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Neutron and electron electric dipole moment inN51 supergravity unification

Tarek Ibrahim and Pran Nath
Department of Physics, Northeastern University, Boston, Massachusetts 02115

~Received 25 August 1997; published 25 November 1997!

An analysis of the neutron EDM and of the electron EDM in minimalN51 supergravity unification with
two CP-violating phases is given. For the neutron the analysis includes the complete one loop gluino,
chargino, and neutralino exchange diagrams for the electric dipole and the chromoelectric dipole operators, and
also the contribution of the purely gluonic dimension-six operator. It is shown that there exist significant
regions in the six-dimensional parameter space of the model where cancellations between the gluino and the
chargino exchanges reduce the electric and the chromoelectric contributions, and further cancellations among
the electric, the chromoelectric, and the purely gluonic parts lead to a dramatic lowering of the neutron EDM
sometimes below the electron EDM value. This phenomenon gives a new mechanism, i.e., that of internal
cancellations, for the suppression of the neutron EDM in supersymmetric theories. The cancellation mechanism
can significantly reduce the severe fine-tuning problem associated withCP-violating phases in SUSY and
SUGRA unified models.@S0556-2821~98!01203-X#

PACS number~s!: 13.40.Em, 04.65.1e, 12.60.Jv
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I. INTRODUCTION

Supersymmetric models with softly broken supersymm
try introduce new sources ofCP violation which contribute
to the neutron and the electron electric dipole mom
~EDM!. It is known that the exchange of supersymmet
~SUSY! particles close to their current experimental low
limits and CP-violating phases of normal size, i.e.O(1),
will lead to the neutron EDM already in excess of the curr
experimental bound of 1.1310225e cm @1#. Two possibili-
ties to resolve this problem have been commonly discus
in the literature. The first is that the phases are notO(1) but
rather much smaller, i.e.,O(1022– 1023) @2–4#. However, a
small phase constitutes a fine-tuning unless it arises n
rally, e.g. as a loop correction. The second possibility is t
the phases areO(1), but the supersymmetric spectrum
which contributes to the EDMs is heavy@5,6#, i.e. in the
several TeV region and perhaps out of reach of even
CERN Large Hadron Collider~LHC!. In this paper we dis-
cuss a third possibility, i.e., that of internal cancellatio
among the different components of the neutron EDM. W
shall show that such cancellations can dramatically red
the neutron EDM without either excessive fine-tuning of t
phases or pushing the SUSY spectrum in several TeV m
range. One then finds that the neutron and the electron ED
can satisfy the current experimental bounds@1,8# with phases
not unduly small and a SUSY spectrum which is not und
heavy at least for low values of tanb.

Although there are many analyses of the EDMs in sup
symmetric theories, most of these@2,3,5–7# are without ra-
diative breaking of the electroweak symmetry and sometim
neglecting the chargino contribution to the neutron ED
@2,7#. For the neutron EDM there are two operators oth
than the electric dipole moment operator, which can cont
ute to the neutron EDM. One of these is the color dip
operator and the other is the dimension-six purely gluo
operator considered by Weinberg@9#. With the exception of
the work of Ref. @10# most of the previous analyse
@2,3,6,7,11# do not take into account the contribution of th
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color and of the purely gluonic operators with the presum
tion that their relative contributions to the neutron EDM a
small. However, it was pointed out in Ref.@12# that the con-
tributions of the color and of the purely gluonic operato
can be comparable to the contribution of the electric dip
operator in a significant region of the minimal supergrav
parameter space@12#. Currently there is some confusion i
the literature regarding the sign of the gluino exchange te
@6,7#. Further, there is no analysis aside from that of Ref.@6#
which gives the complete one loop contribution including t
gluino, the chargino and the neutralino exchanges aga
which the signs of the relative contributions of the vario
terms can be checked. Because of the sensitive issue o
cancellation between the gluino and the chargino excha
diagrams crucial to the analysis of this paper, we have
done the full one loop analysis of the EDM with the gluin
the chargino and the neutralino exchanges. We compare
results to those of Refs.@6, 7# in Appendix A. In our analysis
we have made the standard assumption of ignoring all
generational mixing of quarks and of squarks.

The outline of the paper is as follows: In Sec. II we giv
the general features of the minimal supergravity unifi
model and discuss the newCP-violating phases it supports
In Sec. III we give our evaluation of the gluino, the chargi
and the neutralino contributions to the electric dipole ope
tor. In Sec. IV we display our evaluation of the chromoele
tric and of the purely gluonic operator contributions. N
merical analysis of results and the phenomenon
cancellation among the various components is discusse
Sec. V. Conclusions are given in Sec. VI. Diagonalization
the squark and of the chargino mass matrices paying at
tion to the phases is given in Appendixes A and B along w
a comparison of our results with those of the previous ana
ses.

II. N51 SUPERGRAVITY AND CP-VIOLATING PHASES

The analysis of this paper is based onN51 supergravity
grand unified theory in which supersymmetry is brok
478 © 1997 The American Physical Society
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57 479NEUTRON AND ELECTRON ELECTRIC DIPOLE MOMENT . . .
spontaneously via gravitational interactions in the hidd
sector@13,14#, and the electroweak symmetry is broken v
radiative effects. We assume that the grand unified the
~GUT! groupG breaks at the scaleMG to the standard mode
gauge group, and after breaking of supersymmetry the
effective theory can be characterized by the following sy
metry breaking sector at the GUT scale:

VSB~0!5m0
2zaza1~m0A0W~3!1B0W~2!1H.c.!

1 1
2 m1/2l̄ il i . ~1!

