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Spherical neutron star collapse toward a black hole in a tensor-scalar theory of gravity
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Complete tensor-scalar and hydrodynamic equations are presented and integrated, for a self-gravitating
perfect fluid. The initial conditions describe an unstable-equilibrium neutron star configuration, with a poly-
tropic equation of state. They are necessary in order to follow the gravitational collapkeling full hydro-
dynamic$ of this star toward a black hole and to study the resulting scalar gravitational wave. The amplitude
of this wave, as well as the radiated energy, dramatically increases above some critical value of the parameter
of the coupling function, due to the spontaneous scalarization, an effect not present in Brans-Dicke theory. In
most cases, the pressure of the collapsing fluid does not have a significant impact on the resulting signal. These
kinds of sources are not likely to be observed by future laser interferometric detéstiots as VIRGO or
LIGO) of gravitational waves, if they are located at more than a few 100 kpc. However, spontaneous scalar-
ization could be constrained if such a gravitational collapse is detected by its quadrupolar gravitational signal,
since this latter is quite lower than the monopolar di$0556-282(198)03608-X]

PACS numbe(s): 04.30.Db, 02.70.Hm, 04.25.Dm, 04.5th

[. INTRODUCTION ([1] and[12]), who constrained the parameter space of the
coupling function. Second, by looking for monopolar gravi-
In order to test general relativity, one has to compare it tdational radiation from collapsing compact sources which
other, alternate theories of gravitatiofensor-scalartheo-  could be detected by the laser interferometric gravitational
ries, in which gravity is described by a spin-2 field combinedwave observatoriegsuch as VIRG([13] and Laser Inter-
with one or several spin-0 fields, are not only alternate theoferometric Gravitational Wave ObservatoiylGO) [14]].
ries, but “generalize general relativitylsee[1]), meaning This latter method requires that the signal be known and
that general relativity is obtained in them by setting all scalarthat the observetbr unobservedamplitude be related to the
fields to zero. Several such theories have been developedoupling function parameters. Such computations have al-
from Fierz[2], Jordan[3], Brans and Dick¢4] to Bergman ready been performed by various groups, but they all consid-
[5], Nordtvedt[6], Wagonel 7] and, more recently, Damour ered only an Oppenheimer-Snyder collapge., “dust”
and Esposito-Fase[1]. In all these theories, the spin-0 and matter, with no pressuygeither in Brans-Dicke theor{f15]
spin-2 fields ¢ andg,,) are coupled to matter via an effec- and[16]) or by doing some Taylor expansion of the coupling

tive metric tenSO@'MFaZ((P)g,W- The Jordan-Fierz-Brans- fupction [17]. In the Iatt(_ar, the parameter space of the cou-
Dicke theory has only one free parametey whereas for Pling function was restricted to the part where nonperturba-
Bergman, Nordtvedt, and Wagoner the parameter is a fundive strong-fields effects do not happen. The aim of this pa-
tion w(¢). Damour and Esposito-Fae considered an arbi- Per IS to present the results of computations of a spherically
trary number of scalar fields, coupled one to the other. AlISymmetric collapse, of a neutron star toward a black hole,
these theories are motivated by, mainly, two theoretical reaith one scalar field and an arbitrary coupling function. All
sons:(1) they represent the low-energy limit of superstring the hydrodynamics and field equations are treated with no
theories([8] and[9]); (2) they give rise to new “extended” approximation in order to get the monopolar gravitational
inflationary modelg10]. wave form and amplitude. Moreover, including the equation
Since in Brans-Dicke theory [a(¢)] is a linear function Of state allows us to start the collapse with quite a realistic
of ¢, solar system experimenteeak field are sufficient to  Nneutron star configuration and thus, spurious waves signals
constrain the theory, even in strong fields. Nevertheless, are avoidedsee Sec. Ill ¢
more general theory, in which[la(¢)] is a parabolic func- The paper in organized as follows. Section Il describes
tion (depending on two paramet@rshows nonperturbative the evolution equations for the star. Section Ill gives the
effects in strong field11], described as “spontaneous sca- numerical results: initial-value mode{Sec. Ill A), collapse
larization” in [12]. Thus, when describing neutron stars, and resulting wave signaBec. Ill B), comparison with pre-
general relativity and tensor-scalar theory can give signifivious works(Sec. Il Q, and exploration of the parameter
cant differences for their masses, radii, and gravitationaspace(Sec. Il D). Finally Sec. IV gives some concluding
fields, whereas the difference can still be negligible in ourremarks.
solar system data. As a consequence, weak-field experiments
cannotgive much information on strong-field regime, and
one needs to test this strong-field regime by other means.'Numerically, the black hole is never obtained, but the monopolar
First, by looking for the orbital decay of binary-pulsar sys- gravitational waves, far from the source, behave as if the black hole
tems; this has been done by Damour and EspositasEare had formed(see Sec. Il B.
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Il. FIELD AND HYDRODYNAMIC EQUATIONS

A. General equations
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Finally, let us callgg the cosmological value of the scalar
field, which enters the theory as the boundary condition on
the scalar field at spatial infinity.

