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Schwinger terms in Weyl-invariant and diffeomorphism-invariant 2D scalar field theory
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We compute the Schwinger terms in the energy-momentum tensor commutator algebra from the anomalies
present in Weyl-invariant and diffeomorphism-invariant effective actions for two dimensional massless scalar
fields in a gravitational background. We find that the Schwinger terms are not sensitive to the regularization
procedure and that they are independent of the background metric.@S0556-2821~98!02308-X#
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I. INTRODUCTION

The theory of a~quantized! scalar field coupled to gravity
has to follow anad hocprescription: the functional integra
tion over the scalar fieldf involves the evaluation of a de
terminant of the Laplace operator, which is ambiguous.
massless scalar fields in two-dimensional space-time
standard prescription implements a diffeomorphism invari
regularization that leads to the well known Polyakov act
@1# GP@gmn#, a functional of the background metricgmn that
is indeed diffeomorphism invariant but has an~equally well
known! anomaly with respect to Weyl transformations.

Recently an alternative evaluation of the theory has b
given, where a Weyl invariant regularization has been imp

mented@2–5#. The resulting effective actionĜ@gmn#, while
being Weyl invariant, does not remain invariant under g
eral coordinate transformations, but only under those w
unit Jacobian.

Gravitational and Weyl anomalies lead to anomalous c
tributions to the equal-time commutators of the ener
momentum tensor@6,7# ~see also@8# for the analogous fact in
current algebra!. So the question arises whether these t
versions of the theory lead to the same anomalous com
tators. In this paper we investigate this question and find t
indeed, the anomalous commutators coincide in both v
sions of the theory and lead to the well known result fro
conformal field theory@9#. We do this calculation both fo
flat and curved space-time. In the latter case of general m
ric the computation is done without any gauge fixing; this
the proper procedure because gauge fixing would be in c
flict with the Weyl-invariant regularization, that breaks d
feomorphism invariance. The results, when properly int
preted, lead to the same Schwinger terms as in the flat sp
time and, therefore, show that the Schwinger terms do
depend on the curvature.

II. DIFFEOMORPHISM-INVARIANT AND
WEYL-INVARIANT REGULARIZATIONS

First we have to fix our conventions. We use the fl
Minkowskian metrichab with signature~1,2!. The metric
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gmn(x) is related to the zweibein via

gmn~x!5habem
a ~x!en

b~x!; ~1!

we also need the zweibein determinant

e~x! ªdet em
a ~x!5Audet gmn~x!u ~2!

and the inverse zweibeinEa
m(x),

Ea
m~x! ªhabg

mn~x!en
b~x!. ~3!

For the curvature we use the sign conventionRmn5
2]aGmn

a 1¯ , whereRmn is the Ricci tensor andGmn
a is the

Christoffel connection.
Weyl transformations act like

gmn~x!→exp„2s~x!…gmn~x!, em
a ~x!→exp„s~x!…em

a ~x!.
~4!

When the effective actionG is not invariant under Weyl
transformations, an infinitesimal changeds

Wgmn(x)
52s(x)gmn(x) induces a Weyl anomalyGW(x):

ds
WGªE d2xs~x!GW~x!, ~5!

GW~x!522gmn~x!
dG

dgmn~x!
52e~x!gmn~x!Tmn~x!,

~6!

where Tmn is the vacuum expectation value~VEV! of the
energy momentum tensorQmn ,

Tmn~x!5^Qmn~x!&5
2

e~x!

dG

dgmn~x!
. ~7!

Under an infinitesimal coordinate transformation~diffeo-
morphism! dj

Dxm52jm(x) the metric and zweibein trans
form like
4833 © 1998 The American Physical Society
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dj
Dgmn~x!52Dmjn~x!2Dnjm~x!,

dj
Dem

a ~x!5jl]lem
a ~x!1el

a~x!]mjl ~8!

and a diffeomorphism anomaly is given as

dj
DG ªE d2xjn~x!Gn

D~x!, ~9!

