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Moving black holes in 3D
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~Received 4 November 1997; published 16 March 1998!

We model a radiating, moving black hole in terms of a worldtube–null-cone boundary value problem. We
evolve this data in the region interior to the worldtube, but exterior to a trapped surface by means of a
characteristic evolution based upon a family of ingoing null hypersurfaces. Data on the worldtube is induced
from a Schwarzschild spacetime, but the worldtube is allowed to move relative to the static Schwarzschild
trajectories. When the worldtube is stationary~static or rotating in place!, a distorted black hole inside it
evolves to equilibrium with the Schwarzschild boundary. A boost of the worldtube with respect to the
Schwarzschild black hole does not affect these results. The code also stably tracks an unlimited number of
orbits, when the worldtube wobbles periodically. The work establishes that characteristic evolution can evolve
a spacetime with a distorted black hole moving on a 3-dimensional grid with the controlled accuracy and long
term stability necessary to investigate new facets of black hole physics.@S0556-2821~98!00310-5#

PACS number~s!: 04.25.Dm, 04.30.Nk, 04.40.2b, 04.70.2s
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I. INTRODUCTION

The calculation of gravitational waveforms from the i
spiral and merger of binary black holes is a great curr
challenge to computational relativity with important re
evance to the Laser Interferometric Gravitational Wave O
servatory ~LIGO!. A three dimensional computer code
now being constructed by the Binary Black Hole Gra
Challenge Alliance to solve this problem by Cauchy evo
tion of initial data for two black holes@1#. The most difficult
problems with the development of this code are inaccur
and instability at the boundaries of the Cauchy grid. Mat
ing to an exterior characteristic evolution is one method
ing pursued to handle the outer Cauchy boundary and
extract the waveform at null infinity. This has been shown
be a highly accurate and efficient approach in the treatm
of 3-dimensional nonlinear scalar waves@2,3#. For the pur-
pose of extending this approach to full general relativity
3-dimensional characteristic code for the gravitational fi
has been developed and fully calibrated to perform with s
ond order accuracy and robust stability in highly nonline
regimes@4,5#. A module for matching Cauchy and characte
istic gravitational evolution codes across a worldtube int
face has also been written@6# and is now in the testing stage
In this paper, we present results which show that Cauc
characteristic matching can also solve the very difficult in
boundary condition necessary for Cauchy evolution of bla
holes. Notably, we have used a characteristic code to ach
the first successful treatment of a distorted black hole m
ing on a 3-dimensional grid with apparently unlimited lon
term stability.

The conventional strategy for avoiding the topologic
and strong field difficulties in the Cauchy evolution of bla
holes has been to excise the region interior to an appa
horizon, as initially suggested by Unruh@7#. In a recent work
@8#, we proposed an alternative version of this strategy
which the black hole region is evolved by a characteris
evolution based upon ingoing null cones. These null co
are truncated at an inner boundary consisting of a trappe
marginally trapped surface, and matched at their ou
570556-2821/98/57~8!/4778~11!/$15.00
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boundary to the inner boundary of a Cauchy evolution.
turn, the outer boundary of the Cauchy evolution is match
to an exterior characteristic evolution extending to~compac-
tified! infinity. The potential advantages over a pure
Cauchy approach to the inner boundary were discusse
that work and the global strategy was successfully imp
mented for spherically symmetric self-gravitating sca
waves evolving in a black hole spacetime.

We present here the successful implementation of a c
acteristic treatment of an inner black hole boundary for fu
3-dimensional simulations containing gravitational radiatio
We show that the ingoing characteristic approach is able
locate the black hole and to track it stably as it moves on
numerical grid. For a report on recent progress in tackl
the same problem by Cauchy evolution see Ref.@9#. The
boundary data for the characteristic initial value problem
posed on a worldtube and on an ingoing null cone emana
from the initial slice of the worldtube. A main goal of thi
study is to develop new methods which will allow a comb
nation of characteristic and Cauchy evolution to tackle
computational problem of the inspiral of two black holes.
this new approach, the two evolutions are matched acro
worldtube, with the Cauchy domain supplying the bounda
values for characteristic evolution and vice versa. In treat
this problem, there are major computational advantage
posing the Cauchy evolution in a frame which is co-rotati
with the orbiting black holes. Indeed, such a description m
be necessary in order to keep the numerical grid from be
intrinsically twisted and strangled. In this co-orbiting form
lation of the binary black hole problem, the Cauchy evo
tion requires inner boundary conditions in two regions a
proximating the two disjoint apparent horizons and also
outer boundary condition on a worldtube. Figure 1 depi
this global matching strategy. Far enough outside the o
worldtube the coordinate rotation would go superlumin
Previous work has shown that an outgoing characteri
code can routinely handle such superluminal gauge flow
the exterior@5#. Our present results indicate that an ingoi
characteristic code can just as effectively handle the in
boundaries of multiple black holes.
4778 © 1998 The American Physical Society
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57 4779MOVING BLACK HOLES IN 3D
Consistent worldtube data must satisfy conservation c
ditions@4,5#, which correspond to a hyperbolic version of th
standard constraint equations for Cauchy data. In the pre
work, we are concerned with one of the regionsI i in Fig. 1
and, since we are not matching to a Cauchy evolution,
generate this data on the corresponding worldtubeGi from an
analytic solution. Specifically, we set Schwarzschild data
the worldtube. In ingoing Kerr-Schild coordinatesx̂a, the
Schwarzschild metric takes the form@10#

ds252d t̂21dx̂21dŷ21dẑ2

1
2m

r̂
S d t̂1

x̂dx̂1 ŷdŷ1 ẑdẑ

r̂
D 2

, ~1.1!

where r̂ 25 x̂21 ŷ21 ẑ2 and km52]m( t̂1 r̂ ) is the ingoing
degenerate null vector.