As has been stated before, the most general theory con-

taining a spin-2 field and on@nasslessspin-0 field contains
one arbitrary coupling functioa(¢). The action is given by

S=(167TG*)7lf d V=04 (R, —204"d,¢d,¢)

+ Sl P, a%(¢)g), ], (2.1

B. Coordinates and variables

The present calculations have essentially been done by
generalizing a previous work by Gourgoulhd8] to tensor-
scalar theory. Therefore, only a very brief presentation of
coordinate and variable choice will be given here. The
Einstein-scalar equations have been decomposed in-tlie 3
formalism[19] onto a family of spacelike hypersurfacEs

where all quantities with asterisks are related to the “Ein-japeled by the real indek called thecoordinate time The

[RIP

stein metric

9.+ Gy is the bare gravitational coupling con- polar time slicinghas been chosen in order to have good

stant,R, =95 "R}, the curvature scalar for this metric, and singularity avoidancésee, e.g.[20] for discussioi On each

g, =det(@%,). The termS,, denotes the action of the matter, hypersurfaceX; the radial gauge has been chosen with
represented by the field¥,,, which is coupled to the spherical-like coordinatesr(6,¢), since the considered
“Jordan-Fierz” metficaﬂﬁaz(cp)g;y; all quantities with a problem is spherically §ymmetric. All these 'assumptions
tilde are related to this metric. That means that all nongravilSpherical symmetry, radial gauge, and polar slidiRGPS]
tational experiments measure this metric, although the fieldmply that the metric g:‘w=a‘2(gp)gw, [which verifies
equations of the theory are better formulated in the EinsteifEinstein-like equation$2.2), with an extra termtakes the
metric. The indices of Einstein frame quantities are movedliagonal form

through Einstein metric, whereas those of Jordan-Fierz quan-

tities are moved through Jordan-Fierz one. By varyingne
obtains

* 1 * pD* * PO _87TG* .
RMV_EgMVR :2(9#(,00,,@0—9,,,,,9* Ippdaept c? T#V'
(2.2
3 47G,
Og, 0=~z a(e)T, @3
where
2 )
T= f—s*m 4
—0s 5g;w
dInale)
ale)=—F """ 29

and Oy =0g4"V, V7 is the Laplace-Beltrami operator of

g5, V), denoting the Levi-Civita connection @}, . One

ds?=—N2(r,t)dt®+ A2(r,t)dr?+r?(d 8%+ sirfod ¢?),
(2.9

where N(r,t) is called thelapse function The metricgfw
will often be described by the three functiong ,t), m(r,t),
and(r,t) defined by

N(r,t)y=exd v(r,t)], (2.10
( 2m(r,t))‘1’2
A(r,t)={1— : (2.1
and
N
§(r,t)=ln(x). (2.12

All coordinates are expressed in the Einstein-frame, and as-
terisks are omitted. However, “physical” quantities will of-
ten be written in the Fierz metric and noted with a tilde.

In this work, neutron stars are modeled as self-gravitating
perfect fluids. They can be considered to be made of degen-

can see that(¢) is the basic, field-dependent coupling erate ma;ter at equilibrium, the equgtion of state being tem-
function between matter and scalar field. General relativity i€erature independeritold mattey. This does not hold only

obtained fora(¢)—0.

The physical stress-energy tensor TH”

=2(—g) Y25S,,/89,, is related to the Einstein-frame one

by

T# =a*(e)TH.

*xv

(2.6

soon after their formation. The stress-energy tensor is written
as

(2.13

T,uV:(e+ p)UMUy+ pguv!
where U, is the four-velocity of the fluid,e is the total
energy densityincluding rest magsn the fluid frame, an$

The equations of motion are given by the stress-energy balS the pressure. The relation to its Einstein-frame counterpart

ance equation, written in the Jordan-Fierz frame
v, T,=0 (2.7
and in the Einstein frame

ViTE = a(@)T*VEie. (2.9

is T’V‘:a“(cpﬁfj. The description of the fluid is completed
by an equation of state
(2.19

e="e(ng)

with ng being the baryonic density in the fluid frame. One
then deduces the pressure as a functionngf. Let I
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=nNu® be the Lorentz factor connecting the fluid frame andthree momentum constraint equations which reduce to only

>, hypersurface frame, setting one nonvanishing equation,
= = gm_, c®[_N
E=-T) = 2%
0 ra 2G 23 ¥n—0sa (o) (E+ IO)V} (2.29

one gets N . . . .
and six Einstein dynamical equations which here reduce to

E=I2%e+p)-p. (2.15 two nonvanishing equations, one of which degenerate, only
giving a condition on the lapse function
The fluid baryonic number is represented by toerdinate

