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Quantum gravitationally induced stress tensor during inflation
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We derive non-perturbative relations between the expectation value of the invariant element in a homoge-
neous and isotropic state and the quantum gravitationally induced pressure and energy density. By exploiting
previously obtained bounds for the maximum possible growth of perturbative corrections to a locally de Sitter
background we show that the two loop result dominates all higher orders. We also show that the quantum
gravitational slowing of inflation becomes non-perturbatively strong earlier than previously expected.
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I. INTRODUCTION

Gauge-fixed perturbation theory is by far the simpl
method for computing quantum corrections to a classical
ometry. Even when the state of interest is not stationary
can be done using Schwinger’s formalism for expectat
values@1,2#. The procedure is first to compute the expec
tion value of the invariant element in the presence of
desired state:

^cugmn~ t,xW !dxmdxnuc&5ĝmn~ t,xW !dxmdxn. ~1!

One then formsĝmn into gauge invariant and gauge indepe
dent observables to infer how quantum effects distort
geometry.

Geometrically significantdifferencesbetween the classi
cal and quantum backgrounds can be ascribed to a quan
induced stress tensor. In pure gravity this is defined from
deficit by whichĝmn fails to obey the classical Einstein equ
tion:

8pGT̂mn[R̂mn2
1

2
ĝmnR̂1ĝmnL. ~2!

Here R̂mn and R̂ are the Ricci tensor and Ricci scalar co
structed fromĝmn and it should be noted that we have i
cluded a cosmological constantL in Einstein’s equation.
Note also that the relation between the induced stress te
and the quantum backgroundĝmn is, in principle, non-
perturbative, even though the only practical way of comp
ing ĝmn is perturbatively.

The purpose of this paper is to derive the leading late t
dependence,to all orders, for the induced stress tensor a
propriate to a recent calculation of the quantum gravitatio
back-reaction on an initially empty and inflating universe@3#.
That we can obtain an all-orders result arises from the c
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junction of the non-perturbative relation~2! and explicit
bounds on the maximum late time growth of perturbat
corrections to a rather technical variant of the amputated
point function. Section II reviews the definition of this qua
tity and the procedure through which it is used to comp
T̂mn . Section III shows how the perturbative bounds on t
former imply an all-orders result for the latter. We discu
the consequences of this result in Sec. IV. In what remain
this Introduction we review the theoretical context of o
previous work and its physical motivation.

Because the late time behavior is dominated by ultravio
finite, non-local terms, we were able to use the Lagrangian
general relativity with a positive cosmological constant:

L5
1

16pG
~R22L!A2g1counter terms, ~3!

absorbing ultraviolet divergences with local counterterms
required.1 We worked on the manifoldT33R in the presence
of a homogeneous and isotropic state for which the invar
element takes the following form in co-moving coordinate

ĝmn~ t,xW !dxmxn52dt21exp@2b~ t !#dxW•dxW . ~4!

Our state is free de Sitter vacuum att50 in these coordi-
nates, corresponding to the following classical backgroun

bclass~ t !5Ht, H2[
1

3
L. ~5!

1Infrared phenomena can always be studied using the low en
effective theory. This is why Bloch and Nordsieck@4# were able to
resolve the infrared problem in QED before the theory’s renorm
izability was suspected. It is also why Weinberg@5# was able to
give a similar resolution for the infrared problem of quantum ge
eral relativity with zero cosmological constant. And it is why Fei
berg and Sucher@6# were able to compute the long range for
induced by neutrino exchange using Fermi theory. Extensive w
along the same lines has recently been done onL50 quantum
gravity by Donoghue@7#.
4826 © 1998 The American Physical Society
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57 4827QUANTUM GRAVITATIONALLY INDUCED STRESS . . .
The physical motivation for our work is the possibilit
that the cosmological constant only appears to be unnatu
small today because it is screened by an infrared proces
quantum gravity. This process is the buildup of gravitatio
interaction energy between virtual gravitons that are pu
apart by the inflationary expansion of the classical ba
ground @~4!,~5!#. The effect acts to slow inflation becaus
gravity is attractive. It requires a enormous time to beco
significant because gravity is a weak interaction, even
inflation on the grand unified theory~GUT! scale.2 However,
inflation must eventually be ended because the effect a
coherently for as long as exponential expansion persists.
effect is also unique to gravitons. Only massless particles
give a coherent effect, and the other phenomenologically
able quanta of zero mass are prevented from doing so
conformal invariance.

