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Spherical neutron star collapse toward a black hole in a tensor-scalar theory of gravity

Jérôme Novak
Département d’Astrophysique Relativiste et de Cosmologie, UPR 176 du CNRS, Observatoire de Paris,

F-92195 Meudon Cedex, France
~Received 15 May 1997; published 12 March 1998!

Complete tensor-scalar and hydrodynamic equations are presented and integrated, for a self-gravitating
perfect fluid. The initial conditions describe an unstable-equilibrium neutron star configuration, with a poly-
tropic equation of state. They are necessary in order to follow the gravitational collapse~including full hydro-
dynamics! of this star toward a black hole and to study the resulting scalar gravitational wave. The amplitude
of this wave, as well as the radiated energy, dramatically increases above some critical value of the parameter
of the coupling function, due to the spontaneous scalarization, an effect not present in Brans-Dicke theory. In
most cases, the pressure of the collapsing fluid does not have a significant impact on the resulting signal. These
kinds of sources are not likely to be observed by future laser interferometric detectors~such as VIRGO or
LIGO! of gravitational waves, if they are located at more than a few 100 kpc. However, spontaneous scalar-
ization could be constrained if such a gravitational collapse is detected by its quadrupolar gravitational signal,
since this latter is quite lower than the monopolar one.@S0556-2821~98!03608-X#

PACS number~s!: 04.30.Db, 02.70.Hm, 04.25.Dm, 04.50.1h
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I. INTRODUCTION

In order to test general relativity, one has to compare i
other, alternate theories of gravitation.Tensor-scalartheo-
ries, in which gravity is described by a spin-2 field combin
with one or several spin-0 fields, are not only alternate th
ries, but ‘‘generalize general relativity’’~see@1#!, meaning
that general relativity is obtained in them by setting all sca
fields to zero. Several such theories have been develo
from Fierz @2#, Jordan@3#, Brans and Dicke@4# to Bergman
@5#, Nordtvedt@6#, Wagoner@7# and, more recently, Damou
and Esposito-Fare`se@1#. In all these theories, the spin-0 an
spin-2 fields (w andgmn) are coupled to matter via an effec

tive metric tensorg̃mn5a2(w)gmn . The Jordan-Fierz-Brans
Dicke theory has only one free parameterv, whereas for
Bergman, Nordtvedt, and Wagoner the parameter is a fu
tion v(w). Damour and Esposito-Fare`se considered an arb
trary number of scalar fields, coupled one to the other.
these theories are motivated by, mainly, two theoretical r
sons:~1! they represent the low-energy limit of superstri
theories~@8# and @9#!; ~2! they give rise to new ‘‘extended’
inflationary models@10#.

Since in Brans-Dicke theory ln@a(w)# is a linear function
of w, solar system experiments~weak field! are sufficient to
constrain the theory, even in strong fields. Nevertheles
more general theory, in which ln@a(w)# is a parabolic func-
tion ~depending on two parameters!, shows nonperturbative
effects in strong field@11#, described as ‘‘spontaneous sc
larization’’ in @12#. Thus, when describing neutron star
general relativity and tensor-scalar theory can give sign
cant differences for their masses, radii, and gravitatio
fields, whereas the difference can still be negligible in o
solar system data. As a consequence, weak-field experim
cannot give much information on strong-field regime, an
one needs to test this strong-field regime by other me
First, by looking for the orbital decay of binary-pulsar sy
tems; this has been done by Damour and Esposito-Fa`se
570556-2821/98/57~8!/4789~13!/$15.00
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~@1# and @12#!, who constrained the parameter space of
coupling function. Second, by looking for monopolar grav
tational radiation from collapsing compact sources wh
could be detected by the laser interferometric gravitatio
wave observatories@such as VIRGO@13# and Laser Inter-
ferometric Gravitational Wave Observatory~LIGO! @14##.

This latter method requires that the signal be known a
that the observed~or unobserved! amplitude be related to the
coupling function parameters. Such computations have
ready been performed by various groups, but they all con
ered only an Oppenheimer-Snyder collapse~i.e., ‘‘dust’’
matter, with no pressure!, either in Brans-Dicke theory~@15#
and@16#! or by doing some Taylor expansion of the couplin
function @17#. In the latter, the parameter space of the co
pling function was restricted to the part where nonpertur
tive strong-fields effects do not happen. The aim of this
per is to present the results of computations of a spheric
symmetric collapse, of a neutron star toward a black ho1

with one scalar field and an arbitrary coupling function. A
the hydrodynamics and field equations are treated with
approximation in order to get the monopolar gravitation
wave form and amplitude. Moreover, including the equat
of state allows us to start the collapse with quite a realis
neutron star configuration and thus, spurious waves sig
are avoided~see Sec. III C!.

The paper in organized as follows. Section II describ
the evolution equations for the star. Section III gives t
numerical results: initial-value models~Sec. III A!, collapse
and resulting wave signal~Sec. III B!, comparison with pre-
vious works~Sec. III C!, and exploration of the paramete
space~Sec. III D!. Finally Sec. IV gives some concludin
remarks.

1Numerically, the black hole is never obtained, but the monopo
gravitational waves, far from the source, behave as if the black h
had formed~see Sec. III B!.
4789 © 1998 The American Physical Society
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II. FIELD AND HYDRODYNAMIC EQUATIONS

A. General equations

As has been stated before, the most general theory
taining a spin-2 field and one~massless! spin-0 field contains
one arbitrary coupling functiona(w). The action is given by

S5~16pG* !21E d4x A2g* ~R* 22g
*
mn]mw]nw!