In order to determine data for a moving black hole, w
introduce anxa coordinate system which is either rotatin
boosted or wobbling with respect to thex̂a coordinates. In
the xa frame, the null coordinates are centered atr 50 and
the worldtube is located atr 5R, wherer 25x21y21z2. As
a result, the worldtube is stationary with respect to the n
grid, but the black hole moves.

The initial value problem also requires data on the init
null hypersurface. In our formulation, this null data is free
constraints, other than continuity conditions at the worldtu
Thus we can introduce an arbitrary pulse of radiation in
data to describe a distorted Schwarzschild black hole.
can also pose initial null data by setting to zero the com
nent of the Weyl tensor intrinsic to the null hypersurface.
a spherically symmetric null hypersurface, the Weyl data
the Schwarzschild space-time are exactly zero. On a
hypersurface offset from the center of spherical symme
this Weyl data for a Schwarzschild spacetime are not z
~and it is not possible to express it in simple analytical form!.
In this case the choice of vanishing Weyl data introduces
amount of gravitational radiation which depends on the s

FIG. 1. A Cauchy-characteristic matching scenario for bin
black holes, portrayed in a co-rotating frame which eliminates
major source of time dependence. RegionsO ~extending to future
null infinity!, C and I i ( i 51,2) are evolved, respectively, by a
outgoing characteristic formulation, a Cauchy formulation and
ingoing characteristic formulation. The Cauchy-characteris
matching worldtubes areG, G1 andG2 . Initial data for an evolution
into the future is given onDo5NøSøNi . The shaded region
inside the black holes is excised from the evolution.
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of the offset. The details of setting up the worldtube–nu
cone data are presented in Sec. II.

The worldtube boundary values, as prescribed in this
per, satisfy the conservation conditions, when the space
is exactly Schwarzschild, e.g. a Schwarzschild black hole
either rotating or boosted coordinates. But in either the d
torted or wobbling case, when gravitational radiation is co
tained in the initial null data, the extraction module overd
termines the metric and its normal derivatives at t
worldtube in terms of their Schwarzschild values. As a
sult, the reflection of the wave off the worldtube can lead
a violation of the Bianchi identities. The mismatch betwe
radiation impinging on the Schwarzschild worldtube intr
duces an unphysical sheet source of gravitational radia
on the worldtube, which is not necessarily consistent w
energy and angular momentum conservation. Although
obscures the physical interpretation of the results for th
cases, it is remarkable that the stability of the evolution is
affected and that the system behaves in accord with the p
ciples of black hole dynamics, as described in Sec. V. I
more physical implementation, the conservation conditio
would be enforced either~i! directly, by using them to evolve
properly the boundary conditions up the worldtube, or~ii ! by
matching the interior evolution across the worldtube to
exterior Cauchy evolution.

Our chief goal here is to demonstrate that the region
spacetime interior to the world tube can be evolvedstably
and accuratelyby means of a characteristic evolution alg
rithm. The interior region is truncated in the vicinity of a
apparent horizon. The long term stability we observe in
cates a surprising robustness of the worldtube–null-c
boundary value problem.

In the case of a Schwarzschild spacetime described
frame rotating about the center of spherical symmetry,
location of the apparent horizon is known analytically,
well as the transformation to null coordinates and the n
metric. Thus this case provides an important test bed to c
brate numerical accuracy. Long term stability and seco
order convergence to the analytic values have been c
firmed. In this purely rotating case in which the worldtube
a stationary boundary, when we superimpose a pulse o
diation on the initial Schwarzschild null data, we find that t
surface area of the resulting distorted black hole grows
time, but eventually reaches an equilibrium value consist
with the Schwarzschild boundary conditions on the wor
tube. In the offset case, the Schwarzschild boundary mo
periodically, but the marginally trapped surface associa
with the black hole again reaches equilibrium with it, co
firming that the motion of the boundary is ‘‘pure gauge.’’

When the null cones are not spherically symmetric
computational approach is necessary to find the ‘‘trapp
boundary,’’ where a marginally trapped surface is located
each ingoing null hypersurface. The analogous problem
Cauchy evolution is the excision of a black hole interior
locating the apparent horizon. There is an extensive litera
on marginally trapped surface~MTS! finders on spacelike
hypersurfaces@11–20#. In Sec. III, we present two method
for use on null hypersurfaces. Computational design and
formance is discussed in Sec. IV.
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II. DETERMINATION OF THE DATA

The worldtube data for the null evolution of the interi
region is obtained by recasting the Cartesian form of
Kerr-Schild metric Eq.~1.1! for a Schwarzschild black hole
into nonstationary ingoing null coordinates. However, t
Schwarzschild metric can only be expressed in an ana
cally manageable null coordinate form, when the null con
are centered to be spherically symmetric. Thus, in the of
case, numerical techniques must be used to carry out
transformation from Cartesian to null coordinates in order
provide the worldtube data. Fortunately, the transformat
need only be implemented in the neighborhood of the wo
tube. This allows the solution for the ingoing null geodes
to be carried out by means of a Taylor expansion in affi
parameter, up to the required order of accuracy. In this w
the transformation can be formulated as a hybrid analyti
numerical scheme, with the null properties built in analy
cally.

