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Schwinger terms in Weyl-invariant and diffeomorphism-invariant 2D scalar field theory
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We compute the Schwinger terms in the energy-momentum tensor commutator algebra from the anomalies
present in Weyl-invariant and diffeomorphism-invariant effective actions for two dimensional massless scalar
fields in a gravitational background. We find that the Schwinger terms are not sensitive to the regularization
procedure and that they are independent of the background nj&@i856-282198)02308-X

PACS numbsd(s): 04.62+v, 11.30—j

I. INTRODUCTION 9.,(X) is related to the zweibein via

The theory of aquantized scalar field coupled to gravity 9, = 7€ () €D(); (1)
has to follow anad hocprescription: the functional integra- o ]
tion over the scalar field involves the evaluation of a de- We also need the zweibein determinant
terminant of the Laplace operator, which is ambiguous. For a
massless scalar fields in two-dimensional space-time the e(x):=dete,(x) = [detg,,(x)| 2
standard prescription implements a diffeomorphism invariant ] o
regularization that leads to the well known Polyakov action@nd the inverse zweibeilZ(x),
[1] ' g#"], a functional of the background metig,, that b
is indeed diffeomorphism invariant but has @gually well EL(X)=1ap9""(X)€,(X). )
known) anomaly with respect to Weyl transformations. . )
Recently an alternative evaluation of the theory has beeffor the curvature we use the sign conventié,,=
given, where a Weyl invariant regularization has been imple—3d,I';,,+- -, whereR,,, is the Ricci tensor anfl’y, is the

mented[2—5]. The resulting effective actioh[g~*], while ~ Christoffel connection. _
being Weyl invariant, does not remain invariant under gen- Wey! transformations act like
eral coordinate transformations, but only under those with
onit Jacobian. g 0,00(X) — €XP20(X))G,0(X),  €L(X)—eXpar(X))El(X).
Gravitational and Weyl anomalies lead to anomalous con- (4)
tributions to the equal-time commutators of the energy- . . . . .
momentum tensd6,7] (see alsg8] for the analogous fact in When the gffectlve actlgrf IS npt Invariant “”@'er wey|
current algebra So the question arises whether these twdransformations, an infinitesimal cOvange(SU 9u0(X)
versions of the theory lead to the same anomalous commu= 20(X)d,.,(X) induces a Weyl anomal™(x):
tators. In this paper we investigate this question and find that,
indeed, the anomalous commutators coincide in both ver- Wi | 42 w
sions of the theory and lead to the well known result from e f X (x)GT(X). ©
conformal field theonf9]. We do this calculation both for
flat and curved space-time. In the latter case of general met- |, , ol ,
ric the computation is done without any gauge fixing; thisis G (X)=—28* (X)W: —e()g*" ()T ,u(X),
the proper procedure because gauge fixing would be in con- (6)
flict with the Weyl-invariant regularization, that breaks dif-
feomorphism invariance. The .results, when .properly interwhereTW is the vacuum expectation valU®¥EV) of the
preted, lead to the same Schwinger terms as in the flat spacgnergy momentum tens® ,,,
time and, therefore, show that the Schwinger terms do not
depend on the curvature. T,,(X)=(0 (X)) 2o 7
14 X = 14 X =N —I/
1. DIFFEOMORPHISM-INVARIANT AND g g &(x) 89""(x)

WEYL-INVARIANT REGULARIZATIONS Under an infinitesimal coordinate transformatigffeo-

First we have to fix our conventions. We use the flatmorphism 5?x”=—§“(x) the metric and zweibein trans-
Minkowskian metric,, with signature(+,—). The metric  form like
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529" (x)=—DH£"(x) ~D"EH(x),
52e8(x)= £ 0,e5(x) +ef(x)d, 8 ®)

and a diffeomorphism anomaly is given as

8el= J d2x£(x)G(x), (9)

G'B(x)=2e(x)D“( )=e(x)D“TW(x).