. . 2 m
baryonic density v _gzAT m 4 Iy -
g 5 4Wr2+a (@)r(p+U(E+p))+rE|.
~.number of baryons iV _ (2.25
The other one will not be used in this work.
where 6V=r2singdrdéd¢ is the element of the coordinate Writing the scalar-field wave equati¢@.3) with our vari-
three-volume on a giveix,;, defined as the set of points ables gives
whose coordinates are betweeandr +dr, § and6+d#é, ¢ 2 4 2
’ ’ J al o ag o a N
and ¢+ d¢. The fluid motion is described by the following —‘fze?é(A@Jr % —‘D) Ao, @@\
variables: at ar or at ot 2
dr o' X[E-3p—(E+p)U?. (2.26)
V= ——= —; (coordinate velocity, (2.17 _ ) ) )
dt u One more equation concerning the scalar field will be used;
. although it is redundant with Eq&2.23—(2.26), from which
_ proper distance traveled iy _ év (2.18 it is deduced, it will be useful for numerical integration:
elapsed proper time g, N ' _ ,
195 [N ay| 2N  Jv G, A% dm
One then hag' = (1—U2)~Y2 and deduces the components 2 gt | Al V2T 75| T A AUy TE T
of T,, given by Eq.(2.13. The fluid log enthalpy is also - - o~ o~
introduced, defined as + ¢ a(@)a*(@)N[E-3p—(E+p)U?].
-~ (2.27
e+p
H=In| = > (2.19
NgMgC D. Matter evolution equations
and, finally, three “scalar-field” variables: In order to get the evolution of the variabiEsandU, let
us consider the momentum-energy conservation equation
1 de (2.8). We get
7N o (2.20 _
JE 19 - ~ - ~ )
—— T =2 > ((E+p)V)=—(E+p){a(e)N[(3+U")¢
1 d¢ at reoar
=N (2.21) 5
+4U ]+ rAN[(1+ U ¢yn
5= P+ P (2.22 +UE]}, (2.28
C. Tensor-scalar field equations E ﬂ _ 1 a_p E a_p) _ ﬂ G,m
= ~ 2-2
Spherical symmetry helps to obtain gravitational field o o E+p ot A or I'lréc
equations; we followed the procedure described by Gour- ~
goulhon [18], projecting Egs.(2.2,(2.3) on the three- +q.a* EJF _(¢) +U
: a-a"(¢) (p+U)
surfaces?; and along their normal. Hereafter, we use the
following notation:
r

a-= 4

c
Equation (2.28 expresses the total energy conservation

The tensor Einstein-like equatiof.2) then turn into one (matter plus gravitational and scalar engrdyq. (2.29 be-

Hamiltonian constraint equation ing the tensor-scalar analogous of the Euler equation. One
, notes that in the latter, the 1E@p)[U(dp/at)
om m_2 ¢ e (E+a a% (o)), 223  *+(N/A)(dp/ar)] term which may cause some trouble when

ar G, numerically calculating it, since it is the quotient of two
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guantities vanishing at the surface of the star. Thus, if ondigurations of neutron stars, endowed with a scalar field,
uses the log enthalp§2.19), this term may be replaced by close to the maximal mass. They are used as initial configu-
UT?[U(gH/at)+ (N/A)(dH/ar)], which is well defined rations for the collapse. Thus, setting albit terms to zero,

near the surface. as well asv andU in Egs.(2.23—(2.28), one gets the scalar
Expressing the baryonic number conservation equivalent of the Tolman-Oppenheimer-VolkgifOV) sys-
- tem. The system obtained is the same as Egsin [11],
vV, ngu#=0 (2.30  since the same gauge is used. Considering a polytropic equa-
tion of state
one obtains N
~ ~ e~~~ NoMg [ Np
dD 10 . _ e(ng)=ngmg+K _1(7) ,
— tale) o (r r’DV)+ a(¢@)DN(3y+4U 7)=0. Y No
(2.3)) T\
P=Knomg| = (3.2
Because log enthalpy is used in order to avoid numerical P 0B No ' ‘

singularities at the surface, there has to be an evolution equa-

tion of that quantity. Sincél=H(ng), andng=D/AT, one  with mg=1.66x10 2" kg andn,=0.1 fm~2, one can inte-
may write grate the scalar TOV system, starting at the center with a

given value forng(r =0), up to the surface at whichg(r
) Rsad =0. In this study, two types of polytrope will be
used: (1) y=2.34 andK=0.0195, which has already been
used by{11] to fit equation of state {EOSII) in [21], called
oD ~_ oH EOSL1 in this paperf2) y=2 andK=0.1, as used if22],
== —[l a(QD)] -~ nBan called EOS2 in this paper. Then for each static configuration,
B the total Arnowitt-Deser-MisnefADM ) mass ofg:;y, which

n.\ ot or

M H aH(a’ﬁB Ing
ﬁt anB

19 .2 will be called the gravitational mass and the total scalar
X —2(9—( V)+ a(@)N(3y+4Un) chargew such that, for —o, o(r)=@y+ G, w/r +O(1/r?),
can be determined through E@8) of [11]. These two quan-
1/0A A 5 [ 9Y ouU tities are useful to match the obtained interior solution to the
Al ot +Vo- ar +Iu ot +V exterior one (spherically symmetric solution in vacugm

which is known analytically in another gaugeescribed in
(2.32 [23]) and thus one can obtain a static solution everywhere.
The resulting fields are shown in Fig. 1 f@;=—6, with
large value of the scalar field inside the star, even for a very
small asymptotic fieldp, (spontaneous scalarizatlomhese
Solutions are then used as initial values for the dynamical
evolution. They have been computed, with increasing central

densitiesng(r=0), in order to get an “unstable” configu-
ration (for which gravitational mass is a decreasing function

The numerical procedure, the code, and its tests are d&f the density. This property is not evident in tensor-scalar
scribed in the Appendix. In this section, only results are pretheory, but the dynamical code being sensitive enough to
sented and discussed. An important choice is that of the codtigger the instability only by round-off errors, it has been
pling function a(¢). Following [12], we chose a function checked numerically. The hydrostatic equilibrium is ob-

with terms in the right-hand side being replaced usmg Egs

(2.23, (2.24), and(2.29 by source terms mvolvm& p and
E. The results of numerical integration of all these equation
(2.23—(2.32 will be presented in the next section.