Such a scheme for extracting null worldtube data fro
Cauchy data in a general spacetime has been implement
anextractionmodule@6#, which is part of the computationa
procedure to match Cauchy and characteristic evoluti
across an interface. We use this module here to obtain
required worldtube data for null evolution by extraction fro
the ‘‘311’’ form of the Schwarzschild metric, which ha
been recast into nonstationary coordinates by a nontri
choice of lapse and shift.

The initial value problem is completed by giving data
an initial null hypersurface. In ingoing null coordinates, wi
v labeling the null hypersurfaces, withxA5(u,f) labeling
the angles along the null rays and withr labeling the surface
area measured along the null rays, the metric takes
Bondi-Sachs form@8#

ds25S e2b
V

r
1r 2hABUAUBDdv212e2bdvdr

22r 2hABUBdvdxA1r 2hABdxAdxB, ~2.1!

where det(hAB)5det(qAB)5q, with qAB a unit sphere met-
ric. The inverses of these 2-dimensional metrics are den
by hAB andqAB. We expressqAB in terms of a complex dyad
qA @satisfying qAqA50, qAq̄A52, qA5qABqB , with
qABqBC5dC

A and qAB5 1
2 (qAq̄B1q̄AqB)]. hAB can then be

represented by its dyad componentJ5hABqAqB/2, with the
spherically symmetric case characterized byJ50. The full
nonlinearhAB is uniquely determined byJ, since the deter-
minant condition implies that the remaining dyad compon
K5hABqAq̄B/2 satisfies 15K22JJ̄. We also introduce the
spin-weighted fieldU5UAqA , as well as the~complex dif-
ferential! eth operatorsZ and Zp. Refer to@4,21# for further
details.

The complete null data can be specified freely in terms
either the metric quantityJ or the Weyl tensor componen
Cabgdnangmbmd ~corresponding toC4 in Newman-Penrose
terminology@22#!, where the null vectorna and the complex
spacelike vectorma span the tangent space to the null hyp
surface. On a spherically symmetric null hypersurface,
Weyl data for the Schwarzschild space-time is exactly ze
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but since there are no constraints on the null data, we
freely add a radiation pulse of any desired shape.

In the case of rotating coordinates, as described in S
V A, or boosted coordinates, as described in Sec. V B,
initial null cone is spherically symmetric and Schwarzsch
null data can be determined analytically. However, it is n
possible to express Schwarzschild null data in simple a
lytical form on a null hypersurface, which is not spherica
symmetric. Instead, we choose initial data for an offset w
bling black hole by setting the Weyl data to zero on t
initial ~nonsymmetric! null hypersurface. The relevant com
ponents of the Riemann tensor are

RrABr5
1

2
gAB,rr 2

1

2
gvrgvr ,rgAB,r2

1

4
gCDgAC,rgBD,r

5
r 2

2
hAB,rr 1rhAB,r2rb ,r~rhAB,r12hAB!

2
r 2

4
hCDhAC,rhBD,r . ~2.2!

HeregABRrABr50 by virtue of the hypersurface equation fo
b @5#,

b ,r52
1

16
rh ,r

ABhAB,r5
r

8
~J,r J̄,r2K ,r

2 !. ~2.3!

The requirement of vanishing Weyl data is equivalent
qAqBRrABr50, which gives

~r 2J,r ! ,r22b ,r~r 2J! ,r2
r 2

2
J~J,r J̄,r2K ,r

2 !50. ~2.4!

Combining Eqs.~2.3! and ~2.4!, we then obtain

r 2~r 2J,r ! ,r22b ,r~r 4J! ,r50. ~2.5!

With b ,r determined from Eq.~2.3!, Eq. ~2.5! is a second
order radial differential equation for the initial dataJ, which
may be solved in terms of boundary values forJ andJ,r on
the worldtube.

The outer worldtube is located at (x21y21z2)1/25R, in
terms of coordinatesxa5(t,x,y,z) moving with respect to
static Kerr-Schild coordinatesx̂a. The boundary data on th
worldtube is obtained by first transforming the metric~1.1!
in ‘‘3 11’’ form to the xa frame and then applying theex-
traction module, which determines numerically the transfo
mation from a Cartesian to a null coordinate system in
neighborhood of the worldtube. This module supplies
boundary values of the null metric quantitiesJ, b, U andV
on the worldtube.

As a check on the extraction module, we examine
rotating case where the null Schwarzschild metric can
found analytically. We relate the static coordinate framex̂a

to the rotating one,xa by t5 t̂ , x5 x̂ cosv(t1r)2ŷ sinv(t
1r), y5 x̂ sin v(t1r)1ŷ cosv(t1r) andz5 ẑ. In this trans-
formation, the anglesu,f ~associated in the standard wa
with the Cartesian coordinatesxi! remain constant along th
generators of the null cones emanating from the world tu
Therefore, the null metric can be easily obtained by
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57 4781MOVING BLACK HOLES IN 3D
simple transformation v5t1r , r 5A(x21y21z2), u
5cos21(z/r) andf5tan21(y/x), leading to

ds25S 211
2m

r
1r 2v2 sin2 u Ddv212dvdr

22r 2v2 sin2 ududf1r 2~du21sin2 udf2!.

~2.6!

This identifies the spin weighted versions of the variab
appearing in the null metric~2.1! as

J50, b50 ~2.7!

U5 iv sin ueif ~2.8!

V52r 12m. ~2.9!

We used this transformation to check the accuracy of
worldtube data extracted from the Schwarzschild metric
‘‘3 11’’ Cauchy form with massm5.25. The code was run
using the extraction radiusR53. The Cauchy grid was a
Cartesian cube with rangexiP@24,4# and the range of the
characteristic grid wasr P@0,4#. We confirmed convergenc
of the numerical error to zero at a second order rate with g
size for several values ofv ~0.8, 0.1, 0.001!.

