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Neutron stars in scalar-tensor theories of gravity and catastrophe theory
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We investigate neutron stars in scalar-tensor theories. We examine their secular stability against spherically
symmetric perturbations by use of a turning point method. For some choices of the coupling function contained
in the theories, the number of the stable equilibrium solutions changes and the realized equilibrium solution
may change discontinuously as the asymptotic value of the scalar field or total baryon number is changed
continuously. The behavior of the stable equilibrium solutions is explained by fold and cusp catastrophes.
Whether or not the cusp catastrophe appears depends on the choice of the coupling function. These types of
catastrophes are structurally stable. Recently discovered spontaneous scalarization, which is a nonperturbative
strong-field phenomenon due to the presence of the gravitational scalar field, is well described in terms of the
cusp catastroph¢S0556-282(198)02208-5

PACS numbg(s): 04.40.Dg, 04.50th, 05.70.Fh, 97.60.Jd

[. INTRODUCTION trophe theory in the case of one-dimensional control space
was done if21,27. Catastrophe types of neutron stars are
Scalar-tensor theoriefl,2] are among the generalized classified as fold and cusp catastrophes. The occurrence of
theories of gravitation. Brans-Dicke thedtd] is a member the cusp catastrophe depends on the choice of the coupling
of the scalar-tensor theories. Scalar-tensor theories have rinction. Spontaneous scalarization is classified as the cusp
cently attracted the attention of many researchers. One of theatastrophe. From this catastrophic feature, we conclude that
reasons is that the unified theories that contain gravity athe stable configuration of the neutron star may change dis-
well as other interactions, such as string theerly naturally continuously as the baryon number of the star or the
predict the existence of scalar fields that relate to gravity. Ilasymptotic value of the scalar field changes continuously.
the hyperextended inflation modd)], scalar-tensor theories The behavior of the scalar charge around the cusp point is
of gravity play an essential role. Moreover, projects of |a$erexp|ained by catastrophe theory. For the coupling function
interfe_rometric_gravitational wave qbservatic{ﬁsrg] will be considered here, when the asymptotic value of the scalar
soon in practical use, so that high-accuracy tests of thge|q is such that the theory agrees with general relativity in
scalar-tensor theories may be expedtea-14. the post-Newtonian limit, we find the sequence of the equi-

Scalar-j[ensor theories are V|abl'e theqneg of gravity fF)rlibrium solutionsbifurcatesto three branches at some critical
some choices of the coupling function which is contained in

. . L ' 8entral density. One branch consists of solutions that are
the theories. Predictions of these theories in a strong ﬂelldentical to neutron stars in general relativity, and the other
may be drastically different from those of general relativity.t it of soluti th tgd ate sianifi Y v f
Recently, Damour and Esposito-Fsed 15,16 discovered WO consist of solutions that deviate signiticantly from neu-

one example of such phenomena. They showed that fdfon stars in general relativity. The general relativistic branch
some choices of the coupling function, the configuration of d4S secularly unstable in agreement with the result obtained by

massive neutron star deviates significantly from that in gen@ Perturbation study23], while the non-general-relativistic
eral relativity, even if the post-Newtonian limit of the theory branches are secularly stable.

is extremely close to or even agrees with that of general This paper is organized as follows. In Sec. II, we summa-
relativity. This deviation in a strong field may be easily rize the field equations of scalar-tensor theory and the equa-
tested from binary-pulsar timing observations, if it exists,tions determining equilibrium solutions of neutron stars in
because of the extra energy loss by scalar gravitational rdhis gravitational theory. In Sec. Ill, we present stability cri-
diation[16]. The deviation from general relativity can be no teria on the grounds of the turning point method. In Sec. 1V,
longer dealt with as a perturbative effect from general relathe stability criteria are applied to equilibrium solutions of
tivity. Damour and Esposito-Fase referred to this nonper- neutron stars in scalar-tensor theory and some consequences
turbative strong-field effect as “spontaneous scalarization”of catastrophe theory are discussed. Section V is devoted to
in analogy to the spontaneous magnetization of the ferroconclusions. We use units in which=1. The Greek indices

magnets. run from 0 to 3. We follow the Misner-Thorne-Whee[@#4]
In this paper, we investigate spontaneous scalarization igjgn conventions for curvature quantities.

detail with the technique of catastrophe theory. A many-

parameter version of the turning point methdd—2Q is

used as a tool of a stability analysis of equilibria. The stabil- Il. BASIC EQUATIONS

ity analysis of boson stars in scalar-tensor gravity via catas- '
Here we consider a class of scalar-tensor theories in

which gravity is mediated by not only a metric tensor but

*Email address: harada@tap.scphys.kyoto-u.ac.jp also a massless scalar field. The action is givenZy
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’1’ = a(¢o), (2.12
! 167G, J 9x (Ry 29¢V¢,M§D,V)d4x &o ad ®o

