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Moving black holes in 3D
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We model a radiating, moving black hole in terms of a worldtube—null-cone boundary value problem. We
evolve this data in the region interior to the worldtube, but exterior to a trapped surface by means of a
characteristic evolution based upon a family of ingoing null hypersurfaces. Data on the worldtube is induced
from a Schwarzschild spacetime, but the worldtube is allowed to move relative to the static Schwarzschild
trajectories. When the worldtube is stationdsjatic or rotating in plade a distorted black hole inside it
evolves to equilibrium with the Schwarzschild boundary. A boost of the worldtube with respect to the
Schwarzschild black hole does not affect these results. The code also stably tracks an unlimited number of
orbits, when the worldtube wobbles periodically. The work establishes that characteristic evolution can evolve
a spacetime with a distorted black hole moving on a 3-dimensional grid with the controlled accuracy and long
term stability necessary to investigate new facets of black hole phy§i6556-282(98)00310-5

PACS numbd(s): 04.25.Dm, 04.30.Nk, 04.46b, 04.70-s

[. INTRODUCTION boundary to the inner boundary of a Cauchy evolution. In
turn, the outer boundary of the Cauchy evolution is matched
The calculation of gravitational waveforms from the in- to an exterior characteristic evolution extending¢ompac-
spiral and merger of binary black holes is a great currentified) infinity. The potential advantages over a purely
challenge to computational relativity with important rel- Cauchy approach to the inner boundary were discussed in
evance to the Laser Interferometric Gravitational Wave Obthat work and the global strategy was successfully imple-
servatory (LIGO). A three dimensional computer code is mented for spherically symmetric self-gravitating scalar
now being constructed by the Binary Black Hole Grandwaves evolving in a black hole spacetime.
Challenge Alliance to solve this problem by Cauchy evolu- We present here the successful implementation of a char-
tion of initial data for two black holeEl]. The most difficult ~ acteristic treatment of an inner black hole boundary for fully
problems with the development of this code are inaccuracg-dimensional simulations containing gravitational radiation.
and instability at the boundaries of the Cauchy grid. Match-We show that the ingoing characteristic approach is able to
ing to an exterior characteristic evolution is one method belocate the black hole and to track it stably as it moves on the
ing pursued to handle the outer Cauchy boundary and taumerical grid. For a report on recent progress in tackling
extract the waveform at null infinity. This has been shown tothe same problem by Cauchy evolution see R6f. The
be a highly accurate and efficient approach in the treatmeriioundary data for the characteristic initial value problem is
of 3-dimensional nonlinear scalar wavigg3]. For the pur- posed on a worldtube and on an ingoing null cone emanating
pose of extending this approach to full general relativity, afrom the initial slice of the worldtube. A main goal of this
3-dimensional characteristic code for the gravitational fieldstudy is to develop new methods which will allow a combi-
has been developed and fully calibrated to perform with secnation of characteristic and Cauchy evolution to tackle the
ond order accuracy and robust stability in highly nonlinearcomputational problem of the inspiral of two black holes. In
regimeg 4,5]. A module for matching Cauchy and character-this new approach, the two evolutions are matched across a
istic gravitational evolution codes across a worldtube interworldtube, with the Cauchy domain supplying the boundary
face has also been writt¢6] and is now in the testing stage. values for characteristic evolution and vice versa. In treating
In this paper, we present results which show that Cauchythis problem, there are major computational advantages in
characteristic matching can also solve the very difficult innerposing the Cauchy evolution in a frame which is co-rotating
boundary condition necessary for Cauchy evolution of blackwith the orbiting black holes. Indeed, such a description may
holes. Notably, we have used a characteristic code to achieu® necessary in order to keep the numerical grid from being
the first successful treatment of a distorted black hole movintrinsically twisted and strangled. In this co-orbiting formu-
ing on a 3-dimensional grid with apparently unlimited long lation of the binary black hole problem, the Cauchy evolu-
term stability. tion requires inner boundary conditions in two regions ap-
The conventional strategy for avoiding the topological proximating the two disjoint apparent horizons and also an
and strong field difficulties in the Cauchy evolution of black outer boundary condition on a worldtube. Figure 1 depicts
holes has been to excise the region interior to an apparethis global matching strategy. Far enough outside the outer
horizon, as initially suggested by Unr{ifi]. In a recent work  worldtube the coordinate rotation would go superluminal.
[8], we proposed an alternative version of this strategy irPrevious work has shown that an outgoing characteristic
which the black hole region is evolved by a characteristiccode can routinely handle such superluminal gauge flows in
evolution based upon ingoing null cones. These null conethe exterior5]. Our present results indicate that an ingoing
are truncated at an inner boundary consisting of a trapped aharacteristic code can just as effectively handle the inner
marginally trapped surface, and matched at their outeboundaries of multiple black holes.
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— T of the offset. The details of setting up the worldtube—null-
cone data are presented in Sec. Il.
The worldtube boundary values, as prescribed in this pa-
o) per, satisfy the conservation conditions, when the spacetime
is exactly Schwarzschild, e.g. a Schwarzschild black hole in
either rotating or boosted coordinates. But in either the dis-
torted or wobbling case, when gravitational radiation is con-
tained in the initial null data, the extraction module overde-
termines the metric and its normal derivatives at the
worldtube in terms of their Schwarzschild values. As a re-
sult, the reflection of the wave off the worldtube can lead to
FIG. 1. A Cauchy-characteristic matching scenario for binary® violation of the Bianchi identities. The mismatch between