Gn
D~x!52e~x!DmS 1

e~x!

dG

dgmn~x! D5e~x!DmTmn~x!.

~10!

It will be convenient later on to use covariant derivativ
acting on the combinationeTmn , using the ruleeDa5(Da

2Gal
l )e. Thus we rewriteGn

D as

Gn
D~x!5~Dm2gmrGrl

l !„e~x!Tmn~x!…. ~11!

Further we will frequently use the following variationa
formulas:

dgmn~x!

dea
a~y!

52hacel
c~x!„gma~x!gnl~x!1gna~x!gml~x!…d~2!

3~x2y!, ~12!

de~x!

dgmn~y!
52

1

2
e~x!gmn~x!d~2!~x2y!, ~13!

dR~x!

dgmn~y!
5@Rmn~x!1~DmDn2gmnh !~x!#d

~2!~x2y!,

~14!

whereR is the curvature scalar andRmn is the Ricci tensor.
The classical action of the theory reads

S5E d2x
e~x!

2
gmn~x!]mf~x!]nf~x!. ~15!

When a diffeomorphism invariant path integration with r
spect tof is chosen, one obtains the Polyakov effective
tion @1#

GP@gmn#52
1

96p E d2xd2ye~x!R~x!h21~x,y!e~y!R~y!,

~16!

whereh21(x,y) is the scalar symmetric Green function
the covariant Laplacian @satisfying h (x)h

21(x,y)
5e21(x)d (2)(x2y)#. GP is diffeomorphism invariant,

Gn
D~x!50, ~17!

and posseses the well known Weyl anomaly~for a compre-
hensive review, see for instance@10# and references therein!,

GW~x!52
1

24p
e~x!R~x!. ~18!
-

The alternative, Weyl invariant evaluation that was d
cussed in@2–5# relies on the observation that the classic
action~15! depends only on the Weyl invariant quantitygmn,
where

gmn~x!5e~x!gmn~x!, gmn~x!5
1

e~x!
gmn~x!. ~19!

As the breaking of the classical Weyl invariance in Poly
kov’s path integration may be traced back to
diffeomorphism-invariant and Weyl non-invariant norma
ization for the path integral measure,

E Df expS i E d2xe~x!f2~x! D51, ~20!

the Weyl invariant evaluation can be achieved by choos
instead

E Df expS i E d2xf2~x! D51. ~21!

This leads to a Weyl-invariant effective actionĜ@gmn# which
depends ongmn(x) only through the combinationgmn. By

construction the two effective actionsGP andĜ coincide for
metrics with unit determinant; therefore

Ĝ@gmn#[GP@gmn#52
1

96p E d2xd2yR̂~x!h21~x,y!R̂~y!,

~22!

whereR̂(x) is the curvature scalar evaluated fromgmn @no-
tice thatR̂(x) is not a true scalar#.

Ĝ is Weyl-invariant, but it acquires an anomaly und
coordinate transformations with Jacobian not equal to un
This anomaly may actually be easily computed from t
Weyl anomaly of the Polyakov action. The VEV of th

energy-momentum tensor computed fromĜ is

T̂mn~x!5
2

e~x!

dĜ

dgmn~x!
52

dĜ

dgmn~x!
2gmngab

dĜ

dgab~x!

5Tmn
P ~g!2

1

2
gmngabTab

P ~g!. ~23!

HereTmn
P (g) is the energy-momentum tensorTmn

P , as com-
puted from the Polyakov action, evaluated atgmn5gmn. Ob-
viously, there is no Weyl anomaly,gmnT̂mn50.

In order to evaluate the diffeomorphism anomaly we ne
the identityDm(gmnT̂na)5(1/e)D̂m(gmnT̂na), which may be
easily proven by using the tracelessness and symmetr
T̂mn ~hereD̂m is the covariant derivative for the metricgmn!.
We then find, for the diffeomorphism anomaly,
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Ĝa
D5eDm~gmnT̂na!