I A (@ 64
lm[ " 2( )g*uv]! (21) Bo d(p((PO)! (213

whereg, ,, is the “Einstein” frame metric tensolV', de- g ¢ is the value of the scalar fielg in the spatial
notes matter fields collectively, ar@, is some dimension-  5symptotic region. We assume that the cosmological evolu-
ful constant. In this Einstein frame, the Einstein-Hilbert termy;on of the scalar field is sufficiently slow in comparison with
is isolated from other sectors. The “Brans-Dicke” frame tne characteristic time scale of the local gravitational process
metric tensorg,,, is related to the Einstein frame metric of the isolated object considered here. From this assumption

tensor by the following conformal transformation: ®g is regarded as the cosmological value of the scalar field.
_ On the other hand, we can identify the asymptotic vatyge
9 =A%(P) s - (2.2 to the value of the scalar field in the matching region in the

matching approach to thé-compact-body problertsee Ap-

Because of the “universal coupling,” which is the way of pendix A of[2]). Then, the solar-system experimental con-
the coupling of the scalar field in the matter sector seen irki zints arg25]

Eqg.(2.1), a test particle moves on the geodesic of the Brans-

Dicke frame metricg,,. For this reason the Brans-Dicke Yedd= 0.99960.0017 (2.14
frame is often called a “physical” frame. The tilde denotes

the physical frame quantity. and[26]

In the Einstein frame, the field equations are given by ap y 3= —0.0007-0.0010 2.19
Edd— YEdd— o= —U. =U. . .

1 . . R

Gy u»=87G, Ty 1 +2| @ ,0.,— Eg*wgfﬁ"",a‘#’,ﬁ , We summarize equations for thg structure of a.relat|V|st|c

star in scalar-tensor theory, followind5]. We restrict our-
(23 selves to the static and spherically symmetric case. The met-

ric is given in the following form:

O, ¢=—47G, ()T, , (2.9 ? ?

. . . 2,LL(I’) -1

while the equations of motion for matter are ds? =—e"dt?+| 1—- —=| dr?
r
Vi Ten= (@) T Vi po, (2.9

+r2(d6?+sirfod¢?). (2.1

-
v_vhere the energy momentum_tensor of matlef, , is de The matter is described as a perfect fluid: i.e.,
fined and related to the physical energy-momentum tensor

THY as

T=(p+P)UU,+ DT, (2.17
i 2 AP Al 6 =, Then, the following equations are obtained:
TE'= 5 =A°(p)TH",
V=04 g*p,v 1
(2.6 p'=4mG, A% + Sr(r—2u) 2, (219
G, ., and, are the Einstein tensor and d’Alembertian of
Oy uv respectivelyT, anda(e) are defined as r2A%p 2u
V’=87TG*T+I’¢2+ _—2,
T =T =T G 2.7 r=2u rr=2u) (2.19
dinA
a(p)= d—w). (2.9 ' =1, (2.20
¢
. . : rAt
The parameters in the parametrized post-Newtonian '=47G, ——[a(p—-3p)+r(p—p)
framework are given by1,2] v * f—ZM[ p=3p)trip=p)y]
2(r—p)
2a4 - 2.2
1—7’Edd:mg, 2.9 r(r—2w) " (2.21
2A4'5 1
Boe B=—(p4p)|amc, P Sy
BEdd_lzz(:I_—+a())rz- (2.10 P (p+p) *r—2u 2 v
73
=a;=a,=a3=0, 2.1 " .
(== ar=as (2.1 +r(r—2,u)+a((’o)¢’ (2.22

where Beqq and yeqq are the so-called Eddington param- o
eters. We have defined p=p(p), (2.23
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where the prime denotes a derivative with respeat.tdve Bren
use the polytropic equations of state: GC,m=—-, (2.33
Knemy (1 \|"
;z'ﬁmb_FLb —1 (2.24 G,0=—0gp- (2.39
I'-1 \ng
Hereafter the subscriptsrén” are omitted for simplicity.
_ A We use units in whictG, =1.
p=Knem, nl (2.25
0 lll. STABILITY CRITERIA
_ —24
m,=1.66<10""g, (2.26 In scalar-tensor theory, control parameters of the static,
No=0.1 fm 3, 2.27 spherically symmetric, and isolated neutron star are not only

the baryon numbeN but also the “external field,” that is,
the asymptotic value of the scalar fiedg). For static sys-
tems, the partial derivative of in terms ofpg with N con-
stant is given byf2]

wheren is the baryon number density in the Brans-Dicke
frame. We then take the parametérs 2.34 andK =0.0195
(EOS Il of [15]). Note that the total baryon number is given