Here W(2)5m0H1H2 , with H1 , H2 being the two Higgs
doublets,W(3) is the superpotential cubic in the fields,m0 is
b
n

p
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ee
-

the universal scalar mass,A0 is the universal trilinear cou-
pling, B0 is the universal bilinear coupling, andm1/2 is the
universal gaugino mass. In generalA0 , B0m0 , m0 andm1/2

are complex. However, not all the phases are physical.
possible to remove the phases ofm0 ,m1/2 and makeB0m0

real by redefinition of the fields and by doingR transforma-
tions on them. We are then left with only two independe
phases at the GUT scale. One may choose one of these
the phase ofm0 (um0), and the other to be the phase ofA0

(aA0). Using renormalization group evolution one ca
evolveVSB(0) to low energy and one finds
VSB5m1
2uH1u21m2

2uH2u22@Bme i j H1
i H2

j 1H.c.#1MQ̃
2

@ ũL* ũL1 d̃L* d̃L#1MŨ
2

ũR* ũR1MD̃
2

d̃R* d̃R1M L̃
2
@ ñ e* ñ e1 ẽL* ẽL#

1M Ẽ
2

ẽR* ẽR1
gm0

&mW

e i j F meAe

cosb
H1

i l̃ L
j ẽR* 1

mdAd

cosb
H1

i q̃L
j d̃R* 2

muAu

sin b
H2

i q̃L
j ũR* 1H.c.G1

1

2
@m̃3 ḡ̃ g̃1m̃2W̃̄aW̃a1m̃1B̄̃B̃#

1DVSB ~2!
ti-

are
el is

l-
where (l̃ L , q̃L) are the SU~2! ~slepton, squark! doublets~the
generation indices are suppressed!, andDVSB is the one loop
contribution to the effective potential@15#.

In our analysis the electroweak symmetry is broken
radiative effects which allows one to determine the mag
tude ofm0 by fixing MZ and to find the magnitude ofB0 in
terms of tanb5^H2&/^H1&. In the analysis we use one-loo
renormalization group equations~RGEs! for the evolution of
the soft SUSY breaking parameters and for the parametem,
and two-loop RGEs for the gauge and Yukawa couplin
The equations for the gauge and the Yukawa couplings,
the diagonal elements of the sfermion masses and gau
masses are such that they are entirely real, while the pha
m does not run because it cancels out of the one loop re
malization group equation ofm. However, both the magni
tudes and the phases ofAi do evolve and one has

dAt

dt
52S 16

3
ã3

m̃3

m0
13ã2

m̃2

m0
1

13

15
ã1

m̃1

m0
16YtAt

1YbAbD , ~3!

dAb

dt
52S 16

3
ã3

m̃3

m0
13ã2

m̃2

m0
1

7

15
ã1

m̃1

m0
1YtAt16YbAb

1YtAtD , ~4!

dAt

dt
52S 3ã2

m̃2

m0
1

9

5
ã1

m̃1

m0
14YtAt13YbAbD , ~5!
y
i-

.
nd
no
of
r-

dAu

dt
52S 16

3
ã3

m̃3

m0
13ã2

m̃2

m0
1

13

15
ã1

m̃1

m0
13YtAtD ,

~6!

dAd

dt
52S 16

3
ã3

m̃3

m0
13ã2

m̃2

m0
1

7

15
ã1

m̃1

m0
13YbAbD ,

~7!

and

dAe

dt
52S 3ã2

m̃2

m0
1

9

5
ã1

m̃1

m0
13YbAbD , ~8!

where ã i5gi
2/(4p)2, Y(u,d,e)5h(u,d,e)2

/(4p)2, and where
gi are the gauge couplings andh(u,d,e) are the Yukawa cou-
plings, andt5 ln(MG

2 /Q2). The supergravity model withCP
violation is then completely parametrized by just six quan
ties: m0 , m1/2, A0 , tanb, um0 and aA0 . There are 32 new
particles in this model. Their masses and interactions
determined by the six parameters above. Thus the mod
very predictive.

III. EDM CALCULATION

One defines the EDM of a spin-1
2 particle by the effective

Lagrangian

LI52
i

2
df c̄smng5cFmn ~9!

which in the nonrelativistic limit givesLI5dfcA
†sW •EW cA

wherecA is the large component of Dirac field. In renorma
izable theories the effective Lagrangian~9! is induced at the
loop level if the theory contains a source ofCP violation at
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480 57TAREK IBRAHIM AND PRAN NATH
the tree level. For a theory of a fermionc f interacting with
other heavy fermionsc i ’s and heavy scalarsfk’s with
massesmi , mk and chargesQi , Qk the interaction that con
tainsCP violation in general is given by

2Lint5(
ik

c̄ f S Kik

12g5

2
1Lik

11g5

2 Dc ifk1H.c.

~10!

FIG. 1. ~a! One loop diagram contributing to the electric dipo
operator where the external photon line ends on an exchan

squark~slepton! line represented byq̃k( l̃ k) on the internal line.~b!
One loop diagram contributing to the electric dipole operator wh
the external photon line ends on an exchanged chargino line lab

by x̃ i
1 in the loop.
Here L violates CP invariance iff Im(KikLik* )Þ0. The one
loop EDM of the fermion f in this case is given by

(
ik

mi

~4p!2mk
2 Im~KikLik* !FQiAS mi

2

mk
2D 1QkBS mi

2

mk
2D G

~11!

whereA(r ) andB(r ) are defined by

A~r !5
1

2~12r !2 S 32r 1
2 ln r

12r D ~12!

and

B~r !5
1

2~r 21!2 S 11r 1
2r ln r

12r D , ~13!

where one has charge conserved at the vertices, i.e.,Qk
5Qf2Qi . The loop diagrams corresponding to the termA
is Fig. 1~b! and to the term B is Fig. 1~a!.