IIl. NUMERICAL RESULTS

depending on two parameters for all of our study: tained, thanks to pseudospectral technigises Appendix 1
and[24]), up to very high accuracy (18° relative error on
a((P):e“0(¢*¢o)+(ﬁo/2)(¢*¢o)2. (3.1)  the hydrostatic equilibrium which enables the dynamical

code to be sensitive to instabilitgee[18]).
Figure 9 of[12] gives constraints on theng,8;) space of
parameters, imposed by binary-pulsar measurements. Section B. Scalar gravitational waves
[Il D investigates this space of parameters for scalar gravita-
tlonal waves. Note that Brans-Dicke theory is obtained for

Bo=

Hereafter, four collapse calculations will be presented,

called A, B, C, and D. The parameters of the static configu-
rat|ons which were used as initial conditions for the col-
lapses, are described in Table I. Note that collapses A and B
use ay=2.34 polytrope, whereas C and D use/&2 one.

Physical scenarios to form a black hole involve either anFirst, only the case A will be considered. As far as the hy-
accreting neutron star or a post-supernova remaahen a  drodynamic part is concerned, the collapse is very similar to
part of the ejected envelop falls back onto the new-born neuthat in general relativity, described [18]. It can be seen
tron staj. In both cases, the mass of the neutron star musfrom Fig. 2, thatA[t,Rg,(t)]— due to the pathological
reach its maximal value above which the star becomes urbehavior of the radial gauge whey,, is approaching the
stable. It is then interesting to get unstable equilibrium con-Schwarzschild radius. An apparent horizon is expected to

A. Static configurations
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FIG. 1. Density EB), metric potentiajsA and N), and scalar FIG. 2. Profiles of various quantities at different valuestof

field (¢) profiles for a neutron star of 2Mk,, for EOS1 (y ~ between 0 and 4.64 ms, for collapse A. The fluid velotitr,t),
=2.34 andK=0.0195 polytrope and with a coupling function measured by the hypersurface observer, is expressed in urgts of

a(¢)=exp(-3¢?). The asymptotic scalar field value ¢g=10"°. and its evolution is downward, the extremity of each curve giving
Star's radiusRg,= 13.1 km. the position of the star’s surface at the corresponding instant. The

evolution for A(r,t) (metric potential, Z(r,t) (scalar “energy”)
and H(r,t) (log-enthalpy is upward, and downward fop(r,t)

develop, but minimal two-surfaces cannot be described b scalar field andN(r t) (lapss.

the radial gauge. On Fig. 2 are plotted several quantitie
during the collapsguntil N(r =0) becomes too smallThus,
although RGPS coordinates are not well adapted for the ddion equations are writted/dt=NX (source term) and the
scription of a black hole, they were used to describe thecoordinate velocityy =(N/A)U—0, all hydrodynamic and
collapse toward it, as ifiLl8]. Moreover, from Figs. 2 and 3 scalar-field quantities are “frozen” inside the star. There-
one sees that the star has almost entered its Schwarzschftate, their evolution can be numerically stopped, in order to
radius Rgiar/ Rschwarzschiig 1-001 at the end of the collapse avoid the singularity oA(r = Rg,). However, all field quan-
so that no significant later evolution could be achieved insiddities continue to evolveutsidethe star as long as one wants
the star. Actually, one notices that the lapse goes to zerm terms of coordinate timéwhich is the time of an observer
within the Schwarzschild radius of the star. Since all evolu-at spatial infinity.

TABLE I. Initial condition parameters of the collapses presented in this paper. The equations ¢E6tStare described in Sec. Il A,
¢ is the asymptotic scalar field valdgiven by cosmological evolutionay and 8, are the coupling function parameté®1), Ry, denotes

star's radiusng(r =0) is the central baryon densitin units of nuclear density, =10 m™3), Mg is theg:‘w-frame ADM massMg
the baryonic one, an@ the scalar charge.

Collapse EOS L) Qg Bo Rstar Ng(r=0) Mg Mg @
[km] [Nnud] [Me] [Me] [Mo]
A 1 10°° 5x10°° -5 11.2 10.4 1.97 2.26 0.204
B 1 10°° 2.5x10°? -5 11.8 10.4 2.07 2.41 0.484
C 2 1075 5x10°° -5 215 4 3.31 3.68 0.921
D 2 1075 2.5x107? -5 22.2 4 3.41 3.82 1.16




4794 JEROME NOVAK 57

C?O T

X _. 8

i E

& S8
o~ Y
S 2
X -
5 o
9

=

t [ ms ]

(=]

FIG. 4. Wave form of the emitted signal during collapse B. The
plotted quantity is the functiofr(t) (see Sec. Ill B, measured at
r=300 km and expressed in meteggr,t) is the scalar field and
¢q its asymptotic value. To get the gravitational wave amplitbde