1Sm@Cm ,a2~w!gmn* #, ~2.1!

where all quantities with asterisks are related to the ‘‘E
stein metric’’gmn* , G* is the bare gravitational coupling con
stant,R* 5g

*
mnRmn* the curvature scalar for this metric, an

g* 5det(g
* n
m ). The termSm denotes the action of the matte

represented by the fieldsCm , which is coupled to the
‘‘Jordan-Fierz’’ metricg̃mn5a2(w)gmn* ; all quantities with a
tilde are related to this metric. That means that all nongra
tational experiments measure this metric, although the fi
equations of the theory are better formulated in the Eins
metric. The indices of Einstein frame quantities are mov
through Einstein metric, whereas those of Jordan-Fierz qu
tities are moved through Jordan-Fierz one. By varyingS, one
obtains

Rmn* 2
1

2
gmn* R* 52]mw]nw2gmn* g

*
rs]rw]sw1

8pG*
c4 Tmn* ,

~2.2!

hg
*
w52

4pG*
c4 a~w!T* , ~2.3!

where

T
*
mn5

2

A2g*

dSm

dgmn*
, ~2.4!

a~w!5
] ln a~w!

]w
, ~2.5!

and hg
*
5g

*
mn¹m* ¹n* is the Laplace-Beltrami operator o

gmn* , ¹m* denoting the Levi-Civita connection ofgmn* . One
can see thata(w) is the basic, field-dependent couplin
function between matter and scalar field. General relativit
obtained fora(w)→0.

The physical stress-energy tensor T̃mn

52(2 g̃)21/2dSm /d g̃mn is related to the Einstein-frame on
by

T
* n
m 5a4~w! T̃n

m . ~2.6!

The equations of motion are given by the stress-energy
ance equation, written in the Jordan-Fierz frame

¹̃nT̃m
n 50 ~2.7!

and in the Einstein frame

¹n* T
*
mn5a~w!T* ¹

*
mw. ~2.8!
n-

-

i-
ld
in
d
n-

is

l-

Finally, let us callw0 the cosmological value of the scala
field, which enters the theory as the boundary condition
the scalar field at spatial infinity.

B. Coordinates and variables

The present calculations have essentially been done
generalizing a previous work by Gourgoulhon@18# to tensor-
scalar theory. Therefore, only a very brief presentation
coordinate and variable choice will be given here. T
Einstein-scalar equations have been decomposed in the11
formalism @19# onto a family of spacelike hypersurfacesS t
labeled by the real indext called thecoordinate time. The
polar time slicinghas been chosen in order to have go
singularity avoidance~see, e.g.,@20# for discussion!. On each
hypersurfaceS t the radial gauge has been chosen with
spherical-like coordinates (r ,u,f), since the considered
problem is spherically symmetric. All these assumptio
@spherical symmetry, radial gauge, and polar slicing~RGPS!#
imply that the metric gmn* 5a22(w) g̃mn @which verifies
Einstein-like equations~2.2!, with an extra term# takes the
diagonal form

ds252N2~r ,t !dt21A2~r ,t !dr21r 2~du21sin2udf2!,
~2.9!

where N(r ,t) is called thelapse function. The metricgmn*
will often be described by the three functionsn(r ,t), m(r ,t),
andz(r ,t) defined by

N~r ,t !5exp@n~r ,t !#, ~2.10!

A~r ,t !5S 12
2m~r ,t !

r D 21/2

, ~2.11!

and

z~r ,t !5 lnS N

AD . ~2.12!

All coordinates are expressed in the Einstein-frame, and
terisks are omitted. However, ‘‘physical’’ quantities will of
ten be written in the Fierz metric and noted with a tilde.

In this work, neutron stars are modeled as self-gravitat
perfect fluids. They can be considered to be made of deg
erate matter at equilibrium, the equation of state being te
perature independent~cold matter!. This does not hold only
soon after their formation. The stress-energy tensor is wri
as

T̃mn5~ ẽ1 p̃ ! ũm ũn1 p̃ g̃mn , ~2.13!

where ũm is the four-velocity of the fluid,ẽ is the total
energy density~including rest mass! in the fluid frame, andp̃
is the pressure. The relation to its Einstein-frame counter
is Tn

m5a4(w) T̃n
m . The description of the fluid is complete

by an equation of state

ẽ5 ẽ~ ñB! ~2.14!

with ñB being the baryonic density in the fluid frame. On
then deduces the pressure as a function ofñB . Let G
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57 4791SPHERICAL NEUTRON STAR COLLAPSE TOWARD A . . .
5nÑũ0 be the Lorentz factor connecting the fluid frame a
S t hypersurface frame, setting

Ẽ52 T̃0
0

one gets

Ẽ5G2~ ẽ1 p̃ !2 p̃. ~2.15!

The fluid baryonic number is represented by thecoordinate
baryonic density

D̃5
number of baryons ind V

d V
5AG ñB , ~2.16!

where dV5r 2sinudrdudf is the element of the coordinat
three-volume on a givenS t , defined as the set of point
whose coordinates are betweenr andr 1dr, u andu1du, f
andf1df. The fluid motion is described by the followin
variables:

V5
dr

dt
5

ur

u0 ~coordinate velocity!, ~2.17!

U5
proper distance traveled onS t

elapsed proper time onS t
5

A

N
V. ~2.18!

One then hasG5(12U2)21/2 and deduces the componen
of T̃mn given by Eq.~2.13!. The fluid log enthalpy is also
introduced, defined as

H5 lnS ẽ1 p̃

ñBmBc2D ~2.19!

and, finally, three ‘‘scalar-field’’ variables:

h5
1

A

]w

]r
, ~2.20!

c5
1

N

]w

]t
, ~2.21!

