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Neutron stars in scalar-tensor theories of gravity and catastrophe theory

Tomohiro Harada*
Department of Physics, Kyoto University, Kyoto 606-01, Japan

~Received 21 October 1997; published 17 March 1998!

We investigate neutron stars in scalar-tensor theories. We examine their secular stability against spherically
symmetric perturbations by use of a turning point method. For some choices of the coupling function contained
in the theories, the number of the stable equilibrium solutions changes and the realized equilibrium solution
may change discontinuously as the asymptotic value of the scalar field or total baryon number is changed
continuously. The behavior of the stable equilibrium solutions is explained by fold and cusp catastrophes.
Whether or not the cusp catastrophe appears depends on the choice of the coupling function. These types of
catastrophes are structurally stable. Recently discovered spontaneous scalarization, which is a nonperturbative
strong-field phenomenon due to the presence of the gravitational scalar field, is well described in terms of the
cusp catastrophe.@S0556-2821~98!02208-5#

PACS number~s!: 04.40.Dg, 04.50.1h, 05.70.Fh, 97.60.Jd
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I. INTRODUCTION

Scalar-tensor theories@1,2# are among the generalize
theories of gravitation. Brans-Dicke theory@3# is a member
of the scalar-tensor theories. Scalar-tensor theories hav
cently attracted the attention of many researchers. One o
reasons is that the unified theories that contain gravity
well as other interactions, such as string theory@4#, naturally
predict the existence of scalar fields that relate to gravity
the hyperextended inflation model@5#, scalar-tensor theorie
of gravity play an essential role. Moreover, projects of la
interferometric gravitational wave observations@6–9# will be
soon in practical use, so that high-accuracy tests of
scalar-tensor theories may be expected@10–14#.

Scalar-tensor theories are viable theories of gravity
some choices of the coupling function which is contained
the theories. Predictions of these theories in a strong fi
may be drastically different from those of general relativi
Recently, Damour and Esposito-Fare`se @15,16# discovered
one example of such phenomena. They showed that,
some choices of the coupling function, the configuration o
massive neutron star deviates significantly from that in g
eral relativity, even if the post-Newtonian limit of the theo
is extremely close to or even agrees with that of gene
relativity. This deviation in a strong field may be eas
tested from binary-pulsar timing observations, if it exis
because of the extra energy loss by scalar gravitationa
diation @16#. The deviation from general relativity can be n
longer dealt with as a perturbative effect from general re
tivity. Damour and Esposito-Fare`se referred to this nonper
turbative strong-field effect as ‘‘spontaneous scalarizatio
in analogy to the spontaneous magnetization of the fe
magnets.

In this paper, we investigate spontaneous scalarizatio
detail with the technique of catastrophe theory. A man
parameter version of the turning point method@17–20# is
used as a tool of a stability analysis of equilibria. The sta
ity analysis of boson stars in scalar-tensor gravity via ca
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trophe theory in the case of one-dimensional control sp
was done in@21,22#. Catastrophe types of neutron stars a
classified as fold and cusp catastrophes. The occurrenc
the cusp catastrophe depends on the choice of the coup
function. Spontaneous scalarization is classified as the c
catastrophe. From this catastrophic feature, we conclude
the stable configuration of the neutron star may change
continuously as the baryon number of the star or
asymptotic value of the scalar field changes continuou
The behavior of the scalar charge around the cusp poin
explained by catastrophe theory. For the coupling funct
considered here, when the asymptotic value of the sc
field is such that the theory agrees with general relativity
the post-Newtonian limit, we find the sequence of the eq
librium solutionsbifurcatesto three branches at some critic
central density. One branch consists of solutions that
identical to neutron stars in general relativity, and the ot
two consist of solutions that deviate significantly from ne
tron stars in general relativity. The general relativistic bran
is secularly unstable in agreement with the result obtained
a perturbation study@23#, while the non-general-relativistic
branches are secularly stable.

This paper is organized as follows. In Sec. II, we summ
rize the field equations of scalar-tensor theory and the eq
tions determining equilibrium solutions of neutron stars
this gravitational theory. In Sec. III, we present stability c
teria on the grounds of the turning point method. In Sec.
the stability criteria are applied to equilibrium solutions
neutron stars in scalar-tensor theory and some conseque
of catastrophe theory are discussed. Section V is devote
conclusions. We use units in whichc51. The Greek indices
run from 0 to 3. We follow the Misner-Thorne-Wheeler@24#
sign conventions for curvature quantities.