' o ' one must use Eq3.4).
3 8
° - tion, which carries away energy and can interact with a de-
'E tector. Looking far from the sourc@t a distance >Rg,),
~ 3 Y one can write the metritsee[1])
7° s ™
5 — ~ , 1 .,
g ? o g,uv(rit):a ((PO) fMV+F(hMV+2aOFf,U,V)+O(r ) ’
=) 28
P (33)
° ot wheref ,, is the flat metric andh,,,(t—r/c) andF(t—r/c)
are, respectively, the quadrupolar and monopolar compo-
nents of the wave. Since this work is done in spherical sym-
. metry, only the monopolar mode shall be considered. The
<
Fourier power spectrum (a,=2.5 x 1072, B,=—5)
T
_ ET- g T T T
Cﬁ A4
S s S
g ‘T‘O
R —
| 9
[ N
St |
; e | L L o
@ 4 5 6 X
t [ ms] t [ ms] & 10
=
FIG. 3. Evolutions of various quantities during the collapse A, © Rl
as a function of the coordinate-timeR,,= 300 km is the radius of : o
the outer edge of the grigk(r,t) is the scalar field and the radiusis & %
the coordinate value for whicimg, the baryon density is zero. == o
N(r=0) is the lapse at star's center aM{r=R) is the star's 1 C Ql
surface velocity. )
. . - t
The results of this evolution are shown in Fig. 3, for col- o
lapse A. The fate of the scalar field is particularly interesting: ©
for r>Rg,, the field relaxes toward the asymptotic constant 5
value set by cosmological evolution; the scalar energy of the
star is radiated away as scalar gravitational wave. The scala | | |

field [ o(r=R,,)] is considered to be sufficiently far away

from the star(i.e., in the wave zoneto give the monopolar 10 100 1000

gravitational wave signal. Using the “frozen star” to evolve Frequency [Hz]

the fields outside the star, makes the integration time long

enough to get all the information from the collapserat FIG. 5. Fourier power spectrum of the scalar gravitational wave

> Rgor (Where all gauges become equivaleffthe main dif-  emitted during collapse Eh is the Fourier transform of the signal,
ference from general relativity is the scalar monopolar radiameasured at 10 Mpc arfd the frequency.
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FIG. 6. Same as Fig. 4 but for different collapses=3.16 FIG. 7. Same as Fig. 6 by, varies from— 10 (upper curve,
X 102 for all of them, butg, varies from—4 (upper curve, -to ---) to Bo=—6 (lower curve, —.
Bo=0 (lower curve, ----).

(Fig. 5, with lower amplitude, and Fig. 6 ¢15]).
functionF is the same as that of E(A3), and is plotted for Another work in Brans-Dicke theory, with dust matter,
collapse B in Fig. 4. If one wants to compare the amplitudewas done by Scheet al.[16], dealing more with the fate of
to those of general relativistic gravitational wavda%b, ata the final object. However, comparingagdF/dt of this
distanced, then the right quantity i¢see[1], [17], or [25]):  work, with f’ of their paper gives the same result. Whereas
the authors can conclude on the final state of the collapse,
3.4 this work cannot describe it. All that can be said is that the
' scalar chargéor mass$is all radiated away, so that the scalar
field relaxes toward its cosmological value, and that an ap-

2
h(t)= aaz(ﬁDo)aoF(t)-

The Fourier spectrum of the signal is parent horizon isexpectedo appear(cf. Sec. Il B). These
. results still hold in more general tensor-scalar theory. Fi-
F(f):f maxh(t)ezmndt (3.5 nally, it can be pointed out that, contrary to their work, here
0 the tensor mass in tHeinsteinframe is considered, not in the

Jordan-Fierz one.
and the power spectruni|f|), which is plotted in Fig. 5 for The last study of spherically symmetric collapse in tensor-
the collapse B, is then useful to determine the characteristiscalar theory was done by Haraetaal. [17]. They used the
frequencyf . of the signal. Actually, the quantity to be com- Oppenheimer-Snyder metrim general relativity as a back-

pared with detectors’ sensitivity is ground spacetime and did some Taylor expansion of tensors
o and equations in terms of scalar field coupling function pa-
hC=|h(fC)|\/f_C, (3.6 rameters. Therefore, they used unrealistic initial conditions

(¢=¢o) and could not study the cases of spontaneous sca-
which is expressed in HZ2. From Fig. 5, one sees that a [arization. Wave forms resulting from our calculations for
“collapse B” could be detected by VIRGO, provided it oc- different 3,, from — 10 to 50 are shown in Figs. 6 to 9, with
curs within 300 kpc. Finally, the radiated Einstein-frame unstable equilibrium initial configurations and full hydrody-

Bondi energy is written as namics.ao=23.16x 10" 2 as in[17] and the mass is the maxi-
3 (o dF\2 mal one(cf. Sec. Il A), th_e ratioRg, /M =4. The results are

Escalz_j (_) dt (3.7 different, although showing the same tendancy 44, for

G,Jo \dt many B,, due to the fact that Haradzt al. took unrealistic

o . . o initial conditions. Thus in their simulations, when the col-
which is the total energy radiated in gravitational waves. lapse begins the scalar field, on the one hand, evolves to
reach its quasiequilibrium configuration, on the other hand, it
C. Comparison with previous works feels the effects of the collapse. Their signal is then a super-
Because all previous works have studied anpPosition of these two effects: a raise of the scalar field up to

Oppenheimer-Snyder collapse, for comparison some rurits equilibrium value, with one or several oscillations de-

were done putting andH to zero.

The first work by Shibatat al. [15] considered the dust
collapse in the Brans-Dicke theoryB3¢=0). The authors
used two types of initial conditions, called) and B). The
case Q) starts the collapse witlh= ¢, whereasB) starts it
with a quasistatic solution fop. Making the same dust col-
lapses, the same wave forms and amplitudes were obtained
(their @ is related toe by ®=2 In[A(¢)]=2ay(¢— ¢p))-
Taking the equation of state into account, with equilibrium o 1 5
initial configurations(which are the most realistic possihle
gives the wave form of Fig. 64,=0). The form and am-
plitude are very close to theBj type collapses of Shibata FIG. 8. Same as Fig. 6 by, varies from 10(upper curve, -
et al. (see their Fig. B the power spectra being close too to 8,=30 (lower curve, --).