III. FINDING THE TRAPPING BOUNDARY

The excision of a region inside the black hole is necess
for numerical evolution, for otherwise contact with the si
gular region of spacetime would result. The boundary of
excised region must either be trapped or marginally trap
in order to insure that it does not contain points that c
causally influence the radiated waveform. For a sliceS of an
ingoing null hypersurfaceNv , described in null coordinate
by r 5R(v,xA), the divergence of the outgoing null norma
is @8#

r 2e2b

2
Q l52V2

1

Aq
@Aq~e2bhABR,B2r 2UA!# ,A

2r ~r 21e2bhAB! ,rR,AR,B1r 2U ,r
AR,A . ~3.1!

This is to be evaluated onS after all partial derivatives are
taken; e.g.r ,A50. The slice will be marginally trapped i
Q l50.

Finding a marginally trapped slice on a converging ing
ing null hypersurface is a 2 dimensional~2D! elliptic prob-
lem, which entails setting the right hand side of Eq.~3.1! to
0 and solving forR(v,xA), at a fixed advanced timev. It is
easier to find trapped surfaces. In fact, the largestr 5const
slice of Nv that satisfies the algebraic inequalityQ<0,
where

Q52V1
r 2

Aq
~AqUA! ,A ~3.2!

is either trapped or marginally trapped@8#. We call this slice
the ‘‘Q-boundary.’’ A comparison of Eqs.~3.1! and ~3.2!
shows that theQ-boundary is marginally trapped when th
s

e
n

id

ry

e
d

n

-

sliceQ50 is anr 5const slice. However, the gauge freedo
in the choice of a surface area coordinate~r is a scalar den-
sity! allows any slice to be regauged as anr 5const slice. So
there is a gauge in which theQ-boundary and the trapping
boundary coincide. But finding this gauge is tantamount
solving the elliptic problem for a marginally trapped slice

This presents us with two possible strategies for locat
the inner boundary, both of which ensure that the exci
portion of spacetime cannot causally effect the exter
spacetime:~I! Use the trapping boundary or~II ! use the Q-
boundary. Strategy~I! makes the most efficient use of th
spacetime points, but a 2D elliptic equation must be solv
Strategy~II ! involves only some simple algebra so it is ve
efficient computationally. We will pursue both strategi
here and compare their merits.

In implementing strategy~I!, we have tried two methods
for finding the trapping boundary. One is a standard
proach to the solution of the elliptic equationQ l50 by solv-
ing the parabolic equation

]lR52Q l ~3.3!

in terms of a relaxation parameterl. At largel, the solution
relaxes to the location of the trapping boundary provided t
the procedure is stable.

Another method of finding the trapping boundary is by
minimization procedure. In the case of a Cauchy hypers
face, this approach was introduced in@18# and further devel-
oped in @19# using spectral methods. Here we use a fin
difference version of the minimization approach and co
bine it with an approach based upon gradient flows propo
in @13#. We combine these approaches by characterizing
trapping boundary on a converging ingoing null coneNv as
a marginally trapped sliceSm which minimizes the func-
tional

T~S!5
1

8 R
S
Qn

2Q l
2dS ~3.4!

where Qn is the divergence of the ingoing null vectorna

tangent toNv . We normalizena and l a ~both normal toS!
by nal a521. With this setup,T is invariant under change
in the extensions of the the null normals~local boosts! that
retain nal a521. For a standard sphere of radiusR in
Minkowski space,T58p/R2 so that the minimum on a
Minkowski light cone occurs at infinity. This has the adva
tage of biasing the search away from the caustic tip of
light cone when looking for nontrivial minima.

We perform a variation of the formdxa5Fnadl, which
deforms the slice along the generators ofNv . In order to find
a flow F, which leads toward the minimum, consider th
variation

dT~S!5 R
S
TadxadS, ~3.5!

which serves to defineTa . We chooseF52Tana. Then

dT~S!52 R
S
~Tana!2dldS, ~3.6!
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so that the variation will lead in the direction of the min
mum atT50.

The main problem then reduces to calculatingTana. In
ingoing null coordinates onNv , we describeS by r
5R(xA) and its variation byr 5R(xA)1dR(xA), with dv
5dxA50. Choosing the extensionna52gvrv ,a , we have
Qn522/r so that, for any slice ofNv , dQn52dr /r 2.

The variation of termsf (r ,xA) not explicitly dependent
on R is calculated usingd f (r ,xA)5 f ,rdR. Also, sincedS
5r 2dV, in terms of the solid angle element in thexA coor-
dinates, we haveddS52dSdR/r . As a result, the contribu
tions fromdQn and fromddS cancel in the variation of Eq
~3.5! so that

dT~S!5 R
S
Q ldQ ldV. ~3.7!

From Eq.~3.1!,

dQ l5Q l ,rdR1
2e22b

r 2 S 2
1

Aq
~Aqe2bhABdR,B! ,A

22r ~r 21e2bhAB! ,rR,AdR,B1r 2U ,r
AdR,AD . ~3.8!