— =—w. 3.1
ZM B (9900 N © ( )

e 1/2
sz 47TnA3r2(1—T) dr. (2.28
0 The energy injection of the system by increasing baryons is

Here we present the method of solving the above equadescribed as
tions and obtaining the structure of a neutron star. First the

-12
initial values of the above set of ordinary differential equa- J' 47711'0575A3r2( 1— _'““) dr
tions are fixed as
2 -1/2
n(0)=0, »(0)=0, ¢(0)=¢c, :J 477eV’2’;LsﬁA4r2( 1- TM) dr, (3.2
$(0)=0, p(0)=p, (229

wherex=dp/dn is the chemical potential. The first law of
and Eqs.(2.18—(2.23 are integrated numerically up to the thermodynamics in an adiabatic process is
stellar surface at whiclp=0. Thereafter the solution is _
matched with the static and spherically symmetric P
“vacuum” solution, where the term “vacuum” means only d Y
the absence of matter, i.&,w:O. This solution is given in
[2]. The solutions are parametrized by three paraméteds From Egs.(2.19, (2.20, (2.22, and(3.3), we find that the
andeg. From the matching conditions at the surface, we camjuantity Ae”?x is constant all over the star. Therefore this
obtain »(r) including the constant term. In order to set quantity can be estimated by its value at the stellar surface.
A(¢o) to unity, we rescale the raw quantities to the renor-Using this fact, the expression of the energy injection, Eq.

- (1
=—pd(:). 3.3
n

malized ones as follows: (3.2, is rewritten as
Fren=A, tren=A%L, Vien="V, 2u\ 7Y%
ren 0 ren 0 ren ASeVS/Z;LSJ 47TA3r2( 1— TM) 5ndr:ASeVs/2:L55N,
Pren= ¢ ’pren:Aazw- (3.9
Poren=®0:  Bren=A32, Dbren=Adb, where the suffix ‘§” indicates that the quantity is evaluated
) . at the stellar surface=rg. Therefore, the effective chemical
dren:Aody Nren:AoN- (23() potential,ueff is given by
Then, from the asymptotic properties at spatial infinity for a am S
static and isolated system, mett=| o | TALT U (3.9
%0
2G,m . _ - .
O pov=Nurt - 8,0l =1, (2.31) From the above discussions the variatiomofor static sys-
ren Fren tems in a quasistatic process is written in the following form:
G,w G2 - _
QD:(PO+ * +0 %) ’ (232 om w5@0+ﬂeff5N, (36)
lren Men

where by “quasistatic process” we mean successive changes
where 7, is the Minkowskian metric. We calm the among the infinitesimally nearby equilibrium solutions.
Arnowitt-Deser-Misner (ADM) energy andw the scalar Suppose that the isolated neutron star is perturbed slightly
charge[2]. b,e, andd,.,, are related tan and w as with ¢ andN constant for some reason other than incident
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waves, while spherical symmetry is preserved. Then the out-

going waves can carry out some positive energy to infinity M=
and the system cannot keep its original state if there exists an

energetically favorable configuration which is infinitesimally

deformed from the system with the samg andN. There-  and a control space
fore, an equilibrium solutionX is secularly stable against

spherically symmetric(infinitesima) perturbations if and

Jm

(¢0,N,) (%) =0] (3.10
®o:N

2_
only if there is no momentarily static and spherically sym- R*={(¢0,N)}. (3.11
metric configurationY which is arbitrarily close toX with
the samep, andN but strictly smallem. We define a catastrophe map
In order to examine the stability of the equilibrium solu-
tion, we follow the turning point methofll7—-24. In the Ym:Mp—R2,

present problemm is a potential function, since the equilib-

rium solution is a stationary point ah (ém=0) and the

stable equilibrium solution is a minimal point ai (Sm=0 (¢0,N,0)—=(¢q,N). (3.12

and 6°m>0). The asymptotic value of the scalar fielg),

and baryon numbeX form a two-dimensional control space. A point Pe M,, is called a singular point of,, if the Jaco-