5 10

rle—gg) [m]
0

—-10 =5

t [ms]
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FIG. 9. Same as Fig. 6 byt;=40 (—) and B¢="50 (---).

-26

pending onB,, then the fall of this field, due to the collapse
of the matter. The signals fg8,>20 have more important
oscillations than other ones; this may be explained as fol-
lows. Inside the star, there are unstable modes which develop
for thesef3, and when the raij/M bec;omes_small_, as it FIG. 10. Amplitude of the scalar gravitational wakg [see Eq.

has been shown by Harada in for static configurati(eee (3.6)], at 10 Mpc, as a function of the coupling coefficiery, for

Fig. 5 of [26]). This is due to the fact that, near the star'sy,q different values ofBo.

center,E—3p<0 allowing for spontaneous scalarization to

deveIOp2 Here, one can see an effect of the pressure on thghat in amplitude, can easily be explained by the change of
signal. These nonperturbative modes develop on a time scalge mass of the unstable-equilibrium configuration. Thus,

10

5x1072 0.01 0.02

%

T varying the parameters of the polytropic equation of state is
not of much interest. The use of a realistic equation of state
Tif would be betteras in[18]) but, for this work, a polytrope
™ \/W gives already good results.

Finally, a few more runs were performed with EOS1

(see Eq(5.3) of [26]) with 74 being the free-fall time of the varying B, from 50 to —10 and, for eachB,, the maximal
star. Thus, forB,>20 the modes develop during the col- value of a, allowed by solar-system experimeritee, e.g.,
lapse, wherR/M becomes small enough. This rise is fastFig. 9 of[12]) was taken. More precisely, the lowest value of
enough to bgat least partly seen before the star enters its

2 —3
Schwarzschild radiussee Figs. 8 and)9 ap<10

D. Exploring the parameter space and
Thanks to the fact that it solves complete equations, the
code presented in this paper is able to explore a larger part of ag<iaT |,30|
the parameter space and give more “physical” results. In
Sec. Ill C B, has been varied from-10 to 50 andag was  was taken. Results are shown in Figs 13 and 14fgy;, and
fixed. The effect of spontaneous scalarization, Sg~—5 it can be seen that effects of spontaneous scalarization appear

and lower, was observed changing the amplitude, but not thgyr g < —4.4 and that for,>20, one can see effects of
shape of the wave. However, the two reginigspending on

the value ofB,) were studied separately, when varyiag.
This latter has been taken between 0 and1® 2, either in
spontaneous scalarization B{=—6), or without it

(Bo=—4). The results are shown in Fig. 10 for, and in

Fig. 11 for Egey. One notices that foBy=—6 hxay and
E.cafcconst, whereas both a(z) for Bo=—4. The scalar field
amplitude doegalmos} not depend onx, in spontaneous
scalarization, whereas it is directly proportional to it other-
wise, as in Brans-Dicke theory.

The equation of state has also been changed. Collapses C
and D have been performed with EO%$&e Sec. Il A 3
Results are shown in Fig. 12 for collapse D and are similar to F_ - L )
those of EOS1(collapse B, the scalar gravitational wave 5x1073 0.01 0.02
signal having the same shape shifted sifigas higher (1
kHz for D, versus 800 Hz for B This difference, as well as

2 1073 (3.9

0.01
T
I

1073
T
|

Rodloted scalar energy [Mg]
107% 107t
T
\
\
\
| |

1078
—
\
\
1

FIG. 11. Radiated scalar gravitational enerBy., [see Eq.
(3.7)] emitted during a collapse, as a function of the coupling coef-
2See the simplified model ¢fi1]. ficient «g, for two different values of3,.
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FIG. 12. Same as Fig. 5, but for collapse D.
FIG. 13. Radiated scalar gravitational enerBy., [see Eqg.
instabilities of the scalar fielésee Sec. Il ¢ As far as the (3.7)] emitted during a collapse, as a function of the coupling coef-
gravitational wave signal is concerned, the quantity plottedicient 3o, between—6 and 0. For eaclBo, ao has the maximal

in Figs. 15 and 16 id1., at 10 Mpc from the source. The value, imposed by solar-system experimestse Eq.(3.8)].

= - . . L.

gzzﬁgtfgsiczgesvl:]i?g nggolstoqrifzcma?gSn;Zsiz)r:al the S|gna_l(wh|c.h.had to b.e.demonstral)e.at is the only way _

= 0_24 ’ ¢ = to get reliable initial conditions and to trigger the collapse in
he=5X10""" at 10 Mpc which is, at least, one order of 5 “natyral” way. Doing so helps to get clean wave forms.
magmtuqle lower than the best expected senS|t_|V|ty of interpn the other hand, since the complete set of tensor-scalar
ferometric detectors currently under constructi@ee e.9. equations was solved, it was possible to study the effects of
[27)). However, one may compare the signal amplitude angtoypling function parameters. Mainly, one sees that the out-
energy to those of similar collapses in general relativityyoing monopolar gravitational wave is very dependent on the
(two- and three-dimensional stellar core collapse, &8  coupling function, especially the, parameter. This is inter-
and[29]) and see that both are quite higher. Thus, if SPONtagsting because the, parameter can be constrained by solar-
neous scalarization effects are likely to occur, their graVita‘system experiments, since it represents only a linear devia-
tional signal should be more easily detected than the quadryion from general relativity, whereag, cannot be really
polar one from a collapsing sour¢en aborted supernova or prohed in that way. Even if the signal from extragalactic

neutron star reaching its maximal mass by accrgtion sources is not strong enough to be detected, it is higher than
the quadrupolar one and involves more energy. This means
IV. CONCLUSIONS that if a quadrupolar wave signal is detected by VIRGO or