For any vector fieldVA(r ,xB) on S, we have

R
S
DAVAdV50, ~3.9!

where DAVA5(AqVA) ,A /Aq1V,r
AR,A . This allows us to

eliminate terms indT containingdR,A by integrating overS.
We obtain

dT~S!5 R
S
$Q lQ l ,r1C%dRdV ~3.10!

where

C5F 2

r 2 ~Q lh
AB! ,r2

4

r 2 ~Q le
22b! ,re

2bhABG
,r

R,AR,B

2@2Q le
22bU ,r

A # ,rR,A2@2Q le
22bU ,r

A # ,A

2F 2

r 2 ~Q le
22b! ,Ae2bhABG

,r

R,B1F S 2

r 2 Q lh
ABD

,r

R,A

2S 4

r
Q le

22bD
,r

e2b

r
hABR,A2

2

r 2 ~Q le
22b! ,Ae2bhABG

,B

.

~3.11!

Thus, in order to find the trapping boundary, we follow t
variational path determined bydR52Fdl with

F5~Q lQ l ,r1C!/R2. ~3.12!

As a check on the stability of this minimization schem
supposeSm is a trapping boundary located atr 5Rm(xA).
Then, onSm , Q l50 andF5C/Rm

2 . But the operator (]A

1Rm,A] r) also annihilatesQ l on Sm . As a result, direct
substitution to eliminate the] r derivatives in Eq.~3.11! gives
,

C50 onSm . ThusdR also vanishes andSm is an invariant
slice with respect to the variational scheme.

We have:
~1! A marginally trapped surface is a zero of the positi

functionalT;
~2! The effect of the flowF on T is everywhere negative

or zero;
~3! A marginally trapped surface is stationary under t

flow F.
Thus a marginally trapped surface must be stable w

respect to the flowF except in the degenerate case, cor
sponding to neutral stability, where a continuum of such s
faces exist inNv . Although this degenerate case is possib
it would be improbable to encounter in an evolution bas
upon a reasonably behaved foliation. For an interesting
cussion of the wild behavior possible in general for marg
ally trapped surfaces, see@23#.

In order to implement either of the above two finders
computational algorithms, we represent the geometric qu
tities involved as spin-weighted fields in stereographic co
dinates. The spin-weighted expressions necessary to d
mine Q l andF are given in the appendix.

IV. COMPUTATIONAL DESIGN AND PERFORMANCE

All numerical algorithms have been based upon expl
finite difference methods. The metric functions are d
cretized and placed on a finite 3 dimensional grid, withNr

radial points andNj
2 angular points, whose outer boundary

a spherical worldtube. The spherical coordinates are patc
by two overlapping stereographic grids and angular deri
tives of tensors are handled by a computational version
the Z formalism @21#.

In a general null evolution, data at the worldtube wou
be extracted from a Cauchy evolution. In this example, si
we are not matching to a Cauchy evolution, we extract d
at the worldtube from an analytical Cauchy solution. T
characteristic evolution is carried out using a code descri
and calibrated in@5#, transformed into an ingoing null cod
according to the procedure presented in@8#.

Inside the grid there is a black hole whose interior
partially excised at an inner boundary, the ‘‘hole,’’ which
taken to be either a marginally trapped surface or the
boundary. We need to evolve only those grid points wh
are outside a discrete version of the hole. At the same ti
we also need to allow the hole to move through the grid.
order to accomplish this we use a 3 dimensional mask func
tion. Each grid point is assigned the value 1 by the mask
either neighbors or is exterior to the boundary. All other g
points are masked to zero. The metric functions are evol
at each point with mask value 1 using data only from oth
points with a mask value 1~i.e. points outside or neighborin
the hole use data only from other points outside or neighb
ing the hole!. In case they are needed~see below!, values of
the metric functions at grid points, which are nearest nei
bors just inside the hole are extrapolated radially inward
ing points exterior to them with mask 1. Other interior poin
are ignored.

After all the metric functions have been evolved, we l
cate the hole at the new time. We then recompute the m
function and continue. If the boundary moves out, we sim
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throw away the data which we just evolved. If the bounda
moves in, we have data at the new point which was obtai
by extrapolation. Using this approach saves us from hav
to figure out if we have any points which were previously
the hole but are now outside. Such points automatically h
data. It should be noted that we can safely assume tha
black hole boundary will never move more than a grid po
during any iteration. If it did, it would violate the Couran
Friedrichs-Lewy condition, which is built into the characte
istic code to insure stability.

The procedure for locating the trapping boundary is fai
simple. Basically, we use the previous position of the ho
zon (R) as a guess for its current location~if this is the first
iteration, we use the position of the Q-boundary for the
proximate location of the trapping boundary!. Then, if we are
finding the boundary using the parabolic relaxation techni
based upon Eq.~3.3!, we computeQ l and then letR5Rold
2Q ldl, and repeat untiliQ l i2 is less than some threshold
If instead, we are using the minimization procedure, we co
puteF and then letR5Rold2Fdl, and repeat untiliFi2 is
less than some threshold. The values of the stopping thr
old anddl are parameters. The threshold can be safely se
be approximatelyDr , ~whereDr is the spacing between ra
dial grid points!. The value ofdl should be small enough s
that Fdl,Dr , but not so small that finding the horizon re
quires a large number of iterations. We have found it su
cient to choose a fixeddl at the start of the calculation
however it is possible to design a scheme in whichdl is
self-tuning and changes its value to speed convergenc
each attempt to locate the horizon.

A stability analysis of the explicit scheme~first order in
time, second order in space! used to solve Eq.~3.3! shows
that dl must scale asDj2 ~whereDj is the spacing betwee
angular points!. This requirement would suggest that the pr
posed method is computationally expensive. However,
results show that the use of the horizon finder introduce
negligible overhead when dealing with long evolutions. W
the aforementioned strategy of using the position of the
boundary as the initial guess, the finder may need man
erations to home in on the trapped surface, but it takes ju
few iterations thereafter to track the surface.