J5h21c2. ~2.22!

C. Tensor-scalar field equations

Spherical symmetry helps to obtain gravitational fie
equations; we followed the procedure described by Go
goulhon @18#, projecting Eqs. ~2.2!,~2.3! on the three-
surfacesS t and along their normal. Hereafter, we use t
following notation:

qp5
8pG*

c4 .

The tensor Einstein-like equations~2.2! then turn into one
Hamiltonian constraint equation

]m

]r
5r 2

c2

2G*
„J1qpa4~w!Ẽ…, ~2.23!
r-

three momentum constraint equations which reduce to o
one nonvanishing equation,

]m

]t
5r 2

c2

2G*
F2

N

A
ch2qpa4~w!~ Ẽ1 p̃ !VG , ~2.24!

and six Einstein dynamical equations which here reduce
two nonvanishing equations, one of which degenerate, o
giving a condition on the lapse function

]n

]r
5

qpA2

2 F mc2

4pr 2 1a4~w!r „p̃1U2~ Ẽ1 p̃ !…1rJ G .
~2.25!

The other one will not be used in this work.
Writing the scalar-field wave equation~2.3! with our vari-

ables gives

]2w

]t2 5e2zS Dw1
]z

]r

]w

]r D1
]z

]t

]w

]t
2qp

a~w!a4~w!N2

2

3@Ẽ23 p̃2~ Ẽ1 p̃ !U2#. ~2.26!

One more equation concerning the scalar field will be us
although it is redundant with Eqs.~2.23!–~2.26!, from which
it is deduced, it will be useful for numerical integration:

1

2

]J

]t
5H N

AFcDw1h
]c

]r G1
2N

A
ch

]n

]r
2J

G* A2

rc2

]m

]t J
1cqpa~w!a4~w!N@Ẽ23 p̃2~ Ẽ1 p̃ !U2#.

~2.27!

D. Matter evolution equations

In order to get the evolution of the variablesẼ andU, let
us consider the momentum-energy conservation equa
~2.8!. We get

]Ẽ

]t
1

1

r 2

]

]r
„r 2~ Ẽ1 p̃ !V…52~ Ẽ1 p̃ !$a~w!N@~31U2!c

14Uh#1rAN@~11U2!ch

1UJ#%, ~2.28!

]U

]t
1V

]U

]r
52

1

Ẽ1 p̃
S U

] p̃

]t
1

N

A

] p̃

]r
D 2

AN

G
FG* m

r 2c2

1qpa4~w!
r p̃

2
1

a~w!

A
~h1Uc!

1rUhc1
r

2
JG . ~2.29!

Equation ~2.28! expresses the total energy conservat
~matter plus gravitational and scalar energy!, Eq. ~2.29! be-
ing the tensor-scalar analogous of the Euler equation. O
notes that in the latter, the 1/(Ẽ1 p̃)@U(] p̃/]t)
1(N/A)(] p̃/]r )# term which may cause some trouble wh
numerically calculating it, since it is the quotient of tw
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4792 57JÉRÔME NOVAK
quantities vanishing at the surface of the star. Thus, if
uses the log enthalpy~2.19!, this term may be replaced b
1/G2@U(]H/]t)1(N/A)(]H/]r )#, which is well defined
near the surface.

Expressing the baryonic number conservation

¹̃m ñBũm50 ~2.30!

one obtains

]D̃

]t
1a~w!

1

r 2

]

]r
~r 2D̃V!1a~w!D̃N~3c14Uh!50.

~2.31!

Because log enthalpy is used in order to avoid numer
singularities at the surface, there has to be an evolution e
tion of that quantity. SinceH5H( ñB), and ñB5D̃/AG, one
may write

]H

]t
1V

]H

]r
5

]H

] ñB

S ] ñB

]t
1V

] ñB

]r
D

5
]H

] ñB

V

AG
@12a~w!#

]D̃

]r
2 ñB

]H

] ñB

3F 1

r 2

]

]r
~r 2V!1a~w!N~3c14Uh!

1
1

AS ]A

]t
1V

]A

]r D1G2US ]U

]t
1V

]U

]r D G ,
~2.32!

with terms in the right-hand side being replaced using E
~2.23!, ~2.24!, and~2.29! by source terms involvingẼ, p̃ and
J. The results of numerical integration of all these equatio
~2.23!–~2.32! will be presented in the next section.

III. NUMERICAL RESULTS

The numerical procedure, the code, and its tests are
scribed in the Appendix. In this section, only results are p
sented and discussed. An important choice is that of the c
pling function a(w). Following @12#, we chose a function
depending on two parameters for all of our study:

a~w!5ea0~w2w0!1~b0 /2!~w2w0!2
. ~3.1!

Figure 9 of @12# gives constraints on the (a0 ,b0) space of
parameters, imposed by binary-pulsar measurements. Se
III D investigates this space of parameters for scalar grav
tional waves. Note that Brans-Dicke theory is obtained
b050.