Our mechanism offers a natural explanation for how
flation can have lasted a long time, without fine tuning a
without the need for fundamental scalars. Indeed, it result
such a long period of inflation that all energetically favorab
phase transitions may have time to occur during this per
even if some are subsequently reversed by re-heating. I
the cosmological constant which is finally screened would
that of the true vacuum, and the evolution after inflati
would be almost that which is usually obtained by keep
gravity classical and fine tuning this parameter to zero.

Although perturbation theory must break down at the e
of inflation, one can use the technique to partially verify o
proposal. For example, the presence of infrared divergen
in in-out matrix elements@8# and scattering amplitudes@9#
invalidates the null hypothesis that inflation persists to
ymptotically late times with only perturbatively small corre
tions. One can also use Schwinger’s formalism to follow
evolution of the background until quantum corrections b
come non-perturbatively large@3#. It was previously believed
that this occurred at the same time for all orders. The bur
of this paper is to show that in fact the two loop effect b
comes strong at a time when all higher orders are still ins
nificant. Of course one cannot extend past the breakdow
perturbation theory by using perturbation theory, but we n
have precise information about how the breakdown occu

It is worth commenting on the relation between o
mechanism and other schemes for screening. Proposals
been made for a one loop effect due to depletion by Hawk
radiation @10–12#. Explicit computations with Schro¨dinger
picture wave functions fail to show any such effect for fr
scalars in a classical geometry coupled to the expecta
value of the stress tensor@13,14#. Nor can any temporally
growing effect be discerned for free scalars or gravitons

2One traditionally defines the ‘‘scale of inflation’’M so thatM4

equals the energy density of the cosmological constant,L/(8pG).
Since the Planck mass isM P5G21/2, the dimensionless coupling
constant that characterizes quantum gravitational effects on i
tion can be expressed as

GL58pS M

MP
D4

. ~6!

For GUT scale inflation this works out to aboutGL;10211. The
comparable figure for inflation on the electroweak scale would
aboutGL;10267.
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ing canonical quantization@15,16#. In our mechanism the
secular effect comes at second order, not from the contin
injection of virtual gravitons into the expanding geomet
but rather from the growth of the gravitational interactio
between these gravitons.

Ford proposed a two-loop mechanism based on the
sumption that the coincidence limit of the graviton propag
tor grows in time@15#. The result is a sort of diagrammati
mirror image of our mechanism: the biggest effect at a
order comes from a single, many-point vertex with its le
joined by coincident propagators. This is the far ultravio
where perturbative quantum gravity is certainly not reliab
Our mechanism is a genuine infrared effect: it comes fr
diagrams with many widely separated, low-point vertices

It also turns out that the assumption of a growing coin
dence limit is incorrect.3 It was motivated by the discover
of an infrared divergence in the mode sum for the propaga
on R33R by Ford and Parker@17#. Subsequent authors sug
gested that an appropriate infrared regularization for the
incidence limit would be the co-moving momentum of th
mode whose wavelength is redshifting beyond the horizo
the evaluation time. The time dependence of thisad hoc
cutoff is the source of the temporal growth alleged for t
coincidence limit. On our finite spatial manifold one can re
ognize the actual infrared cutoff~for all separations, not jus
coincidence! as the constant co-moving coordinate rad
@9#. With the appropriate ultraviolet regularization our prop
gator shows no temporal growth at coincidence@3#.

It has been suggested that one loop screening can o
due to the existence of an infrared fixed point in the effect
gravity theory derived from integrating out conformal matt
@18#. We do not understand the validity of various features
this analysis but there can be no doubt that its authors
alleging a different effect from the one which we have stu
ied. Our mechanism occurs in pure gravity and is n
changed by the addition of conformally invariant matter@3#.
The only quanta that participate are those which are ef
tively massless and whose interactions are not conform
invariant on the classical level. Of the known massless p
ticles, gravitons are unique in this respect.