It is worth noting that, if instead of using the Q-bounda
to determine the initial guess, one uses a moreeducated
guess for the location of the surface, the number of steps
be dramatically decreased. This can be easily done in
case of the boosted black hole~see Sec. V A!. Using the
expression forr obtained in that case, one can set as ini
guessR52m/(cosu sinha1cosha), reducing the numbe
of iterations on the first hypersurface from several hund
~using the Q-boundary! to less than 10~for values of a
<0.5!.

In the case of a wobbling black hole~see Sec. V D!, we
do not know the analytic expression for the margina
trapped surface even at the first hypersurface so that we
the Q-boundary as our initial guess. Table I shows the nu
ber of iterations made by the horizon finder for differe
values of the offsetb and frequencyv ~for a characteristic
grid having 453212 points covering the space fromr 50 to
r 54!. After the first ‘‘find’’ the number of iterations neces
sary to track the hole is small; and since the finder solve
Nj

2 problem~as opposed to anNr3Nj
2 problem!, it does not
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add an appreciable computational time to the overall num
cal evolution.

In comparison, we obtain decidedly inferior efficiency
locating and tracking the hole by the minimization procedu
using the flow given in Eq.~3.12!. Stability analysis of the
finite difference method shows thatdl must scale asDj4 in
this case. Thus, although this minimization approach is
tractive, it is not practical using finite difference technique
It may be possible to improve the minimization algorithm
using pseudo-spectral techniques@11,20# to calculate the
flow, but we have not explored this possibility in the prese
work.

V. RESULTS

Here we present some results of code runs for vari
initial conditions. We describe the physical behavior of t
black hole in terms of the surface area of its margina
trapped surface. This surface area gives a measure o
energy of the radiation fields introduced in the initial nu
data. For the pure Schwarzschild case, the margin
trapped surfaces have areaAs516pMs

2 , in terms of the
massMs of the Schwarzschild black hole. More general
the surface area of a marginally trapped surface determ
its Hawking massMh @24# according toA516pMh

2 . Thus,
on an ingoing null hypersurfaceNv , the function D(v)
5Ms2Mh(v) provides a measure of the energy between
marginally trapped surface and the worldtube.

If a spacetime satisfies some suitable version of cos
censorship, such as asymptotic predictability, and set
down to a Kerr black hole, then the area of any margina
trapped surface must be less than the area of the final b
hole @25#. In the present context, we do not have a glob
asymptotically flat solution so these results are not imme
ately applicable. However, if the black hole settles down
equilibrium with the Schwarzschild boundary condition o
the worldtube, then at late advanced times we would exp
D(v)→0.

A. Rotating Schwarzschild black holes

Our first runs are for a Schwarzschild spacetime descri
in coordinates rotating about the center of spherical sym
try, as described by the null data in Eq.~2.9!. In this case, the
evolved metric is known analytically and the margina
trapped surface is fixed at the horizon atr 52m, so that
convergence to the exact results can be checked. Our re
confirm that the numerically evolved spacetime is accurat
second order in grid size. As expected, the horizon fin
converges to the known location of the spherically symm
ric marginally trapped surface.

TABLE I. Performance of the horizon finder.

v b First
hypersurface

Second
hypersurface

After the 10th
hypersurface

0 0 1300 1 1
0.05 0.05 1416 5 <4
0.1 0.1 1800 16 <7
0.2 0.2 1539 257 <14
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B. Boosted Schwarzschild black holes

A boosted Schwarzschild black hole provides a test of
ability to track the motion of a black hole and to calculate
surface area. Letx̂a be ingoing Eddington-Finkelstein coo
dinates. Define boosted coordinatesxa by x̂5x, ŷ5y, ẑ

5z cosha2t sinha and t̂5t cosha2z sinha.
We locate an initial incoming null hypersurfaceN0 at t

52(x21y21z2)1/2. Initial Schwarzschild null data corre
sponds to setting the Weyl data to zero at this initial tim
Schwarzschild data at the extraction worldtubex21y21z2

5R2 is provided by transforming the metric to thexa coor-
dinates.

Let (v̂, r̂ ,û,f̂) be standard ingoing null coordinates ass
ciated with the Cartesian Eddington-Finkelstein coordina
and let (v,r ,u,f) be the null coordinates associated with t
Cartesian coordinatesxa by the extraction module. We syn
chronize them so thatv5 v̂50 onN0 , which is the only null
hypersurface common to thev and v̂ foliations. Then the
boost transformation implies thatf5f̂ and, onN0 , that

cos û5
cosu cosha1sinh a

cosha1cosu sinh a
, ~5.1!

with inverse

cosu5
cos û cosha2sinh a

cosha2cos û sinh a
. ~5.2!

Calculation of the Jacobian of the angular transformat
gives r̂ 5r (cosu sinha1cosha)5r/(cosha2cosû sinha)
on the initial null hypersurface.

In order to find the initial null data in the boosted nu
frame, we must also relatev and v̂. NearN0 , we setv
5(t1r )1O( v̂2). Then by carrying out the transformatio
to leading order in v̂ we obtain v5 v̂/(cosha

2sinha cosû). This is enough to determine that initiallyJ
50 andb50.

To the next order, the null conditiongabv ,av ,b50 im-
plies v5 v̂/(cosha2sinha cosû)1kv̂21O(v̂3), where

k , r̂52
sin2 û sinh2 a

2r̂ 2~cosha2sinh a cos û !3
. ~5.3!