(10

e(x) 6g*"(x)

It will be convenient later on to use covariant derivatives

acting on the combinatioeT,,,

—T'},)e. Thus we rewriteG® as

using the ruleeD,=(D,

GR(x)=(D*~g""I'})(e(X)T,,(X)). (1)

Further we will frequently use the following variational

formulas:
89M7(x)
o == @00 (0)+ G0 (1) 5
X(x=y), (12
oe(x) 1
Sy = 3608L(00%x-y), (13

SR(X)

W = [R,u,V(X) + (D,uDV_ g,uVD)(X)] 5(2)(X_y)!

14

whereR is the curvature scalar arfdl,, is the Ricci tensor.
The classical action of the theory reads

s= [ ax * 900,000,600 (9
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The alternative, Weyl invariant evaluation that was dis-
cussed in2-5] relies on the observation that the classical
action(15) depends only on the Weyl invariant quanti”,
where

1
YurlX) = 5250,,(%). (19

Y (X)=e(X)g""(x), e(x)

As the breaking of the classical Weyl invariance in Polya-
kov's path integration may be traced back to a
diffeomorphism-invariant and Weyl non-invariant normal-
ization for the path integral measure,

f Do exp{if d?xe(x) p?(x) | =1, (20)

the Weyl invariant evaluation can be achieved by choosing

instead
f Do exp{if d?x¢?(X)

This leads to a Weyl-invariant effective actifinﬁg“”] which
depends org#”(x) only through the combination*”. By

construction the two effective actiod® andT” coincide for
metrics with unit determinant; therefore

=1. (21)

,\ 1 ~ A
Flor =TTy~ - 5o | dxeyROO0xy)R),

(22

whereR(x) is the curvature scalar evaluated frop” [no-
tice thatR(x) is not a true scaldr

I' is Weyl-invariant, but it acquires an anomaly under
coordinate transformations with Jacobian not equal to unity.
This anomaly may actually be easily computed from the

When a diffeomorphism invariant path integration with re- Weyl anomaly of the Polyakov action. The VEV of the
spect tog is chosen, one obtains the Polyakov effective ac-energy-momentum tensor computed fréhis

tion [1]

1
Fp[g’”]=—@ f d>xd?ye(x)R(x)O " 1(x,y)e(y)R(y),

(16)

whered~1(x,y) is the scalar symmetric Green function of

the covariant Laplacian [satisfying D(X)Dfl(x,y)
=e }(x) 6@ (x—y)]. I'"is diffeomorphism invariant,
Gy(x)=0, (17)
and posseses the well known Weyl anom@dtyr a compre-
hensive review, see for instangH)] and references thergin

Wi — - -
G"(x) 2471_e(x)R(x). (18

£ g 2 oT , oT s T
w7800 50 2oy Y 5y 0

1
=T ()= 577 P Tos(y). (23

Here T, () is the energy-momentum tens®f,,, as com-
puted from the Polyakov action, evaluatedyét' = y*”. Ob-
viously, there is no Weyl anomalg’”’l'wzo.

In order to evaluate the diffeomorphism anomaly we need
the identityD ,(g*"T,,,) = (1/€)D ,(y*"T,,), which may be
easily proven by using the tracelessness and symmetry of
T,, (hereD , is the covariant derivative for the metri¢*”).

We then find, for the diffeomorphism anomaly,
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GP=eD,(g*'T,,) o oT .
@ w ve =i =(oufT* (e(x)BL(x)e(y)®} in
. s (x0e’y) (oufT* (e(x) @4 (x)e(y) ®p(y))lin)
1. 1. X (oufe(y)®g(y)]in)
== 50,0 Th= g5 dR (@4 i
g 1 8(e(x)O45(x) .
+<OU I_ —5el3(y)— ||n)
Here we have used the vanishing of the diffeomorphism , )
=Tap(X,Y) + Qg (X.Y), (26)

anomaly forl'P and the fact thab , reduces to the ordinary
derivative on scalars. The anomaly is a pure divergence b
cause only the symmetry with respect to transformation
with non-unit Jacobian is broke(see[3]).