II. BASIC EQUATIONS

Here we consider a class of scalar-tensor theories
which gravity is mediated by not only a metric tensor b
also a massless scalar field. The action is given by@2#
4802 © 1998 The American Physical Society
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I 5
1

16pG*
E A2g* ~R* 22g

*
mnw ,mw ,n!d4x

1I m@Cm ,A2~w!g* mn#, ~2.1!

whereg* mn is the ‘‘Einstein’’ frame metric tensor,Cm de-
notes matter fields collectively, andG* is some dimension-
ful constant. In this Einstein frame, the Einstein-Hilbert te
is isolated from other sectors. The ‘‘Brans-Dicke’’ fram
metric tensorg̃mn is related to the Einstein frame metr
tensor by the following conformal transformation:

g̃mn5A2~w!g* mn . ~2.2!

Because of the ‘‘universal coupling,’’ which is the way o
the coupling of the scalar field in the matter sector seen
Eq. ~2.1!, a test particle moves on the geodesic of the Bra
Dicke frame metricg̃mn . For this reason the Brans-Dick
frame is often called a ‘‘physical’’ frame. The tilde denot
the physical frame quantity.

In the Einstein frame, the field equations are given by

G* mn58pG* T* mn12S w ,mw ,n2
1

2
g* mng

*
abw ,aw ,bD ,

~2.3!

h* w524pG* a~w!T* , ~2.4!

while the equations of motion for matter are

¹* nT
* m
n 5a~w!T* ¹* mw, ~2.5!

where the energy-momentum tensor of matter,T
*
mn , is de-

fined and related to the physical energy-momentum ten
T̃mn as

T
*
mn[

2

A2g*

dI m@Cm ,A2~w!g* mn#

dg* mn
5A6~w! T̃mn.

~2.6!

G* mn andh* are the Einstein tensor and d’Alembertian
g* mn , respectively.T* anda~w! are defined as

T* [T
* m
m [T

*
mng* mn , ~2.7!

a~w![
d ln A~w!

dw
. ~2.8!

The parameters in the parametrized post-Newton
framework are given by@1,2#

12gEdd5
2a0

2

11a0
2 , ~2.9!

bEdd215
b0a0

2

2~11a0
2!2 , ~2.10!

j5a15a25a350, ~2.11!

where bEdd and gEdd are the so-called Eddington param
eters. We have defined
in
s-

or

n

a0[a~w0!, ~2.12!

b0[
da

dw
~w0!, ~2.13!

and w0 is the value of the scalar fieldw in the spatial
asymptotic region. We assume that the cosmological ev
tion of the scalar field is sufficiently slow in comparison wi
the characteristic time scale of the local gravitational proc
of the isolated object considered here. From this assump
w0 is regarded as the cosmological value of the scalar fi
On the other hand, we can identify the asymptotic valuew0
to the value of the scalar field in the matching region in t
matching approach to theN-compact-body problem~see Ap-
pendix A of @2#!. Then, the solar-system experimental co
straints are@25#

gEdd50.999660.0017 ~2.14!

and @26#

4bEdd2gEdd23520.000760.0010. ~2.15!

We summarize equations for the structure of a relativis
star in scalar-tensor theory, following@15#. We restrict our-
selves to the static and spherically symmetric case. The m
ric is given in the following form:

ds
*
2 52en~r !dt21S 12

2m~r !

r D 21

dr2

1r 2~du21sin2udf2!. ~2.16!

The matter is described as a perfect fluid: i.e.,

T̃mn5~ r̃ 1 p̃ ! ũm ũn1 p̃ g̃mn . ~2.17!

Then, the following equations are obtained:

m854pG* r 2A4 r̃ 1
1

2
r ~r 22m!c2, ~2.18!

n858pG*
r 2A4 p̃

r 22m
1rc21

2m

r ~r 22m!
,

~2.19!

w85c, ~2.20!

c854pG*
rA4

r 22m
@a~ r̃ 23 p̃ !1r ~ r̃ 2 p̃ !c#

2
2~r 2m!

r ~r 22m!
c, ~2.21!

p̃852~ r̃ 1 p̃ !F4pG*
r 2A4 p̃

r 22m
1

1

2
rc2

1
m

r ~r 22m!
1a~w!cG , ~2.22!

p̃5 p̃~ r̃ !, ~2.23!
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4804 57TOMOHIRO HARADA
where the prime denotes a derivative with respect tor . We
use the polytropic equations of state:

r̃ 5 ñmb1
Kn0mb

G21
S ñ

n0
D G

, ~2.24!

p̃5Kn0mbS ñ

n0
D G

, ~2.25!

mb51.66310224 g, ~2.26!

n050.1 fm23, ~2.27!

where ñ is the baryon number density in the Brans-Dic
frame. We then take the parametersG52.34 andK50.0195
~EOS II of @15#!. Note that the total baryon number is give
by

N5E
0

r s
4p ñA3r 2S 12

2m

r D 21/2

dr. ~2.28!