The extraction routine is based upon the gauge condition
v5t on the worldtube, so thatv ,t51 at r 5R. This fixes the
integration constant in Eq.~5.3! and gives

k5
sin2 û sinh2 a

2r̂ ~cosha2sinh a cos û !3
. ~5.4!

Similarly, the conditiongabv ,au ,b50 that u be constant
along the null rays implies

cosu5
cos û cosha2sinh a

cosha2cos û sinh a
1g v̂1O~ v̂2!, ~5.5!
e

.

-
s,

n

at

where

g , r̂52
sinh a sin2 û

r̂ 2~cosha2sinh a cos û !3
. ~5.6!

Here the gauge condition built into the extraction routine
that u ,t50 on the worldtube. With this boundary conditio
the integral of Eq.~5.6! gives

g5
sinh a sin2 û

r̂ ~cosha2sinh a cos û !3
. ~5.7!

The v̂ dependence ofr can now be obtained from th
defining equation of a surface area coordinater 4q
5det(gAB), where q is the determinant of the unit spher
metric corresponding to thexA coordinates. This gives
(r 4q) ,v̂52r 4qgABgAB

,v̂ , where

gAB
,v̂52xA

,âxB
,b̂v̂gâb̂. ~5.8!

A straightforward calculation on the initial null conev50
gives

r ,v̂52
r 3

2 sin2 u
@gg , r̂1 r̂ 22~cosu! ,ûg ,û#, ~5.9!

which, using Eqs.~5.5! and ~5.7!, reduces to

r ,v̂5sinh a cosu. ~5.10!

This determines the Jacobian of the transformation
tween the the stationary and boosted null frames atv50.
Carrying out the transformation of the metric gives the init
null data for a boosted Schwarzschild black hole:J5b5U
50 and V52r 12m(cosha1sinha cosu)23, wherem is
the Schwarzschild mass.

After the hole has moved so that it is no longer cente
about the vertex of the null cones, the null metric still h
some simple properties at the poles~u50 andu5p! due to
the axisymmetry of the system; e.g.J50 at the poles. This
allows an analytic transformation between null and Ke
Schild coordinates along the ingoing polar null geodes
6z52(t2T)1R, which lie on the null foliation and leave
the worldtube att5T. Along these polar rays,v5T1R and
the radial null coordinate is given byr 5uzu52(t2T)1R.
This allows us to reexpress the location of the poles of
horizon6 ẑ52m analytically in null coordinates as

r 5
2m6v sinh a

cosha6sinh a
. ~5.11!

Sincev50 on the initial null cone, the pole of the horizo
hits the vertex of the null cone after retarded timev
52m/sinha.

As a test of the evolution and finder, the surface area
the boosted event horizon should remain constant. We
served that this is the case throughout the evolution, mod
the first order error introduced by the horizon finder. W
have confirmed that the surface area converges to the v
determined by the Schwarzschild mass as the grid spacin
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57 4785MOVING BLACK HOLES IN 3D
refined. We have also checked that the poles of the hor
move in accord with Eq.~5.11!, so that the pole which trav
els inward moves slightly faster than the pole moving o
ward.

The algorithm performs the evolution and tracks the m
tion of the horizon stably, as long as the Courant-Friedric

FIG. 2. J values at different locations obtained using the
boundary~Qb! or the horizon finder~HF!; the values obtained with
the different methods proposed to excise the hole agree quite
indicating not only that both methods can be applied for the e
sion, but also that causality is respected. The characteristic grid
45 radial points and 252 angular points, while the Cauchy gri
extended from24 to 4 with 45 points in each direction. The offs
was b50.2, the rotation frequencyv50.2 and the mass of the
Schwarzschild exterior was defined bym50.5.
th
ul
in

he

i

ild
e
ry
r o
r

n

-

-
-

Leary condition is satisfied. Figure 2 shows a 2D cut~at y
50! of the horizon displaying the position of the hole
three different times@26#.

C. Distorted black holes

Here we study the approach to equilibrium of a distort
black hole with Schwarzschild boundary conditions on a s
tionary worldtube. First consider the case where the wo
tube is static. We introduce a gravitational wave pulse, w
compact support, on the first hypersurface by

-

ll,
i-
ad

FIG. 3. Tracking a boosted black hole: Cuts of the horizon
y50 are shown at times (23.45,21.9,20.4,1.4). The run was
made with 41 radial grid points and 172 angular points, with boost
parametera50.1 andm50.5.
J~v50,r ,xA!5H lS 12
Ra

r D 4S 12
Rb

r D 4 A 4p

2l 11 2Yl ,m if r P@Ra ,Rb#,

0 otherwise,

~5.12!
ld

t,

ni-
y-
the
s.
ta
ull
ur-

of
where 2Yl ,m is the spin two spherical harmonic,Ra51.5,
Rb53 and the amplitude factorl545.

As the evolution proceeds, the pulse gets reflected by
outer boundary and eventually falls into the hole. Our res
confirm the expected behavior of a black hole approach
equilibrium. Figure 3 shows the behavior ofMh(v). The
surface area increases monotonically and approaches
value 16pMs

2 determined by the Schwarzschild mass of t
exterior.