5D̂mS gmnTna
P ~g!2

1

2
gmngnagbdTbd

P ~g! D
52

1

2
D̂a„gbdTbd

P ~g!…52
1

48p
]aR̂. ~24!

Here we have used the vanishing of the diffeomorphi

anomaly forGP and the fact thatD̂a reduces to the ordinary
derivative on scalars. The anomaly is a pure divergence
cause only the symmetry with respect to transformati
with non-unit Jacobian is broken~see@3#!.

III. SCHWINGER TERMS

In this section we want to relate the anomalies of
previous section to the equal-time commutators~ETCs! of
the energy-momentum tensor, both in flat and curved sp
time. Here we will follow a method that was developed
@11# and used there for the calculation of ETCs in the fl
space-time limit. We want to find the Schwinger terms in t
general case of a nonflat space-time, too, which makes th
slightly more complicated. We choose the hypersurfacex0

50 as a quantization surface. For ETCs we write

d~x02y0!@e~x!Qa
m~x!,e~y!Qb

n~y!#5Qab
mn~x,y!1Sab

mn~x,y!,

~25!

where we have used the zweibein formalism in order to c
form with @11# ~i.e. m, n are space-time indices whereasa,b
are Lorentz indices!. In Eq. ~25! Qab

mn is the canonical part
depending again on the regularized energy-momentum
eratorsQa

m(x), whereasSab
mn are c numbers~the Schwinger

terms!. In the flat case regularization means just normal
dering, and therefore the VEV of Eq.~25! arises only from
Sab

mn in the right-hand side~RHS!. In the general case this i
no longer true@12# but our knowledge of the flat case wi
still enable us to identify the individual pieces.

In the flat case it is well known that the canonical part
proportional to the first spatial derivative of the delta fun
tion, e.g. Q01

00(x,y); i „Q0
0(x)1Q0

0(y)…d(x02y0)d8(x1

2y1), whereas the Schwinger term is proportional to a tri
spatial derivative,S01

00(x,y);cd(x02y0)d-(x12y1) ~c is a
constant!.

In the general case both the expression for the class
energy-momentum tensor@see ~15!# and the regularization
will introduce a dependence on the metric and its derivati
in Eq. ~25!. However, we will assume that the number
derivatives on the delta function remains unchanged, i.e.
will continue to identify thed- piece of the VEV of Eq.~25!
with the Schwinger term. By treating the deviation from t
flat space-time action~15! as interaction, SI5S@gmn#
2S@hmn#, G52 i ln^0uT* exp iSIu0&52 i ln Z5
2 i ln^outuin& we find for the two point function
e-
s

e

e-

t
e
gs

-

p-

-

-

e

al

s

e

2 i
d2G

dem
a ~x!en

b~y!
5^outuT* „e~x!Qa

m~x!e~y!Qb
n~y!…u in&

2^outue~x!Qa
m~x!u in&

3^outue~y!Qb
n~y!u in&

1^outu
1

i

d„e~x!Qa
m~x!…

den
b~y!

u in&

ªTab
mn~x,y!1Vab

mn~x,y!, ~26!

where Tab
mn(x,y) is the connected, time-ordered two-poi

function

Tab
mn~x,y!5^outuT„e~x!Qa

m~x!e~y!Qb
n~y!…u in&

2^outue~x!Qa
m~x!u in&^outue~y!Qb

n~y!u in&

~27!

andVab
mn contains the remaining pieces and is local@i.e. pro-

portional tod(x2y) and derivatives thereof#.
Now we want to relate this two-point function to func

tional derivatives of the anomalies in Eqs.~6!, ~10!. Defining
these functional derivatives as

I ab
a ~x,y! ª2 iEa

m
dGm

D~x!

dea
b~y!

, ~28!

Pb
a~x,y! ª2 i

dGW~x!

dea
b~y!