black holes, portrayed in a co-rotating frame which eliminates thd @diation impinging on the Schwarzschild worldtube intro-
major source of time dependence. Regi@hsextending to future ~ duces an unphysical sheet source of gravitational radiation
null infinity), C and I; (i=1,2) are evolved, respectively, by an on the worldtube, which is not necessarily consistent with
outgoing characteristic formulation, a Cauchy formulation and arenergy and angular momentum conservation. Although this
ingoing characteristic formulation. The Cauchy-characteristicobscures the physical interpretation of the results for those
matching worldtubes arE, I'; andI',. Initial data for an evolution  cases, it is remarkable that the stability of the evolution is not
into the future is given orD,=NUXUN;. The shaded region affected and that the system behaves in accord with the prin-
inside the black holes is excised from the evolution. ciples of black hole dynamics, as described in Sec. V. In a
_ _ ) more physical implementation, the conservation conditions
_ Consistent worldtube data must satisfy conservation congy|d be enforced eithéi) directly, by using them to evolve
ditions[4,5], which correspond to a hyperbolic version of the properly the boundary conditions up the worldtube(iorby
standard constraint equations for Cauchy data. In the presepitching the interior evolution across the worldtube to an
work, we are concerned with one of the regidpm Fig_. 1 exterior Cauchy evolution.
and, since we are hot matching to a Cauchy evolution, we Our chief goal here is to demonstrate that the region of
generate this data on the corresponding worldiikieom an pacetime interior to the world tube can be evolstably
analytic solution. Specifically, we set Schwarzscpild data agnd accuratelyby means of a characteristic evolution algo-
the worldtube. In ingoing Kerr-Schild coordinates, the  yihm The interior region is truncated in the vicinity of an
Schwarzschild metric takes the forffi0] apparent horizon. The long term stability we observe indi-
cates a surprising robustness of the worldtube—null-cone
ds?= —dt?+dxe+dy?+dZ? boundary value problem.
A ma A a2 In the case of a Schwarzschild spacetime described in a
N 2_m dis xdx+ydy+zdz (1.2) frame rotating about the center of spherical symmetry, the
r r ' ' location of the apparent horizon is known analytically, as
well as the transformation to null coordinates and the null
metric. Thus this case provides an important test bed to cali-
brate numerical accuracy. Long term stability and second
order convergence to the analytic values have been con-
firmed. In this purely rotating case in which the worldtube is
a stationary boundary, when we superimpose a pulse of ra-
" : diation on the initial Schwarzschild null data, we find that the
the x* frame, t_he null coorfmates are Zcfngereg atOz and surface area of the resulting distorted black hole grows in
the worldtube is Iocated. a= RZ wherer_ =Xty +z7 As time, but eventually reaches an equilibrium value consistent
a result, the worldtube is stationary with respect to the null . : .
. with the Schwarzschild boundary conditions on the world-
grid, but the black hole moves. tube. In the offset case, the Schwarzschild boundary moves
The initial value problem also requires data on the initial : ' y

null hypersurface. In our formulation, this null data is free of periodically, but the marginally trapped surface associated

constraints, other than continuity conditions at the worldtubeVith the black hole again reaches equilibrium with it, con-

Thus we can introduce an arbitrary pulse of radiation in thdifming that the motion of the boundary is “pure gauge.”
data to describe a distorted Schwarzschild black hole. we When the null cones are not spherically symmetric, a
can also pose initial null data by setting to zero the compocomputational approach is necessary to find the “trapping
nent of the Weyl tensor intrinsic to the null hypersurface. Onboundary,” where a marginally trapped surface is located on
a spherically symmetric null hypersurface, the Weyl data foreach ingoing null hypersurface. The analogous problem in
the Schwarzschild space-time are exactly zero. On a nuffauchy evolution is the excision of a black hole interior by
hypersurface offset from the center of spherical symmetrylocating the apparent horizon. There is an extensive literature
this Weyl data for a Schwarzschild spacetime are not zeron marginally trapped surfaceMTS) finders on spacelike
(and it is not possible to express it in simple analytical form hypersurface$11-20. In Sec. Ill, we present two methods
In this case the choice of vanishing Weyl data introduces affor use on null hypersurfaces. Computational design and per-
amount of gravitational radiation which depends on the sizéormance is discussed in Sec. IV.

where r2=x?+y2+2? and k,=—d,(i+r) is the ingoing
degenerate null vector.

In order to determine data for a moving black hole, we
introduce anx® coordinate system which is either rotating,

boosted or wobbling with respect to thé coordinates. In
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Il. DETERMINATION OF THE DATA but since there are no constraints on the null data, we can
freely add a radiation pulse of any desired shape.

