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Quantum gravitationally induced stress tensor during inflation
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We derive non-perturbative relations between the expectation value of the invariant element in a homoge-
neous and isotropic state and the quantum gravitationally induced pressure and energy density. By exploiting
previously obtained bounds for the maximum possible growth of perturbative corrections to a locally de Sitter
background we show that the two loop result dominates all higher orders. We also show that the quantum
gravitational slowing of inflation becomes non-perturbatively strong earlier than previously expected.
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I. INTRODUCTION junction of the non-perturbative relatio(2) and explicit

bounds on the maximum late time growth of perturbative
Gauge-fixed perturbation theory is by far the simplestcorrections to a rather technical variant of the amputated 1-
method for computing quantum corrections to a classical gepoint function. Section Il reviews the definition of this quan-
ometry. Even when the state of interest is not stationary thisity and the procedure through which it is used to compute
can be done using Schwinger's formalism for expectatior . Section Ill shows how the perturbative bounds on the
values[1,2]. The procedure is first to compute the expectaformer imply an all-orders result for the latter. We discuss
tion value of the invariant element in the presence of thehe consequences of this result in Sec. IV. In what remains of

desired state: this Introduction we review the theoretical context of our
. . R previous work and its physical motivation.
(9, (t,x)dx*dX"| ) =g,,(t,x)dx*dx". 1 Because the late time behavior is dominated by ultraviolet

R finite, non-local terms, we were able to use the Lagrangian of
One then formg,,, into gauge invariant and gauge indepen-general relativity with a positive cosmological constant:
dent observables to infer how quantum effects distort the
geometry.
Geometrically significantifferencesbetween the classi-
cal and quantum backgrounds can be ascribed to a quantum-
induced stress tensor. In pure gravity this is defined from thabsorbing ultraviolet divergences with local counterterms as
deficit by whichg,,, fails to obey the classical Einstein equa- required We worked on the manifold®x R in the presence
tion: of a homogeneous and isotropic state for which the invariant
element takes the following form in co-moving coordinates:

L R—2A)+—g+counter terms, 3

= 16nG

A DU
87GT,, =Ry = 50,,R+9u,A. 2 0,,(t)dx*x"= —d+exg 2b(t) Jdx-dx.  (4)

Our state is free de Sitter vacuumtat0 in these coordi-

HereR,, andR are the Ricci tensor and Ricci scalar con- ; . .
eTe Ruy @ are the iccl fenso d Ricci scalar co nates, corresponding to the following classical background:

structed from@w and it should be noted that we have in-
cluded a cosmological constark in Einstein’s equation.
Note also that the relation between the induced stress tensor boas{t) =Ht, H?= 3A ®)
and the quantum backgrour@w is, in principle, non-
perturbative, even though the only practical way of comput
ing g, is perturbatively. lnfrared phenomena can always be studied using the low energy
The purpose of this paper is to derive the leading late timeffective theory. This is why Bloch and Nordsiek were able to
dependenceto all orders for the induced stress tensor ap- resolve the infrared problem in QED before the theory’s renormal-
propriate to a recent calculation of the quantum gravitationaizability was suspected. It is also why Weinbdfj was able to
back-reaction on an initially empty and inflating univef8&  give a similar resolution for the infrared problem of quantum gen-
That we can obtain an all-orders result arises from the coreral relativity with zero cosmological constant. And it is why Fein-
berg and Suchef6] were able to compute the long range force
induced by neutrino exchange using Fermi theory. Extensive work
*Email address: tsamis@physics.uch.gr along the same lines has recently been doneAen0 quantum
TEmail address: woodard@phys.ufl.edu gravity by Donoghug7].