, ~29!

we find the relations

2I ab
a ~x,y!1Aab

a ~x,y!5~Dr2Grl
l !~x!„Tab

ra~x,y!

1Vab
ra~x,y!…

5Sab
0a~x,y!1~Dr2Grl

l !~x!Vab
ra~x,y!

~30!

and

Pb
a~x,y!1Bb

a~x,y!5em
a ~x!Vab

ma~x,y!. ~31!

Here Aab
a (x,y) and Bb

a(x,y) stem from variations of the
anomalies ~6!, ~10! that do not vary the one-poin
function e(x)Tmn(x) @e.g. Bb

a(x)(x,y)52„dgmn(x)/
dea

b(y)…e(x)Tmn(x)#. They produced functions and first de-
rivatives thereof and vanish in the flat limit. They are unim
portant in the sequel. Further, we have assumed in Eqs.~30!,
~31! that the anomalies of the Heisenberg operatorsQm

a are
themselvesc numbers. Under this assumption the anomal
do not contribute to the connected two-point function, e
^T@„DmQmn(x)…Qab(y)#&c50. „Here we slightly differ in
the conventions from@11#. They treat the operatorQa

m(x) as
an interaction picture operator and, therefore, obtain ad
tional commutators@Qa

0(x),L I(x
0)# in their relations.…

As we use the zweibein formalism, we need the cor
sponding equation for the Lorentz anomaly, even though
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latter vanishes in both regularizations of our theory. Un
infinitesimal Lorentz transformations the zweibein chang
as

da
Lem

a 52ab
aem

b , ~32!

inducing a variation of the effective action

da
LG ªE d2xaabGab

L ~x! ~33!

where

Gab
L ~x!52

1

2 S hacem
c d

dem
b 2hbcem

c d

dem
a DG. ~34!

Then, defining

Lcab
a ~x,y! ª2 i

dGab
L ~x!

dea
c ~y!

~35!

we find a further set of equations

Lcab
a ~x,y!1Ccab

a ~x,y!5hcdem
d Vab

ma~x,y!2hadem
d Vcb

ma~x,y!

~36!

~whereCcab
a is irrelevant, analogous to the aboveA andB!.

Next we need the explicit expressions for the functio
derivatives of the anomalies~Lcab

a being zero in both cases o
interest!. For the Polyakov actionGP we haveGD50 and

dGW~x!

dea
b~y!

52
1

24p E d2z
d„e~x!R~x!…

dgmn~z!

dgmn~z!

dea
b~y!

5
1

24p
hbcel

c~y!~gmagnl1gmlgna!~y!

3~DmDn2gmnh !~x!d
~2!~x2y!, ~37!

whereas for the Weyl-invariantly regularized effective acti

Ĝ we find ĜW50 and

dĜl
D~x!

dea
b~y!

52
1

48p
]l

xE d2zd2z8
dR̂~x!

dgrs~z!

dgrs~z!

dgbd~z8!

dgbd~z8!

dea
b~y!

5
e~y!

48p S dm
r dn

s2
1

2
gmngrsD

~y!

hbcee
c~y!~gbagde

1gdagbe!~y!]l
x~D̂rD̂s2grsĥ !~x!d

~2!~x2y!.

~38!

Now the procedure of@11# for evaluating the Schwinge
terms Sab

0a consists in expanding all the local functions
Eqs.~30!, ~31!, ~36! into derivatives ofd functions, e.g.

I ab
a ~x,y!5(

n,k
I ab

a~k,n2k!~x!]0
k]1

n2kd~2!~x2y!. ~39!

The indexk50,...,n counts the number of time derivative
while n2k counts space derivatives. In particular,Sab

0a(x,y)
has only spatial derivatives ofd functions,
r
s

l

Sab
0a~x,y!5(

n
Sab

0a~n!]1
nd~2!~x2y!. ~40!

Thus, one obtains a system of linear equations for the
known coefficient functionsSab

0a(n) andVab
ma(k,n2k) .