The worldtube data for the null evolution of the interior In the case of rotating coordinates, as described in Sec.

region is obtained by recasting the Cartesian form of the{/

: ) : A, or boosted coordinates, as described in Sec. V B, the
_Kerr-Sch|Id metric Eq(l_.l) for a SChW"."rZSCh'Id black hole initial null cone is spherically symmetric and Schwarzschild
into nonstationary ingoing null coordinates. However, the

Schwarzschild metric can onlv be expressed in an anal i[1uII data can be determined analytically. However, it is not
y P yt ossible to express Schwarzschild null data in simple ana-

:riclalycgl?g?eg de?oblsensuIIh(;?ic:;gjl:naster;?r:?t’ri\é\/h?ﬁutshﬁnnturilecgf?ge tical form on a null hypersurface, which is not spherically
p y sy ’ ' mmetric. Instead, we choose initial data for an offset wob-

case, numerical techniques must be used to carry out trbing black hole by setting the Weyl data to zero on the
transformation from Cartesian to null coordinates in order ta

provide the worldtube data. Fortunately, the transformatior%nltlal (nonsymmgtn;c null hypersurface. The relevant com-
. : . onents of the Riemann tensor are

need only be implemented in the neighborhood of the worldD

tube. This allows the solution for the ingoing null geodesics 1 1 1

to be carried out by means of a Taylor expansion in affine  Reagr=59ag,m— Eg”’gv,‘rgAB,,— ZgCE’gAc,rgBD,r

parameter, up to the required order of accuracy. In this way,

the transformation can be formulated as a hybrid analytical- 2
numerical scheme, with the null properties built in analyti- = EhAB”erhABr—r,Br(rhABr+2hAB)
cally. ' ’ ' '
Such a scheme for extracting null worldtube data from 2
Cauchy data in a general spacetime has been implemented as — ZhCDhAC Hepr - (2.2

an extractionmodule[6], which is part of the computational

procedure to match Cauchy and characteristic evolution AB _ . .
across an interface. We use this module here to obtain th%e[r;j\g Rragr=0 by virtue of the hypersurface equation for
required worldtube data for null evolution by extraction from '

the “3+1” form of the Schwarzschild metric, which has 1 roo_

been recast into nonstationary coordinates by a nontrivial /B,r=—Erhf}BhAB,r:nyrJ'r—Ki). 2.3
choice of lapse and shift.

The initial value problem is completed by giving data on
an initial null hypersurface. In ingoing null coordinates, with
v labeling the null hypersurfaces, witd'= (6, #) labeling
the angles along the null rays and withabeling the surface r2 _
area measured along the null rays, the metric takes the (TZJ,r),r—Z,B,r(FZJ),r—§J(J,r3,r—K,2r)=0- 2.9
Bondi-Sachs forni8]

The requirement of vanishing Weyl data is equivalent to
q”qBR, g, =0, which gives

Combining Egs(2.3) and(2.4), we then obtain
V
ds’=| e +12hagUAU® | dv?+ 2e*dudr ra(r2d,) ,—2p,(r'd) ,=0. (2.5

With B, determined from Eq(2.3), Eq. (2.5 is a second
order radial differential equation for the initial datawhich
may be solved in terms of boundary values JoandJ , on
where detfi,g) =det(qag) =g, With gag @ unit sphere met- the worldtube.

ric. The inverses of these 2-dimensional metrics are denoted The outer worldtube is located ax+y?+z%)?=R, in

by h*B andq”B. We express|g in terms of a complex dyad terms of coordinateg®=(t,x,y,z) moving with respect to
ga [satisfying g%ga=0, g”da=2, 9*=g"Bgs, with  static Kerr-Schild coordinates®. The boundary data on the
qABchzaé and QAB=%(QAQ_B+Q_AQB)]- hag can then be worldtube is obtained by first transforming the metficl)
represented by its dyad component h,zq”q®/2, with the  in “3 +1" form to the x“ frame and then applying thex-
spherically symmetric case characterizeddby0. The full  traction module which determines numerically the transfor-
nonlinearh,g is uniquely determined by, since the deter- mation from a Cartesian to a null coordinate system in the
minant condition implies that the remaining dyad componenfi€ighborhood of the worldtube. This module supplies the
K:hABqA?/Z satisfies EK2—JJ. We also introduce the boundary values of the null metric quantitigs g, U andV

spin-weighted fieldJ =U”q,, as well as thécomplex dif- on the worldtube.

. < As a check on the extraction module, we examine the
geg;?lt;ab eth operators) and 6. Refer to[4,21] for further rotating case where the null Schwarzschild metric can be

The complete null data can be specified freely in terms Ofound analytically. We relate the static coordinate fraxie

either the metric quantity or the Weyl tensor component 10 the rotating onex® by t=t, x=x cosw(t+r)—y sin o(t
C,%ﬁy{sn“nymﬂm‘s (corresponding tol, in Newman-Penrose +r), y=X Sinw(t+r)+y cosw(t+r) andz=z. In this trans-
terminology[22]), where the null vecton® and the complex formation, the angles),¢ (associated in the standard way
spacelike vectom® span the tangent space to the null hyper-with the Cartesian coordinate$) remain constant along the
surface. On a spherically symmetric null hypersurface, theenerators of the null cones emanating from the world tube.
Weyl data for the Schwarzschild space-time is exactly zeroTherefore, the null metric can be easily obtained by the

_2r2hABUBdUdXA+rzhABdXAdXB, (21)



57 MOVING BLACK HOLES IN 3D 4781

simple transformation v=t+r, r=\(x*+y?+2z%), 6 sliceQ=0 is anr =const slice. However, the gauge freedom
=cos }(zr) and p=tan Y(y/x), leading to in the choice of a surface area coordinatds a scalar den-
sity) allows any slice to be regauged asranconst slice. So
there is a gauge in which th@-boundary and the trapping
boundary coincide. But finding this gauge is tantamount to
] . solving the elliptic problem for a marginally trapped slice.
—2r?w? sin’ 6dudg+r?(d6*+sin’ 6d¢?). This presents us with two possible strategies for locating
(2.9  the inner boundary, both of which ensure that the excised
portion of spacetime cannot causally effect the exterior
This identifies the spin weighted versions of the variablespacetimeil) Use the trapping boundary ¢l) use the Q-