Svhere T45(x,y) is the connected, time-ordered two-point
function

TE(x,y) =(ouf T(e(x)@%(x)e(y) @ (y))|in)
Ill. SCHWINGER TERMS —(oufe(x)@4(x)|in)(oute(y)®p(y)|in)

In this section we want to relate the anomalies of the (27)

previous section to the equal-time commutat3Cs of v . - . . . i
the energy-momentum tensor, both in flat and curved spacéi-ndQab contains the remaining pieces and is lo¢éa. pro

time. Here we will follow a method that was developed in portional to&(x—y) and derivatives therepf

. ) Now we want to relate this two-point function to func-
[11] and used there for the calculation of ETCs in the flattional derivatives of the anomalies in Eq6), (10). Defining

space-time limit. We want to find the Schwinger terms in thethese functional derivatives as

general case of a nonflat space-time, too, which makes things

slightly more complicated. We choose the hypersurfae 5GP(x)
=0 as a quantization surface. For ETCs we write 18X, y)=—iE¥ 5_eéL(T’ (28)
W
S(x°=yO) () OL(x).,e(Y)B}(y)]= O (x.y) + Sk (X.Y), ey ym—i o 0 29
(25) oe,(Y)

we find the relations
where we have used the zweibein formalism in order to con-

form with [11] (i.e. u, v are space-time indices wherea® —15,06Y) + Agp(X,Y) = (D, = T3 0 (TER(X,Y)

are Lorentz indices In Eq. (25 O%, is the canonical part, +0P2(x,y))

depending again on the regularized energy-momentum op- apbi™

erators®@4(x), whereasS, arec numbers(the Schwinger = ag‘(x,y)+(Dp—l“zx)(x)ﬂgg(x,y)
terms. In the flat case regularization means just normal or- (30)

dering, and therefore the VEV of E5) arises only from
SEY in the right-hand sidéRHS). In the general case this is and
no longer trug{12] but our knowledge of the flat case will
still enable us to identify the individual pieces. Hg(x,y)+Bg(x,y)=eZ(X)Q§§(x,y). (32

In the flat case it is well known that the canonical part is
proportional to the first spatial derivative of the delta func-Here AZ,(x,y) and Bg(x,y) stem from variations of the
tion, e.g. O%9x,y)~i(@Yx)+0O(y)s(x°—y%) s (xt anomalies (6), (10) that do not vary the one-point
—y1), whereas the Schwinger term is proportional to a triplefunction  e(x)T,,(x) [e.g. B{(X)(x,y)=—(6g*"(x)/
spatial derivativeS2(x,y)~ca(x—y?) 8" (x!—yY) (cisa  Oex(¥)e(X)T,,(x)]. They produces functions and first de-
constank rivatives thereof and vanish in the flat limit. They are unim-

In the general case both the expression for the classiciortant in the sequel. Further, we have assumed in B@5.
energy-momentum tensdsee (15)] and the regularization (31) that the anomalies of the Heisenberg operatfsare
will introduce a dependence on the metric and its derivativeghemselves numbers. Under this assumption the anomalies
in Eq. (25). However, we will assume that the number of do not contribute to the connected two-point function, e.g.
derivatives on the delta function remains unchanged, i.e. wéT[(D#® ,,(x))0 ,45(y)1)c=0. (Here we slightly differ in
will continue to identify thes” piece of the VEV of Eq(25)  the conventions fromil1]. They treat the operat@®4(x) as
with the Schwinger term. By treating the deviation from thean interaction picture operator and, therefore, obtain addi-
flat space-time action(15 as interaction, S;=Sg*"] tional commutator$®g(x),L|(x°)] in their relations).
— g "], I'=—i In(O]T* expiS|0)=—i In Z= As we use the zweibein formalism, we need the corre-
—i In{outin) we find for the two point function sponding equation for the Lorentz anomaly, even though the
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latter vanishes in both regularizations of our theory. Under

infinitesimal Lorentz transformations the zweibein changes Sgg(X,Y)Zz Sap M1 P (x—y). (40)
as
s-e?=—aled (32  Thus, one obtains a system of linear equations for the un-
. known coefficient functionS2¢™ and Qxekn=k
inducing a variation of the effective action First let us briefly review the flat space-time computation
that was done inl11] (they used it for chiral fermions, too,
Lo | 420 abAL where diffeomorphism and Weyl anomalies are présént
Oq1'= f d"xa™Gap(x) (33 this case all derivatives only act on ti#éfunctions. There-