A. Gluino contribution

The quark-squark-gluino interaction is given by@14#

2Lq2 q̃2 g̃5&gsTjk
a (

i 5u,d
S 2 q̄ i

j 12g5

2
g̃aq̃ iR

k

1 q̄ i
j 11g5

2
g̃aq̃ iL

k D1H.c., ~14!

wherea51 – 8 are the gluino color indices, andj ,k51 – 3
are the quark and squark color indices. The scalar fieldsq̃L

and q̃R are in general linear combinations of the mass eig
states which are given by diagonalizing the squark (mas2

matrices forũ and d̃ at the electroweak scale@14#:

ed

e
led
M ũ
2
5S MQ̃

2
1mu

21Mz
2S 1

2
2Qu sin2 uWD cos 2b mu~Au* m02m cot b!

mu~Aum02m* cot b! MŨ
2

1mu
21Mz

2Qu sin2 uW cos 2b
D ~15!

and

M d̃
2
5S MQ̃

2
1md

22Mz
2S 1

2
1Qd sin2 uWD cos 2b md~Ad* m02m tan b!

md~Adm02m* tan b! MD̃
2

1md
21Mz

2Qd sin2 uW cos 2b
D , ~16!

whereQu5 2
3 andQd52 1

3 . We note that theAu andAd are not independent but evolve from the same commonA0 at the GUT
scale. Further,um ~the phase ofm!, aAu

~the phase ofAu!, andaAd
~the phase ofAd! are related to just the two phasesum0

and

aA0
at the GUT scale by renormalization group evolution. We diagonalize the squark matrices so that

q̃L5Dq11q̃11Dq12q̃2 ~17!
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q̃R5Dq21q̃11Dq22q̃2 , ~18!

where q̃1 and q̃2 are the mass eigenstates. A more detailed discussion of the diagonalization is given in Appendix A
In terms of the mass eigenstatesq̃1 and q̃2 the gluino contribution is given by

dq-gluino
E /e52

2as

3p (
k51

2

Im~Gq
1k!

mg̃

M q̃k

2 Qq̃BS mg̃
2

M q̃k

2 D , ~19!

whereGq
1k5Dq2kDq1k* , as5gs

2/4p, mg̃ is the gluino mass, ande is the positron charge.

B. Neutralino contribution

In order to discuss the neutralino exchange contributions we first exhibit the neutralino mass matrix

Mx05S m̃1 0 2Mz sin uW cosb Mz sin uW sin b

0 m̃2 Mz cosuW cosb 2Mz cosuW sin b

2Mz sin uW cosb Mz cosuW cosb 0 2m

Mz sin uW sin b 2Mz cosuW sin b 2m 0

D . ~20!
ic

on
on

w

a-

nd
he
The matrixMx0 is a complex non-Hermitian and symmetr
matrix, which can be diagonalized using a unitary matrixX
such that

XTMx0X5diag~m̃x
1
0,m̃x

2
0,m̃x

3
0,m̃x

4
0!. ~21!

By rearranging the fermion-sfermion-neutralino interacti
@12#, the neutralino exchange contribution to the fermi
EDM is given by

df -neutralino
E /e5

aEM

4p sin2 uW
(
k51

2

(
i 51

4

Im~h f ik!
m̃x

i
0

M f̃ k
2

3Q f̃ BS m̃x
i
0

2

M f̃ k
2 D , ~22!

where

h f ik5@2&$tan uW~Qf2T3 f !X1i1T3 fX2i%D f 1k*

1k fXbiD f 2k* #~& tan uWQfX1iD f 2k2k fXbiD f 1k!.

~23!

Here we have

ku5
mu

&mW sin b
, kd,e5

md,e

&mW cosb
~24!

whereb53(4) for T3 f52 1
2 ( 1

2 ).

C. Chargino contribution

To discuss the contribution of the chargino exchanges
exhibit first the chargino mass matrix
e

MC5S m̃2 &mW sin b

&mW cosb m
D . ~25!

This matrix can be diagonalized by the biunitary transform
tion

U* MCV215diag~m̃x
1
1,m̃x

2
1! ~26!

whereU and V are unitary matrices~see Appendix B!. By
looking at the fermion-sfermion-chargino interaction we fi
the chargino contribution to the EDMs for the up quark, t
down quark and for the electron as follows

du-chargino
E /e5

2aEM

4p sin 2uW
(
k51

2

(
i 51

2

Im~Guik!
m̃x

i
1

M d̃k
2

3FQd̃BS m̃x
i
1

2

M d̃k
2 D 1~Qu2Qd̃!AS m̃x

i
1

2

M d̃k
2 D G ,

~27!

dd-chargino
E /e5

2aEM

4p sin2 uW
(
k51

2

(
i 51

2

Im~Gdik!
m̃x

i
1

M ũk
2

3FQũBS m̃x
i
1

2

M ũk
2 D 1~Qd2Qũ!AS m̃x

i
1

2

M ũk
2 D G ,

~28!

and
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de-chargino
E /e5

aEM

4p sin2 uW

ke

mñ e
2 (

i 51

2

m̃x
i
1 Im~Ui2* Vi1* !

3AS m̃x
i
1

2

mñ e
2 D ~29!

where

Guik5kuVi2* Dd1k~Ui1* Dd1k* 2kdUi2* Dd2k* ! ~30!

Gdik5kdUi2* Du1k~Vi1* Du1k* 2kuVi2* Du2k* !. ~31!

The sum total of the gluino, the neutralino and the charg
contributions to the EDM gives us the total EDM. To obta
the neutron EDM contribution from the electric dipole m
ment operator we use the nonrelativistic SU~6! quark model
which gives

dn5 1
3 @4dd2du#. ~32!