0556-2821/98/5(B)/48267)/$15.00 57 4826 © 1998 The American Physical Society



57 QUANTUM GRAVITATIONALLY INDUCED STRESS ... 4827

The physical motivation for our work is the possibility ing canonical quantizatiofl5,16. In our mechanism the
that the cosmological constant only appears to be unnaturallsecular effect comes at second order, not from the continual
small today because it is screened by an infrared process injection of virtual gravitons into the expanding geometry
guantum gravity. This process is the buildup of gravitationalbut rather from the growth of the gravitational interaction
interaction energy between virtual gravitons that are pulledbetween these gravitons.
apart by the inflationary expansion of the classical back- Ford proposed a two-loop mechanism based on the as-
ground[(4),(5)]. The effect acts to slow inflation because sumption that the coincidence limit of the graviton propaga-
gravity is attractive. It requires a enormous time to becomeor grows in time[15]. The result is a sort of diagrammatic
significant because gravity is a weak interaction, even fomirror image of our mechanism: the biggest effect at any
inflation on the grand unified theofBUT) scale’ However,  order comes from a single, many-point vertex with its legs
inflation must eventually be ended because the effect addeined by coincident propagators. This is the far ultraviolet
coherently for as long as exponential expansion persists. Thehere perturbative quantum gravity is certainly not reliable.
effect is also unique to gravitons. Only massless particles ca®ur mechanism is a genuine infrared effect: it comes from
give a coherent effect, and the other phenomenologically vidiagrams with many widely separated, low-point vertices.
able quanta of zero mass are prevented from doing so by It also turns out that the assumption of a growing coinci-
conformal invariance. dence limit is incorrect.It was motivated by the discovery

Our mechanism offers a natural explanation for how in-of an infrared divergence in the mode sum for the propagator
flation can have lasted a long time, without fine tuning andon R®X R by Ford and Parkerl7]. Subsequent authors sug-
without the need for fundamental scalars. Indeed, it results igested that an appropriate infrared regularization for the co-
such a long period of inflation that all energetically favorableincidence limit would be the co-moving momentum of the
phase transitions may have time to occur during this periodnode whose wavelength is redshifting beyond the horizon at
even if some are subsequently reversed by re-heating. If sthe evaluation time. The time dependence of this hoc
the cosmological constant which is finally screened would beutoff is the source of the temporal growth alleged for the
that of the true vacuum, and the evolution after inflationcoincidence limit. On our finite spatial manifold one can rec-
would be almost that which is usually obtained by keepingognize the actual infrared cutoffor all separations, not just
gravity classical and fine tuning this parameter to zero. coincidencg as the constant co-moving coordinate radius

Although perturbation theory must break down at the end9]. With the appropriate ultraviolet regularization our propa-
of inflation, one can use the technique to partially verify ourgator shows no temporal growth at coincidef8g
proposal. For example, the presence of infrared divergences It has been suggested that one loop screening can occur
in in-out matrix element$8] and scattering amplitudd®]  due to the existence of an infrared fixed point in the effective
invalidates the null hypothesis that inflation persists to asgravity theory derived from integrating out conformal matter
ymptotically late times with only perturbatively small correc- [18]. We do not understand the validity of various features of
tions. One can also use Schwinger's formalism to follow thethis analysis but there can be no doubt that its authors are
evolution of the background until quantum corrections be-alleging a different effect from the one which we have stud-
come non-perturbatively lard8]. It was previously believed ied. Our mechanism occurs in pure gravity and is not
that this occurred at the same time for all orders. The burdenhanged by the addition of conformally invariant maft&}.
of this paper is to show that in fact the two loop effect be-The only quanta that participate are those which are effec-
comes strong at a time when all higher orders are still insigtively massless and whose interactions are not conformally
nificant. Of course one cannot extend past the breakdown adfivariant on the classical level. Of the known massless par-
perturbation theory by using perturbation theory, but we nowticles, gravitons are unique in this respect.
have precise information about how the breakdown occurs. Very recently a true one loop analogue of our mechanism

It is worth commenting on the relation between ourwas discovered in the context of chaotic inflation by Mukha-
mechanism and other schemes for screening. Proposals hawev, Abramo and Brandenberggt9,20. The earlier nega-
been made for a one loop effect due to depletion by Hawkingive results for scalar systems are avoided by two features of
radiation [10—12. Explicit computations with Schdinger  their class of models:
picture wave functions fail to show any such effect for free . . L
scalars in a classical geometry coupied to the expectation (1) The scalar is far from its vacuum stdia fact it is the

value of the stress tensft3,14. Nor can any temporally inflaton Who_se class_ica_l evolution regulates inflatjcaand
growing effect be discerned for free scalars or gravitons us- (2 Classical gravity is coupled to the scalar stress tensor

operator, rather than to its expectation value.