LIGO with no monopolar component, then the constrain on
This work has been done with very few approximationstensor-scalar theory will be quite strong. A future study is the
[AXN set to a constant at the outer edge of the grid, see Egupernova collapse and bounce in this framework since, in
(A6) and Appendix 3, and evolution “frozen” when the that case, one has electromagnetic and neutrino signals
lapse becomes too smiléll the tensor-scalar equations, in- which make the use of even negative results of detection
cluding hydrodynamics, were solved with high accuracy bypossible.
means of spectral methods. Although the gauge choice does

not allow any study of the state of the final object, the scalar ACKNOWLEDGMENTS
gravitational wave signals can be obtained and the results
compare well with previougsimplified works. From that | thank Thibault Damour for suggesting this work, for

comparison it can be said that, whereas taking pressure infeuitful discussions, and a critical reading of the manuscript.
account, in most cases, does not have significant effects dram very grateful to Eric Gourgoulhon for help, discussions,
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and a careful reading of the manuscript. The numerical cal- FIG. 15. Amplitude of the scalar gravitational wakig [see Eq.
culations have been performed on Silicon Graphics workstaf3.6)], at 10 Mpc, as a function of the coupling coefficig8,
tions purchased thanks to the support of the SPM departmehetween—6 and 0. For eaclB,, ay has the maximal value, im-
of the CNRS and the Institut National des Sciences deosed by solar-system experimefise Eq(3.8)].
'Univers.
Evolution equations are written in the form

APPENDIX: NUMERICAL PROCEDURE p f —f,
Hereafter, some details of the numerical techniqsesc- %t ===
tral methodg are described. More complete explanations can =ty
be found in[24], [30], and[31].

ty 11—ty S(f)t3+1/2 (A1)

with S being a spatial operator oh andt; being theJth
instant of integration. There is need to evalu&tat time
ty112, Which can be done either explicitlfextrapolated
The numerical problem is to solve a set of partial differ-from known quantities att; andt;_;) or implicitly (interpo-
ential equations. For this purpose, each figdd function  lated from unknown quantity at;. ;). Explicit integration
fi,(r) is represented, at a given tim as a truncated series suffers from the severe Courant-Friedrich-Levy constraint on
of Chebyshev polynomial§or as a column vector of the the time step. However, in the case of an advection equation
coefficients of this seri@sThe usual number of coefficients [such as Eq(2.31)], it can be used almost with an arbitrary
(or points is between 17 and 65. Then all spatial operatordime step provided that the advection velocity is zero at the

1. Chebyshev decomposition

such as edges of the grid; hence tltemovinggrid with the fluid(see
Appendix 3. The implicit way requires us to write
of 1
f=—, f f, —f, rf, Af (tyr1—1y) (ty41— 1)
or r (1_Ts)ftJ+1:ftJ+TS(ftJ)’ (A2)

reduce to matrix multiplications of the set U coefficients. o ) o
Constraint equationé2.23 and (2.25 are thus easily inte- Where the functiorf is represented by its coefficients and
grated. Other operations, such as the multiplication of twoVith {1—[(t;,1—t5)/2]S} being a matrix, which is inverted
functions, must still be done in the physical spgaegrid’s ~ to get the solutiorf, . In the case where one has to impose
points. boundary conditions, the right-hand side of E42) is re-
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Scalar wave amplitude at 10Mpc +A<th71)/2 to make the integration scheme implicit. The

Q0 boundary condition imposed on the outer edge of the grid
| (far away from the staiis that of anoutgoing wavemeaning

9 that the wave can be written as
$ 1 r
x - . g - - .
0 which is an exact condition for one-dimensional waves. Dif-
ferentiating, one gets
&
I 10 0 (o= o)
— o e -0. (A4)
> ‘; ¢ r r outer edge
I o o _ N
'I\' Actually, this is not the right boundary condition for a wave
—a equation in curved space-time, however, since the boundary
© lo condition is imposed far away from the sfae., on a nearly
1 C . . . . . .
— flat space-timg a good approximation is obtained by taking
~ as a boundary condition
N
|
© de de ¢
— e — = =
X € o or r 0. (AS)
Te) outer edge
N 3. Dynamical evolution
lo The integration procedure is quite similar to that of Gour-
v goulhon in[18]. All matter and field quantities are supposed
a\ to be known at some initial instatg, and one wants then to
get them atty+ 6t. First, one can compute the scalar field
g variables¢ and Z at that time thanks to wave equation
0 (2.26 and Eq.(2.27). Similarly, one gets the fluid quantities
FIG. 16. Same as Fig. 15 by®, varies from 0 to 50. E, U (and thus"), H, andD, with their evolution equations