The analysis ofdn above is at the electroweak scale and
must be evolved down to the hadronic scale via renormal
tion group evolution to give

dn
E5hEdn ~33!

wherehE is the QCD correction factor and we estimate it
be 1.53 in agreement with the analysis of Ref.@10#.

IV. CHROMOELECTRIC AND THE CP-VIOLATING
PURELY GLUONIC DIMENSION-SIX OPERATORS

The quark chromoelectric dipole moment is defined to
the factord̃C in the effective operator

LI52
i

2
d̃Cq̄smng5TaqGmna ~34!

where Ta are the generators of SU~3!. The gluonic dipole
momentdG is defined to be the factor in the effective oper
tor

LI52 1
6 dGf abgGamrGbn

r Gglsemnls ~35!

whereGamn is the gluon field strength tensor,f abg are the
Gell-Mann coefficients, andemnls is the totally antisymmet-
ric tensor withe0123511. An analysis of these operators
minimal supergravity with twoCP-violating phases was
given in Ref.@12#. We quote the results from that work her
For the chromoelectric dipole moment one has three con
butions: from the gluino exchange, from the neutralino e
change, and from the chargino exchange. These are give
@12#

d̃q-gluino
C 5

gsas

4p (
k51

2

Im~Gq
1k!

mg̃

M q̃k

2 CS mg̃
2

M q̃k

2 D , ~36!

where

C~r !5
1

6~r 21!2 S 10r 2261
2r ln r

12r
2

18 ln r

12r D , ~37!
o

t
a-

e

-

i-
-
by

d̃q-neutralino
C 5

gsg
2

16p2 (
k51

2

(
i 51

4

Im~hqik!
m̃x

i
0

M q̃k
2 BS m̃x

i
0

2

M q̃k
2 D ,

~38!

and

d̃q-chargino
C 5

2g2gs

16p2 (
k51

2

(
i 51

2

Im~Gqik!
m̃x

i
1

M q̃k
2 BS m̃x

i
1

2

M q̃k
2 D .

~39!

The contribution to the EDM of the quarks can be co
puted using the naive dimensional analysis@16# which gives

dq
C5

e

4p
d̃q

ChC ~40!

wherehC is the QCD correction factor for the color dipol
operator.

For theCP-violating dimension six operator

dG523asmtS gs

4p D 3

Im~G t
12!

z12z2

mg̃
3 H~z1 ,z2 ,zt!

~41!

where

za5S M t̃ a

mg̃
D 2

, zt5S mt

mg̃
D 2

. ~42!

The contribution todn from dG can be estimated by the naiv
dimensional analysis@16# which gives

dn
G5

eM

4p
dGhG ~43!

whereM is the chiral symmetry breaking scale and has
numerical value 1.19 GeV, andhG is the renormalization
group evolution factor of the dimension-six operator fro
the electroweak scale down to the hadronic scale. We e
mate thathC'hG;3.4 in agreement with the analysis o
Ref. @10#. To get the contributions of the chromoelectric a
dimension-six operators to the EDM we used the redu
coupling constant and naive dimensional analysis. Ther
another way of estimating this contribution for the chrom
electric operator and that is using QCD sum rules@17#. The
use of QCD sum rules rather than of the naive dimensio
method would not change the conclusions of this paper.

V. EDM ANALYSIS

As already stated while the EDM of the neutron has be
analyzed in many works, most of the previous analyses h
been carried out within the minimal supersymmetric stand
model ~MSSM!. Our analysis here is in the framework o
N51 supergravity and we use radiative breaking of the el
troweak symmetry including one loop effective potent
terms@15# to analyze the EDMs in the six-dimensional p
rameter space of the theory given bym0 , m1/2, A0 , tanb,
um0 andaA0 . The constraints imposed on the radiative ele
troweak symmetry breaking include imposition of color a



n

as a

57 483NEUTRON AND ELECTRON ELECTRIC DIPOLE MOMENT . . .
FIG. 2. ~a! Plot of the magnitude of the electron EDM as a function ofm0 whenuA0u51.0, tanb53.0 andaA05um05p/10 for different
values ofm1/2. The dotted curve is form1/25500 GeV, the solid curve form1/25600 GeV, and the dashed curve is form1/25700 GeV.~b!
Plot of the magnitude of the neutron EDM as a function ofm0 for the same parameters as in~a!. ~c! Plot of the magnitude of the electro
EDM as a function ofm1/2 when uA0u51.0, tanb53.0 andaA05um05p/10 for different values ofm0 . The dotted curve is form0

5500 GeV, the solid curve form051000 GeV and the dashed curve is form051500 GeV.~d! Plot of the magnitude of the neutron EDM
as a function ofm1/2 for the same parameters as in~c!. ~e! Plot of the magnitudes of the neutron, the electron and the muon EDMs
function ofum0

for the case whenuA0u51.0, tanb53.0,aA05p/20, m051000 GeV andm1/25500 GeV.~f! Plot of the magnitudes of the
neutron, the electron and the muon EDMs as a function of tanb for the case whenuA0u51.0, aA05um05p/20, m052000 GeV andm1/2

5500 GeV.
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charge conservation, experimental lower limit constraints
the sparticle masses from CERNe1e2 collider LEP, Col-
lider Detector at Fermilab~CDF! and DO, and the experi
mental constraints onb→s1g from CLEO @18#. ~Details of
the analysis are similar to those of Ref.@19#.! As mentioned
in Sec. I in most of the previous analyses in the literature
effects of the chromoelectric and of the purely gluonic o
erators have been assumed small and ignored. As show
Ref. @12# this is an erroneous assumption as the relative c
tributions of the electric, of the chromoelectric, and of t
purely gluonic operators are highly model dependent
their ratios can sharply change as one moves in the
dimensional parameter space of the model. In fact, it w
shown in Ref.@12# that contrary to the assumptions genera
made the contributions of the chromoelectric and of
purely gluonic operators can be comparable to and may e
exceed the contribution of the electric dipole term. Beca
of the significant contribution that the chromoelectric and
purely gluonic operators can make to the neutron EDM,
include in our analysis all the three contributions, i.e.,
electric, the chromoelectric and the purely gluonic opera
contributions. However, we do not include in the analysis
effects induced by the phase in the Kobayashi-Maska
~KM ! mass matrix in the renormalization group evolution
the SUSY phases, since these induced effects are know
be very small@20–22#.

