
function given by Eq(14). The energy density in the observ- proper.dlstance in 'th|s.observer’s framg to the boundary from
er's frame now decreases asl/(7— r,)*. Repeating the ar- the point7=0 (which is always the midpoint of our sam-
gument for the two-dimensional case, we find that our conPling interva) is approximately” = 7. If we select a sam-
jectured QI will hold if pling time 7y</, the sampling function is zero at the hori-
zon and the flat space form of the quantum inequality, Eq.
(15), is satisfied, just as in the example in Sec. Il A 1.
-~ o
p=p(10/2)= o @7) 2. Four dimensions
Visser has recently given an approximate analytic expres-
sion for the renormalized stress-tensor components of a con-
formally coupled scalar field in the Boulware vacuum state
ro=<(16m?ay?) Y4/, (28)  in four-dimensional Schwarzschild spacetini@3]. Our

From Eq.(6), we find that this will be true if



57 QUANTUM INEQUALITIES AND SINGULAR NEGATIVE ... 4843

original QI was proved for the minimally coupled, rather [8 24x+ 15x%]
than the conformally coupled scalar field. In light of the re- =p..x° T a-x3 (34)

cent proofs of similar Qls for the massive scalar field and the

electromagnetic fieli18,19, it seems highly likely that such

a bound should also hold for the conformally coupled scalagyherex=2M/r, and
field as well. For the sake of the following argument, we will

assume this to be true.

If Visser’'s equationg8) and(9) are transformed from the _ 1
static orthonormal frame back into the usual Schwarzschild pm_go( 16m)2(2M)* (39
t,r coordinates, one obtains
T _3p 46 [40—72x+33%%] 33 For an infalling geodesic observer with*=(k/(1—Xx),
t P=: (1—x) ’ —Jk?=(1—-x),0,0), we have that

oy PoX8(15x3— 84k?x?— 3%+ 19K°x + 32x— 11K*—8)
T, ufu"= 1) . (36)

213
: (40)

If take k>1, and use Eq(31), we can express the energy
density near the horizon as r(r)~

(1e—17)

3V2M
2

3
32M°p., (37)  wherer. is again the proper time at which the singularity is

k(re— )% reached. The energy density can be expressed in terms of the
rProper time as

T 0 U~ —

As discussed in the previous subsection, near the horizon, t

observer’s proper distance to=2M is /~r7.. If 79</, 1
i i i isfied i MY~ — —
then the quantum inequali26) will be satisfied if T,,u"u P16m(ro— 1) (47
To<[45(167)°kaM 7/ 3]¥4, (39

Note that this result has the same form as Ef8) and(32).
However, this will in fact be the case becausel andr, * tWwo-dimensional spacetime is characterized by a single
</ <M. component of the Riemann tensor, which we may take to be
the scalar curvature. In the case of 2D Schwarzschild space-
ime, this i
C. Singularity at r=0 in black hole spacetimes tme, this Is

Perhaps the most serious example of a singular energy _4M
density arises at=0, the curvature singularity of a black R= FE (42)
hole. Unlike the other examples discussed in this paper, this
singular energy density cannot be explained away as beingefine the proper local radius of curvature by
due to an unphysical choice of quantum state, as is the case
of the Boulware vacuum at the horizon, or an unphysical 1 32

boundary condition, as in the case of the perfectly reflecting re= JR T(Tc_ 7) as T—7c. (43)
plate in Sect. Ill A 2. This singular energy density is essen-

tially independent of the quantum state. In this case, the gefye see that near=0, this local radius of curvature and the
eralized principal value method discussed in Sect. Il A can; proper time for an observer to reach the singulariy- ,

not be utilized, as the observer cannot pass beyon0. 516 proportional to one another. Thus if we require that the
However, the use of compactly supported s_amplmg functlon§amp"ng time satisfyr,<r., we again find that the flat
is still successful. We will restrict our attention to the case ofg 'pace form of the quantum inequalitys) is satisfied.

a two-dimensional black hole, as the form of the stress tenso
nearr =0 is not known in the four-dimensional case. From
Eq. (30), or from the corresponding expression for the Unruh
vacuum state, one finds that, near the origin of a two- A further example of a singular energy density arises in