2m
ds?= —1+T+I’2w2 sir? 0 |dv2+ 2dvdr

appearing in the null metri2.1) as boundary. Strategyl) makes the most efficient use of the
spacetime points, but a 2D elliptic equation must be solved.
J=0, B=0 (2.7)  strategy(Il) involves only some simple algebra so it is very
_ efficient computationally. We will pursue both strategies
U=iw sin oe'? (2.8)  here and compare their merits.
In implementing strategyl), we have tried two methods
V=—r+2m. (2.9  for finding the trapping boundary. One is a standard ap-

roach to the solution of the elliptic equatiéh=0 by solv-

We used this transformation to check the accuracy of th g the parabolic equation

worldtube data extracted from the Schwarzschild metric in
“3 +1" Cauchy form with massn=.25. The code was run J\R=—0, (3.3
using the extraction radiuR=3. The Cauchy grid was a

Cartesian cube with rangé e[ —4,4] and the range of the in terms of a relaxation parameter At large\, the solution

characteristic grid wase[0,4]. We confirmed convergence relaxes to the location of the trapping boundary provided that
of the numerical error to zero at a second order rate with grighe procedure is stable.

size for several values a# (0.8, 0.1, 0.001 Another method of finding the trapping boundary is by a
minimization procedure. In the case of a Cauchy hypersur-
lll. FINDING THE TRAPPING BOUNDARY face, this approach was introduced i8] and further devel-

oped in[19] using spectral methods. Here we use a finite
Yifference version of the minimization approach and com-
bine it with an approach based upon gradient flows proposed
[13]. We combine these approaches by characterizing the
apping boundary on a converging ingoing null cokig as
marginally trapped sliceS,, which minimizes the func-
tional

The excision of a region inside the black hole is necessar
for numerical evolution, for otherwise contact with the sin-
gular region of spacetime would result. The boundary of th
excised region must either be trapped or marginally trappe
in order to insure that it does not contain points that can,
causally influence the radiated waveform. For a shaef an
ingoing null hypersurfacéV, , described in null coordinates
by r=R(v,x"), the divergence of the outgoing null normals

. 1
is [8] nS)=¢ fﬁs,%@,zds (3.9
r2e?f 1
—0=-V- T[\/a(ezﬁhABR,B—rZUA)],A where ©,, is the divergence of the ingoing null vectof
q

tangent toV, . We normalizen? and|? (both normal toS)
o (r—1a2BRAB 21 A by n®l ,= — 1. With this setup;7 is invariant under changes
r(r~-e*h RARg+r<U TR A. (3.1
( )RaRe Ra- @D in the extensions of the the null normdlscal boosts that
This is to be evaluated of after all partial derivatives are 'etain nel;=—1. For a standard sphere of radig in
taken; e.gr ,=0. The slice will be marginally trapped if Minkowski space,7=87/R" so that the minimum on a

0,=0. Minkowski light cone occurs at infinity. This has the advan-
Finding a marginally trapped slice on a converging ingo-{ge of biasing the search away from the caustic tip of the

ing null hypersurfacesi a 2 dimensional2D) elliptic prob-  light cone when looking for nontrivial minima.

lem, which entails setting the right hand side of E8;1) to We perform a variation of the formix“=Fn“o\, which

0 and solving forR(v,x"), at a fixed advanced time. Itis  deforms the slice along the generators\gf. In order to find
easier to find trapped surfaces. In fact, the largestonst @ flow F, which leads toward the minimum, consider the

slice of A, that satisfies the algebraic inequali@<0, varation
where
2 ST(S)= é;Taﬁx“dS (3.5
r A s
Q=—V+T<fqu ) A (32

q which serves to defin&,. We choosd-=—T_n“. Then
is either trapped or marginally trappg8l. We call this slice

the “Q-boundary.” A comparison of Eq93.1) and (3.2 STS)=— 4; (T.n%)260dS (3.6)
shows that theQ-boundary is marginally trapped when the s @ '
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so that the variation will lead in the direction of the mini- ¥ =0 onS,,. ThuséR also vanishes andy, is an invariant

mum at7=0. slice with respect to the variational scheme.

The main problem then reduces to calculatihgn®. In We have:
ingoing null coordinates on\,, we describeS by r (1) A marginally trapped surface is a zero of the positive
=R(x") and its variation byr=R(x*)+SR(x"), with v functional T
= 6x*=0. Choosing the extension,=—g,.v ,, we have (2) The effect of the flowF on T'is everywhere negative
0,=—2/r so that, for any slice aV,, 60,=245r/r2, or Zero;

The variation of termsf(r,x*) not explicitly dependent (3) A marginally trapped surface is stationary under the
on R is calculated usingﬁf(r,xA)=f,,5R. Also, sincedS  flow F.
=r2dQ), in terms of the solid angle element in tké coor- Thus a marginally trapped surface must be stable with

dinates, we havédS=2dSéR/r. As a result, the contribu- respect to the flowF except in the degenerate case, corre-
tions from 60, and fromad S cancel in the variation of Eq.  sponding to neutral stability, where a continuum of such sur-
(3.5 so that faces exist inV, . Although this degenerate case is possible,
it would be improbable to encounter in an evolution based
ST(S)= 39 0,50,dQ. (3.7  upon a reasonably behaved foliation. For an interesting dis-
S cussion of the wild behavior possible in general for margin-

ally trapped surfaces, s¢23].