First let us briefly review the flat space-time computati
that was done in@11# ~they used it for chiral fermions, too
where diffeomorphism and Weyl anomalies are present!. In
this case all derivatives only act on thed functions. There-
fore the explicit expression analogous to~38! for I ab

a contains
only terms with three derivatives, and the corresponding
pression~37! for Pa

a only terms with two derivatives. Fur
ther, the covariant derivative in Eq.~30! turns into an ordi-
nary derivative. As a consequence, the resulting system
equations may be solved separately for each fixed numbe
derivatives~n derivatives forI , S and n21 derivatives for
P, V!; for each fixedn the number of unknownsSab

0a(n) and
Vab

ma(k,n2k) equals the number of equations. As on
Pa

a(k,22k) and I ab
a(k,32k) are non-zero, one finds a non-ze

result only forSab
0a(3) , Vab

ma(k,22k) @even in the non-flat case
we will only consider the coefficient of the triple derivativ
of the Schwinger term, therefore we drop the supersc
~3!#. Eliminating theVs, one arrives at the flat space resu

S0b
0a52I 0b

a~0,3!2I 1b
a~1,2!2I 0b

a~2,1!2I 1b
a~3,0!2Pb

a~1,1! , ~41!

S1b
0a52I 1b

a~0,3!2I 0b
a~1,2!2I 1b

a~2,1!2I 0b
a~3,0!2Pb

a~0,2!2Pb
a~2,0! .

~42!

These equations we have to evaluate for the two versionsGP

andĜ of our theory in the flat limit. In the first case onlyPb
a

are non-zero, in the second case onlyÎ ab
a . Both versions lead

to the same Schwinger terms,

S00
005S11

0050, ~43!

S01
005S10

005
i

12p
. ~44!

For the Weyl anomaly this result was in fact already co
puted in@11# ~we differ in signs because of different metr
and curvature conventions!. For the diffeomorphism
anomaly we find the same result, showing that the Schwin
terms are not sensitive to the regularization prescription.

Next we want to discuss the case of general metric. In
case one has covariant derivatives in Eqs.~30!, ~37!, ~38!,
and therefore the system of equations~30!, ~31!, ~36! mixes
different numbers of derivatives. However,I ab

a andPb
a still

contain at most three and two derivatives, respectively,
ing ond functions. If one also assumes thatVab

am contains at
most two derivatives@which is a very reasonable assumptio
as all diagrams contributing tôT„e(x)Qm

a (x)e(y)Qn
b(y)…&

are at most quadratically divergent#, it still holds that the
subsystem of equations containing the maximal numbe
derivatives~three forI , S and two forP, V! may be solved
separately.

This system of equations is a little bit more complicat
and leads again to the same solution for both the W
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anomaly ofGP or the diffeomorphism anomaly ofĜ. The
coefficients of]1

3d (2)(x2y) in the Schwinger terms read

S00
005S11

0052
i

6p

e1
0e1

1

~g11!
2 ,

S10
005S01

005
i

12p

~e1
0!21~e1

1!2

~g11!
2 , ~45!

and„definingk5 i /12pe(g11)
3
…

S00
015k@2e0

0e1
0g01g112e0

0e1
1eg111~e1

0!2
„~g01!

21e2
…

12e1
0e1

1eg01#,

S01
015k@e1

0e0
1g01g111e0

1e1
1eg112e1

0e1
1
„~g01!

21e2
…

22~e1
1!2eg01#,

S10
015k@e0

0e1
1g01g111e0

0e1
0eg112e1

0e1
1
„~g01!

21e2
…

22~e1
0!2eg01#,

S11
015k@2e0

1e1
1g01g112e1

0e0
1eg111~e1

1!2
„~g01!

21e2
…

12e1
0e1

1eg01#. ~46!

Although some components look rather ugly, this resul
precisely what one expects, as we want to discuss now.

Let us transformSab
ma to pure space-time indices via

Sab
m8a85Ea

nEb
bgm8mga8aSmnab . ~47!