A. Static configurations

Physical scenarios to form a black hole involve either
accreting neutron star or a post-supernova remnant~when a
part of the ejected envelop falls back onto the new-born n
tron star!. In both cases, the mass of the neutron star m
reach its maximal value above which the star becomes
stable. It is then interesting to get unstable equilibrium c
e

al
a-

s.

s

e-
-
u-

ion
-

r

n

u-
st
n-
-

figurations of neutron stars, endowed with a scalar fie
close to the maximal mass. They are used as initial confi
rations for the collapse. Thus, setting all]/]t terms to zero,
as well asV andU in Eqs.~2.23!–~2.28!, one gets the scala
equivalent of the Tolman-Oppenheimer-Volkoff~TOV! sys-
tem. The system obtained is the same as Eqs.~7! in @11#,
since the same gauge is used. Considering a polytropic e
tion of state

ẽ~ ñB!5 ñBm̃B1K
ñ0m̃B

g21 S ñB

ñ0
D g

,

p̃5K ñ0m̃BS ñB

ñ0
D g

, ~3.2!

with m̃B51.66310227 kg and ñ050.1 fm23, one can inte-
grate the scalar TOV system, starting at the center wit
given value forñB(r 50), up to the surface at whichñB(r
5Rstar)50. In this study, two types of polytrope will be
used:~1! g52.34 andK50.0195, which has already bee
used by@11# to fit equation of state II~EOSII! in @21#, called
EOS1 in this paper;~2! g52 andK50.1, as used in@22#,
called EOS2 in this paper. Then for each static configurat
the total Arnowitt-Deser-Misner~ADM ! mass ofgmn* , which
will be called the gravitational mass and the total sca
chargev such that, forr→`, w(r )5w01G* v/r 1O(1/r 2),
can be determined through Eqs.~8! of @11#. These two quan-
tities are useful to match the obtained interior solution to
exterior one ~spherically symmetric solution in vacuum!,
which is known analytically in another gauge~described in
@23#! and thus one can obtain a static solution everywhe
The resulting fields are shown in Fig. 1 forb0526, with
large value of the scalar field inside the star, even for a v
small asymptotic fieldw0 ~spontaneous scalarization!. These
solutions are then used as initial values for the dynam
evolution. They have been computed, with increasing cen
densitiesñB(r 50), in order to get an ‘‘unstable’’ configu
ration ~for which gravitational mass is a decreasing functi
of the density!. This property is not evident in tensor-scal
theory, but the dynamical code being sensitive enough
trigger the instability only by round-off errors, it has bee
checked numerically. The hydrostatic equilibrium is o
tained, thanks to pseudospectral techniques~see Appendix 1
and @24#!, up to very high accuracy (10210 relative error on
the hydrostatic equilibrium!, which enables the dynamica
code to be sensitive to instability~see@18#!.

B. Scalar gravitational waves

Hereafter, four collapse calculations will be present
called A, B, C, and D. The parameters of the static confi
rations, which were used as initial conditions for the c
lapses, are described in Table I. Note that collapses A an
use ag52.34 polytrope, whereas C and D use ag52 one.
First, only the case A will be considered. As far as the h
drodynamic part is concerned, the collapse is very simila
that in general relativity, described in@18#. It can be seen
from Fig. 2, thatA@ t,Rstar(t)#→` due to the pathologica
behavior of the radial gauge whenRstar is approaching the
Schwarzschild radius. An apparent horizon is expected
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develop, but minimal two-surfaces cannot be described
the radial gauge. On Fig. 2 are plotted several quanti
during the collapse@until N(r 50) becomes too small#. Thus,
although RGPS coordinates are not well adapted for the
scription of a black hole, they were used to describe
collapse toward it, as in@18#. Moreover, from Figs. 2 and 3
one sees that the star has almost entered its Schwarzs
radius (Rstar/RSchwarzschild51.001 at the end of the collapse!;
so that no significant later evolution could be achieved ins
the star. Actually, one notices that the lapse goes to z
within the Schwarzschild radius of the star. Since all evo

FIG. 1. Density (ñB), metric potentials (A and N), and scalar
field (w) profiles for a neutron star of 2.4M ( , for EOS1 (g
52.34 andK50.0195 polytrope! and with a coupling function
a(w)5exp(23w2). The asymptotic scalar field value isw051025.
Star’s radiusRstar513.1 km.
y
s

e-
e

ild

e
ro
-

tion equations are written]/]t5N3(source term) and the
coordinate velocityV5(N/A)U→0, all hydrodynamic and
scalar-field quantities are ‘‘frozen’’ inside the star. Ther
fore, their evolution can be numerically stopped, in order
avoid the singularity ofA(r 5Rstar). However, all field quan-
tities continue to evolveoutsidethe star as long as one wan
in terms of coordinate time~which is the time of an observe
at spatial infinity!.

FIG. 2. Profiles of various quantities at different values ot
between 0 and 4.64 ms, for collapse A. The fluid velocityU(r ,t),
measured by the hypersurface observer, is expressed in unitsc
and its evolution is downward, the extremity of each curve givi
the position of the star’s surface at the corresponding instant.
evolution for A(r ,t) ~metric potential!, J(r ,t) ~scalar ‘‘energy’’!
and H(r ,t) ~log-enthalpy! is upward, and downward forw(r ,t)
~scalar field! andN(r ,t) ~lapse!.
TABLE I. Initial condition parameters of the collapses presented in this paper. The equations of state~EOS! are described in Sec. III A,
w0 is the asymptotic scalar field value~given by cosmological evolution!, a0 andb0 are the coupling function parameters~3.1!, Rstardenotes

star’s radius,ñB(r 50) is the central baryon density~in units of nuclear density, 1nnuc51044 m23), MG is thegmn* -frame ADM mass,MB

the baryonic one, andv the scalar charge.