From Eq.(3.1), In order to implement either of the above two finders as

oe-26 1 computational algorithms, we represent the geometric quan-
56, = SR+ = e2PhABSR ti@ies involved as spin_—weighted fieldg in stereographic coor-
S r2 ( \/a(\/a A dinates. The spin-weighted expressions necessary to deter-

mine ®, andF are given in the appendix.

—2r(r 1e?h”B) R \6Rg+12U%6R A|. (3.9
v ' ' ' IV. COMPUTATIONAL DESIGN AND PERFORMANCE

For any vector field/A(r,xB) on S, we have All numerical algorithms have been based upon explicit
finite difference methods. The metric functions are dis-
cretized and placed on a finite 3 dimensional grid, With
radial points and\lg angular points, whose outer boundary is
a spherical worldtube. The spherical coordinates are patched
where DAVA=(\qVA) A/\q+VAR 5. This allows us to by two overlapping stereographic grids and angular deriva-
eliminate terms inS7 containingsR , by integrating oves. tives of tensors are handled by a computational version of
We obtain the d formalism[21].

In a general null evolution, data at the worldtube would
be extracted from a Cauchy evolution. In this example, since
we are not matching to a Cauchy evolution, we extract data
at the worldtube from an analytical Cauchy solution. The
where characteristic evolution is carried out using a code described

and calibrated in5], transformed into an ingoing null code
R.R according to the procedure presented8h
ATB Inside the grid there is a black hole whose interior is

3@ D,VAdQ =0, (3.9
S

ST(S)= ffs{.@l,rwf}mm (3.10

2 4
\Ifz[r—z(|hAB),r—r—g(®|e‘25)yre2ﬁhAB

! partially excised at an inner boundary, the “hole,” which is

~[20,e72PUN] R A—[20,e72PUA] A taken to be either a marginally trapped surface or the Q-
5 5 boundary. We l_’need to evo_Ive only those grid points wh_ich
_[_Z(IeZB) A€28hAB| R+ _2®IhAB) R A are outside a discrete version of the hole. At the same time,
r ’ o r o we also need to allow the hole to move through the grid. In

order to accomplish this we esa 3 dimensional mask func-
tion. Each grid point is assigned the value 1 by the mask if it
either neighbors or is exterior to the boundary. All other grid
points are masked to zero. The metric functions are evolved
(3.1)  at each point with mask value 1 using data only from other
points with a mask value (i.e. points outside or neighboring
the hole use data only from other points outside or neighbor-
ing the holg. In case they are needéske belowy, values of
F=(0,0,,+¥)/R2 (3.1  the metric functions at grid points, which are nearest neigh-
’ bors just inside the hole are extrapolated radially inward us-
As a check on the stability of this minimization scheme,ing points exterior to them with mask 1. Other interior points
supposeS,, is a trapping boundary located at Ry,(x?). are ignored.
Then, onS,,, ©®,=0 andF=W¥/R. But the operator d, After all the metric functions have been evolved, we lo-
+Rmad;) also annihilates®, on S,,. As a result, direct cate the hole at the new time. We then recompute the mask
substitution to eliminate thg, derivatives in Eq(3.11) gives  function and continue. If the boundary moves out, we simply

4 -28 e AB 2 —28\  A2BRAB
- F®|e Th R’A_F(le ),Ae h

,r

Thus, in order to find the trapping boundary, we follow the
variational path determined b§R=—F 6\ with
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throw away the data which we just evolved. If the boundary TABLE I. Performance of the horizon finder.
moves in, we have data at the new point which was obtained

by extrapolation. Using this approach saves us from having b First Second After the 10th
to figure out if we have any points which were previously in hypersurface  hypersurface  hypersurface
the hole but are now outside. Such points automatically havg 0 1300 1 1
data. It should be noted that we can safely assume that thggs (.05 1416 5 <4
bla(_:k hole b_ouno_lary WI!| never move more than a grid pointg 4 0.1 1800 16 <7
during any iteration. If it did, it would violate the Courant- g, 0.2 1539 057 <14

Friedrichs-Lewy condition, which is built into the character-
istic code to insure stability.

_ The procedure for locating the trapping boundary is fairly aqd an appreciable computational time to the overall numeri-
simple. Basically, we use the previous position of the hori-c5| evolution.
zon (R) as a guess for its current locatidifithis is the first In comparison, we obtain decidedly inferior efficiency in
iteration, we use the position Qf the Q—boundary_ for the apipcating and tracking the hole by the minimization procedure
proximate location of the trapping boundaryhen, if we are  sing the flow given in Eq(3.12. Stability analysis of the
finding the boundary using the parabolic relaxation techniquinite difference method shows thak must scale ad £* in
based upon Eq3.3), we computed, and then leR=R,q  this case. Thus, although this minimization approach is at-
—©,6\, and repeat unti|®,, is less than some threshold. tractive, it is not practical using finite difference techniques.
Ifinstead, we are using the minimization procedure, we comit may be possible to improve the minimization algorithm by
puteF and then leR=R,,4—F A, and repeat unti|F|>is  using pseudo-spectral techniquikl,2Q to calculate the

less than some threshold. The values of the stopping thresfinw, but we have not explored this possibility in the present
old andon are parameters. The threshold can be safely set t@ork.