D. Misner space

dimensional black hole, Misner space. The two-dimensional version of this example
was cited by Krasnikov as the possible counterexample to

T UtuP~— M (39) quantum ineql_JaIities based upon nqnco_mpactly_ supp_orted

wy 4873 sampling functions. The stress tensor in this two-dimensional

version has recently been discussed in detail by Cramer and
The geodesic equatiaf29) implies that for smalr Kay [34]. Hiscock and Konkowskji35] have calculated the
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guantum stress tensor for a massless conformally coupled Yo
scalar field in the four-dimensional version of Misner space:

so we may use their results to demonstrate that quantum
inequalities using compactly supported sampling functions
are meaningful in this space. Misner space is a locally flat
spacetime with periodic identifications. It may be repre-

sented by the metric

ds?= —dt?+t2dx?+dy?+d 7, (44)

Y4

with the points {,x,y,z) and ¢,x+na,y,z) identified with
one another, where is any integer ana is a positive con-
stant. Misner space is a portion of Minkowski space, and the
metric may be transformed to the Minkowski form

ds’=—dyZ+dy>+dy3+dy3 (45) FIG. 2. A two-dimensional section ¢four-dimensionalMisner

spacetime, shown as the upper quadrant of Minkowski spacetime.

by means of the transformation The coordinatesy(,,y;) are Minkowski coordinates, whereasx)

are Misner space coordinates. The straight lines with slope less than
yo=t coshx, y;=t sinhx, y,=y, yz3=z. (46) 45 are lines of constant. The linesx=0 andx=a are identified
with one another. The line labeledis the worldline of a geodesic
The quantum stress tensor is divergent everywhere on thébserver who passes through the quasi-regular singul@ityi;he

Cauchy horizon at=0 (see Fig. 2, including the “quasi- Cauchy horizon is represented by the0 lines.(Note that in this
regular singularity” atyy,=y,;. Hiscock and Konkowski representation the singularity is in the pasthe curve labeled
show that the expectation value of the stress tensor in the=t;>0 is an arbitraryt= const curve.
conformal vacuum state is given in the coordinates of Eg.

(44) by - K ot
pP= ,uVu u= 1277274(1_0)2()27_4' ( )
T,,=—=—>7 diag —1,—-3t%,1,1), (47
#r o 12mt Note that
where
1 1—v)2(—v32,—v§ 2 1 5o
= <
2+cosh(na) Y (1-v2)2 1-vs ’ %2

K:n; [cosina)— 1] “9

so that unles&>1, the quantum inequalit{26) is satisfied
They further show that in the frame of a geodesic observenvhenever the sampling time is chosen so thak 7.
the energy density diverges on the Cauchy horizona$ The latter condition is certainly necessary in order that the
wherer is proper time measured from the horizon. Note thatspacetime be Minkowskian over the time of the sampling,
here we are discussing a situation where the divergent enerdut it is by no means sufficient. Space is compact in the
density is in the observer’s past, as illustrated in Fig. 2. Howx-direction, with a proper periodicity length which goes to
ever, one could equally well discuss the time-reversed situazero neart=0. We see this from the following consider-
tion where the singular energy is encountered in the futureations. The element of proper length in thedirection is
In the special case in which a geodesic observer meets thte”’'=tdx, and from the first relation in E¢50), we have that
quasiregular singularity, the energy density diverges @  t=7y/coshx. Thus, the proper periodicity length is
As this case seems to pose the strongest challenge for quan-

tum inequalities, we will focus our attention here. x+a N 1
/=yT =2y tan 1(e*"?) —tan (e")].