Collapse EOS w0 a0 b0 Rstar ñB(r 50) MG MB v

@km# @nnuc# @M (# @M (# @M (#

A 1 1025 531025 25 11.2 10.4 1.97 2.26 0.204
B 1 1025 2.531022 25 11.8 10.4 2.07 2.41 0.484
C 2 1025 531025 25 21.5 4 3.31 3.68 0.921
D 2 1025 2.531022 25 22.2 4 3.41 3.82 1.16
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4794 57JÉRÔME NOVAK
The results of this evolution are shown in Fig. 3, for co
lapse A. The fate of the scalar field is particularly interestin
for r @Rstar the field relaxes toward the asymptotic consta
value set by cosmological evolution; the scalar energy of
star is radiated away as scalar gravitational wave. The sc
field @w(r 5Rout)# is considered to be sufficiently far awa
from the star~i.e., in the wave zone! to give the monopolar
gravitational wave signal. Using the ‘‘frozen star’’ to evolv
the fields outside the star, makes the integration time l
enough to get all the information from the collapse atr
@Rstar ~where all gauges become equivalent!. The main dif-
ference from general relativity is the scalar monopolar rad

FIG. 3. Evolutions of various quantities during the collapse
as a function of the coordinate-timet. Rout5300 km is the radius of
the outer edge of the grid.w(r ,t) is the scalar field and the radius

the coordinate value for whichñB , the baryon density is zero
N(r 50) is the lapse at star’s center andV(r 5R) is the star’s
surface velocity.
:
t
e
lar

g

-

tion, which carries away energy and can interact with a
tector. Looking far from the source~at a distancer @Rstar),
one can write the metric~see@1#!

g̃mn~r ,t !5a2~w0!F f mn1
1

r
~hmn12a0F f mn!1O~r 22!G ,

~3.3!

where f mn is the flat metric andhmn(t2r /c) andF(t2r /c)
are, respectively, the quadrupolar and monopolar com
nents of the wave. Since this work is done in spherical sy
metry, only the monopolar mode shall be considered. T

,

FIG. 4. Wave form of the emitted signal during collapse B. T
plotted quantity is the functionF(t) ~see Sec. III B!, measured at
r 5300 km and expressed in meters.w(r ,t) is the scalar field and
w0 its asymptotic value. To get the gravitational wave amplitudeh,
one must use Eq.~3.4!.

FIG. 5. Fourier power spectrum of the scalar gravitational wa

emitted during collapse B.h̃ is the Fourier transform of the signa
measured at 10 Mpc andf , the frequency.
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functionF is the same as that of Eq.~A3!, and is plotted for
collapse B in Fig. 4. If one wants to compare the amplitu
to those of general relativistic gravitational waves (hi j

TT), at a
distanced, then the right quantity is~see@1#, @17#, or @25#!:

h~ t !5
2

d
a2~w0!a0F~ t !. ~3.4!

The Fourier spectrum of the signal is

h̃~ f !5E
0

tmax
h~ t !e2p i f tdt ~3.5!

and the power spectrum (f u h̃ u), which is plotted in Fig. 5 for
the collapse B, is then useful to determine the character
frequencyf c of the signal. Actually, the quantity to be com
pared with detectors’ sensitivity is

h̃c5u h̃~ f c!uAf c, ~3.6!

which is expressed in Hz21/2. From Fig. 5, one sees that
‘‘collapse B’’ could be detected by VIRGO, provided it oc
curs within 300 kpc. Finally, the radiated Einstein-fram
Bondi energy is written as

Escal5
c3

G*
E

0

1`S dF

dt D
2

dt ~3.7!

which is the total energy radiated in gravitational waves.

C. Comparison with previous works

Because all previous works have studied
Oppenheimer-Snyder collapse, for comparison some r
were done puttingp̃ andH to zero.

The first work by Shibataet al. @15# considered the dus
collapse in the Brans-Dicke theory (b050). The authors
used two types of initial conditions, called (A) and (B). The
case (A) starts the collapse withw5w0, whereas (B) starts it
with a quasistatic solution forw. Making the same dust col
lapses, the same wave forms and amplitudes were obta
„their F is related tow by F52 ln@A(w)#52a0(w2w0)….
Taking the equation of state into account, with equilibriu
initial configurations~which are the most realistic possible!,
gives the wave form of Fig. 6 (b050). The form and am-
plitude are very close to the (B) type collapses of Shibat
et al. ~see their Fig. 3!, the power spectra being close to

FIG. 6. Same as Fig. 4 but for different collapses.a053.16
31022 for all of them, butb0 varies from24 ~upper curve, —! to
b050 ~lower curve, -•••-!.
e

tic

ns

ed

~Fig. 5, with lower amplitude, and Fig. 6 of@15#!.
Another work in Brans-Dicke theory, with dust matte

was done by Scheelet al. @16#, dealing more with the fate o
the final object. However, comparing 2a0dF/dt of this
work, with f 8 of their paper gives the same result. Where
the authors can conclude on the final state of the collap
this work cannot describe it. All that can be said is that t
scalar charge~or mass! is all radiated away, so that the scal
field relaxes toward its cosmological value, and that an
parent horizon isexpectedto appear~cf. Sec. III B!. These
results still hold in more general tensor-scalar theory.
nally, it can be pointed out that, contrary to their work, he
the tensor mass in theEinsteinframe is considered, not in th
Jordan-Fierz one.