Very recently a true one loop analogue of our mechan
was discovered in the context of chaotic inflation by Mukh
nov, Abramo and Brandenberger@19,20#. The earlier nega-
tive results for scalar systems are avoided by two feature
their class of models:

~1! The scalar is far from its vacuum state~in fact it is the
inflaton whose classical evolution regulates inflation!; and

~2! Classical gravity is coupled to the scalar stress ten
operator, rather than to its expectation value.

The first point means that the scalar stress tensor cont
termslinear in the fluctuation fields. Even though the expe
tation value of these linear terms is zero, the second p
means that they engender a linearized response in the N
tonian potential. At the next order, the interaction betwe
this potential and the linearized fluctuations slows inflati
because gravity is attractive. This is the same mechanism

a-

e 3We emphasize that Ford bore no responsibility for this assu
tion.
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4828 57N. C. TSAMIS AND R. P. WOODARD
ours but it is permitted to occur an order lower in perturb
tion theory because the scalar is far from vacuum. In
model the first response of the Newtonian potential
quadratic—i.e., one loop—in the dynamical graviton field
which postpones the deflationary interaction term to t
loops. We believe that the work of Mukhanov, Abramo a
Brandenberger has important implications for scalar-driv
inflation, however, it does not seem to be capable of null
a pre-existing cosmological constant.

II. PERTURBATION THEORY REVISITED

The purpose of this section is to explain the connect
between the induced stress tensor of co-moving coordin
and the quantities we actually computed. We begin with
coordinate system of the classical background. For a var
of reasons, it is simplest to formulate perturbation theory
conformal coordinates:

2dt21exp@2Ht#dxW•dxW5V2~2du21dxW•dxW !, ~7!

V[
1

Hu
5exp~Ht !. ~8!

Note the temporal inversion and the fact that the onse
inflation at t50 corresponds tou5H21. The infinite future
is u→01.

Perturbation theory is organized most conveniently
terms of a ‘‘pseudo-graviton’’ field,cmn , obtained by con-
formally re-scaling the metric:

gmn[V2g̃mn[V2~hmn1kcmn!. ~9!

Our notation is that pseudo-graviton indices are raised
lowered with the Lorentz metric, and that the loop counti
parameter isk2[16pG. After some judicious partial inte
grations the invariant part of the bare Lagrangian takes
following form @21#:

Linv5A2 g̃ g̃ab g̃rs g̃mnS 1

2
car,mcns,b2

1

2
cab,rcsm,n

1
1

4
cab,rcmn,s2

1

4
car,mcbs,nDV2

2
1

2
A2 g̃ g̃rs g̃mncrs,mcn

a~V2! ,a . ~10!

SinceV;u21, it might seem as if the final term is strong
at late times than the others. In reality it is only compara
because its undifferentiated pseudo-graviton field must
ways contain a ‘‘0’’ index—cn

a(V2),a52u21cn0V2—and
‘‘0’’ components of the pseudo-graviton propagator are s
pressed by a factor ofu @9#.

Gauge fixing is accomplished through the addition o
2 1

2 hmnFmFn where

Fm[S c m,r
r 2

1

2
c r,m

r 12c m
r ~ lnV! ,rDV. ~11!

The resulting gauge fixed kinetic operator has the form
-
r
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g
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e
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Dmn
rs[S 1

2
d̄m

~rd̄n
s)2

1

4
hmnhrs2

1

2
dm

0dn
0d0

rd0
sDDA

1d~m
0d̄n)

~rd0
s)DB1dm

0dn
0d0

rd0
sDC . ~12!

A variety of conventions in this relation deserve comme
First, indices enclosed in a parenthesis are symmetrized.
ond, the presence of a bar over a Kronecker delta or a L
entz metric indicates that the temporal components of th
tensors are deleted:

d̄ n
m [d n

m 2d 0
md n

0 , h̄mn[hmn1d m
0 d n

0 . ~13!

The symbolDA stands for the kinetic operator of a massle
minimally coupled scalar:

DA[VS ]21
2

u2D V, ~14!

while DB5DC denote the kinetic operator of a conformal
coupled scalar:

DB5DC[V]2V. ~15!

What we actually computed was the amputated expe
tion value of kcmn(u,xW ) which, on general grounds, mus
have the following form:

Dmn
rs^0ukcrs~x!u0&5a~u!h̄mn1c~u!d m

0 d n
0 . ~16!