One of the important phenomena we find in our analy
is the possibility of destructive interference between
gluino and the chargino exchange diagrams for the elec
dipole and for the chromoelectric terms. This generally h
pens when the signs of phases ofum0

andaA0
are opposite.

In this case there is also a destructive interference betw
n

e
-
in

n-

d
x-
s

e
en
e
e
e
e
r
e
a

f
to

s
e
ic
-

en

them and theAt terms in the purely gluonic part. In additio
to the above one also finds a further cancellation among
electric, the chromoelectric and the purely gluonic pa
Constraints on the theoretical analyses are provided by
experimental upper limits on the EDMs. For the neutron
current experimental limit is@1#

dn,1.1310225e cm ~44!

and for the electron the limit is@8#

de,4.3310227e cm. ~45!

For the muon the current experimental upper limit isdm
,1.1310218 e cm @23# ~at 95% C.L.!. This limit may im-
prove by up to four orders of magnitude in a new propos
experiment at the Brookhaven National Laboratory@24#.
However, the constraints on the supergravity parame
space from the current limits on the neutron EDM and on
electron EDM are already much stronger than what mi
emerge from the improved muon EDM experiment. For t
reason we focus in our analysis on the constraints com
from the neutron EDM and from the electron EDM. How
ever, we shall sometimes also display the muon EDM
comparison along with the neutron and the electron EDM

We begin our discussion with a comparison between
electron and neutron EDM constraints on the two basic
rameters of the theory, i.e.,m0 and m1/2. As may be seen
from Fig. 2~a! the electron EDM falls off with increasing
m0 . This behavior is easily understood from Eqs.~22! and
~29! since asm0 increasesA(r )/M f̃

2 andB(r )/M f̃
2 decrease.

Using the experimental upper limit of Eq.~45! in Fig. 2~a!
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FIG. 3. ~a! Plot of the magnitudes of the electric dipole contribution, of the color dipole contribution, of the purely gluonic contrib
and of the total neutron EDM as a function ofuA0u for the case when tanb53, um05p/30, aA05p/8, mg̃5800 GeV (m1/2

5281.2 GeV) andm051500 GeV.~b! Same as~a! except thataA052p/8. ~c! Plot of the magnitudes of the neutron, the electron and
muon EDMs as a function ofm1/2 for the case when tanb53, um05p/30, aA056p/8, m05800 GeV anduA0u52.6. Curve 1~dotted! is
for the case whenaA05p/8 and curve 2~solid! is for case whenaA052p/8. ~d! Plot of the magnitudes of the neutron EDM as a functi
of m0 for three cases whenum05p/20, aA052p/6, and tanb53. The data for the other SUSY parameters are as follows:uA0u52.5,
mg̃5500 GeV for curve 1,uA0u52.0,mg̃5500 GeV for curve 2, anduA0u52.5,mg̃5600 GeV for curve 3.~e! The excluded regions in the
m0-m1/2 plane of the minimal SUGRA model under the experimental constraints of Eqs.~44! and ~45! when uA0u51.4, tanb53.0, um0

5p/30 andaA056p/8. The neutron EDM curves are solid withn(6) corresponding toaA056p/8, and the electron EDM curve is dotte
and labelede(1,2). The excluded regions of the parameter space lie between the axes and the curves.
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one finds foruA0u51.0, tanb53.0 andaA05um05 p/10 the
following constraints onm0 : m0.1320 GeV for m1/2
5700 GeV, m0.1420 GeV for m1/25600 GeV, andm0
.1520 GeV form1/25500 GeV. A similar analysis holds
for Fig. 2~b!. Here using the experimental upper limit on th
neutron EDM of Eq.~44! and for the same above paramete
one finds m0.2500 GeV for m1/25700 GeV, m0
.2680 GeV for m1/25600 GeV andm0.2840 GeV for
m1/25500 GeV. Thus in this region of the parameter spa
the upper limit on the neutron EDM rather than the upp
limit on the electron EDM is the more severe constraint
m0 . The dependence ofde and dn on m1/2 is displayed in
Figs. 2~c! and 2~d!. The broad maxima for smallm1/2 in
these graphs arise from an interplay between the fac
m̃x

i
1, m̃x

i
0 andmg̃ which increase asm1/2 increases, and the

functionsA(r ), B(r ) and C(r ) which decrease asm1/2 in-
creases. By carrying out the same analysis as for them0
dependence, one finds here also that the experimental u
limit constraint for the neutron EDM is a more severe co
straint than the one for the electron EDM.

The dependence of the EDMs onum0
is displayed in Fig.

2~e! and on tanb in Fig. 2~f!. The conventional fine-tuning
problem can be understood from the analysis of Fig. 2~e!
where the phaseum0 must lie in a very small corridor aroun
the origin to satisfy the current experimental constraints
the neutron EDM. Figure 2~f! shows that the EDMs are a
increasing function of tanb. This behavior can be under
stood easily for the electron and for the muon EDM sin
these involve a factor of 1/cosb which increases as tanb
increases. For the neutron EDM case, there are contribut
e
r
n

rs

per
-

n

e

ns

from both the up quark and from the down quark with d
ferent tanb dependences. However, the down quark con
bution dominates and as Fig. 2~f! shows the neutron EDM is
still an increasing function of tanb.