The equilibrium solutions are uniquely parametrized by twopjgn of x,, vanishes aP. A pointQ e R? is called a singular

parameters, i.e., the central valtie of the scalar figld,and  \51ue if there is at least one singular point)mjl(Q). A

the central total baryonic densitg,. . bifurcation setB,,CR? is a set of singular values. At a sin-
We adopt the following stability criterig20]: gular pointP e M,,, a vector normal to the tangent space of
(i) The stability ofX(¢,,pc) can change typically only at M, which is

a “turning point.” Here the “turning point” (¢2,p2) is a

point where there exists a nontrivial vectatd,,5p.) such (( 4°m ) ( azm) (azm) ) (3.13
1 1 _2 ) .
that dpodw ) "\ INJw 0.0y dw eoN
[ deo dpg ~ is parallel to thepgN plane. Therefore, the set of singular
Po= Ie)~ Pc i 5pc=0, (3.7 points,3,CM,,, satisfies
p C (pc
o L e T
= ®o, N, YN =72 = ’
SN (&N) St aN) 5p ’ "leon 7 g
Iec) 5 “ \dp, . ¢ (3.19
(3.9 . . P
and the bifurcation séB,,C R~ satisfies
From Egs.(3.7) and(3.8), am m
Bm=1{ (¢0,N) ™ =702 =0!. (3.1H
®g:N ¢g:N
d(¢g,N
(L_,)zo (3.9 _ _ _
e pe) The envelopes of the family of the curves=const in the

(¢0,N) plane form a bifurcation seB,, of the catastrophe
map x, because the Jacobian pf, vanishes at points on the
at the turning point. Therefore the change of stability can beenvelopes. Criteriotii) says that a sequence of the equilib-
detected as envelopes of a family of curyes=const in the ~ rium solutions can change its stability only at the points of
(¢0,N) plane. Of course, this is also true for a family of the bifurcation set.
CUrVes @, = const. From criteria(i) and (ii), we examine the stability of the
(i) In order to specify an unstable branch at the turninggquilibrium solutions of neutron stars in scalar-tensor theory.
point, we draw the sequence of equilibrium solutions in theFrom the turning point method alone, however, we cannot
(¢o,w) plane, maintaining\ constant. Then, as one pro- Say that an equilibrium solution stable Therefore the sta-
ceeds along the curve in a counterclockwise direction, &ility of an equilibrium solution must be investigated by per-
branch beyond the turning point is unstable. This is also théurbation studyonce for all For this purpose, we examine
case with the curveN, — uqfr) With ¢ constant. This is a the case in whichx(¢o)=0 andm/r is sufficiently small
direct consequence of theorem | [@0]. (p. is sufficiently small. In this case, there is an equilibrium
Here we describe the meaning of criteri@hin the con-  solution that is identical to that in general relativity. For this
text of catastrophe theory. We regard the ADM enamggs  solution, the second-order variation of by regular, adia-
a function of three variableg,, N, andw. We takew as a  batic, time-symmetric, and spherically symmetric perturba-
state variable. We consider an equilibrium space tions with ¢ andN constant is
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5°’m=general relativistic terms
1 . 2 —-1/2
+z f dre”’z(l——'u>
2 Jo r
d2
X ——+V(r)|¢, 3.1 3
2
=
where
{=rdop, (3.17
2 1/2
dr*EeV’Z( 1- TM) dr, (3.18
0.5 3 ————— 3 1 __——T————|
-0.05 -0.04 -0.03 -0.02 -0.01 0 001 002 003 0.04 0.05
, , D
vyt [ wa
(= r r/l2 r(r—2u) FIG. 1. A family of curves ofp .= const in the {y,N) plane for
o the B=—4 case. The ordinate is,N in place of the baryon num-
—4mBo(—pt3p)e’, (3.19 berN. In region(A), only one stable equilibrium exists, while, in

region(B), no stable equilibrium exists. At a point on the envelope
and see Appendix B d27] for the general relativistic terms. of the family of the curves, the fold catastrophe occurs.
The general relativistic part is positive definitdif>T"., and
I'.—4/3 in the Newtonian limif28]. The second term is (¢o,®) with N constant. In Fig. 2, the solid lines denote
positive definite because the eigenvalues of the operatogfable branches while the dotted lines denote unstable
—d?/dr? +V, are all positive for an arbitrary coupling func- Pranches, where stability criterié) and (i) are applied.
tion A(¢) if mirg is sufficiently small, which has been Therefore, in regior(A) in Fig. 1, only one stable equilib-
shown in[23]. Therefore, the general relativistic equilibrium fium solution exists. Fot,=0, this stable solution is iden-

solution in which the central density is sufficiently small is tical to that of general relativity. In regiofB) in Fig. 1,
stable for the case(¢g)=0 if [>T .~4/3. however, no stable solution exists. This is classified as the

fold catastrophe in which the control space is two dimen-

sional. This catastrophe is elementary and structurally stable.

Hence it is expected that this catastrophe structure is not
Hereafter we restrict our attention to the coupling functionchanged by adding small higher-order terms to the exponent

of the quadratic form of the coupling function4.1). The potential functiorm is

written locally around poinp(¢gp,Np) on the envelopésee

Fig. 1) as, foreg,>0,

IV. RESULTS

1
A(<P)=eXD(§,3<P2)- (4.1

—_ _ 3 _ ’ _ _
For this model, the solar-system experiments constrain the M= 3 (@~ @p)"+[B(@op=¢0) +B'(N=Np) (0~ wy)
present cosmological value of the scalar field through Egs.