The last study of spherically symmetric collapse in tens
scalar theory was done by Haradaet al. @17#. They used the
Oppenheimer-Snyder metric~in general relativity! as a back-
ground spacetime and did some Taylor expansion of ten
and equations in terms of scalar field coupling function p
rameters. Therefore, they used unrealistic initial conditio
(w5w0) and could not study the cases of spontaneous
larization. Wave forms resulting from our calculations f
differentb0, from 210 to 50 are shown in Figs. 6 to 9, wit
unstable equilibrium initial configurations and full hydrod
namics.a053.1631022 as in@17# and the mass is the max
mal one~cf. Sec. III A!, the ratioRstar/M.4. The results are
different, although showing the same tendancy as in@17#, for
many b0, due to the fact that Haradaet al. took unrealistic
initial conditions. Thus in their simulations, when the co
lapse begins the scalar field, on the one hand, evolve
reach its quasiequilibrium configuration, on the other hand
feels the effects of the collapse. Their signal is then a sup
position of these two effects: a raise of the scalar field up
its equilibrium value, with one or several oscillations d

FIG. 7. Same as Fig. 6 butb0 varies from210 ~upper curve,
-•-! to b0526 ~lower curve, —!.

FIG. 8. Same as Fig. 6 butb0 varies from 10~upper curve, —!
to b0530 ~lower curve, -•-!.



e
t
fo
el
t

r’s
to
th
c

l-
s

its

th
rt
I

th

r

es

r t
e

of
us,

is
ate

1

of

pear
f

ef-

4796 57JÉRÔME NOVAK
pending onb0, then the fall of this field, due to the collaps
of the matter. The signals forb0.20 have more importan
oscillations than other ones; this may be explained as
lows. Inside the star, there are unstable modes which dev
for theseb0 and when the ratioR/M becomes small, as i
has been shown by Harada in for static configurations~see
Fig. 5 of @26#!. This is due to the fact that, near the sta
center,Ẽ23 p̃,0 allowing for spontaneous scalarization
develop.2 Here, one can see an effect of the pressure on
signal. These nonperturbative modes develop on a time s
t:

t;
t ff

Aub0u

„see Eq.~5.3! of @26#… with t ff being the free-fall time of the
star. Thus, forb0.20 the modes develop during the co
lapse, whenR/M becomes small enough. This rise is fa
enough to be~at least partly! seen before the star enters
Schwarzschild radius~see Figs. 8 and 9!.

D. Exploring the parameter space

Thanks to the fact that it solves complete equations,
code presented in this paper is able to explore a larger pa
the parameter space and give more ‘‘physical’’ results.
Sec. III C b0 has been varied from210 to 50 anda0 was
fixed. The effect of spontaneous scalarization, forb0.25
and lower, was observed changing the amplitude, but not
shape of the wave. However, the two regimes~depending on
the value ofb0) were studied separately, when varyinga0.
This latter has been taken between 0 and 331022, either in
spontaneous scalarization (b0526), or without it
(b0524!. The results are shown in Fig. 10 forh̃c and in
Fig. 11 for Escal. One notices that forb0526 h̃c}a0 and
Escal}const, whereas both}a0

2 for b0524. The scalar field
amplitude does~almost! not depend ona0 in spontaneous
scalarization, whereas it is directly proportional to it othe
wise, as in Brans-Dicke theory.

The equation of state has also been changed. Collaps
and D have been performed with EOS2~see Sec. III A!.
Results are shown in Fig. 12 for collapse D and are simila
those of EOS1~collapse B!, the scalar gravitational wav
signal having the same shape shifted sincef c is higher (1
kHz for D, versus 800 Hz for B!. This difference, as well as

2See the simplified model of@11#.

FIG. 9. Same as Fig. 6 butb0540 ~—! andb0550 ~---!.
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that in amplitude, can easily be explained by the change
the mass of the unstable-equilibrium configuration. Th
varying the parameters of the polytropic equation of state
not of much interest. The use of a realistic equation of st
would be better~as in @18#! but, for this work, a polytrope
gives already good results.

Finally, a few more runs were performed with EOS
varying b0 from 50 to 210 and, for eachb0, the maximal
value ofa0 allowed by solar-system experiments~see, e.g.,
Fig. 9 of @12#! was taken. More precisely, the lowest value

a0
2,1023

and

a0
2,

1.2

ub0u
31023 ~3.8!

was taken. Results are shown in Figs 13 and 14 forEscal, and
it can be seen that effects of spontaneous scalarization ap
for b0,24.4 and that forb0.20, one can see effects o

FIG. 10. Amplitude of the scalar gravitational waveh̃c @see Eq.
~3.6!#, at 10 Mpc, as a function of the coupling coefficienta0, for
two different values ofb0.

FIG. 11. Radiated scalar gravitational energyEscal @see Eq.
~3.7!# emitted during a collapse, as a function of the coupling co
ficient a0, for two different values ofb0.
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instabilities of the scalar field~see Sec. III C!. As far as the
gravitational wave signal is concerned, the quantity plot
in Figs. 15 and 16 ish̃c , at 10 Mpc from the source. Th
characteristic frequency range is 700 Hz< f c<900 Hz ex-
cept for b0>20, wheref c;2000 Hz. The maximal signa
h̃c.5310224 at 10 Mpc which is, at least, one order
magnitude lower than the best expected sensitivity of in
ferometric detectors currently under construction~see e.g.
@27#!. However, one may compare the signal amplitude a
energy to those of similar collapses in general relativ
~two- and three-dimensional stellar core collapse, see@28#
and@29#! and see that both are quite higher. Thus, if spon
neous scalarization effects are likely to occur, their grav
tional signal should be more easily detected than the qua
polar one from a collapsing source~an aborted supernova o
neutron star reaching its maximal mass by accretion!.