Here we present the method of solving the above eq
tions and obtaining the structure of a neutron star. First
initial values of the above set of ordinary differential equ
tions are fixed as

m~0!50, n~0!50, w~0!5wc ,

c~0!50, p̃~0!5 p̃c , ~2.29!

and Eqs.~2.18!–~2.23! are integrated numerically up to th
stellar surface at whichp̃50. Thereafter the solution is
matched with the static and spherically symmet
‘‘vacuum’’ solution, where the term ‘‘vacuum’’ means onl
the absence of matter, i.e.,T̃mn50. This solution is given in
@2#. The solutions are parametrized by three parametersb, d,
andw0 . From the matching conditions at the surface, we c
obtain n(r ) including the constant term. In order to s
A(w0) to unity, we rescale the raw quantities to the ren
malized ones as follows:

r ren5A0
2r , m ren5A0

2m, n ren5n,

w ren5w, c ren5A0
22c,

w0ren5w0 , aren5A0
2a, bren5A0

2b,

dren5A0
2d, Nren5A0

3N. ~2.30!

Then, from the asymptotic properties at spatial infinity fo
static and isolated system,

g* mn5hmn1
2G* m

r ren
dmn1OS G

*
2

r ren
2 D , ~2.31!

w5w01
G* v

r ren
1OS G

*
2

r ren
2 D , ~2.32!

where hmn is the Minkowskian metric. We callm the
Arnowitt-Deser-Misner ~ADM ! energy andv the scalar
charge@2#. bren anddren are related tom andv as
a-
e
-

n

-

G* m5
bren

2
, ~2.33!

G* v52dren . ~2.34!

Hereafter the subscripts ‘‘ren’’ are omitted for simplicity.
We use units in whichG* 51.

III. STABILITY CRITERIA

In scalar-tensor theory, control parameters of the sta
spherically symmetric, and isolated neutron star are not o
the baryon numberN but also the ‘‘external field,’’ that is,
the asymptotic value of the scalar fieldw0 . For static sys-
tems, the partial derivative ofm in terms ofw0 with N con-
stant is given by@2#

S ]m

]w0
D

N

52v. ~3.1!

The energy injection of the system by increasing baryon
described as

E 4p ũ0d r̃ A3r 2S 12
2m

r D 21/2

dr

5E 4pen/2m̃d ñA4r 2S 12
2m

r D 21/2

dr, ~3.2!

wherem̃[d r̃ /d ñ is the chemical potential. The first law o
thermodynamics in an adiabatic process is

dS r̃

ñ
D 52 p̃dS 1

ñ
D . ~3.3!

From Eqs.~2.19!, ~2.20!, ~2.22!, and ~3.3!, we find that the
quantity Aen/2m̃ is constant all over the star. Therefore th
quantity can be estimated by its value at the stellar surfa
Using this fact, the expression of the energy injection, E
~3.2!, is rewritten as

Ase
ns/2m̃sE 4pA3r 2S 12

2m

r D 21/2

d ñdr5Ase
ns/2m̃sdN,

~3.4!

where the suffix ‘‘s’’ indicates that the quantity is evaluate
at the stellar surfacer 5r s . Therefore, the effective chemica
potentialme f f is given by

me f f[S ]m

]ND
w0

5Ase
ns/2m̃s . ~3.5!

From the above discussions the variation ofm for static sys-
tems in a quasistatic process is written in the following for

dm52vdw01me f fdN, ~3.6!

where by ‘‘quasistatic process’’ we mean successive chan
among the infinitesimally nearby equilibrium solutions.

Suppose that the isolated neutron star is perturbed slig
with w0 andN constant for some reason other than incide
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57 4805NEUTRON STARS IN SCALAR-TENSOR THEORIES OF . . .
waves, while spherical symmetry is preserved. Then the
going waves can carry out some positive energy to infin
and the system cannot keep its original state if there exist
energetically favorable configuration which is infinitesima
deformed from the system with the samew0 andN. There-
fore, an equilibrium solutionX is secularly stable agains
spherically symmetric~infinitesimal! perturbations if and
only if there is no momentarily static and spherically sy
metric configurationY which is arbitrarily close toX with
the samew0 andN but strictly smallerm.

In order to examine the stability of the equilibrium sol
tion, we follow the turning point method@17–20#. In the
present problem,m is a potential function, since the equilib
rium solution is a stationary point ofm (dm50) and the
stable equilibrium solution is a minimal point ofm ~dm50
and d2m.0!. The asymptotic value of the scalar fieldw0
and baryon numberN form a two-dimensional control space
The equilibrium solutions are uniquely parametrized by t
parameters, i.e., the central value of the scalar field,wc , and
the central total baryonic density,r̃ c .