be approximatehAr, (whereAr is the spacing between ra-
dial grid pointg. The value oféA should be small enough so
that FON<Ar, but not so small that finding the horizon re-
quires a large number of iterations. We have found it suffi- Here we present some results of code runs for various
cient to choose a fixedh at the start of the calculation, initial conditions. We describe the physical behavior of the
however it is possible to design a scheme in whidhis  plack hole in terms of the surface area of its marginally
self-tuning and changes its value to speed convergence @fapped surface. This surface area gives a measure of the
each attempt to locate the horizon. energy of the radiation fields introduced in the initial null

A stability analysis of the explicit schem@rst order in  data. For the pure Schwarzschild case, the marginally
time, second order in spacesed to solve Eq(3.3) shows  trapped surfaces have ardg=167M2, in terms of the
that 5\ must scale ad £? (whereA¢ is the spacing between massMy of the Schwarzschild black hole. More generally,
angular points This requirement would suggest that the pro-the surface area of a marginally trapped surface determines
posed method is computationally expensive. However, oufis Hawking massM,, [24] according toA=167M2. Thus,
results show that the use of the horizon finder introduces g, g ingoing null hypersurfacd’,, the function A(v)
negligible overhead when dealing with long evolutions. With _ M.—M(v) provides a measure Sf the energy between the
the aforementioned strategy of using the position of the QT’narginaIIy trapped surface and the worldtube.
boundary as the initial guess, the finder may need many it- "5 gpacetime satisfies some suitable version of cosmic

erati_ons to home in on the trapped surface, but it takes just 8ensorship, such as asymptotic predictability, and settles
few lterations thgreafter to .track the surface. down to a Kerr black hole, then the area of any marginally
It is worth noting that, if instead of using the Q-boundary anned surface must be less than the area of the final black
to determine the initial guess, one uses a medecated |5je [25]. In the present context, we do not have a global
guess for the location of the surface, the number of steps cagy, mntotically flat solution so these results are not immedi-
be dramatically decreased. This can be easily done in thg|y anplicable. However, if the black hole settles down to
case of the boosted black holeee Sec. VA Using the equilibrium with the Schwarzschild boundary condition on

expression for obtained in that case, one can set as initiale \yoridtube, then at late advanced times we would expect
guessR=2m/(cos @ sinh a+cosha), reducing the number A(v)—0.

of iterations on the first hypersurface from several hundred

using the Q-boundajyto less than 10(for values of
($O 5? Q vy a “ A. Rotating Schwarzschild black holes

V. RESULTS

In the case of a wobbling black holsee Sec. VD we Ouir first runs are for a Schwarzschild spacetime described
do not know the analytic expression for the marginallyin coordinates rotating about the center of spherical symme-
trapped surface even at the first hypersurface so that we use, as described by the null data in Eg.9). In this case, the
the Q-boundary as our initial guess. Table | shows the numevolved metric is known analytically and the marginally
ber of iterations made by the horizon finder for differenttrapped surface is fixed at the horizon rat2m, so that
values of the offseb and frequencyw (for a characteristic convergence to the exact results can be checked. Our results
grid having 45< 212 points covering the space from=0 to  confirm that the numerically evolved spacetime is accurate to
r=4). After the first “find” the number of iterations neces- second order in grid size. As expected, the horizon finder
sary to track the hole is small; and since the finder solves aonverges to the known location of the spherically symmet-
NZ problem(as opposed to aN,x NZ problen, it does not  ric marginally trapped surface.
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B. Boosted Schwarzschild black holes where

A boosted Schwarzschild black hole provides a test of the _ .
ability to track the motion of a black hole and to calculate its o sinh a sir? 6 (5.6
surface area. Let® be ingoing Eddington-lfinkels:tein coor- Y r2(cosha—sinh a cos @)3' '
dinates. Define boosted coordinate¥ by x=x, y=y, z
—7 cosha—t sinha andi=t cosha—z sinh . Here the gauge condition built into the extraction routine is
We locate an initial incoming null hypersurfacé, at t that.eytzo on the Worldt_ube. With this boundary condition,
= — (x%+y2+22) Y2 Initial Schwarzschild null data corre- the integral of Eq(5.6) gives
sponds to setting the Weyl data to zero at this initial time. _ .
Schwarzschild data at the extraction worldtulfer y2+ z2 sinh a sir? 6

=R2j i i i - Y= —. (5.7
dir?atclass provided by transforming the metric to t& coor F(cosha—sinh & cos §)3

Let (v,r,0,$) be standard ingoing null coordinates asso-  The ; dependence of can now be obtained from the
ciated with the Cartesian Eddington-Finkelstein coordinatesdeﬁning equation of a surface area coordinatéqg

and Iet_@,r,e,d;)_be the null coordinatfas associated with the:det(gAB), whereq is the determinant of the unit sphere
Cartesian coordinates” by the extraction module. We syn- qeatric corresponding to the® coordinates. This gives

chronize them so that=v =0 on A, which is the only null (r*q) ;=—r*qgae9™®;, where
hypersurface common to the and v foliations. Then the AB A B b
~ P ~ Anmal
boost transformation implies that= ¢ and, on\j, that 9™ 5 =2X" aX" 5, 07 (5.9