5 - . . o . The first point means that the scalar stress tensor contains
One traditionally defines the “scale of inflationVl so thatM®  tarmglinear in the fluctuation fields. Even though the expec-
equals the energy density of the cosmological const®f8mG).  tation value of these linear terms is zero, the second point
Since the Planck mass Mp=G~'% the dimensionless coupling means that they engender a linearized response in the New-
constant that characterizes quantum gravitational effects on inflagnian potential. At the next order, the interaction between

tion can be expressed as this potential and the linearized fluctuations slows inflation
M\ because gravity is attractive. This is the same mechanism as
GA=87T(M—P) ) (6)
For GUT scale inflation this works out to abo@tA~10 1. The
comparable figure for inflation on the electroweak scale would be *We emphasize that Ford bore no responsibility for this assump-
aboutGA~10 %7, tion.
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ours but it is permitted to occur an order lower in perturba- 1 1

tion theory because the scalar is far from vacuum. In our D ,7= 55,5”5”)— 7 M~ 5535350’3500 Da

model the first response of the Newtonian potential is

quadratlc—l.e., one Ioop—ln_the dynammal_grawton fields, + 5(05 (5 Dg+ 505050‘)50"%- (12)

which postpones the deflationary interaction term to two

loops. We believe that the work of Mukhanov, Abramo andA variety of conventions in this relation deserve comment.

Brandenberger has important implications for scalar-driverFirst, indices enclosed in a parenthesis are symmetrized. Sec-

inflation, however, it does not seem to be capable of nullingond, the presence of a bar over a Kronecker delta or a Lor-

a pre-existing cosmological constant. entz metric indicates that the temporal components of these
tensors are deleted:

Il. PERTURBATION THEORY REVISITED —
14

»— S =9,,+ .
The purpose of this section is to explain the connection ELCIT T P 13
between the induced stress tensor of co-moving coordinateéEhe symbolD 4 stands for the kinetic operator of a massless,
and the quantities we actually computed. We begin with theminimally coupled scalar:
coordinate system of the classical background. For a variety
of reasons, it is simplest to formulate perturbation theory in , 2
conformal coordinates: D=0 ¢ +? Q, (19

—dt?+exg 2Ht]dx-dx=02(—du?+dx-dx), (7)  while Dg=D denote the kinetic operator of a conformally
coupled scalar:

1
Q=7 =expHY). (8) Dg=Dc=045%Q. (15)

Note the temporal inversion and the fact that the onset of What we actually computed was the amputated expecta-

inflation att=0 corresponds toi=H L. The infinite future  UON value of ki, (u, X) which, on general grounds, must
isu—0". have the following form:

Perturbation theory is organized most conveniently in
terms of a “pseudo-graviton” fieldy,,,, obtained by con-
formally re-scaling the metric:

D 27(0] ki, (x)|0)y =a(u) 7, +c(u) 8°,8°,.  (16)

Attaching the external leg gives the invariant element, but in
o~ o a perturbatively corrected version of conformal coordinates:
g,uv:Q g/LV=Q (77/L1/+K17[f,u1/)' (9)
-~ > “w v— _ 021 — 2
Our notation is that pseudo-graviton indices are raised and 9jur(tX) XX £1-Clwidu
lowered with the Lorentz metric, and that the loop counting +Qq1+A(u)]dx-dx. (17
parameter isk’=16xwG. After some judicious partial inte-

grations the invariant part of the bare Lagrangian takes th@&he external leg of the 1-point function is a retarded Green'’s
following form [21]: function in Schwinger’s formalism. From the gauge fixed
kinetic operator(12) we see that the coefficient functions