We adopt the following stability criteria@20#:
~i! The stability ofX(wc , r̃ c) can change typically only a

a ‘‘turning point.’’ Here the ‘‘turning point’’ (wc
0 , r̃ c

0) is a

point where there exists a nontrivial vector (dwc ,d r̃ c) such
that

dw05S ]w0

]wc
D

r̃ c

dwc1S ]w0

] r̃ c
D

wc

d r̃ c50, ~3.7!

dN5S ]N

]wc
D

r̃ c

dwc1S ]N

] r̃ c
D

wc

d r̃ c50.

~3.8!

From Eqs.~3.7! and ~3.8!,

]~w0 ,N!

]~wc , r̃ c!
50 ~3.9!

at the turning point. Therefore the change of stability can
detected as envelopes of a family of curvesr̃ c5const in the
(w0 ,N) plane. Of course, this is also true for a family
curveswc5const.

~ii ! In order to specify an unstable branch at the turn
point, we draw the sequence of equilibrium solutions in
(w0 ,v) plane, maintainingN constant. Then, as one pro
ceeds along the curve in a counterclockwise direction
branch beyond the turning point is unstable. This is also
case with the curve (N,2me f f) with w0 constant. This is a
direct consequence of theorem I of@20#.

Here we describe the meaning of criterion~i! in the con-
text of catastrophe theory. We regard the ADM energym as
a function of three variablesw0 , N, andv. We takev as a
state variable. We consider an equilibrium space
t-
y
an

-

e

g
e

a
e

Mm5H ~w0 ,N,v!US ]m

]v D
w0 ,N

50J ~3.10!

and a control space

R25$~w0 ,N!%. ~3.11!

We define a catastrophe map

xm :Mm→R2,

~w0 ,N,v!°~w0 ,N!. ~3.12!

A point PPMm is called a singular point ofxm if the Jaco-
bian ofxm vanishes atP. A point QPR2 is called a singular
value if there is at least one singular point inxm

21(Q). A
bifurcation setBm,R2 is a set of singular values. At a sin
gular pointPPMm , a vector normal to the tangent space
Mm , which is

XS ]2m

]w0]v D
N,v

,S ]2m

]N]v D
v,w0

,S ]2m

]v2D
w0 ,N

C, ~3.13!

is parallel to thew0N plane. Therefore, the set of singula
points,Sm,Mm , satisfies

Sm5H ~w0 ,N,v!US ]m

]v D
w0 ,N

5S ]2m

]v2D
w0 ,N

50J ,

~3.14!

and the bifurcation setBm,R2 satisfies

Bm5H ~w0 ,N!US ]m

]v D
w0 ,N

5S ]2m

]v2D
w0 ,N

50J . ~3.15!

The envelopes of the family of the curvesr̃ c5const in the
(w0 ,N) plane form a bifurcation setBm of the catastrophe
mapxm because the Jacobian ofxm vanishes at points on th
envelopes. Criterion~i! says that a sequence of the equili
rium solutions can change its stability only at the points
the bifurcation set.

From criteria~i! and ~ii !, we examine the stability of the
equilibrium solutions of neutron stars in scalar-tensor theo
From the turning point method alone, however, we can
say that an equilibrium solution isstable. Therefore the sta-
bility of an equilibrium solution must be investigated by pe
turbation studyonce for all. For this purpose, we examin
the case in whicha(w0)50 andm/r s is sufficiently small
( r̃ c is sufficiently small!. In this case, there is an equilibrium
solution that is identical to that in general relativity. For th
solution, the second-order variation ofm by regular, adia-
batic, time-symmetric, and spherically symmetric perturb
tions with w0 andN constant is
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d2m5general relativistic terms

1
1

2 E
0

`

dre2n/2S 12
2m

r D 21/2

3zF2
d2

dr
*
2 1V~r !Gz, ~3.16!

where

z[rdw, ~3.17!

dr* [en/2S 12
2m

r D 1/2

dr, ~3.18!

V~r ![
1

r S 12
2m

r D Fn8

2
2

m8r 2m

r ~r 22m!Gen

24pb0~2 r̃ 13 p̃ !en, ~3.19!

and see Appendix B of@27# for the general relativistic terms
The general relativistic part is positive definite ifG.Gc , and
Gc→4/3 in the Newtonian limit@28#. The second term is
positive definite because the eigenvalues of the opera
2d2/dr

*
2 1V, are all positive for an arbitrary coupling func

tion A(w) if m/r s is sufficiently small, which has bee
shown in@23#. Therefore, the general relativistic equilibriu
solution in which the central density is sufficiently small
stable for the casea(w0)50 if G.Gc.4/3.