_ cos @ cosha+sinh a A straightforward calculation on the initial null cone=0

cos = cosha+cosé sinha’ (5. gives

3
i r .
with inverse iyl s r%(cosd) jvil, (5.9

cos § COSh“_Sinh“_ (5.7  Which, using Eqs(5.5) and(5.7), reduces to

cos = —
cosha—cos 6 sinh a f ;=sinha cosé. (5.10

Calculation of the Jacobian of the angular transformation This determines the Jacobian of the transformation be-

gives r=r(cos@sinha+cosha)=r/(cosha—cosésinha)  tyeen the the stationary and boosted null frames -aD.

on the initial null hypersurface. _ Carrying out the transformation of the metric gives the initial
In order to find the initial null data in the boosted null I data for a boosted Schwarzschild black hde:g=U

frame, we must also relate andv. Near N, we setv =0 andV= —r+2m(cosha+sinha cosé) 3, wherem is

=(t+r)+0(v?). Then by carrying out the transformation the Schwarzschild mass.

to leading order in > we obtain v=z§/(cosha After the hole has moved so that it is no longer centered
about the vertex of the null cones, the null metric still has
some simple properties at the polgs=0 and#= ) due to

the axisymmetry of the system; ed=0 at the poles. This

allows an analytic transformation between null and Kerr-

—sinha cosé). This is enough to determine that initially
=0 andB=0.
To the next order, the null conditiog®?v v z=0 im-

pliesv =v/(cosha—sinha cos6)+xv?+O(v°), where Schild coordinates along the ingoing polar null geodesics
R *+z=—(t—T)+R, which lie on the null foliation and leave
Sir? @ sint? o 5.3 the worldtube at=T. Along these polar rays,=T+R and
Ki=— :

the radial null coordinate is given hy=|z|=—(t—T)+R.
This allows us to reexpress the location of the poles of the

The extraction routine is based upon the gauge condition th4torizon *z=2m analytically in null coordinates as
v=t on the worldtube, so that;=1 atr=R. This fixes the
integration constant in Eq5.3) and gives

272(cosha—sinh o cos §)3

2m=*y sinh a
[=—.
cosha=*sinh «

(5.11

K= Sir? 9 sintf a _ (5.4  Sincev=0 on the initial null cone, the pole of the horizon
2F(cosha—sinh a coS [9)3 hits the vertex of the null cone after retarded time
=2m/sinh .
Similarly, the conditiong®®v .6 ,=0 that @ be constant As a test of the evolution and finder, the surface area of
along the null rays implies the boosted event horizon should remain constant. We ob-

served that this is the case throughout the evolution, modulo

cos ) cosha—sinh A A the first o.rder error introduced by the horizon finder. We
cos f= - +y+0(v?), (5.5 have confirmed that the surface area converges to the value
cosha—cos 6 sinh « determined by the Schwarzschild mass as the grid spacing is
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) ) ) ] FIG. 3. Tracking a boosted black hole: Cuts of the horizon at
FIG. 2. J values at different locations obtained using the Q-y—g are shown at times—3.45-1.9~0.4,1.4). The run was

boundary(Qb) or the horizon findetHF); the values obtained with  made with 41 radial grid points and 2@ngular points, with boost
the different methods proposed to excise the hole agree quite We'barameterazo.l andm=0.5.

indicating not only that both methods can be applied for the exci-

sion, but also that causality is respected. The characteristic grid had

45 radial points and F5angular points, while the Cauchy grid Leary condition is satisfied. Figure 2 shows a 2D ity
extended from-4 to 4 with 45 points in each direction. The offset =0) of the horizon displaying the position of the hole at
was b=0.2, the rotation frequency=0.2 and the mass of the three different time$26].

Schwarzschild exterior was defined by=0.5.

refined. We have also checked that the poles of the horizon C. Distorted black holes

move in accord with Eq(5.11), so that the pole which trav- Here we study the approach to equilibrium of a distorted
els inward moves slightly faster than the pole moving out-black hole with Schwarzschild boundary conditions on a sta-
ward. tionary worldtube. First consider the case where the world-

The algorithm performs the evolution and tracks the mo-+tube is static. We introduce a gravitational wave pulse, with
tion of the horizon stably, as long as the Courant-Friedrichseompact support, on the first hypersurface by

Ra)4( Rb)4 47 )
M1-—][1-—] 575 2Yim If re[Ra,Rp],
J(UZOJ’,XA): ( r r 21 +12 I,m a\b (5.12

0 otherwise,

where ,Y) ,, is the spin two spherical harmoni®,=1.5, D. A Wobbling black hole
R,=3 and the amplitude factor=45.

As the evolution proceeds, the pulse gets reflected by the Beginning with the Schwarzschild metric in Kerr-Schild
outer boundary and eventually falls into the hole. Our resultsoordinatesx®, we introduce the coordinates of an offset,
confirm the expected behavior of a black hole approachingotating framex® by t=t, x=(x+b)coswt—ysinwt, y

equilibrium. Figure 3 shows the behavior My(v). The — _ (54 pysin wt+y coset andz=2. In this frame, we use the
surface area increases monotonically and approaches trﬂ?etric and its derivatives on the world tub&-+y?+ 72