In the analysis thus far we did not take advantage of
two independent phases. To give a comparison of the res
arising in the two cases we consider first the case of Fig. 3~a!
where the signs ofaA0

and um0
are both positive. Here we

find that there are no large internal cancellations within
various componentsdn

E , dn
C , anddn

G , and so these function
do not show any rapidly varying behavior. However,dn

E and
dn

C in this case are negative whiledn
G is positive over the

entireuA0u region and there is a cancellation among them.
the region ofuA0u<2.5 the cancellation is rather small be
causedn

G is relatively small. However, the cancellation b
comes more significant foruA0u.2.5, leading to a dip in the
total dn in this region as seen in Fig. 3~a!.

We consider next the case in Fig. 3~b! when the sign of
aA0

is switched. Here each of the individual componentsdn
E ,

dn
C , anddn

G shows a destructive interference, giving rise
sharp minima as a function ofuA0u. These minima can be
understood as follows: For the case ofdn

E anddn
C the minima

arise as a consequence of the destructive interference
tween the gluino exchange and the chargino exchange in
one loop diagrams. This illustrates what we have said pre
ously, that the chargino exchange contributions are as im
tant as the gluino exchange contributions and should be
cluded in the analysis contrary to what is often done in
literature. The minimum indn

G in Fig. 3~b! has a different
origin. It can be understood by examining the expression
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Im~G t
12!5

2mt

~M t̃ 1
2

2M t̃ 2
2

!
~m0uAtusin a t1umusin um cot b!,

~46!

where um and a t are the values ofum0
and of aAt

at the
electroweak scale. From Eq.~46! we see that the magnitud
of Im(Gt

12) depends on the relative sign and the relative m
nitudes ofum and ofa t . Thus a cancellation occurs betwee
theAt and them terms whenum anda t have opposite signs
leading to a sharp minimum indn

G as a function ofuA0u. Now
each of the three termsdn

E , dn
C , anddn

G switch sign as they
pass their zero values. Thusdn

E and dn
C are negative below

their respective minima and become positive after cross
them, whiledn

G is positive below the minimum and becom
negative after crossing it. This complex structure now giv
rise to two distinct minima in the algebraic sum of the thr
terms, i.e., in the totaldn as may be seen in Fig. 3~b!. We
pause here to note that for the case when there is destru
interference between the gluino and the chargino case, a
further cancellation among the electric, the chromoelec
and the purely gluonic terms as is the case for Fig. 3~b!, one
finds a drastic reduction in the magnitude ofdn often by a
factor O(10– 103).

In Fig. 3~c! we give a plot of the EDMs of the electron
the muon and the neutron as a function ofm1/2, showing the
cases whenaA0

is positive and whenaA0
is negative. Here

for the case whenaA0
is positive the neutron EDM is larg

enough that it violates the current experimental bound in
entire range ofm1/2<750 GeV. However, for the case whe
aA0

is negative the neutron EDM lies below the experimen

upper limit for m1/2>300 GeV. The large disparity betwee
the magnitudes of the neutron EDM for theaA0

positive case

vs for theaA0
negative case can shift the balance betwe

which of the two experimental constraints, i.e., the expe
mental upper limit constraint on the neutron EDM or t
experimental upper limit constraint on the electron EDM,
the more stringent one. It can be seen that for the cas
constructive interference the experimental upper limit c
straint on the neutron EDM is generally the more string
one while for the case of destructive interference involvin
large cancellation it is the experimental constraint on
electron EDM which may be the more stringent constra
We shall exhibit this effect further in the analysis of Fi
3~e!.

The destructive interference between the different con
butions exhibited in Figs. 3~a!–3~c! is not an isolated phe
nomenon but rather a common occurrence in a large pa
the parameter space. Thus, cancellations occur naturally
the entire parameter space with the appropriate choice fo
relative sign ofum andaA0 . Further, these cancellations ca
become exceptionally large in certain regions of the para
eter space. An example of this effect already occurs in
analysis of Figs. 3~b! and 3~c!. Similar cancellations also
appear in other regions of the parameter space. In Fig.~d!
the effect of cancellations indn is shown as a function ofm0
for three sets of input data for the case whenum and aA0
have opposite signs. In each case there are large canc
tions which lead to the appearance of minima. Aside fr
the reduction of the EDMs by cancellations, there are regi
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of the parameter space where kinematical suppressions
cur. An example of this is the reduction of the EDMs wh
tanb becomes small as may be seen in Fig. 2~f!. A kinemati-
cal suppression of the EDMs can also occur ifm1/2/m0!1.
As one can see from Eqs.~19! and~29! in this case the quark
and the lepton EDMs are kinematically suppressed. A s
pression of this type appears to arise in supersymmetric m
els with anomalous U~1! mediated supersymmetry breakin
@25#.

Finally, we exhibit in Fig. 3~e! the excluded regions in the
m02m1/2 plane under the constraints given by the curre
experimental upper limits onde and dn . The regions be-
tween the axes and the curves are the excluded region
Fig. 3~e!. The analysis of Fig. 3~e! shows the dramatic effec
of the destructive interference on the allowed and disallow
regions in the mass plot. One finds that destructive inter
ence softens significantly the stringent constraints onm0 and
m1/2. Thus the excluded region in them0-m1/2 plane for the
destructive interference case is much smaller than for
constructive interference case. The analysis of Fig. 3~e! illus-
trates another interesting phenomenon alluded to earlier.
finds from Fig. 3~e! that for the constructive interference ca
the dn experimental constraint is the more severe one a
eliminates a larger part of the parameter space, while for
destructive interference case thede experimental constrain
is the more severe one as it excludes a larger part of
parameter space in them0-m1/2 plane in this case.