Attaching the external leg gives the invariant element, bu
a perturbatively corrected version of conformal coordinat

ĝmn~ t,xW !dxmdxn52V2@12C~u!#du2

1V2@11A~u!#dxW•dxW . ~17!

The external leg of the 1-point function is a retarded Gree
function in Schwinger’s formalism. From the gauge fixe
kinetic operator~12! we see that the coefficient function
A(u) and C(u) have the following expressions in terms
the scalar retarded propagators acting ona(u) andc(u) @22#:

A~u!524GA
ret@a#~u!1GC

ret@3a1c#~u!, ~18!

C~u!5GC
ret@3a1c#~u!. ~19!

It is simple to work out what the retarded propagators
DA andDC give when acting on any power of the conform
time:

GA
ret@u24~Hu!«#5

H2

«~32«!H ~Hu!«211
1

3
«2

1

3
«~Hu!3J ,

~20!

GC
ret@u24~Hu!«#5

H2

~12«!~22e!
$2~Hu!«1~22«!Hu

2~12«!~Hu!2%. ~21!

One-particle-irreducible diagrams containingl loops can be
shown to contribute toa(u) andc(u) at late times no more
strongly than some number times@3#:
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57 4829QUANTUM GRAVITATIONALLY INDUCED STRESS . . .
k2lH2l 22u24lnl~Hu!. ~22!

The action of the scalar retarded propagators on such a
is obtained by differentiating~20! and ~21! l times with re-
spect to« and then taking the limit«→0. Because of the
factor of«21 on the right hand side of~20!, GA

ret acquires an
extra logarithm whereasGC

ret does not. For example, the lea
ing contributions at two loops give

GA
ret@k4H2u24ln2~Hu!#5~kH !4H 1

9
ln3~Hu!1

1

9
ln2~Hu!

1
2

27
ln~Hu!1

2

81
2

2

81
~Hu!3J ,

~23!

GC
ret@k4H2u24ln2~Hu!#5~kH !4H 2

1

2
ln2~Hu!2

3

2
ln~Hu!

2
7

4
12Hu2

1

4
~Hu!2J . ~24!

This phenomenon has great significance. Its physical or
is the fact thatA-type Green’s functions receive contribu
tions from throughout the timelike region inside the pa
light cone while theC-type Green’s functions have suppo
only on the lightlike surface of the past lightcone@21#.

Comparison between~4! and~17! results in the following
formulas for the conversion to co-moving time:

d~Ht !52A12C~u!d@ ln~Hu!#, ~25!

b~ t !52 ln~Hu!1
1

2
ln@11A~u!#. ~26!

It is then straightforward to work out the relation betwe
physically interesting quantities defined in co-moving co
dinates and the things one actually computes in perturba
theory. For example, the effective Hubble constant is4

Heff~ t ![
db~ t !

dt
5

H

A12C~u!
H 12

1

2
u

d

du
ln@11A~u!#J .

~27!

Two particularly interesting quantities come from the i
duced stress tensor: the energy densityT005r(t) and the
pressureTi j 5p(t)gi j . The task of this section is complete
by first using~2! to express these in terms ofb(t) and then
converting to the coefficient functionsA(u) andC(u):

r~ t !5
1

8pG
„3ḃ2~ t !23H2

…,

5
1

8pG

3H2

12CH C2
uA8

11A
1

1

4S uA8

11AD 2J , ~28!

4Note that the effective Hubble constant is an invariant by vir

of its relation to the Einstein tensor,G0053ḃ2, and by the fact that
co-moving coordinates are unique up to constant rescaling
space. It can also be shown to be gauge independent@3#.
rm

in

t

-
on

p~ t !52
2b̈~ t !

8pG
2r~ t !,

5
1

8pG

H2

12CH uC8

12CF12
1

2

uA8

11AG
2

u~uA8!8

11A
1S uA8

11AD 2J 2r~ t !. ~29!

A dot in these formulas indicates differentiation with respe
to t, while a prime denotes differentiation with respect tou.