fore the explicit expression analogous88) for | 3}, contains
only terms with three derivatives, and the corresponding ex-
1 P s pression(37) fo_r 11 by on_Iy t_erm_s with two der_ivatives. qu—
G;b(x): -3 ( ﬂaceZ(S—b‘— ﬂbcez_a r. (34) ther, the_coyarlant derivative in EQ30) turns into an ordi-
€ o nary derivative. As a consequence, the resulting system of
equations may be solved separately for each fixed number of
derivatives(n derivatives forl, S andn—1 derivatives for
I1, Q); for each fixedn the number of unknownS&™ and
(35 Q4R equals the number of equations. As only
11ek2"K and 143K are non-zero, one finds a non-zero
result only forsoa®) | 2227k [eyen in the non-flat case,
we will only consider the coefficient of the triple derivative
LEu(X,Y) + Cep(X,y) = ﬂcdeiﬂéfff(x,Y)— ﬂadeiﬂéf(x,y) of the _S(_:hw@nger term, theref(_)re we drop the superscript
(36) (3)]. Eliminating theQ)s, one arrives at the flat space result

where

Then, defining

§Gab( X)

Leap(X,Y)= ﬁe—(y)

we find a further set of equations

(whereC¢,, is irrelevant, analogous to the abofkeandB). SPr= 1403 —g{12 2D | 230 e = (47)
Next we need the explicit expressions for the functional
derivatives of the anomaligk ¢, being zero in both cases of  ga_ _ |03 _ja(12_ |21 _ &30 _1a(02_ 120
interest. For the Polyakov actioff” we haveGP=0 and 1o 1o o o ; (42)
W mv
9G7(x) =_ i 2, 9E(R(X)) 59""(2) These equations we have to evaluate for the two verdiéns
SeP(y) 24w 59%(z)  Sel(y) 2 , - .
a @ andI" of our theory in the flat limit. In the first case only,
. A L kv are non-zero, in the second case difly. Both versions lead
= E”bcex(y)(g 9" +9"*9" )y to the same Schwinger terms,
X(D,D,=9,,0) 02 (x—y), (37) 00— 52—, (43)
whereas for the Weyl-invariantly regularized effective action
I' we findGW=0 and 0= gX0= o (44)
5GP(x 1 SR(X) 8y*9(z) 59P%(Z’
(%) =— — | d?zd?z’ () 6y*(2) 897(2') For the Weyl anomaly this result was in fact already com-
S5eP 487 6y (z) 69P%(z') o5e° . o) e _ _
€a(Y) & Y 9 €aly) puted in[11] (we differ in signs because of different metric

e(y) and curvature conventions For the diffeomorphism
= 28 ( o 57— zg/”gp") 7(y)(gPgoe anomaly we find the same result, showing that the Schwinger
i ) terms are not sensitive to the regularization prescription.

Satpu e NP ~ 2) Next we want to d?scuss the case qf general metric. In this
+9%95) (419X (DD s~ ¥,e0) (8P (X~ Y). case one has covariant derivatives in E@9), (37), (38),
(39) and therefore the system of equatid§), (31), (36) mixes
different numbers of derivatives. Howevéf, andIIy still
Now the procedure of11] for evaluating the Schwinger contain at most three and two derivatives, respectively, act-
terms So consists in expanding all the local functions of ing on & functions. If one also assumes tHaf contains at
Egs.(30), (31), (36) into derivatives ofs functions, e.g. most two derivativegwhich is a very reasonable as%umptlon,
o e at o quacratically vergént st hach thet e
a _ a(k,n—Kk) n— 2 _
Iab(x’y)_nE,k 2 (x)dpd 82 (x=y). (39 subsystem of equations containing the maximal number of
derivatives(three forl, S and two forll, ) may be solved
The indexk=0,... n counts the number of time derivatives, separately.
while n—k counts space derivatives. In particulsgg(x,y) This system of equations is a little bit more complicated
has only spatial derivatives @ functions, and leads again to the same solution for both the Weyl
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anomaly of P or the diffeomorphism anomaly d&. The F_or a proper interpret{:ltion of th_is rgsulft we need some

coefficients of&ia(z)(x—y) in the Schwinger terms read basic facts about canonical quantization in curved space-
time. We chose the hypersurfag®= const as a quantization