In the above we have discussed cancellations which
result in a drastic reduction for the case of the neutron ED
There can also be cancellations for the case of the elec
EDM between the chargino and the neutralino contributio
For comparable sizes ofum andaA0

, the chargino contribu-
tion is much larger than the neutralino contribution and c
cellation is not very effective. However, more significa
cancellations can occur for very small values ofum and for
moderate values ofaA0

since in this case the contributio
from the chargino exchange and the neutralino exchange
come comparable.

VI. CONCLUSION

In this paper we have presented an analysis of the E
of the neutron and of the charged leptons within the fram
work of supergravity grand unification under the constra
of radiative breaking of the electroweak symmetry. All th
supersymmetric one-loop contributions to the EDMs we
analyzed, taking care of their relative signs. For the neut
we considered also the contributions from the chromoelec
and from the purely gluonic operators. One finds that th
exist significant regions of the parameter space where c
cellations occur among the different contributions for t
case of the neutron electric dipole moment. In these regi
the neutron EDM undergoes a significant reduction and
current experimental limits are consistent in these regi
with CP-violating phases which are not too small and with
SUSY mass spectrum which satisfies the naturalness
straint. One also finds that regions of the parameter sp
exist where the destructive interference between the diffe
components can reduce the magnitude of the neutron E
even below the magnitude of the electron EDM.

The nature of interference, i.e., constructive vs destr
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tive, for the neutron EDM determines which of the two e
perimental upper limit constraints, i.e., the upper limit on t
neutron EDM or the upper limit on the electron EDM, w
constitute the more stringent constraint. For the case of c
structive interference fordn , it is the experimental uppe
limit on dn itself which is found to be generally more strin
gent constraint than the upper limit constraint onde . How-
ever, for the destructive interference case fordn , one finds
that it is generally the upper limit constraint onde which
becomes the more stringent constraint.

As mentioned already the previously known mechanis
for the suppression of the neutron EDM in SUSY theor
consist of suppression either by a fine-tuning using sm
phases or by a choice of a heavy SUSY spectrum. We h
pointed out a third possibility, i.e., that of internal cancel
tions, which naturally suppress the neutron EDM without
necessity of either having very small phases or having
excessively heavy SUSY spectrum. The cancellations
occur do not constitute a fine-tuning. Rather, one finds
such cancellations occur naturally over a large part of
parameter space, and in some regions the cancellations
come exceptionally large. This result has important impli
tions for the discovery of supersymmetric particles. With t
cancellation mechanism the SUSY spectrum within the c
rent naturalness limits can be consistent with the pres
EDM experimental constraints without the fine-tuning
phases, and such a spectrum should still be within reac
the LHC. At the same time one also expects that if SU
phases are indeedO(1 – 1021) and the SUSY spectrum lie
in the usual naturalness limit ofO(1) TeV, then with the
suppression of the neutron EDM via the cancellation mec
nism the neutron and the electron EDMs should become
ible with improvements ofO(10) in the sensitivity of the
EDM experiments. Finally we point out that although o
analysis has been done in the framework of supergravity
fication with the soft SUSY breaking sector parametrized
six parameters~including two CP-violating phases!, the
mechanism of internal cancellations pointed out in this pa
which can suppress the EDMs should be applicable t
wider class of models such as models with nonuniversal
SUSY breaking.
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APPENDIX A

The squark (mass)2 matrix

M q̃
2
5S M q̃11

2
M q̃12

2

M q̃21
2

M q̃22
2 D , ~A1!

is Hermitian and can be diagonalized by the unitary trans
mation

Dq
†M q̃

2
Dq5diag~M q̃1

2 ,M q̃2
2

! ~A2!

where one parametrizesDq so that
n-

s
s
ll
ve
-
e
n
at
at
e
be-
-

e
r-
nt

of

a-
s-

i-
y

r
a
ft

n
y

r-

Dq5S cos
uq

2
2sin

uq

2
e2 ifq

sin
uq

2
eifq cos

uq

2

D . ~A3!

Here M q̃21
2

5uM q̃21
2 ueifq and we choose the range ofuq so

that 2p/2<uq<p/2 where tanuq52uMq̃21
2 u/(M q̃11

2

2M q̃22
2 ). The eigenvaluesM q̃1

2 andM q̃2
2 can be determined

directly from Eq.~A2! or from the roots

M q̃~1!~2!

2
5 1

2 ~M q̃11
2

1M q̃22
2

!~1 !~2 ! 1
2 @~M q̃11

2
2M q̃22

2
!2

14uM q̃21
2 u2#1/2. ~A4!

The ~1! in Eq. ~A4! corresponds to choosing the structure
the matrixM q̃

2 so that forM q̃11
2

.M q̃22
2 one hasM q̃1

2
.M q̃2

2

and vice versa. For our choice of theuq range one has

tan uq5
2mquAqm02m* Rqu

M q̃11
2

2M q̃22
2 ~A5!

whereRu5cotb andRd5tanb. Further

sin fq5
m0uAqusin aq1umusin umRq

um0Aq2m* Rqu
. ~A6!

Using the above we get

Im~Gq
11!52Im~Gq

12!5 1
2 sin fq sin uq ~A7!

where

sin uq56
2mquAqm02m* Rqu

uM q̃1
2

2M q̃2
2 u

. ~A8!