(2.14 and(2.15 as +mg, (4.9
|@0|=0.0338| (4.2 T T 3
and 1} 25
0.0121+8)"Y34p8|"t for B>—1, 05

| @0l = 0.0291+ 8| Y348~ for p<-1, “3 T

S 0
respectively. In particular, ifoo=0, the post-Newtonian

limit of this theory agrees completely with that of general |
relativity becauser(pg) = 0. 05 ¢

A. B=—4.35 case

We present here the results of the c#se —4, but the 15 , , , , , , , ,
features are basically common to the cgse—4.35. Figure 04 -0.08 -0.06 -0.04 -0.02 0 0.02 004 006 008 0.1

1 showsp.=const curves in thegy,N) plane, where the %

equilibrium solutions have been determined in the manner F|G. 2. Curves §,,») with N constant for the3=—4 case.
described in Sec. Il. At a point on an envelope of the familyThe number attached to each curverigN in solar mass units. The

of the curves seen in Fig. 1, the stability of the sequence ofolid lines denote stable branches and the dotted lines denote un-
equilibrium solutions changes. Figure 2 shows the curvestable branches.
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whereA, B, andB’ are some positive constants. Then the
terms in the square brackets cancel out on the envelope, an

are negative in regioA) and positive in regionB). For
¢op<<0, replace w—w, and ¢g,—¢o With w,—w and

o~ ®op, respectively. For simplicity, we describe the be-

havior of the scalar charge for the cagg,>0. From Eq.

(4.4), near pointp, the scalar charge is given by the roots of

the following quadratic equation:
om 2 ,
o =A(0—wp)“+[B(eop— o) +B'(N=Np)]=0.
®g:N
(4.5
The scalar charge is then given near pginb region(A) by
w=w,xA"YIB(po— @op) + B’ (N,—N)]*2  (4.6)

where the upper sign denotes the stable branch and the lo
denotes the unstable one. If a quadratic termuir-(w,) was

involved in Eq.(4.4), the number of roots of the equation

dm/dw=0 did not change at poirg. That is why Eq.(4.4)

does not contain the quadratic term. The “scalar susceptibil-

ity” x, is given near poinp by

dw 1
_ _ -1/ ' -1/
x¢=(—a%)N—r§A Y2B[B( 0o~ @op) + B (Np—N)] 12
(4.7)

The bifurcation seB,,CR?, which is the envelope seen in
Fig. 1, is given by

am
(%) =A(w_wp)2+[B(‘P0p_CPo)'f‘B'(N—Np)]:O,
N
’ (4.9
a%m
(W) =2A(0=wp) =0, 4.9
®g:N
ie.,
BI
<Po:E(N—Np)+qoop, (4.10

near pointp. This fold catastrophe appears also in general

relativity in whichA(¢) =1 identically. In general relativity,

because of the absence of a gravitational scalar field, the

control space is one dimensional. F&+= — 4, the maximum

ADM energy is greater than the general relativistic one for
¢o# 0. This is because, due to the presence of the scala
field, the effective gravitational constant becomes smaller 05F
and thereby gravity becomes weaker than in general relativs 0

ity.

B. B=-—4.35 case

This case is more interesting than the above case. We

present the results of the cag=—6. Figure 3 shows
pe=const curves in thegy,N) plane. This figure is very

different from Fig. 1. On the envelope of the family of
curves,e’dcbabc’de, the sequence of equilibrium solu-

mpN(Me)

.5
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Po

FIG. 3. Same as Fig. 1, but for the= —6 case. In regioitA),

Wgrl)ly one stable equilibrium solution exists. In regi@), two dis-

tinct stable equilibrium solutions exist. In regi¢8), no stable so-
lution exists. Poing is a cusp point. At poing, the cusp catastro-
phe occurs, while the fold catastrophe occurs at a point on the
envelopes except fa.

lopes in region(B), they have nothing to do with the change
of the number of stable equilibrium solutions. Figure 4
shows curves ¢y, ) with N constant. From criteri@) and
(i), the number of stable equilibrium solutions is as follows:
In region(A), only one stable equilibrium solution exists. In
region (B), two distinct stable equilibrium solutions exist.
Surprisingly, these stable equilibrium solutions are different
even forgy=0 from their counterparts in general relativity.
For ¢9=0, the unstable solution agrees with the stable solu-
tion in general relativity. One of the two stable equilibrium
solutions disappears on envelogebab'c’d. In region(C),

no stable equilibrium solution exists. Pomts a bifurcation
point for ¢4=0. This is seen in Fig. 5, which displays the

curves {p.,m) and (p.,N) for ¢o=0, where the solid lines
denote stable branches and the dotted lines denote unstable
branches. In this figure, two stable branches are degenerate
because, forey=0, two stable equilibrium solutions are
identical except for the sign of the scalar field. The equilib-
rium solution of the bifurcated stable branches is more com-
pact for smaller mass but less compact for larger mass than