IV. CONCLUSIONS

This work has been done with very few approximatio
@A3N set to a constant at the outer edge of the grid, see
~A6! and Appendix 3, and evolution ‘‘frozen’’ when th
lapse becomes too small#; all the tensor-scalar equations, in
cluding hydrodynamics, were solved with high accuracy
means of spectral methods. Although the gauge choice d
not allow any study of the state of the final object, the sca
gravitational wave signals can be obtained and the res
compare well with previous~simplified! works. From that
comparison it can be said that, whereas taking pressure
account, in most cases, does not have significant effect

FIG. 12. Same as Fig. 5, but for collapse D.
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the signal~which had to be demonstrated!, it is the only way
to get reliable initial conditions and to trigger the collapse
a ‘‘natural’’ way. Doing so helps to get clean wave form
On the other hand, since the complete set of tensor-sc
equations was solved, it was possible to study the effect
coupling function parameters. Mainly, one sees that the o
going monopolar gravitational wave is very dependent on
coupling function, especially theb0 parameter. This is inter-
esting because thea0 parameter can be constrained by sol
system experiments, since it represents only a linear de
tion from general relativity, whereasb0 cannot be really
probed in that way. Even if the signal from extragalac
sources is not strong enough to be detected, it is higher
the quadrupolar one and involves more energy. This me
that if a quadrupolar wave signal is detected by VIRGO
LIGO with no monopolar component, then the constrain
tensor-scalar theory will be quite strong. A future study is t
supernova collapse and bounce in this framework since
that case, one has electromagnetic and neutrino sig
which make the use of even negative results of detec
possible.
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value, imposed by solar-system experiments@see Eq.~3.8!#.
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APPENDIX: NUMERICAL PROCEDURE

Hereafter, some details of the numerical techniques~spec-
tral methods! are described. More complete explanations c
be found in@24#, @30#, and@31#.

1. Chebyshev decomposition

The numerical problem is to solve a set of partial diffe
ential equations. For this purpose, each field~or function!
f t0

(r ) is represented, at a given timet0, as a truncated serie
of Chebyshev polynomials~or as a column vector of the
coefficients of this series!. The usual number of coefficient
~or points! is between 17 and 65. Then all spatial operat
such as

f→
] f

]r
, E f ,

1

r
f , r f , D f

reduce to matrix multiplications of the set off ’s coefficients.
Constraint equations~2.23! and ~2.25! are thus easily inte-
grated. Other operations, such as the multiplication of t
functions, must still be done in the physical space~at grid’s
points!.

FIG. 14. Same as Fig. 13 butb0 varies from 0 to 50.
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Evolution equations are written in the form

] f

]t U
t5tJ11/2

5
f tJ11

2 f tJ

tJ112tJ
5S~ f ! tJ11/2

~A1!

with S being a spatial operator onf and tJ being theJth
instant of integration. There is need to evaluateS at time
tJ11/2, which can be done either explicitly~extrapolated
from known quantities attJ andtJ21) or implicitly ~interpo-
lated from unknown quantity attJ11). Explicit integration
suffers from the severe Courant-Friedrich-Levy constraint
the time step. However, in the case of an advection equa
@such as Eq.~2.31!#, it can be used almost with an arbitrar
time step provided that the advection velocity is zero at
edges of the grid; hence thecomovinggrid with the fluid~see
Appendix 3!. The implicit way requires us to write

S 12
~ tJ112tJ!

2
SD f tJ11

5 f tJ
1

~ tJ112tJ!

2
S~ f tJ

!, ~A2!

where the functionf is represented by its coefficients an
with $12@(tJ112tJ)/2#S% being a matrix, which is inverted
to get the solutionf tJ11

. In the case where one has to impo
boundary conditions, the right-hand side of Eq.~A2! is re-

FIG. 15. Amplitude of the scalar gravitational waveh̃c @see Eq.
~3.6!#, at 10 Mpc, as a function of the coupling coefficientb0,
between26 and 0. For eachb0, a0 has the maximal value, im-
posed by solar-system experiments@see Eq.~3.8!#.
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placed by a vector of coefficients containing zeros excep
the last or last but one column. One thus gets a ‘‘free’’ s
lution which can be combined with the first one in order
satisfy boundary conditions.

2. Wave equation

Unfortunately, theS operator present in Eq.~A1! is not
always linear~i.e., not represented by a matrix in coefficie
space!. That is the case for the wave equation~2.26!, with a
spatial operator of the formw→e2zDw. This equation is then
decomposed as follows:

]2w

]t2 5~l2
~ t !r 21l1

~ t !r 1l0
~ t !!Dw1sw ,

with

sw5~e2z2l2
~ t !r 21l1

~ t !r 1l0
~ t !!Dw1e2z

]z

]r

]w

]r
1

]z

]t

]w

]t

1~matter source terms!

and l2
(t)r 21l1

(t)r 1l0
(t) being an approximation ofe2z(r ,t),

allowing us to write the most important part of the spat
operator in a ‘‘linear’’ form. Finally, one writes]2w/]t2u t5tJ
with the second-order approximation andDw tJ

5(Dw tJ11

FIG. 16. Same as Fig. 15 butb0 varies from 0 to 50.
n
-

l

1DwtJ21
)/2 to make the integration scheme implicit. Th

boundary condition imposed on the outer edge of the g
~far away from the star! is that of anoutgoing wave, meaning
that the wave can be written as

w~ t,r !5w01
1

r
FS t2

r

cD , ~A3!

which is an exact condition for one-dimensional waves. D
ferentiating, one gets

1

c

]w

]t
1

]w

]r
1

~w2w0!

r U
outer edge

50. ~A4!