IV. RESULTS

Hereafter we restrict our attention to the coupling functi
of the quadratic form

A~w!5expS 1

2
bw2D . ~4.1!

For this model, the solar-system experiments constrain
present cosmological value of the scalar field through E
~2.14! and ~2.15! as

uw0u&0.032ubu21 ~4.2!

and

uw0u&H 0.012~11b!21/2ubu21 for b.21,

0.029u11bu21/2ubu21 for b,21,
~4.3!

respectively. In particular, ifw050, the post-Newtonian
limit of this theory agrees completely with that of gene
relativity becausea(w0)50.

A. b*24.35 case

We present here the results of the caseb524, but the
features are basically common to the caseb*24.35. Figure
1 shows r̃ c5const curves in the (w0 ,N) plane, where the
equilibrium solutions have been determined in the man
described in Sec. II. At a point on an envelope of the fam
of the curves seen in Fig. 1, the stability of the sequence
equilibrium solutions changes. Figure 2 shows the cur
r,

e
s.

l

r

of
s

(w0 ,v) with N constant. In Fig. 2, the solid lines deno
stable branches while the dotted lines denote unsta
branches, where stability criteria~i! and ~ii ! are applied.
Therefore, in region~A! in Fig. 1, only one stable equilib
rium solution exists. Forw050, this stable solution is iden
tical to that of general relativity. In region~B! in Fig. 1,
however, no stable solution exists. This is classified as
fold catastrophe in which the control space is two dime
sional. This catastrophe is elementary and structurally sta
Hence it is expected that this catastrophe structure is
changed by adding small higher-order terms to the expon
of the coupling function~4.1!. The potential functionm is
written locally around pointp(w0p ,Np) on the envelope~see
Fig. 1! as, forw0p.0,

m5
A

3
~v2vp!31@B~w0p2w0!1B8~N2Np!#~v2vp!

1mp , ~4.4!

FIG. 1. A family of curves ofr̃ c5const in the (w0 ,N) plane for
the b524 case. The ordinate ismbN in place of the baryon num-
ber N. In region ~A!, only one stable equilibrium exists, while, i
region~B!, no stable equilibrium exists. At a point on the envelo
of the family of the curves, the fold catastrophe occurs.

FIG. 2. Curves (w0 ,v) with N constant for theb524 case.
The number attached to each curve ismbN in solar mass units. The
solid lines denote stable branches and the dotted lines denote
stable branches.
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whereA, B, andB8 are some positive constants. Then t
terms in the square brackets cancel out on the envelope
are negative in region~A! and positive in region~B!. For
w0p,0, replace v2vp and w0p2w0 with vp2v and
w02w0p , respectively. For simplicity, we describe the b
havior of the scalar charge for the casew0p.0. From Eq.
~4.4!, near pointp, the scalar charge is given by the roots
the following quadratic equation:

S ]m

]v D
w0 ,N

5A~v2vp!21@B~w0p2w0!1B8~N2Np!#50.

~4.5!

The scalar charge is then given near pointp in region~A! by

v5vp6A21/2@B~w02w0p!1B8~Np2N!#1/2, ~4.6!

where the upper sign denotes the stable branch and the l
denotes the unstable one. If a quadratic term in (v2vp) was
involved in Eq. ~4.4!, the number of roots of the equatio
]m/]v50 did not change at pointp. That is why Eq.~4.4!
does not contain the quadratic term. The ‘‘scalar suscept
ity’’ xw is given near pointp by

xw[S ]v

]w0
D

N

56
1

2
A21/2B@B~w02w0p!1B8~Np2N!#21/2.

~4.7!

The bifurcation setBm,R2, which is the envelope seen i
Fig. 1, is given by

S ]m

]v D
w0 ,N

5A~v2vp!21@B~w0p2w0!1B8~N2Np!#50,

~4.8!

S ]2m

]v2D
w0 ,N

52A~v2vp!50, ~4.9!

i.e.,

w05
B8

B
~N2Np!1w0p , ~4.10!

near pointp. This fold catastrophe appears also in gene
relativity in whichA(w)51 identically. In general relativity,
because of the absence of a gravitational scalar field,
control space is one dimensional. Forb524, the maximum
ADM energy is greater than the general relativistic one
w0Þ0. This is because, due to the presence of the sc
field, the effective gravitational constant becomes sma
and thereby gravity becomes weaker than in general rela
ity.