surface. The direction of th@rbitrarily chosejptime coor-

. 0,1 . i . .. .
00_c00_ _ ' €:€1 dinate is not an intrinsic property of this surface, and, there-
S0~ Sn= " g (911>’ fore, time components of tensors are not invariant under co-

ordinate transformations that do not change the coordinates

i (9(1))2+ (91)2 on the hypersurface. Instead one has to choose the projection

18: og:_ 4 (45) of the time components o_nto the timelike vgdbrorthogo—
1270 (911 nal to the surface, e.gT,,, is a general tensot,is the space
and (defining k=i/12me(g17)°%) inde)
Soo= <[ — €0e3001911— €getetua+ (e9)*((gon)* + €%) To—Ty, T, 1PT,, 14T, (49
+2ejeregy], (see e.g[13]). The vector is given by

01_ ra0ul 1.1 0.1 2., .2
So1= k[ 165901911+ €p€1€ G11— €1€1((go) “+ €°)

M= ©
—2(eh2egy], I=ed. (50)
o1 01 0.0 01 s Here we chose the normalizatiéfl ,= —g,;, which is the
S10= k[ €0€1901911 1 €ge1€ 011~ €1€1((Jor) “+ &%) proper normalization in order to obtain the correct commu-
—2(e%)2egyy] tator al.geb'ra on the quantization surfacr—;, see(6,d4] [this
1 ' normalization corresponds to the requirement thatis a
vector, not a vector density: for a general tangent vebofor
to the hypersurface, the orthogonal coveclgr is |,
+2elelegy]. (46)  =e€,,b}, wheree,,=eledep=-ec,, is a tensor. For our
_ _ specific choiceby'= 61 one finds precisely50) for | ,]. Fur-
Although some components look rather ugly, this result isher we should remember thaty was defined as the com-
precisely what one expects, as we wa_nt to_ di;cuss NOW.  mutator of [e(x)®4(x),e(y)OL(y)] [see Eq.(29)], i.e. to
Let us transformtS;y’ to pure space-time indices via obtain the commutators of t@* themselves we still have
to divide by e?. Doing so, and performing the projections,
we recover precisely the central extension of the Virasoro

Sh=«[— eée%gmgn_ egeéegll"_ (eD)?((gop)?+€?)

Sy =EZEL9* “9" “Suvap- (47 algebra[15]
Notice that we cannot invert this relation because we do not
knovy all the components @&} . However, due to th_e sym- 119188, 0 =1#1"S,,11=1#1%S141=0 (51)
metriesS,, .= S, ap= Sapurs Suvap actually consists of

six independent components. The expressidag, (40) for

sgg“’ lead to five independent equations 8y,,,. There- y e _y i
fore we are able to express all componentSgf, ; in terms e "I9S, = “(X)1¥Su1m= 1217 (52)
of one unknown functionA, where the form ofA is re-
stricted by the requirement that &), tend to their well  and the arbitrary functiolA cancels out in all expressions
known Minkowski space version in the flat limit. We obtain (51), (52). The pure space compone®it;;=Jo:A, Which is
- - 3 5 not related to any symmetry generator, remains undeter-
S, _41€°gooJo1  8i€*(goy) N (901 A mined by our procedure.
007 12m(910)°  12m(g910)* (91Dt

= - ) . IV. CONCLUSIONS
1€°000 4ie*(go1) (901 . .
So001= 12m(g)°  127(g1y)° + 9 1)3/\, We have analyzed the anomalous Schwinger terms in the
! ! ! equal-time energy-momentum tensor algebra in two different
regularizations of 2D scalar field theory in a curved back-
ground.
The usual computations make use of the conformal gauge,
which is of course appropriate for the diffeomorphism-

2ie3901 (901)3
— Spor= — + 00 A,
So101= Spo11 12709107 (9102

Sorr= — ie® (901)2A invariant regularization. Once the metric is set to its confor-
W 1279, 911 mally flat form, all the machinery of conformal field theory
can be applied essentially as in flat space-tjd®. In con-
Si111=9oiA, (48  trast, the gauge fixing cannot be performed in the Weyl-

invariant version of the theory. In order to compare both
where A may be non-zerdgbut finite) in the flat limit. regularizations one then needs a more general framework, in
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