2 . -
value 16rM; determined by the Schwarzschild mass of the_ g2 ¢4 provide the boundary values for a characteristic ini-

exterior. o _tial value problem based upon a family of ingoing null hy-
We also introduced a pulse on the initial hypersurface ifyersyrfaces. Although the Schwarzschild metric is static, the
the case where the worldtube rota#faus inducing a shift of  yoridtube wobbles relative to the static Killing trajectories.
its world lines with respect to the static Schwarzschild The initial value problem is completed by posing null data
streamlines We observed that at any given time, this doesdetermined by setting the Weyl data to zero on the initial null
not result in any change in the location of the boundaryhypersurface. On a non-spherically symmetric null hypersur-
Hence, a rotating world tube does not affect the behavior oface, the Schwarzschild Weyl data is no longer Zar it is
the Hawking mass confirming that the rotation is a purenot possible to express it in simple analytical forhus our
gauge effect. choice of vanishing Weyl data introduces an amount of
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FIG. 4. Tracking a wobbling black hole: Cuts of the horizon at
z=0 at times(0.0, 11.0, 22.pdisplaying how the horizon finder
can track the movement of the black hole. The run was made wit
45 radial grid points and Z5angular points. We also seh
=0.25, offsetb=0.1 and angular velocityw=0.1.

FIG. 6. Behavior of the surface area vs time for a distorted black
|l‘]10Ie: At late time the system approaches equilibrium. The ampli-
tude of the pulse i& =45 describing an=2, m=0 spin weight 2
pulse, extending from= 1.5 tor = 3.0 at the first hypersurface. The
code was run with 41 radial grid points and?1&ngular points,
settingm=0.5.
gravitational radiation which depends on the size of the off-
set. Figure 5 displays &=0 cut of the trapped surface at

The resulting spacetime is neither spherically symmetrigiifferent times, showing the ability to track the movement of
nor static. Relative to the worldtube, it describes a black holehe hole by the horizon finder. As the evolution proceeds, the
wobbling and emitting gravitational radiation. Relative to the horizon “wobbles” through the computational grid with pe-
static Schwarzschild symmetry, the worldtube wobbles, butiod T=27/w. We have evolved up to 2080 confirming
the black hole still moves and radiates. This physical picturehis behavior 26].
is confirmed in Sec. V by the behavior of the surface area of The accuracy of the numerical evolution in the region
the marginally trapped surface. The results demonstrate thakterior to the horizon is negligibly affected by the choice of
the region of spacetime interior to the world tube can beysing either the Q-boundary or marginally trapped surface as
evolvedstably by means of a characteristic evolution algo- the inner boundary. This is illustrated, for the wobbling case,
rithm, when this interior region is truncated in the vicinity of in Fig. 6, where we plot the values df vs time at points
a trapped region. This is illustrated in Fig. 4, which displaysoutside the inner boundary, as obtained by both methods.
the maximum values of the norms dfandU over the entire  The numerical values have a negligible difference. However,
grid vs time. After an initial transient stage, they settle into agvolution with the Q-boundary is somewhat superior with
stationary state without any sign of instability whatsoever. respect to performance, since no elliptic solver or other itera-

tion procedure is required.
0.018 . The area of the marginally trapped surface again ap-

proaches equilibrium with the Schwarzschild exterior. This
12.55 T
M 0.014 1
Wwwwmmmwmmwmwwwwwmw 12,50 i
0.010 L L
0.0 500.0 1000.0 1500.0
0.270
A, 1245 | .
0.260 - i
1l
0.250 _ 12.40 il
0.240 L L
0.0 500.0 1000.0 1500.0 12.35 I | |
v 0.0 40.0 80.0 120.0

FIG. 5. Stability of a wobbling black hole: Maximum values of Y

|J| and |U| over the entire grid vs timegfor a run until v FIG. 7. Behavior of the surface area vs time for a wobbling
=1400M). After an initial stage, these values settle to a stationaryblack hole: At late time, the area approaches a constant value. The
state indicating the stability of the evolution. The run was maderun was made with 45 radial grid points and?2dngular points,
with 45 radial grid points and Z5angular points. We also set with offsetb=0.1 and angular velocitw=0.1. The mass of the
=0.25, offsethb=0.2 and angular velocity=0.2. Schwarzschild exteriom was set to 0.5.
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is illustrated in Fig. 7, where the surface monotonically in-ditions for the Cauchy evolution of black holes as soon as
creases and approaches a constant @eh converges to Cauchy-characteristic-matching is achieved.

167M?2 in first orde). The usefulness of the Hawking mass

as a measure of energy is supported by the observatioa that ACKNOWLEDGMENTS
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VI. CONCLUSION

APPENDIX: SPIN-WEIGHTED EXPRESSIONS
For the divergence of the outgoing rays, we obtain from Bdl) that
r2e?s

2

0,=R{—V+r2(8U+U 8R)+r(e?JiIr) (8R)?>—r(e?’K/r) ,(5R)SR— 5[ e*’(KSR—JBR)]}. (A1)

For W, given in Eq.(3.11), we obtain

2 4 <
r—2<®|K>,r—r—2e2ﬂK<®.e2ﬂ>,r} (3R)3R

,r

2 B}
\Ifzi)%{ [ - r—2(®|J)’r+ ;izezﬂJ(@)le?ﬁ),r} (8R)%+

-2(0,e"%PU ) dR—23(0 e %U )+ r—zzezﬁ(Je's—Ka)(le—Zﬁ) 3R
,r
2 - 2 4 e 2
+8 r—2®|K) 6R—(r—2®|ﬂ 6R—(F®|ezﬁ) ——(K3R-JOR) + Fezﬁ(Jé—Ké)(&e’ZB) } (A2)
o o o
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