(2.28), (2.29, (2.32, and(2.31). Then, one can deduce the
placed by a vector of coefficients containing zeros except ofetric coefficientA(r,to+ 6t) through Eqs(2.23 and(2.11)
the last or last but one column. One thus gets a “free” so{the integration constant is obtained by the conditibn
lution which can be combined with the first one in order toA(r =01t) =1] and determine the fluid proper baryonic den-

satisfy boundary conditions. sity ng, by inverting relation(2.16. The equation of state
then gives the pressum@(ng).
2. Wave equation Finally, one uses Eq2.25 to obtainv(r,ty+ 6t), which

is determined up to an additive constant. Since there is no
Birkhoff theorem in scalar-tensor gravity, this constant can-
not be determined by matching the interior solution to the
exterior (statig one, used before. Even the exterior space-
time is dynamic. Using a large grigivhich is going far away
from the star, typically~30X Rq,) enables the gravitational

Unfortunately, theS operator present in EqA1) is not
always linear(i.e., not represented by a matrix in coefficient
space. That is the case for the wave equati@?26), with a
spatial operator of the form— e?’A ¢. This equation is then
decomposed as follows:

2 field to be in the weak-field regime at the outer edge of the

¢ . . . . - .
v A2 Prea)Ae+ oy, grid allowing us to write with a good approximation

: YV A(Rout: t) X N(Rout, t) = Kan, (A6)
with
Kan being a constant determined for the static configuration
zga_g f9_€0+‘7_§ f9_€D (Kan=1 for general relativity. One thus gets the integration
ar ar gt ot constant fory(r,ty+ 6t). ObservingA(R,,) during the col-
lapse, one sees thatA(R,,)<10°. This is quite lower
+(matter source terms than the overall committed error, see Appendix 4. Once
N(r,t) is obtained, the velocity is deduced and all quanti-
and APr2+ 2 {r +1{) being an approximation 0&%"Y,  ties are known at the instatg+ ot.
allowing us to write the most important part of the spatial  Time integration is performed by means of a second-order
operator in a “linear” form. Finally, one write§®¢/dt?|;—;,  semi-implicit schemésee previous sectionsboundary con-
with the second-order approximation amtp, =(A¢y, ditions being imposed on thd,U system

o,= (€A A Pr+a)Ap+e
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14, =exp(—3¢?)], and asymptotic scalar field valuee(
72 50" *Vlr=r,, =0 (A7) =0.0043), we obtained the same dependence for the effec-
tive scalar coupling constarithe ratio between the scalar
and on the wave equatidA5). Contrary to[18], the code is and the gravitational energiesn the star's baryonic mass
working with several domains. Each domain is partly co-(Fig. 2 of [11]). We also observed an increase of the maxi-
moving with the fluid, meaning that inside the star, bothmal gravitational mass of neutron stars, when taking into
edges of a domain are comoving, the grid’s velocity at eactccount the scalar field, as it has been showed in Fig. 1 of
point being(linearly) interpolated. The edge of the outer do- [11]. _ _ _
main is at res{Vgq(r = Rou) =01, and the grid’s velocity The subroupne solvmg the wave equation has been
between star’s surface and this outer edge is interpolated ghecked by taking analytical solutions of simpler wave equa-
each point the same way. Typically, two domains have beeHOns,

used for the star’s interior and three for the exterior, with 2
about 65 points in each domain, _Wh?C_h is (_:onsiderably lower _‘2P =W(t,r)?A o, (A8)
than the number of points used in finite difference schemes. gt

A full run, with this multidomain spectral methods, took . . : . .
about 20 min of CPU time on an Onyx Silicon GraphicswhereW(t,r) is a given function, and verifying that the dis-

workstation(with a MIPS R4400, 200 MHz procesgpfor  C'epancy between numerical solution and the analytical one
~20 000 time steps. ’ goes down as the square of the integration time &epond

order schemge For example,

4. Tests tanlﬂ( r )

All equations have been checked using M aHEMATICA e(tr)= r In(t+2)
algebraic code. More precisely, the Schwartz relation for
Egs.(2.23 and(2.24), which is the solution forW(t,r)?=cosh¢)%2(2+1t)2In(t
+2), was numerically obtained at 10 relative accuracy,
m  5°m B with a time step which igIt’=1/100 of the grid’s radius,
arot H_O' after 1000 iterations. The boundary condition was checked
by looking for the remaining energy of the wave in the grid,
was computed giving after the wave was supposed to be gone. With the same time
step as above, and for the usual wave equatidrp€0),
ﬁ_gox[gg e+q,a(e)T, ] a}fter 500 integrations, there remained 4208 of the ini-
ot * tial energy, this amount going down ast{)*, for the energy
— is the “square” of the amplitude. As it has been seen in the
:E+ i i[rz(E+~)V] previous sections, a numerical grid partly comoving with the
gt ror P fluid was used. For this purpose, the wave equations have
. . been adapted to such a grid and tested.
—[right-hand side of Eq.2.28)] Finally, during dynamical evolution, a good test of overall

which is consistent with Eq$2.26) and(2.28. Finally, set- accuracy was made by comparing the energy dersdiven

ting ¢=0 gives the equations of general relativity as de-PY the baryonic density through the equation of state, to that

scribed in[18]. deduced fronE (which is an evolved quantity The same is
For static configurations, the following test was per-possible forH. On a whole run this error always stayed

formed. Considering the same equation of state aglil  <fewx 10 3. The conservation of the baryonic number was

(EOS1 in this work, the same coupling functioha(e)  verified with a relative accuracy better than £0
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