\/—.,._aﬁ.,po.,w 1 1 A(u) andC(u) have the following expressions in terms of
Liny=N=99"9"9""| 5¥ap u¥vo.p= 5 Vap.pPour the scalar retarded propagators actinga¢m) andc(u) [22]:
1 1 ) A(u)=—4GTa](u)+Gg[3a+c](u), (18
+ Zwaﬁ,pw,uv,a_ leap,,u,wﬁa',y Q
C(u)=Ggf3a+c](u). (19
1 = ~
—5V~ 99°79" Yoo w0, (Q) . (10 It is simple to work out what the retarded propagators of
D, andD( give when acting on any power of the conformal
SinceQ ~u~1, it might seem as if the final term is stronger {Me*
at late times than the others. In reality it is only comparable 2 1 1
because its undifferentiated pseudo-graviton field must al-G¥{u~4(Hu)*]= ———{ (Hu)®*— 1+ ze — = &(Hu)®
ways contain a “0” index—,*(Q?) ,=2u~*¢,,Q?—and e(3—¢) 3 3 20
“0"” components of the pseudo-graviton propagator are sup- )
pressed by a factor af [9]. H2
Gauge fixing is accomplished through the addition of  GE{u *(Hu)®]= {=(HU)*+(2—¢&)Hu
—37*'F ,F, where (1-¢)(2—¢)
1 —(1-¢&)(Hu)%. (21)
= p
Fu ™ 2 put 200,00, 1. (11 One-particle-irreducible diagrams containindpops can be

shown to contribute t@a(u) andc(u) at late times no more
The resulting gauge fixed kinetic operator has the form  strongly than some number timg3:
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x?H? "2y %' (Hu). (22) : 2b(1) (
= - — —p s
The action of the scalar retarded propagators on such a term 8mG
is obtained by differentiating20) and (21) | times with re- 1  H? f uc’ { 1 uA’
spect toe and then taking the limie—0. Because of the = — —1-5
factor ofe "1 on the right hand side dR0), G' acquires an 87G 1-Cl1-C|" 21+A
extra logarithm whereas ' does not. For example, the lead- u(uA’)’ uA’ \2
ing contributions at two loops give TT1TA 17a [P (29)
G;\et[ K*H2u~4N2(Hu)]= (KH)4rEIn3(Hu) + EInZ(Hu) A dot in. these formulas indicz_ites differ_entia'gion with respect
9 9 to t, while a prime denotes differentiation with respectto
+3|n(Hu)+E_E(Hu)3 Ill. TWO LOOP DOMINANCE
27 81 81 '

Our perturbative work3] produced explicit results for the
late time U—0*) behavior of the coefficient functiorsgu)
andc(u) at two loops:

(23

GrCEI[K“qu_“InZ(Hu)]=(KH)4[ - %Inz(Hu)— gln(Hu)

4
yp— {—43Ir?(Hu) + (subleading} + O(«°),

a(u)sz( <H
7 1,
—z T2Hu= 2 (Hu) ] (24) (30

4

This phenomenon has great significance. Its physical origin C(u):HZ(ﬂ) {15Ir2(Hu) + (subleading} + O(«®).

is the fact thatA-type Green's functions receive contribu- 4mu

tions from throughout the timelike region inside the past (3D

light cone while theC-type Green’s functions have support

only on the lightlike surface of the past lightcof®l].
Comparison betweef) and(17) results in the following

formulas for the conversion to co-moving time:

We also obtained the following limit on the maximum pos-
sible late time correction tea(u) and c(u) from one-
particle-irreducible(1Pl) graphs containing loops:

AH2=2y 4! (Hu). 32
d(Ht) = — yI—C(ud[In(Hu)], (25) “ (HU) (32
This bound seemed to suggest that all orders become strong
1 ime:
b(t)=—In(Hu)+ 5[ 1+A(W)]. (26 2t thesame time:

1 3
—In(HU)~ ——

K2H2:§a>l. (33)

It is then straightforward to work out the relation between
physically interesting quantities defined in co-moving coor-
dinates and the things one actually computes in perturbatiomhat conclusion is valid for the non-invariant quantitegs!)

theory. For example, the effective Hubble constaft is andc(u), but not for invariants such as the effective Hubble
constant, the induced energy density and the induced pres-
db(t) H J 1 d sure. The purpose of this section is to show that, for these

1——uﬁln[1+A(u)]].