2.5 T T T

2 -

1.5

1 F

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
Po

tions changes its stability. Although there are other enve- FIG. 4. Same as Fig. 2, but for thg= —6 case.
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25 - . - — adding small higher-order terms to the exponent of the cou-
pling function (4.1). Pointa is called a cusp point.
We restrict our attention to cusp poina(O,N,).
(myN,=1.24M for B=—6.) The potential functiorm is
written around cusp poird as

GR branch",.»""—"

15| 1
3 C D(N—N,)
s =t & 2
= non GR branches m 4 w 2 ®°= @ow+ My, (413
1 4
whereC andD are some positive constants. The reason why
05 | the coefficient ofpyw is determined is that Eq3.1) holds.
’ This form of expansion agrees with the usual Landau ansatz
for a second-order phase transition, which has been used to
0L — — — — explain spontaneous scalarization by Damour and Esposito-
10 210 S emy) 210 Farese [16]. The scalar charge is given by the roots of the
following cubic equation:
3
© om =Cw®-D(N—N =0. (4.1
25| | . =Co ( Ao~ ¢o=0. (412
®o.N
2r 1 From Eq.(4.12, near cusp poira, the scalar charge is given
é@‘ GR branch by
= 15 4
3 =0, (4.13

non GR branches

for N<N, with ¢,=0. This is a stable branch. Foi>N,
with ¢o=0,

w=

D 1/2
o , , , , i(E) (N=N,)*2 for the stable branches,
10" 2x10" 5x10™ 10" 2x10"

P (gem) 0 for the unstable branch.

~ ~ 4.1
FIG. 5. (& (p.,m) and (b) (p.,N) curves with ¢,=0 for (4.14
B=—6. The solid lines denote stable branches, while the dottegh; point a the stable equilibrium solution changesntinu-
lines denote unstable branches. The two distinct bifurcated branch%sw but its derivative with respect td is discontinuous|f
are degenerate because they have identical ADM energies ar@q_ (4.11) involved a cubic term inw, the number of roots of
baryon numbers but scalar fields of the opposite sign. The numbqhe equatiom/dw=0 did change at poir&. But this ca-
of stable equilibrium solutions changes as 1, 2, Nascreases. tastrophe was classified as the fold type and therefore this is

S . .. not the case for poird because of the shape of the bifurca-
the general relativistic sequence. Figure 6 shows the equilig; ., et seen in Fig. 3. That is why E4.11) does not

rium spaceMy, near pointa. This type of catastrophe at qiain the cubic term. We also note that, for the case of
point a is classified as the cusp catastrophe in which th&,q_gimensional control space, the structurally stable catas-

control space is two dimensional. The m&g, iS & CUSP e s classified as either the fold or cusp type by Thom's
catastrophe map. This catastrophe is elementary and structyfagrem. Therefore, at poiat a second-order phase transi-
ally stable, which suggests that this structure is stable againﬁbn occurs. If we fixN to N

. a

w=C 1BplB, (4.15

This is stable. From Eqs4.12—(4.14), with ¢;=0 near
pointa, it is derived that the scalar susceptibiljgy, is given

by
D YN,—N)"1  for N<N,,

Xo= (4.16

1
ED‘l(N—Na)‘l for N>N,.

Near pointa in region(A) in Fig. 3, only one real root of the
cubic equation(4.12 corresponds to the stable equilibrium
FIG. 6. Equilibrium spacéM, in the (¢,,N,®) space around solution, while, in regionB), the smallest and largest roots
cusp pointa for the 8= —6 case. This structure of the equilibrium of three real roots correspond to the stable equilibrium solu-
space is classified as the cusp catastrophe. tions and the intermediate root corresponds to the unstable
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one. If ¢o>0, the largest root corresponds to the globally 23 - -
stable one. If¢y<0, the smallest root corresponds to the /— »»»»»»»»»»
globally stable one. If»,=0, the two stable equilibrium so- 22y I
lutions have identical ADM energies. The bifurcation set 21l
B, which is the envelopé’ab, is given by ' )
3 2|  GRbranch
M Cw*-D(N-N —0, @17 =
dw P N_ ¢ ( a0~ ¢o=0, (417 E 1.9+ ~non GR branches :
0
18} 1
a%m )
P =3Cw —D(N—N,)=0, (4.18 7 |
¢01N
, 1.6 : .
.e., 10" 2x10"3
P (g enr’)
4D3 1/2
— _ 32 FIG. 7. Same as Fig.(B), but for 3=—4.5. The number of
@o==* (N=Na)™%, (4.19 =< ; .
27C stable equilibrium solutions changes as 1, 2, 3, 1, D ascreases.