III. TWO LOOP DOMINANCE

Our perturbative work@3# produced explicit results for the
late time (u→01) behavior of the coefficient functionsa(u)
andc(u) at two loops:

a~u!5H22S kH

4puD 4

$243ln2~Hu!1~subleading!%1O~k6!,

~30!

c~u!5H22S kH

4puD 4

$15ln2~Hu!1~subleading!%1O~k6!.

~31!

We also obtained the following limit on the maximum po
sible late time correction toa(u) and c(u) from one-
particle-irreducible~1PI! graphs containingl loops:

k2lH2l 22u24lnl~Hu!. ~32!

This bound seemed to suggest that all orders become st
at the same time:

2 ln~Hu!;
1

k2H2 5
3

8p

1

GL
@1. ~33!

That conclusion is valid for the non-invariant quantitiesa(u)
andc(u), but not for invariants such as the effective Hubb
constant, the induced energy density and the induced p
sure. The purpose of this section is to show that, for th
quantities, two loop effects become strong at a time wh
higher loop corrections are still insignificant. We will als
use the two loop results to derive explicit formulas for t
physical invariants which are valid until perturbation theo
breaks down.

The key is the extra logarithm which the spatial tra
coefficientA(u) acquires from theA-type Green’s function.
The 1PI amputated coefficient functions have the followi
form:

a1PI~u!5(
l 52

`

alk
2lH2l 22u24lnl~Hu!1subdominant,

~34!

c1PI~u!5(
l 52

`

clk
2lH2l 22u24lnl~Hu!1subdominant,

~35!

whereal andcl are pure numbers. The non-amputated co
ficient functions are defined by acting retarded Green’s fu

e

of
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tions according to relations~18! and ~19!. From the genera
action of the retarded propagators~20! and ~21!, we obtain
expansions for the leading terms induced by 1PI graphs5

A1PI~u!52
4

3
ln~Hu!(

l 52

`
al

l 11
„k2H2ln~Hu!…l

1subdominant, ~36!

C1PI~u!52
1

2(l 52

`

~3al1cl !„k
2H2ln~Hu!…l

1subdominant. ~37!

From expression~26! for b(t) we see that inflation stop
when A(u) approaches21. The l 52 term in A(u) passes
through21 when

2 ln~Hu!5S 29

4a2
D 1/3S 1

kH D 4/3

. ~38!

At this time the higherl effects inA(u) are of strength

lnl 11~Hu!~kH !2l;~kH !~2/3!l 24/3. ~39!

This is insignificant when one recalls thatkH;1025, even
for GUT scale inflation. Andall the terms inC(u) are insig-
nificant because they have one fewer power of the large lo
rithm.

We have still to account for tadpoles coming from t
shift of the background. One does this by shifting the fie
of the interaction Lagrangian~10! and studying the effect o
the induced interactions. For example, most 3-point verti
have the generic form:c]c]c. Suppose that the two differ
entiated fields are taken by the lowest orderA(u) terms. This
gives a 1-point interaction whose coefficient is

kV2
d

du
„k3H4ln3~Hu!…

d

du
„k3H4ln3~Hu!…

;k7H6u24ln4~Hu!. ~40!

When one accounts for the extra factor ofk in our definition
~16! the result is no stronger than the 1PI terms already
lowed for at l 54 loops. In fact one can do considerab
better at higher order, but never good enough to catch
with the two loop effect. The fastest possible growth f
eitherA(u) or C(u) is

~kH !4N18ln3N15~Hu!, ~41!

starting atN50. @The order (kH)4 and (kH)6 terms are
purely 1PI.# When the two loop term becomes of order o
these contributions are still suppressed by a factor of
small number (kH)4/3&1027.

It remains to obtain the promised all-orders results for
dominant late time behavior ofHeff(t), r(t) and p(t). To
simplify the formulas we define the following small param
eter:

5These terms are 1PI except for the external propagator.
a-

s

s

l-

p
r

e

e

e[S kH

4p D 2

5
GL

3p
5

8

3S M

M P
D 4

. ~42!

Our explicit two loop results~30! and ~31! imply

A~u!5e2H 172

9
ln3~Hu!1~subleading!J 1O~e3!, ~43!

C~u!5e2$57ln2~Hu!1~subleading!%1O~e3!. ~44!

From C(u) and relation~25! we infer the transformation to
co-moving time:

Ht52H 12
19

2
e2ln2~Hu!1•••J ln~Hu!. ~45!