B. b&24.35 case

This case is more interesting than the above case.
present the results of the caseb526. Figure 3 shows
r̃ c5const curves in the (w0 ,N) plane. This figure is very
different from Fig. 1. On the envelope of the family o
curves,e8dcbab8c8de, the sequence of equilibrium solu
tions changes its stability. Although there are other en
nd

f

er

il-

l

he

r
lar
r

v-

e

-

lopes in region~B!, they have nothing to do with the chang
of the number of stable equilibrium solutions. Figure
shows curves (w0 ,v) with N constant. From criteria~i! and
~ii !, the number of stable equilibrium solutions is as follow
In region~A!, only one stable equilibrium solution exists. I
region ~B!, two distinct stable equilibrium solutions exis
Surprisingly, these stable equilibrium solutions are differe
even forw050 from their counterparts in general relativity
For w050, the unstable solution agrees with the stable so
tion in general relativity. One of the two stable equilibriu
solutions disappears on envelopedcbab8c8d. In region~C!,
no stable equilibrium solution exists. Pointa is a bifurcation
point for w050. This is seen in Fig. 5, which displays th
curves (r̃ c ,m) and (r̃ c ,N) for w050, where the solid lines
denote stable branches and the dotted lines denote uns
branches. In this figure, two stable branches are degene
because, forw050, two stable equilibrium solutions ar
identical except for the sign of the scalar field. The equil
rium solution of the bifurcated stable branches is more co
pact for smaller mass but less compact for larger mass

FIG. 3. Same as Fig. 1, but for theb526 case. In region~A!,
only one stable equilibrium solution exists. In region~B!, two dis-
tinct stable equilibrium solutions exist. In region~C!, no stable so-
lution exists. Pointa is a cusp point. At pointa, the cusp catastro-
phe occurs, while the fold catastrophe occurs at a point on
envelopes except fora.

FIG. 4. Same as Fig. 2, but for theb526 case.
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the general relativistic sequence. Figure 6 shows the equ
rium spaceMm near pointa. This type of catastrophe a
point a is classified as the cusp catastrophe in which
control space is two dimensional. The mapxm is a cusp
catastrophe map. This catastrophe is elementary and stru
ally stable, which suggests that this structure is stable aga

FIG. 5. ~a! ( r̃ c ,m) and ~b! ( r̃ c ,N) curves with w050 for
b526. The solid lines denote stable branches, while the do
lines denote unstable branches. The two distinct bifurcated bran
are degenerate because they have identical ADM energies
baryon numbers but scalar fields of the opposite sign. The num
of stable equilibrium solutions changes as 1, 2, 0 asN increases.

FIG. 6. Equilibrium spaceMm in the (w0 ,N,v) space around
cusp pointa for the b526 case. This structure of the equilibrium
space is classified as the cusp catastrophe.
b-

e

ur-
st

adding small higher-order terms to the exponent of the c
pling function ~4.1!. Pointa is called a cusp point.

We restrict our attention to cusp pointa(0,Na).
(mbNa.1.24M ( for b526.! The potential functionm is
written around cusp pointa as

m5
C

4
v42

D~N2Na!

2
v22w0v1ma , ~4.11!

whereC andD are some positive constants. The reason w
the coefficient ofw0v is determined is that Eq.~3.1! holds.
This form of expansion agrees with the usual Landau an
for a second-order phase transition, which has been use
explain spontaneous scalarization by Damour and Espo
Farèse @16#. The scalar charge is given by the roots of t
following cubic equation:

S ]m

]v D
w0 ,N

5Cv32D~N2Na!v2w050. ~4.12!

From Eq.~4.12!, near cusp pointa, the scalar charge is give
by

v50, ~4.13!

for N,Na with w050. This is a stable branch. ForN.Na
with w050,

v5H 6S D

CD 1/2

~N2Na!1/2 for the stable branches,

0 for the unstable branch.
~4.14!

At point a the stable equilibrium solution changescontinu-
ously, but its derivative with respect toN is discontinuous. If
Eq. ~4.11! involved a cubic term inv, the number of roots of
the equation]m/]v50 did change at pointa. But this ca-
tastrophe was classified as the fold type and therefore th
not the case for pointa because of the shape of the bifurc
tion set seen in Fig. 3. That is why Eq.~4.11! does not
contain the cubic term. We also note that, for the case
two-dimensional control space, the structurally stable ca
trophe is classified as either the fold or cusp type by Thom
theorem. Therefore, at pointa, a second-order phase trans
tion occurs. If we fixN to Na ,

v5C21/3w0
1/3. ~4.15!

This is stable. From Eqs.~4.12!–~4.14!, with w050 near
point a, it is derived that the scalar susceptibilityxw is given
by

xw5H D21~Na2N!21 for N,Na ,

1

2
D21~N2Na!21 for N.Na .

~4.16!