0= "5t ~ Ji—cw| ' 2

quantities, two loop effects become strong at a time when
27) higher loop corrections are still insignificant. We will also
use the two loop results to derive explicit formulas for the
Two particularly interesting quantities come from the in- physical invariants which are valid until perturbation theory
duced stress tensor: the energy dendigy=p(t) and the breaks down.
pressureT;;=p(t)g;; . The task of this section is completed ~ The key is the extra logarithm which the spatial trace
by first using(2) to express these in terms btt) and then coefficientA(u) acquires from theA-type Green'’s function.
converting to the coefficient functioms(u) andC(u): The 1PI amputated coefficient functions have the following
form:

1 .
p(t)= z—=(3b?(t) —3H?), =
87G arp (W)=, ax?H?~2u~*n'(Hu) + subdominant,
) B
, (28 (34

©

cip(U)=2, ¢;k¥H?2u~4In'(Hu) + subdominant,
I=2

(39

1 3H2J uA’  1{ uA’
= C_ +—
87G 1-C|~ 1+A 4|1+A

“Note that the effective Hubble constant is an invariant by virtue
of its relation to the Einstein tens(ﬂioo=3b2, and by the fact that
co-moving coordinates are unique up to constant rescalings ofvherea, andc, are pure numbers. The non-amputated coef-
space. It can also be shown to be gauge indepen8ént ficient functions are defined by acting retarded Green’s func-
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tions according to relation€l8) and (19). From the general «H\2 GA 8/ M \*4
action of the retarded propagatdf20) and (21), we obtain E(E) =37 §( M—P) (42)

expansions for the leading terms induced by 1P| graphs:

Our explicit two loop result$30) and (31) imply

A1p|(u)———ln(Hu)2 ——(k?H2In(Hu))!

|+1

,[ 172 ) 5
+ subdominant, (36) A(u)=¢€ Tln (Hu)+ (subleading; + O(€”®), (43
1 .
Cyipi(U)= 52 (3a,+¢,) (k2H2In(Hu)) C(u)=€?{57I*(Hu) + (subleading} + O(€%). (44)
+ subdominant. (37) From C(u) and relation(25) we infer the transformation to

co-moving time:
From expression(26) for b(t) we see that inflation stops

when A(u) approaches-1. Thel=2 term inA(u) passes 19
through—1 when Ht —[1— 362|n2(HU)+ -+« 1In(Hu). (45
-9 1/3 1 4/3
—In(Hu)= 1a, (m (38)  This can be inverted to give
At this time the highet effects inA(u) are of strength 19 )
In(Hu)=—{1+ 7(th) + -+t Ht. (46)

|n|+l(Hu)(KH)2|~(KH)(2/3)|74/3' (39)

This is insignificant when one recalls thaH~10"°, even It follows that we may set I{u) to —Ht, to a very good

for GUT scale inflation. Andll the terms inC(u) are insig- ~ approximation, for as long as perturbation theory remains

nificant because they have one fewer power of the large logazlid.

rithm. We can now writeA(u) as a function of the co-moving
We have still to account for tadpoles coming from thetime:

shift of the background. One does this by shifting the fields

of the interaction Lagrangiafl0) and studying the effect of 172

the induced interactions. For example, most 3-point vertices A(u)=— 7620‘”)3+ R (47)

have the generic formpdydy. Suppose that the two differ-

entiated fields are taken by the lowest ord¢u) terms. This

gives a 1-point interaction whose coefficient is The higher corrections are again insignificant when the first

term becomes of order unity. We can also obtafh) as an

d d explicit function of time:
02 4 (PHAN (HU) - (CHAN(Hu))

