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Numerical studies of the plane symmetric, vacuum Gowdy universe>atR yield strong support for the
conjectured asymptotically velocity term dominat@d/TD) behavior of its evolution toward the singularity
except, perhaps, at isolated spatial points. A generic solution is characterized by spiky features and apparent
“discontinuities” in the wave amplitudes. It is shown that the nonlinear terms in the wave equations drive the
system generically to the “small velocity” AVTD regime and that the spiky features are caused by the absence
of these terms at isolated spatial poirft80556-282(98)03808-9

PACS numbeg(s): 04.20.Jb, 98.80.Hw

I. INTRODUCTION an interesting phenomenology which forms the subject of
this paper. The Gowdy singularity has been conjectured to be
Spatially inhomogeneous cosmologies constitute almost asymptotically velocity term dominate@AVTD) [15] and
“terra incognita” for general relativity. In particular, the na- has been shown rigorously to be so for the polarized ise
ture of the singularity in generic cosmologies is unknownin addition, it has been shown that for the polarized case,
although Belinskii, Khalatnikov, and Lifshit#BKL) have cosmic censorship holds: There exists a natural foliation la-
conjectured that it is locally mixmasterlifd]. Spatially ho-  beled by 0< 7<<e such that regular initial data evolve with-
mogeneous universes’ approach to the singularity can be eput singularity for allr<<c where(in the collapse direction
ther asymptotically velocity term dominatédVTD) [2,3]  a curvature singularity occurs at=« [16]. Here we shall
or mixmasterlikg 1,4]. In general, AVTD singularities occur use numerical studies to provide support for the extension of
when the influence of spatial derivatives can be neglectedhe polarized Gowdy results to generic Gowdy models.
This means that the solution to the full Einstein equations Gowdy cosmologies represent the simplest spatially inho-
eventually comes arbitrarily close to the solution to the trun-mogeneous cosmological solutions to Einstein’s equations.
cated equations one obtains by eliminating the terms containFhe vacuum case may be interpreted as the two polarizations
ing spatial derivative§3]. In spatially homogeneous models, of gravitational waves propagating in an inhomogeneous
spatial derivatives in the metric create the spatial scalar cubackground spacetin®,12]. The model is plane symmetric
vature which appears as a potential in minisuperspags. with the propagation direction of the waves orthogonal to the
An AVTD homogeneous cosmology eventually evolves to-symmetry plane. Near the singularity, the metric may be re-
ward the singularity as a Kasner solutidithe Kasner uni- written as locally Kasner with spatially dependent Kasner
verse is an exact solution of the vacuum Einstein equationmdices[12]. (This is a nonrigorous statement of AVTD be-
characterized by different expansion rates in different direchavior). Matter fields compatible with the Gowdy metric
tions with flat spacelike hypersurfacgs].) Mixmaster dy- have been discussed by Carmeli, Charach, and Malin
namics describes the evolutigof nonflat spacelike hyper- [17,18, and Ryar{19]. Here we shall consider only vacuum
surface$ toward the singularity as an infinite sequence ofsolutions.
(approximately Kasner epochs. The Kasner indidgghich The main phenomena of interest in the Gowdy universe
determine the anisotropic expansion ratesange whenever are the growth of small scale spatial structure and the ap-
the influence of the spatial scalar curvature reappears. Igsroach to the AVTD regime. We shall demonstrate that both
recurring influence means that the mixmaster singularity igesult from the nonlinear terms in the wave equationRor
not AVTD. BKL claimed to prove that the generic singular- the + polarization of the gravitational waves. These act as
ity in Einstein’s equations and, in particular, in spatially in- space and time dependent potentials whose effect is to drive
homogeneous cosmologies is mixmasterlike. While this rethe system to velocity dominance. As the AVTD regime is
sult remains controversi@f], it provides a conjecture which reached, the potentials approach zero. Their spatial depen-
can be tested by evolving spatially inhomogeneous collapsdence means that wave amplitudes grow at some spatial
ing universes numerically. points and decrease at others, eventually producing small
As part of such a study of this issy8—10, we have scale spatial dependence in the wave forms. Nongeneric be-
considered the Gowdy universes @ixXR as a test case. havior occurs at points where the coefficients of the poten-
These models are one of the classes discovered by Gowdials (separatelyvanish identically. We note that this analy-
[11-13 as a reinterpretation of Einstein-Rosen wajy/e4). sis in terms of potentials explains the observed episodic
While their plane symmetry precludes local mixmaster be-evolution of the system to the AVTD regime and the fact that
havior, their nonlinear gravitational wave interactions lead tathe conditions for AVTD are reached at some spatial points
before others. This should be considered together with the
asymptotic expansion developed by Gritbiand Moncrief
*Email address: berger@oakland.edu (GM) [15] which displays an exponential decay to the
"Email address: garfinkl@oakland.edu AVTD limit, applicable in the last episode.
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The primary advantage of the Gowdy models as a testem becomes trivial sinc®, Q and their first time deriva-
case for the study of inhomogeneous cosmologies is the exives may be specified arbitrarily. The only restriction, that
istence of variables in which the dynamical equations for thehe total § momentum in the waves vanishes, is a conse-
wave amplitudes decouple from the constraints. Initial datayjuence of the requirement that metric variables be periodic
for the wave equations may be freely specifigdstricted in 6. (2) The constraints, while guaranteed to be preserved in
only in that the total momentum along the direction of propa-an analytic evolution by the Bianchi identities, are not auto-
gation must vanishwhile the constraints appear as prescrip-matically preserved in a numerical evolution with Einstein’s
tions for the construction of the background metric from theequations in differenced form. However, in the Gowdy
known solution to the dynamical equations. Thus the twomodel, the constraints are trivial sinkemay be constructed
principal difficulties of numerical relativity—solving the ini- from the numerically determine® and Q. For the special
tial value problem and preserving the constraints during thease of the polarized Gowdy modeQ&0), P satisfies a
evolution—become trivial. This decoupling between dy-linear wave equation whose exact solution is well known
namical and constraint equations disappears in more compli12]. For this case, it has been proven that the approach to
cated inhomogeneous models. However, studies ¢f) U the singularity is AVTD[3]. This has also been conjectured
symmetric cosmologiegvith only one Killing field) indicate  to be true for generic Gowdy moddl$5]. We shall show in
that many features of the Gowdy phenomenology such asec. V how a numerical study of this model provides strong
spiky small scale spatial structure persist in these more consupport for this conjecture.
plicated model$8,20,10 and, presumably, would be impor-  The wave equation&) and(3) can be obtained by varia-