Near pointa in region~A! in Fig. 3, only one real root of the
cubic equation~4.12! corresponds to the stable equilibriu
solution, while, in region~B!, the smallest and largest roo
of three real roots correspond to the stable equilibrium so
tions and the intermediate root corresponds to the unst

d
es
nd
er
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one. If w0.0, the largest root corresponds to the globa
stable one. Ifw0,0, the smallest root corresponds to t
globally stable one. Ifw050, the two stable equilibrium so
lutions have identical ADM energies. The bifurcation s
Bm , which is the envelopeb8ab, is given by

S ]m

]v D
w0 ,N

5Cv32D~N2Na!v2w050, ~4.17!

S ]2m

]v2D
w0 ,N

53Cv22D~N2Na!50, ~4.18!

i.e.,

w056S 4D3

27CD 1/2

~N2Na!3/2, ~4.19!

near pointa. The cusp catastrophe has been named after
shape. On envelopedcbab8c8d except for pointsa and d,
one of the two distinct stable equilibrium solutions, the
cally but not globally stable one, disappears, and henc
first-order phase transition occurs if the system obeys a
fect delay convention. On envelopeede8, the stable equilib-
rium solution disappears. The catastrophic feature on the
velopes except for pointa is the fold catastrophe describe
in the last subsection. Pointd is not a cusp point but the
intersection of two folds.

We should comment that, for the near critical ca
24.9&b&24.35, the behavior of the stable equilibrium s
lutions around the point of the maximum baryon number
somewhat complicated, although the structure of the c
catastrophe at cusp pointa is not changed. Figures 7 and
show the curves (r̃ c ,N) with w050, for b524.5 and
24.85, respectively. For24.8&b&24.35, the number of
stable equilibrium solutions changes as 1, 2~degenerate in
Fig. 7!, 3, 1, 0 as the control parameterN is increased con-
tinuously, as is seen in Fig. 7. For24.8&b&24.9, the
number of stable equilibrium solutions changes as 1, 2~de-
generate in Fig. 8!, 3, 2, 0 asN is increased continuously, a
is seen in Fig. 8. Forb&24.6 the maximum ADM energy
with w050 is greater than that in general relativity, whil
for b*24.6, it is the same as that in general relativity.

The Kepler mass, which governs the Newtonian orb
motion of a test body, is not the ADM energym in general,
but @2#

m̃5
11a0aA

11a0
2 m, ~4.20!

where

aA[
] ln m

]w
52

v

m
. ~4.21!

When we consider the case ofa05bw050, the Kepler mass
is identical to the ADM energy. Therefore the argume
above forw050 is also valid for the Kepler mass.

Here we present the physical interpretation as to w
spontaneous scalarization occurs. In spite of the absenc
t

is

-
a
r-

n-

e

s
p

l

t

y
of

the potential in the Lagrangian, the scalar fieldw obtains an
effective potential termW(w) which satisfies

]W

]w
524pa~w!T* ~4.22!

because of the coupling with matter. Note thatT* depends
on w. Then, if we considerA(w) of the form ~4.1!,

]V

]w
524pbwT* , ~4.23!

and if T* 5A4(2 r̃ 13 p̃) is negative,w50 is an unstable
stationary point of the effective potential, ifb,0. On the
other hand, the term from the spatial derivative in Eq.~2.4!
has a contribution to stabilize the solution. By these t
competing effects, the stability of the trivial configuratio
w50 against spontaneous scalarization is governed. F
detailed analysis of the stability of the trivial configuratio
see@23#.

If spontaneous scalarization occurs, the effective grav
tional constant, which isA2(w)5exp(bw2) in the sense of
the inverse of the Brans-Dicke scalar field, becomes con
erably smaller than unity. Thereby the gravitation becom
weaker and a considerably larger mass than in general
tivity can be supported by the lower matter pressure than
general relativity.

V. SUMMARY AND DISCUSSIONS

The behavior of the equilibrium solutions of neutron sta
in scalar-tensor theories of gravitation shows a catastrop
feature, which is characterized by a discontinuous chang
the system. When we consider a functionA(w) of the form

A(w)5exp(12bw2), the catastrophe types are classified as f
and cusp catastrophes. The appearance of the cusp cat
phe depends on whetherb*24.35 orb&24.35. From the
fact that those types of catastrophes are structurally stab
is expected that they would be seen in a wide class of c
pling functions.

For b*24.35, the fold catastrophe on the two

FIG. 7. Same as Fig. 5~b!, but for b524.5. The number of
stable equilibrium solutions changes as 1, 2, 3, 1, 0 asN increases.
Two solutions are degenerate on the non-general-relativ
branches.
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dimensional control space does occur. The critical bar
number and critical ADM energy depend onw0 . For a
baryon number smaller than the critical one, one stable e
librium solution exists, while, for a baryon number larg
than the critical one, no stable equilibrium solution exists.
particular, forw050, the stable equilibrium solution is com
pletely identical to that in general relativity. The behavior
the scalar charge and scalar susceptibility near the cri
baryon number is explained by the form of the poten
function of the fold catastrophe.