The @1~2!# in Eq. ~A8! depends on whetherM q̃11
2

2M q̃22
2 is

@.0(,0)#. Thus Eq.~A7! gives

Im~Gq
11!5

mq

M q̃1
2

2M q̃2
2 ~m0uAqusin aq1umusin umRq!,

~A9!

which holds quite generally, i.e., for the case whereM q̃1
2

.M q̃2
2 and for the case whereM q̃1

2
,M q̃2

2 . Thus the gluino
contribution to the EDM of the quark is given by

dq-gluino
E /e5

22as

3p
mg̃Qq̃ Im~Gq

11!F 1

M q̃1
2 BS mg̃

2

M q̃1
2 D

2
1

M q̃2
2 BS mg̃

2

M q̃2
2 D G . ~A10!

One may expand the right hand side of Eq.~A10! around the
average squark mass. DefiningM q̃

2
5(M q̃1

2
1M q̃2

2 )/2, and ex-

panding in the difference (M q̃1

2
2M q̃2

2 ), one finds in the low-

est approximation
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dq-gluino
E /e.

2as

3p
mg̃Qq̃

mq

M q̃
4 ~m0uAqusin aq1umusin umRq!

3FBS mg̃
2

M q̃
2 D 1

mg̃
2

M q̃
2 DS mg̃

2

M q̃
2 D G ~A11!

whereD(r ) is given by

D~r !5
1

2~12r !3 S 51r 12 ln r 1
6r ln r

~12r ! D . ~A12!

As mentioned already currently there is some confusion
the literature regarding the sign of the gluino contribution
the electric dipole operator@6,7#. We first compare our re
sults with those of Ref.@7#. The analysis of@7# corresponds
to neglecting theD term in Eq. ~A11! and usingdn. 4

3 dd
which gives

dn

e
.

28as

27p
mg̃mdFm0uAdusin ad1umusin um tan b

M d̃
4 G

3BS mg̃
2

M d̃
2 D . ~A13!

This result then agrees both in sign and in magnitude w
Eq. ~3! of Ref. @7#. To compare with the result of Ref.@6# we
switch the sign of themH term in their Eq.~6! ~see, e.g., Ref.
@26#! and find that our Eq.~19! differs from Eq.~14! of Ref.
@6# by an overall minus sign. A comparison of the chargi
and the neutralino contributions with those of Ref.@6# is
more involved since the chargino~and the neutralino! mass
matrices are different in the two works. This difference aris
because after SU(2)L3U(1)Y breaking to U(1)EM , the au-
thors of Ref.@6# expand the potential around the vacuu
expectation value~VEV! so thatHi→Hi2^Hi& instead of
n

h

s

Hi→Hi1^Hi& and they use in the chargino caseMC
T instead

of MC as is conventionally done@26#. Thus to compare with
their expressions we have to do the transformat
Vi j→CR ji , Ui j*→CL ji , D→S and X→N. After that, and
assuming the conventional expansion around the VEV,
go to their convention by the transformationk f→2k f to
find that we have the same overall sign in the case of
chargino exchange but the sign of thek f 8 term in the brack-
ets in their Eq.~10! should be positive. In the case of ne
tralino exchange our result differs from their Eq.~12! by an
overall sign and further we find that the second term in
last set of brackets of their Eq.~13! ~the term which begins
with 2k f! should have an opposite sign.

APPENDIX B

The chargino matrixMC is not Hermitian, not symmetric
and not real becausem is complex.MC is diagonalized using
the biunitary transformation

U8* MCV215MD ~B1!

whereU8 andV are Hermitian andMD is a diagonal matrix
but not yet real.U8 andV satisfy the relation

V~MC
† MC!V215diag~ um̃x

1
1u2,um̃x

2
1u2!5U8* ~MCMC

† !

3~U8* !21. ~B2!

We may parametrizeU8 so that

U85S cos
u1

2
sin

u1

2
eif1

2sin
u1

2
e2 if1 cos

u1

2

D , ~B3!

where
tan u15
2&mW@m̃2

2 cos2 b1umu2 sin2 b1umum̃2 sin 2b cosum#1/2

m̃2
22umu222mW

2 cos 2b
~B4!

and

tan f15
umusin um sin b

m̃2 cosb1umucosum sin b
. ~B5!

Similarly we parametrizeV so that

V5S cos
u2

2
sin

u2

2
e2 if2

2sin
u2

2
eif2 cos

u2

2

D , ~B6!

where

tan u25
2&mW@m̃2

2 sin2 b1umu2 cos2 b1umum̃2 sin 2b cosum#1/2

m̃2
22umu212mW

2 cos 2b
~B7!
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and

tan f25
2umusin um cosb

m̃2 sin b1umucosum cosb
. ~B8!

We wish to choose the phases ofU8 andV so that the ele-
ments ofMD will be positive. Thus we defineU5H3U8
where

H5S eig1 0

0 eig2
D , ~B9!

such that

U* MCV215S um̃x
1
1u 0

0 um̃x
2
1u D , ~B10!
.

,
d.

. B
whereg1 andg2 are the phases of the diagonal elements
Eq. ~B1!. Our choice of signs and roots is such that

M
~m̃x1

1!~m̃x2
1!

2
5 1

2 @m̃2
21umu212mW

2 #~1 !~2 ! 1
2 @~m̃2

22umu2!2

14mW
4 cos2 2b14mW

2 ~m̃2
21umu2

12m̃2umucosum sin 2b!#1/2 ~B11!

where the sign chosen is such thatm̃x
1
1,m̃x

2
1 if

m̃2
2,umu222mW

2 cos 2b. ~B12!

For the neutralino matrix, the eigenvalues and the diago
izing matrix X must be estimated numerically.
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