We also introduced a pulse on the initial hypersurface
the case where the worldtube rotates~thus inducing a shift of
its world lines with respect to the static Schwarzsch
streamlines!. We observed that at any given time, this do
not result in any change in the location of the bounda
Hence, a rotating world tube does not affect the behavio
the Hawking mass confirming that the rotation is a pu
gauge effect.
e
ts
g

the

n

s
.
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e

D. A Wobbling black hole

Beginning with the Schwarzschild metric in Kerr-Schi

coordinatesx̂a, we introduce the coordinates of an offse

rotating frame xa by t5 t̂ , x5( x̂1b)cosvt2ŷ sinvt, y

5( x̂1b)sinvt1ŷ cosvt andz5 ẑ. In this frame, we use the
metric and its derivatives on the world tubex21y21z2

5R2 to provide the boundary values for a characteristic i
tial value problem based upon a family of ingoing null h
persurfaces. Although the Schwarzschild metric is static,
worldtube wobbles relative to the static Killing trajectorie

The initial value problem is completed by posing null da
determined by setting the Weyl data to zero on the initial n
hypersurface. On a non-spherically symmetric null hypers
face, the Schwarzschild Weyl data is no longer zero~and it is
not possible to express it in simple analytical form!. Thus our
choice of vanishing Weyl data introduces an amount
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gravitational radiation which depends on the size of the o
set.

The resulting spacetime is neither spherically symme
nor static. Relative to the worldtube, it describes a black h
wobbling and emitting gravitational radiation. Relative to t
static Schwarzschild symmetry, the worldtube wobbles,
the black hole still moves and radiates. This physical pict
is confirmed in Sec. V by the behavior of the surface area
the marginally trapped surface. The results demonstrate
the region of spacetime interior to the world tube can
evolvedstably by means of a characteristic evolution alg
rithm, when this interior region is truncated in the vicinity
a trapped region. This is illustrated in Fig. 4, which displa
the maximum values of the norms ofJ andU over the entire
grid vs time. After an initial transient stage, they settle into
stationary state without any sign of instability whatsoeve

FIG. 4. Tracking a wobbling black hole: Cuts of the horizon
z50 at times~0.0, 11.0, 22.0! displaying how the horizon finde
can track the movement of the black hole. The run was made
45 radial grid points and 252 angular points. We also setm
50.25, offsetb50.1 and angular velocityv50.1.

FIG. 5. Stability of a wobbling black hole: Maximum values
uJu and uUu over the entire grid vs time~for a run until v
51400M !. After an initial stage, these values settle to a station
state indicating the stability of the evolution. The run was ma
with 45 radial grid points and 252 angular points. We also setm
50.25, offsetb50.2 and angular velocityv50.2.
f-
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Figure 5 displays az50 cut of the trapped surface a
different times, showing the ability to track the movement
the hole by the horizon finder. As the evolution proceeds,
horizon ‘‘wobbles’’ through the computational grid with pe
riod T52p/v. We have evolved up to 2000M confirming
this behavior@26#.

The accuracy of the numerical evolution in the regi
exterior to the horizon is negligibly affected by the choice
using either the Q-boundary or marginally trapped surface
the inner boundary. This is illustrated, for the wobbling ca
in Fig. 6, where we plot the values ofJ vs time at points
outside the inner boundary, as obtained by both metho
The numerical values have a negligible difference. Howev
evolution with the Q-boundary is somewhat superior w
respect to performance, since no elliptic solver or other ite
tion procedure is required.

The area of the marginally trapped surface again
proaches equilibrium with the Schwarzschild exterior. Th

t

th

y
e

FIG. 6. Behavior of the surface area vs time for a distorted bl
hole: At late time the system approaches equilibrium. The am
tude of the pulse isl545 describing anl 52, m50 spin weight 2
pulse, extending fromr 51.5 tor 53.0 at the first hypersurface. Th
code was run with 41 radial grid points and 172 angular points,
settingm50.5.

FIG. 7. Behavior of the surface area vs time for a wobbli
black hole: At late time, the area approaches a constant value.
run was made with 45 radial grid points and 212 angular points,
with offset b50.1 and angular velocityv50.1. The mass of the
Schwarzschild exteriorm was set to 0.5.
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is illustrated in Fig. 7, where the surface monotonically
creases and approaches a constant value~which converges to
16pMs

2 in first order!. The usefulness of the Hawking ma
as a measure of energy is supported by the observation thD
remains positive.

VI. CONCLUSION

Our results display many interesting aspects of black h
physics, although their physical understanding is not co
pletely clear and would require a deeper study of the surf
sources induced on the worldtube. The most important
complishment of this work is that characteristic evolution
now ready to supply both the inner and outer boundary c
.
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ditions for the Cauchy evolution of black holes as soon
Cauchy-characteristic-matching is achieved.
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APPENDIX: SPIN-WEIGHTED EXPRESSIONS

For the divergence of the outgoing rays, we obtain from Eq.~3.1! that

r 2e2b

2
Q l5R$2V1r 2~ZŪ1U ,rZpR!1r ~e2bJ/r ! ,r~ZpR!22r ~e2bK/r ! ,r~ZR!ZpR2Zp@e2b~KZR2JZpR!#%. ~A1!

For C, given in Eq.~3.11!, we obtain

C5RH F2
2

r 2 ~Q lJ! ,r1
4

r 2 e2bJ~Q le
22b! ,r G

,r

~ZpR!21F 2

r 2 ~Q lK ! ,r2
4

r 2 e2bK~Q le
22b! ,r G

,r

~ZR!ZpR

22~Q le
22bŪ ,r ! ,rZR22Z~Q le

22bŪ ,r !1F 2

r 2 e2b~JZp2KZ!~Q le
22b!G

,r

ZpR

1ZF S 2

r 2 Q lK D
,r

ZpR2S 2

r 2 Q l J̄D
,r

ZR2S 4

r
Q le

22bD
,r

e2b

r
~KZpR2 J̄ZR!1

2

r 2 e2b~ J̄Z2KZp!~Q le
22b!G J . ~A2!
/
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