tant in the dynamics of generic cosmologies. tion of the Hamiltoniar[13]
In Sec. I, the Gowdy model of®Xx R will be reviewed.
Section Il will contain a brief description of the numerical Y 2. —op 24, L[?7 Cor 2
method. In Sec. IV, the phenomenology will be described. H_Efo dofmp+e “mgl+ 5 0 dofe (P}
Section V will contain a unified explanation for the phenom-
enology. Discussion will be given in Sec. VI. +e?°Q,9)]=Hy+Hy. (6)
Il. THE MODEL The variation of the kinetic energy terhi yields equations

of motion for the AVTD solution which arises when spatial
The Gowdy model ofif*xR is described by the metric derivatives are neglected. These equations are exactly solv-
(11,8 able with the solution

ds?=e Me"?(—e 27 dr*+d#%) +e " [e"do? P=Py+In[coshv r+cosy sinhvr]—vr as r—o,
+2ePQ do dé+(e"Q2+e P)ds?], (1) ePo siny tanho r
1+cosp tanhv 7 —Q-

Q=Qo+

. . . as 7— o,
where\, P, Q are functions ofg, 7. The sign of\ differs

from that in[8] as required for consistency with the form

given there for the equations far. The arguments i8] did tanhv 7+ cosy
not depend on this error. We impo3@ spatial topology by 7P~V 11 cog) tanho
requiring 0< 0,0, <27 and the metric functions to be pe-

riodic in 6. If we assuméP andQ to be small, we find them 7.,Q:eF’ovsin,lyE 77% 7
to be, respectively, the amplitudes of theand X polariza-

tions of the gravitational waves with describing the back- given in terms of four functions of: ¢, v=0, Py, andQ,.
ground in which they propagate. The time variablenea- Here Q.=Q,+e Posing/(1+cosy). The large 7 limits
sures the area in the symmetry plane withee a curvature given above are for cgs~—1. The special case cps—1
singularity. Einstein’s equations split into two groups. Thewill be discussed later. While Eq7) may be solved for all
first is nonlinearly coupled wave equations fBr and Q these functions, it is convenient to note thab]