The observer in question moves along the path . coshx
53
Y1=0xYo, Y2=0yYo. Y3=VzYo. (49) ®3
In the coordinates of Eqi4), v,=tanhx, and hence the N the limit of smalla, this may be expressed as
observer’'s path is a line of constaxt The components of
the observer’s four-velocity in these coordinates are /e a
~yT . (54
coshx
Y
t— X— y— Z—
U= coshx 1 0, W=yoy, U=y, (50 Spacetime is Minkowskian only on scales small compared to

this length; so we must also require that</. The argu-
where, as usualy= 1/\/1—(UX2+ vy2+vzz). (Note that His- ment in the previous paragraph works except when1.
cock and Konkowski use an unconventional definitionygof ~ However, a largeK arises only whera is small, which is
The local energy density in this observer's frame near therecisely when/<r. From Eq.(48) we see that, whea
singularity is <1,
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1 12£(4) pected to smear out the divergences in physically realizable
—- (55 cases. For example, in the flat plate case, one expects the
perfectly reflecting boundary condition imposed on the quan-
tized electromagnetic field to break down for wavelengths
smaller than abouk,=1/f,, wheref is the plasma fre-

The local energy density in the observer's frame, &i),

can be expressed as quency. Similarly, gne vsould not expect the Boulware
K cosH x vacuum atr=2M to be physically realizable, since the di-

P= " Top2 A (56)  vergent stress-energy would produce a large backreaction

which would presumably drastically alter the spacetime. A

Thus the quantum inequality E(7) is satisfied if related argument could be made for the Misner and “almost-
time-machine” wormhole spacetimes. These cases are all
(1272 aK ~ )14 pathological in the sense that the quantum states do not have

oS coshx (57 the Hadamard form on the horiz¢86,37.

One can understand the origin of singular energy densi-
Equations(55) and (54), and the relatiort(4)=7*/90, im-  ties, such as Eq(4), on a surface on which the quantum

ply that fora<1, Eq.(57) becomes scalar field,g, satisfies vanishing boundary conditions as fol-
900 | L4 lows: ¢ and its time derivativep, are conjugate variables.
To<( ;“) / (58) Hence they satisfy an uncertainty relation such thap is
m precisely determined, thep must be completely uncertain.
which is indeed satisfied if;</. This confirms that the This means thate?) and hencel, must diverge. This situ-
quantum inequality holds in Misner space. ation is analogous to that of a position eigenstate in single
particle quantum mechanics; such a state would have to have
IV. DISCUSSION a completely uncertain momentum, and hence an infinite

mean energy. This suggests that the singular energy density

In the preceding sections, we have seen that various exnay disappear if the boundary’s position is uncertain. This
amples of singular energy densities obey quantum inequalias recently been proved to be the case for the flat plate
ties, provided that these inequalities are formulated usingxample of Sec. Il A. In Ref.38] it is shown that if the plate
sampling functions with compact support. In order to samplés in a quantum state where the position has a Gaussian prob-
the region around a singular energy density, it is desirablability distribution of finite width, then the mean energy den-
that the sampling function be identically zero at the singularsity is finite everywhere and approaches E4).in the limit
ity. Sampling functions with infinite tails, such as the Lorent-that this width vanishes.
zian function, Eq(1), lead to divergent integrals because the As long as the energy density is bounded below, one ex-
tail encounters the singularity. Clearly, this behavior is notpects that even quantum inequalities based upon noncompact
realistic. In the case of a particle falling into a black hole, forsampling functions, such as E@), to hold provided that the
example, one will get a divergent integral regardless ofsampling time is sufficiently short. Here sufficiently short
where on the worldline one samples. A more reasonable oupresumably meansy,</, where/ ~ (pma) >4 and pay i
come would be that the result of sampling while the particlethe maximum magnitude of the negative energy density.
is still very far away from the black hole is independent of
the future fate of the particle. Quantum inequalities based
upon compactly supported sampling functions achieve this
outcome. The generalized principal value method discussed The authors would like to thank Adam Helfer and Matt
in Sec. Il A is capable of rendering the integrals associate&isser for stimulating comments. T.A.R. would like to thank
with noncompactly supported sampling functions finite inthe members of the Tufts Institute of Cosmology for their
some cases, but not in the case of the singularity=ed ina  continuing hospitality while this work was being done. This
black hole. research was supported by NSF Grant No. Phy-9507351, the

In any case, one does not expect truly divergent stresslohn F. Burlingame Physics Fund, and a CCSU/AAUP fac-
energies to occur in reality. Various effects would be ex-ulty research grant.
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