This can be inverted to give

ln~Hu!52H 11
19

2
~eHt !21•••J Ht. ~46!

It follows that we may set ln(Hu) to 2Ht, to a very good
approximation, for as long as perturbation theory rema
valid.

We can now writeA(u) as a function of the co-moving
time:

A~u!52
172

9
e2~Ht !31•••. ~47!

The higher corrections are again insignificant when the fi
term becomes of order unity. We can also obtainb(t) as an
explicit function of time:

b~ t !'Ht1
1

2
ln~11A!. ~48!

Substituting into~27! gives the effective Hubble constant:

Heff~ t !'H1
1

2

d

dt
ln~11A!, ~49!

'HH 12

86

3
e2~Ht !2

12
172

9
e2~Ht !3J .

~50!

Note that the numerator of the correction term is still qu
small when the denominator blows up. This is why we a
justified in neglecting other terms—fromC(u)—which are
also of order (eHt)2.

Going through the same exercise for the induced ene
density gives
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r~ t !'
L

8pGH 2
1

H

Ȧ

11A
1

1

4H2S Ȧ

11A
D 2J , ~51!

'
L

8pGH 2

172

3
e2~Ht !2

12
172

9
e2~Ht !3

1S 86

3
e2~Ht !2

12
172

9
e2~Ht !3

D 2J . ~52!

Note that we cannot neglect the single denominator te
compared to the double one; in fact the former dominates
latter. The most useful form in which to give the pressure
added to the energy density:

r~ t !1p~ t !'2
1

8pG

d2

dt2
ln~11A!, ~53!

'
1

8pG
S Ȧ

11A
D 2

, ~54!

'
H2

8pGS 172

3
e2~Ht !2

12
172

9
e2~Ht !3

D 2

.

~55!

Note that in passing to the middle expression we have
glected the term,Ä/(11A), which is still insignificant when
Ȧ/(11A) is of order one. Note also that whenȦ/(11A) is
small, its square is even smaller. Thereforer1p is quite
near zero until screening becomes significant.

IV. DISCUSSION

Our previous work@3,9,21# has established that quantu
gravitational corrections slow the expansion of an initia
inflating universe by an amount that becomes n
perturbatively large at late times. In this paper we have
ploited exact relations between the objects which are actu
computed in perturbative quantum gravity and the invari
quantities of physical interest. We conclude that the mec
nism by which perturbation theory breaks down is the
proach to21 of the spatial trace coefficientA(u). Further-
more, this approach is effected by two loop corrections a
m
e

s

e-

-
-

lly
t

a-
-

a

time well before the higher loop corrections have beco
significant.

This insight has a number of consequences, starting wi
revised estimate for the number of inflationary e-foldings

N;S 9

172D
1/3S 3p

GL D 2/3

5S 81

11008D
1/3S M P

M D 8/3

, ~56!

whereM is the mass scale of inflation andM P is the Planck
mass. For inflation on the GUT scale this givesN;107 e-
foldings. Electroweak inflation should last aboutN;1045 e-
foldings. These numbers are smaller than our previous e
mates, but still much longer than in typical models. W
stress that this long period of inflation is a natural con
quence of the fact that gravity is a weak interaction.

One can also estimate the rapidity with which inflatio
ends once the effect becomes noticeable. Suppose we ex
around the critical time:

Ht5N2HDt. ~57!

WhenHDt!N our expression~50! for the effective Hubble
constant becomes

Heff~ t !'HH 12
1

2HDtJ . ~58!

It follows that inflation must end rapidly. To be precise, l
us define the end of inflation as the period from when
effective Hubble constant falls from9

10 to 1
10 of its initial

value. From the previous formula,Heff reaches9
10H at HDt

55, and it falls to 1
10H at HDt5 5

9, making for a transition
time of 44

9 e-foldings.
Of course one cannot trust perturbation theory during t

period but it is reasonable to conclude that the end of in
tion is likely to be sufficiently violent to give a substanti
amount of re-heating. The end of inflation is also likely to
sudden enough to justify assuming that the observation
relevant density perturbations crossed the causal horizon
ing the period when our perturbative expressions are
valid. This means that we do not need to solve the n
perturbative problem in order to make predictions.
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