Two solutions are degenerate on the non-general-relativistic
near pointa. The cusp catastrophe has been named after thisranches.
shape. On envelopgcbab' c’d except for pointsa andd,
one of the two distinct stable equilibrium solutions, the lo-the potential in the Lagrangian, the scalar figldbbtains an
cally but not globally stable one, disappears, and hence &ffective potential ternW(¢) which satisfies
first-order phase transition occurs if the system obeys a per-
fect delay convention. On envelopel €, the stable equilib- ﬂvz —4ma(e)T (4.22
rium solution disappears. The catastrophic feature on the en- de * '

velopes except for poird is the fold catastrophe described , ,
in the last subsection. Poiut is not a cusp point but the Pecause of the coupling with matter. Note tfigt depends
intersection of two folds. on ¢. Then, if we consideA(¢) of the form(4.1),

We should comment that, for the near critical case NV
—4.9< B=< —4.35, the behavior of the stable equilibrium so- —=—A47BeT, , (4.23
lutions around the point of the maximum baryon number is de
somewhat complicated, although the structure of the cusp

. _ 4 ~ —~ . . _ .
catastrophe at cusp poiatis not changed. Figures 7 and g @d if T, =A(—p+3p) is negative¢=0 is an unstable
show the curves #,.N) with ¢o=0, for A= —4.5 and stationary point of the effective potential, #<0. On the
(o8] 0— Y% - T 4.

; other hand, the term from the spatial derivative in Exj4)
_,[45?5’ reglg)ggt|vely. IF?F4.85h,85—4.35,1ctg§ numb?r pf has a contribution to stabilize the solution. By these two
swablé equilibrium solutions changes as Loegenerate in competing effects, the stability of the trivial configuration
Fig. 7), 3, 1, 0 as the control parametiris increased con-

. . . ) =0 against spontaneous scalarization is governed. For a
tinuously, as is seen in Fig. 7. For4.8<B8=<-4.9, the @ g P g

number of stable equilibrium solutions changes as (dez ggte?g%? analysis of the stability of the trivial configuration,

generate in Fig. B 3, 2, 0 asN is increased continuously, as
is seen in Fig. 8. Fop=<—4.6 the maximum ADM energy tio

with 0o=0 is greater than that in g_eneral reIatmty, .Wh'le' the inverse of the Brans-Dicke scalar field, becomes consid-
for p=—4.6, itis the same as that in general re"’?‘“"'ty- . erably smaller than unity. Thereby the gravitation becomes

The Kepler mass, which governs the Newtonian orbitalyeayer and a considerably larger mass than in general rela-
motion of a test body, is not the ADM energy in general, it can be supported by the lower matter pressure than in

If spontaneous scalarization occurs, the effective gravita-
nal constant, which iA%(¢)=exp(B¢?) in the sense of

but [2] general relativity.
~ 1+ o p
-~ (4.20 V. SUMMARY AND DISCUSSIONS
# 1+ ag '
The behavior of the equilibrium solutions of neutron stars
where in scalar-tensor theories of gravitation shows a catastrophic
feature, which is characterized by a discontinuous change of
~dinm ) ) the system. When we consider a functiéfp) of the form
AT T m (429 A(¢) =explBe?), the catastrophe types are classified as fold

and cusp catastrophes. The appearance of the cusp catastro-
When we consider the case @f= B¢,=0, the Kepler mass phe depends on whethgi= —4.35 or8=< —4.35. From the
is identical to the ADM energy. Therefore the argumentfact that those types of catastrophes are structurally stable, it
above forgy=0 is also valid for the Kepler mass. is expected that they would be seen in a wide class of cou-
Here we present the physical interpretation as to whypling functions.
spontaneous scalarization occurs. In spite of the absence of For B=—4.35, the fold catastrophe on the two-
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2.4 - - plicated around the maximum baryon number fog=0.
T This complicated feature agrees with the fact that the critical
221 mass against zero-mode instability is not a monotonic func-
5| | tion with respect tg3, which is seen in Table | di23].
Here we comment on the continuous change of the
18 | GRbranch asymptotic value of the scalar fieldy. If we identify ¢g