For b&24.35, the cusp catastrophe does occur while
fold catastrophe also occurs. Forb&24.9, there is some
critical value of the scalar field,w0

crit.0. If uw0u.w0
crit ,

there is only one critical numberNcrit1 that depends onw0 .
For N,Ncrit1, one stable equilibrium solution exists, whil
for N.Ncrit1, no stable equilibrium solution exists.
0,uw0u,w0

crit , there are three critical baryon numbe
Ncrit1.Ncrit2.Ncrit3. For N,Ncrit3 or Ncrit2,N,Ncrit1,
only one stable equilibrium solution exists. F
Ncrit3,N,Ncrit2, two distinct stable equilibrium solution
exist and they do not agree with those in general relativ
even for the limit w0→0. The almost general relativisti
branch is unstable forN.Ncrit2. For N.Ncrit1, however,
no stable equilibrium solution exists. Ifw050, the sequence
of equilibrium solutions of neutron stars bifurcates at a po
Beyond this point, the general relativistic branch becom
unstable and another two~degenerate! sequences of equilib
rium solutions far from the general relativistic one are stab
This bifurcation point is a cusp point, and the behavior of
scalar charge and scalar susceptibility near the cusp poi
explained by the form of the potential function of the cu
catastrophe. At a point on the envelopes other than the c
point, the fold catastrophe occurs. Since the critical bar
numbersNcrit1 andNcrit2 agree, the number of stable equ
librium solutions is 1 for N,Ncrit3, 2 for
Ncrit3,N,Ncrit25Ncrit1, and 0 for Ncrit25Ncrit1,N. It
should be noticed that, for the near critical ca
24.9&b&24.35, the structure of the cusp catastrophe d
appear although the behavior becomes somewhat more

FIG. 8. Same as Fig. 5~b!, but for b524.85. The number of
stable equilibrium solutions changes as 1, 2, 3, 2, 0 asN increases.
Two solutions are degenerate on the non-general-relativ
branches.
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plicated around the maximum baryon number forw0.0.
This complicated feature agrees with the fact that the crit
mass against zero-mode instability is not a monotonic fu
tion with respect tob, which is seen in Table I of@23#.

Here we comment on the continuous change of
asymptotic value of the scalar fieldw0 . If we identify w0

with the cosmological value of the scalar field, the evoluti
of w0 can be described by the equation of motion~2.4! in the
Friedmann-Robertson-Walker universe. On the other han
we identifyw0 with the value of the scalar field at the matc
ing region in the N-compact-body problem,w0 should
evolve due to the change of the density distribution arou
the neutron star. If the time scale of the variation ofw0 is
sufficiently longer than that of the local gravitational ph
nomena, such as the scalar gravitational wave radiation,
process due to the change ofw0 can be regarded as quas
static. Through the cosmological evolution of the scalar fi
w0 , the neutron stars may collapse and radiate a scalar g
tational wave.

We also comment on the continuous change ofN, which
may be a result of a mass accretion onto the neutron sta
the baryon number of the neutron star exceeds the maxim
value, the neutron star collapses and scalar gravitatio
waves are radiated and this is a candidate for the sourc
the scalar gravitational waves@12–14#. In a theory like the
one of Fig. 7, there is a stable general relativistic neutron
that has the same baryon number and ADM energy wit
numerical accuracy as the maximum-mass non-gene
relativistic neutron star has. Then, the transition of the n
general-relativistic neutron star to the general relativistic o
due to a mass accretion occurs without any energy ext
tion.

Scalar-tensor theories of gravity naturally arise from t
low-energy limit of string theory or other unified theorie
For the moment, however, it is not clear how the scalar fie
should couple to gravity~but see@29#!. Experimental tests
such as binary pulsar timing observations, may constrain
way of coupling between the scalar fields and gravity.
particular, as for the case in which the single, massless sc
field couples to gravity with the coupling functio
A(w)5exp@(1/2)bw2#, Damour and Esposito-Fare`se @16#
obtained the constraint onb as b*25, using the data of
three binary pulsars. They showed that the occurrence
spontaneous scalarization makes it very difficult for t
theory to maintain consistency with the results of binary p
sar timing experiments. The results obtained in this pa
show that spontaneous scalarization is not an exceptiona
robust phenomenon for the neutron star and common
wide range of coupling functions. Gravitational experimen
with high-precision and/or in a strong-field regime and gra
tational wave observations may have the potential to c
strain the way of coupling of the gravitational scalar fiel
and thereby we may catch a glimpse of string-scale phys
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