Actually, this is not the right boundary condition for a wav
equation in curved space-time, however, since the bound
condition is imposed far away from the star~i.e., on a nearly
flat space-time!, a good approximation is obtained by takin
as a boundary condition

e2z
]w

]t
1

]w

]r
1

w

r U
outer edge

50. ~A5!

3. Dynamical evolution

The integration procedure is quite similar to that of Gou
goulhon in@18#. All matter and field quantities are suppose
to be known at some initial instantt0, and one wants then to
get them att01dt. First, one can compute the scalar fie
variablesw and J at that time thanks to wave equatio
~2.26! and Eq.~2.27!. Similarly, one gets the fluid quantitie
Ẽ, U ~and thusG), H, andD̃, with their evolution equations
~2.28!, ~2.29!, ~2.32!, and ~2.31!. Then, one can deduce th
metric coefficientA(r ,t01dt) through Eqs.~2.23! and~2.11!
@the integration constant is obtained by the condition;t,
A(r 50,t)51# and determine the fluid proper baryonic de
sity ñB , by inverting relation~2.16!. The equation of state
then gives the pressurep̃( ñB).

Finally, one uses Eq.~2.25! to obtainn(r ,t01dt), which
is determined up to an additive constant. Since there is
Birkhoff theorem in scalar-tensor gravity, this constant ca
not be determined by matching the interior solution to t
exterior ~static! one, used before. Even the exterior spa
time is dynamic. Using a large grid~which is going far away
from the star, typically;303Rstar) enables the gravitationa
field to be in the weak-field regime at the outer edge of
grid allowing us to write with a good approximation

;t,A~Rout,t !3N~Rout,t !5KAN , ~A6!

KAN being a constant determined for the static configurat
(KAN51 for general relativity!. One thus gets the integratio
constant forn(r ,t01dt). ObservingA(Rout) during the col-
lapse, one sees thatDA(Rout)<1025. This is quite lower
than the overall committed error, see Appendix 4. On
N(r ,t) is obtained, the velocityV is deduced and all quanti
ties are known at the instantt01dt.

Time integration is performed by means of a second-or
semi-implicit scheme~see previous sections!, boundary con-
ditions being imposed on theH,U system
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1

r 2

]

]r
r 2Vur 5Rstar

50 ~A7!

and on the wave equation~A5!. Contrary to@18#, the code is
working with several domains. Each domain is partly c
moving with the fluid, meaning that inside the star, bo
edges of a domain are comoving, the grid’s velocity at e
point being~linearly! interpolated. The edge of the outer d
main is at rest@Vgrid(r 5Rout)50#, and the grid’s velocity
between star’s surface and this outer edge is interpolate
each point the same way. Typically, two domains have b
used for the star’s interior and three for the exterior, w
about 65 points in each domain, which is considerably low
than the number of points used in finite difference schem
A full run, with this multidomain spectral methods, too
about 20 min of CPU time on an Onyx Silicon Graphi
workstation~with a MIPS R4400, 200 MHz processor!, for
;20 000 time steps.

4. Tests

All equations have been checked using theMATHEMATICA

algebraic code. More precisely, the Schwartz relation
Eqs.~2.23! and ~2.24!,

]2m

]r ]t
2

]2m

]t]r
50,

was computed giving

]w

]t
3@hg

*
w1qpa~w!T* #

5
]Ẽ

]t
1

1

r 2

]

]r
@r 2~ Ẽ1 p̃ !V#

2@right-hand side of Eq.~2.28!#

which is consistent with Eqs.~2.26! and~2.28!. Finally, set-
ting w50 gives the equations of general relativity as d
scribed in@18#.

For static configurations, the following test was pe
formed. Considering the same equation of state as in@11#
~EOS1 in this work!, the same coupling function@a(w)
c

-

h

at
n

r
s.

r

-

-

5exp(23w2)#, and asymptotic scalar field value (w0
50.0043), we obtained the same dependence for the e
tive scalar coupling constant~the ratio between the scala
and the gravitational energies! on the star’s baryonic mas
~Fig. 2 of @11#!. We also observed an increase of the ma
mal gravitational mass of neutron stars, when taking i
account the scalar field, as it has been showed in Fig. 1
@11#.

The subroutine solving the wave equation has be
checked by taking analytical solutions of simpler wave eq
tions,

]2w

]t2 5W~ t,r !2Dw, ~A8!

whereW(t,r ) is a given function, and verifying that the dis
crepancy between numerical solution and the analytical
goes down as the square of the integration time step~second
order scheme!. For example,

w~ t,r !5
tanh~r !

r
ln~ t12!

which is the solution forW(t,r )25cosh(r)2/2(21t)2ln(t
12), was numerically obtained at 1026 relative accuracy,
with a time step which isdtJ51/100 of the grid’s radius,
after 1000 iterations. The boundary condition was chec
by looking for the remaining energy of the wave in the gr
after the wave was supposed to be gone. With the same
step as above, and for the usual wave equation (hw50),
after 500 integrations, there remained 4.931028 of the ini-
tial energy, this amount going down as (dtJ)4, for the energy
is the ‘‘square’’ of the amplitude. As it has been seen in t
previous sections, a numerical grid partly comoving with t
fluid was used. For this purpose, the wave equations h
been adapted to such a grid and tested.

Finally, during dynamical evolution, a good test of over
accuracy was made by comparing the energy densityẽ given
by the baryonic density through the equation of state, to t
deduced fromẼ ~which is an evolved quantity!. The same is
possible forH. On a whole run this error always staye
,few31023. The conservation of the baryonic number w
verified with a relative accuracy better than 1025.
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