non GR branches with the cosmological value of the scalar field, the evolution
of ¢y can be described by the equation of moti@r) in the
Friedmann-Robertson-Walker universe. On the other hand, if
we identify ¢4 with the value of the scalar field at the match-
ing region in the N-compact-body problemg, should
evolve due to the change of the density distribution around
1 . . the neutron star. If the time scale of the variationggf is
5x10' 10" 2x10 sufficiently longer than that of the local gravitational phe-
e (g cm) nomena, such as the scalar gravitational wave radiation, the
FIG. 8. Same as Fig.(B), but for 3= —4.85. The number of Process due to the change @f can be regarded as quasi-
stable equilibrium solutions changes as 1, 2, 3, 2, Bascreases.  static. Through the cosmological evolution of the scalar field
Two solutions are degenerate on the non-general-relativistieog, the neutron stars may collapse and radiate a scalar gravi-
branches. tational wave.
We also comment on the continuous chang& pfwhich
may be a result of a mass accretion onto the neutron star. If
dimensional control space does occur. The critical baryorfi"® Paryon number of the neutron star exceeds the maximum
number and critical ADM energy depend apy. For a value, the neutron star cpllgpses an.d scalar gravitational
baryon number smaller than the critical one, one stable equﬁzvgia?;? r?;&ﬁi?or?;dvsg%fi f;nﬂ:d:tteh;%rr th|?k:9;:rece of
librium solution exists, while, for a baryon number Iargerone of Fi % there is a stable enerél relativistigneutron star
than the critical one, no stable equilibrium solution exists. In hat h %h ' b 9 b d ADM ithi
particular, foroy=0, the stable equilibrium solution is com- that has the same baryon number an energy within

pletely identical to that in general relativity. The behavior Ofnumerlcal accuracy as the maximum-mass non-general-

the scalar charge and scalar susceptibility near the critica{Flat'V'St'C neutron star has. Then, the transition OT t.het hon-
baryon number is explained by the form of the potentialgeneral-relatlws'uc neqtron star to the general relativistic one
function of the fold catastrophe due to a mass accretion occurs without any energy extrac-

For 5= —4.35, the cusp catastrophe does occur while thélOgcalar—tensor theories of gravity naturally arise from the
fold catastrophe also occurs. F@r< —4.9, there is some 9 y y

o : i - low-energy limit of string theory or other unified theories.
crit crit
tcr:glrcea:svc?:ljfo?lfetsreitisgﬁrl'\aurnﬂae gﬁﬂl t>hgt (;L!)‘gg' d>s %(zp * For the moment, however, it is not clear how the scalar fields
i e ) . 0 should couple to gravitybut see[29]). Experimental tests,
For N<N°"! one stable equilibrium solution exists, while b 9 y (29) b

; crit1 bi iibri Ut . f’ such as binary pulsar timing observations, may constrain the
or N>N*"", no stable equilibrium solution exists. If \ 5y of coupling between the scalar fields and gravity. In

0<|go|<gg ", there are three critical baryon numbers particular, as for the case in which the single, massless scalar
NCrt> NEME2> NOMS, For NN or NM2<N<N™,  fiolq couples to gravity with the coupling function
only one stable equilibrium solution exists. For A(¢)=exf(1/2)8¢?], Damour and Esposito-Fae [16]
NeM3<N<N°2, two distinct stable equilibrium solutions gptained the constraint oB as 8= -5, using the data of
exist and they do not agree with those in general relativittnree pinary pulsars. They showed that the occurrence of
even for the limit ¢o—0. Thez almost general relativistic spontaneous scalarization makes it very difficult for the
branch is unstable foh>N°""2. For N>N°"", however,  theory to maintain consistency with the resuits of binary pul-
no stable equilibrium solution exists. #,=0, the sequence sar timing experiments. The results obtained in this paper
of equilibrium solutions of neutron stars bifurcates at a pointgpow that spontaneous scalarization is not an exceptional but
Beyond this point, the general relativistic branch becomesopyst phenomenon for the neutron star and common to a
unstable and another twdegeneratesequences of equilib- yide range of coupling functions. Gravitational experiments
rium solutions far from the general relativistic one are stableyith high-precision and/or in a strong-field regime and gravi-
This bifurcation point is a cusp point, and the behavior of theyational wave observations may have the potential to con-
scalar charge and scalar susceptibility near the cusp point igrain the way of coupling of the gravitational scalar fields

catastrophe. At a point on the envelopes other than the cusp

point, the fold catastrophe occurs. Since the critical baryon
numbersN¢™t and N¢"*? agree, the number of stable equi-
liorium  solutions is 1 for N<N®™3, 2 for
NCMB<N<NeMt2=Nertl and 0 for NCM2=NC"t1< N, It | would like to thank T. Nakamura, M. Sasaki, Y. Erigu-
should be noticed that, for the near critical casechi, N. Sugiyama, K. Nakao, M. Siino, T. Chiba, and M.
—4.9< =< —4.35, the structure of the cusp catastrophe doe&aneko for useful discussions. | am also grateful to H. Sato
appear although the behavior becomes somewhat more corfer his continuous encouragement.
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