Notice that we cannot invert this relation because we do
know all the components ofSab

ma . However, due to the sym
metriesSmnab5Snmab5Sabmn , Smnab actually consists of
six independent components. The expressions~45!, ~40! for

Sab
m8a8 lead to five independent equations forSmnab . There-

fore we are able to express all components ofSmnab in terms
of one unknown functionL, where the form ofL is re-
stricted by the requirement that allSmnab tend to their well
known Minkowski space version in the flat limit. We obta

S00005
4ie3g00g01

12p~g11!
3 2

8ie3~g01!
3

12p~g11!
4 1

~g01!
5

~g11!
4 L,

S00015
ie3g00

12p~g11!
2 2

4ie3~g01!
2

12p~g11!
3 1

~g01!
4

~g11!
3 L,

S01015S001152
2ie3g01

12p~g11!
2 1

~g01!
3

~g11!
2 L,

S011152
ie3

12pg11
1

~g01!
2

g11
L,

S11115g01L, ~48!

whereL may be non-zero~but finite! in the flat limit.
s

ot

For a proper interpretation of this result we need so
basic facts about canonical quantization in curved spa
time. We chose the hypersurfacex05const as a quantization
surface. The direction of the~arbitrarily chosen! time coor-
dinate is not an intrinsic property of this surface, and, the
fore, time components of tensors are not invariant under
ordinate transformations that do not change the coordin
on the hypersurface. Instead one has to choose the proje
of the time components onto the timelike vectorl m orthogo-
nal to the surface, e.g.~Tmn is a general tensor,i is the space
index!

Tmn→Ti j , l mTm j , l nTin , l ml nTmn ~49!

~see e.g.@13#!. The vectorl m is given by

l m5eg0m. ~50!

Here we chose the normalizationl ml m52g11, which is the
proper normalization in order to obtain the correct comm
tator algebra on the quantization surface, see e.g.@6,14# @this
normalization corresponds to the requirement thatl m is a
vector, not a vector density: for a general tangent vectorb1

m

to the hypersurface, the orthogonal covectorl m is l m

5 ē mnb1
n , where ē mn5em

a en
beab5eemn is a tensor. For our

specific choiceb1
m5d1

m one finds precisely~50! for l m#. Fur-
ther we should remember thatSab

mn was defined as the com
mutator of @e(x)Qa

m(x),e(y)Qb
n(y)# @see Eq.~25!#, i.e. to

obtain the commutators of theQa
m themselves we still have

to divide by e2. Doing so, and performing the projection
we recover precisely the central extension of the Viras
algebra@15#

l ml nl al bSmnab5 l ml nSmn115 l ml aSm1a150 ~51!

e22~x!l ml nl aSmna15e22~x!l mSm1115
i

12p
~52!

and the arbitrary functionL cancels out in all expression
~51!, ~52!. The pure space componentS11115g01L, which is
not related to any symmetry generator, remains unde
mined by our procedure.

IV. CONCLUSIONS

We have analyzed the anomalous Schwinger terms in
equal-time energy-momentum tensor algebra in two differ
regularizations of 2D scalar field theory in a curved bac
ground.

The usual computations make use of the conformal gau
which is of course appropriate for the diffeomorphism
invariant regularization. Once the metric is set to its conf
mally flat form, all the machinery of conformal field theor
can be applied essentially as in flat space-time@16#. In con-
trast, the gauge fixing cannot be performed in the We
invariant version of the theory. In order to compare bo
regularizations one then needs a more general framewor
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which no gauge fixing is made at any step.
In this framework we have achieved a twofold result. O

the one hand, we have shown that the energy-momen
operators continue to obey the Virasoro algebra in the cas
a general metric,without using any gauge fixingfor the com-
putation. On the other hand, we have proven that both
sions of the theory, Eq.~16! and Eq.~22!, obey the same
commutation relations, regardless of the symmetries bro
by the regularization procedures.
n
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