1
~k"H%U4In*(Hu). (40) b(t)~Ht+ SIn(1+A). (48

When one accounts for the extra factorsoin our definition

(16) the result is no stronger than the 1P| terms already alSubstituting into(27) gives the effective Hubble constant:
lowed for atl=4 loops. In fact one can do considerably

better at higher order, but never good enough to catch up 1d

with the two loop effect. The fastest possible growth for Her()~H+ 5 GrIn(1+A), (49
eitherA(u) or C(u) is

H)*N*8In3N*3(Hu), 41 6
(kH) (Hu) (4D) 86 . 2
starting atN=0. [The order «H)* and (xH)® terms are ~H{ 1= ——7——
purely 1PI] When the two loop term becomes of order one 1- = "€2(Ht)®
these contributions are still suppressed by a factor of the 9
small number gH)**<1077. (50

It remains to obtain the promised all-orders results for the
dominant late time behavior dfig«(t), p(t) and p(t). To  Note that the numerator of the correction term is still quite
simplify the formulas we define the following small param- small when the denominator blows up. This is why we are
eter: justified in neglecting other terms—fro@(u)—which are
also of order €Ht)2.
Going through the same exercise for the induced energy
SThese terms are 1P| except for the external propagator. density gives
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2 time well before the higher loop corrections have become

, (51 significant.
This insight has a number of consequences, starting with a
revised estimate for the number of inflationary e-foldings:

A 1 A . 1/ A
PO~5 Gl A 1+A a2 1A

172 ) )
A 3 € (HY 9 \183/ 3|23 81 |13/ M98
"~ 87G 172, N (172) (GA _(11008) m) 50
1- ?E (Ht)
whereM is the mass scale of inflation adl, is the Planck
86 , 5 2 mass. For inflation on the GUT scale this giwds- 10 e-
3 € (HY foldings. Electroweak inflation should last abduit- 10*° e-
+ 1 ) (52)  foldings. Thes_e numbers are smalle_r than_our previous esti-
1— = S&2(Ht)3 mates, but still much longer than in typical models. We
9 stress that this long period of inflation is a natural conse-

h | he single d , guence of the fact that gravity is a weak interaction.
Note that we cannot neglect the single denominator term' qnq can aiso estimate the rapidity with which inflation

compared to the double one;'in fa(;t the former dominates t,h‘énds once the effect becomes noticeable. Suppose we expand
latter. The most useful form in which to give the pressure is; .5 nd the critical time:

added to the energy density:

1 &2 Ht=N-HAt. (57)
H+pt)=~— 5——= 3In(1+A), 53 . .
p(OFp(V) 87G dt? ( ) 63 WhenHAt<N our expressiorf50) for the effective Hubble
o, constant becomes
1 A (54
~5 ~| 7T A 1 1
87G|1+A Heﬁ(t)~H[1— —ZHAJ. (58)
2
2 Tez(Ht)2 It follows that inflation must end rapidly. To be precise, let
~ . us define the end of inflation as the period from when the
87G - Eez(HtP effective Hubble constant falls frong to 4 of its initial
9 value. From the previous formulél.; reachessH at HAt
(55 =5, and it falls tos5H at HAt=2, making for a transition

_ , _ _ time of 43 e-foldings.
Note that in passing to the middie expression we have ne- of course one cannot trust perturbation theory during this
glected the termA/(1+A), which is still insignificant when  period but it is reasonable to conclude that the end of infla-
A/(1+A) is of order one. Note also that whéxi(1+A) is  tion is likely to be sufficiently violent to give a substantial
small, its square is even smaller. Therefgre p is quite ~ amount of re-heating. The end of inflation is also likely to be

near zero until screening becomes significant. sudden enough to justify assuming that the observationally
relevant density perturbations crossed the causal horizon dur-
IV. DISCUSSION ing the period when our perturbative expressions are still

_ _ valid. This means that we do not need to solve the non-
Our previous worK3,9,21 has established that quantum perturbative problem in order to make predictions.
gravitational corrections slow the expansion of an initially

inflating universe by an amount that becomes non- ACKNOWLEDGMENTS
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