(where g=9d/da):
v=+ 77,23—1- ’77(23872P (8)

is the geodesic velocity in the target spdoéth metric ds?
Q..,—€ ?Q,p9+2(P,,Q,,— € ?P,,Q,9)=0. (3)  =dP2+e?”dQ?) of the wave magd13,15,4. If, as the sin-
i o gularity is approached, the behavior is AVTD, the true solu-
The second contains the Hamiltonian afithomentum con- 4o will approach the AVTD one. The exponential prefactor
_stralnts which can be expressed as first order equations for o-2- Hy of Eq. (6) makes plausible the conjectured
in terms ofP andQ: AVTD singularity. HoweverP—u 7 (for v>0) asr—. If
v>1, the termV,=e 27e?"Q,2 in H,, can grow rather than
decay asr—. In fact, if one assumes the AVTD behavior

Nry—2(P,,P,.+€2°Q, ,Q,.)=0. (5) asT—x in Eq. (7), the wave equations becorfigs]

v as 7— o,

P,TT_e72TP,€0_eZP(Q”Z-_e*ZTQ,E}):01 (2)

N —[P2+e 7P 2+e?P(Q,2+e7Q,))]=0, (4)

P = _e—2[1—v]r [Q;]Z_l_e—ZTv//T_l_ WZQG_ZUT,

' TT

This split into dynamical and constraint equations removes
two of the most problematical areas of numerical relativity 2[1-v]r L
from this model(1) The normally difficult initial value prob- TQ.,—€ [Qx%+2v' Q7] ©)
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where '=d/df. These equations are inconsistentvif-1 derivative 6V/ 5q. On the computational spatial lattice, the
unlessQ.=0=Q, which does not occur in a genelfen-  derivatives that are obtained in the expression for the func-
polarized Gowdy model. However, in generic Gowdy mod- tional derivative must be represented in differenced form.
els, one also expects isolated poifasset of measure zero We note that, to preserveth order accuracy in timenth

with Q.=0 butQ”.#0. In Sec. V, we shall see that>1  order accurate spatial differencing is required. Some discus-
can persist at such isolated values ®fwhere the AVTD  sion of this has been given elsewh¢gs.

conditions may not be satisfied. GM thus conjecture that the Convergence studies have been performed to test the al-
AVTD limit as 7— requires Bsv<1 everywhere except, 9gorithm. We have already show8] that at any fixed value
perhaps, at a set of measure zésolated values of)) [15]. of 7, there exists a spatial resolution at which every spiky
We note that the polarized Gowdy mod€+ 7o=0) has feature is resolved. Any finer resolution wiII_ yield_ identical
the AVTD solution P=Py+ a7, mp=a with «(6) unre- results. However, as we sha_ll see, generic sp|ky_ features
stricted in sign or magnitudg 2,3]. The fact that this behay- grow narrower as the singularity is approached. This means
ior is not a limit of the generic AVTD solutiofi) illustrates ~ (se€[8]) that a spatial resolution which was adequate at some
further the qualitative distinction between the polarized caseo Wil fail to resolve all features at some > 7,. This type

andQ#0 but arbitrarily small. of “resolution dependence” is well understood to be a con-
sequence of the physical behavior of the model. If the physi-
IIl. NUMERICAL METHODS cal system has features which become arbitrarily narrow as

T—o, no resolution will be adequate everywhere for all
The numerical method is discussed in detail elsewheréime.
[8]. However, we shall summarize it here. The work reported
here was performed by using a symplectic partial differential
equation(PDE) solver[21,22. Consider a system with one
degree of freedom described b{t) and its canonically con- Here we report the results of a numerical study of the
jugate momentunp(t) with a Hamiltonian evolution of generic Gowdy models toward the singularity
(7—). Rather than perform simulations for hundreds of
Gowdy models, we consider a single class of models and
argue that the observed behavior is generic. For the most
part, we shall use the initial datB=0, mp=vyc0, Q
Note that the sub-Hamiltoniartisx andH,, separately yield =cosf, and mo=0. This model is actually generic for the
equations of motion which are exactly solvable no matter thdollowing reasons: The c@sdependence is the smoothest
form of V. Variation of Hy yieldsd=p/m, b:o with the  nontrivial possibility. Since we shall discuss the growth of
solution small scale spatial structure, we expect the cleanest effects to
arise from the smoothest initial data. A more complicated
p(t) initial state will not yield any qualitatively new phenomena.
p(t+AD=p(t), qt+Aty=qt)+-—At. (1)  For example, choosing cog instead yields the same solu-
tion repeatedn times on the grid thus yielding the same
Variation of Hy yields g=0, p= —dV/dq with solution result with poorer resolution. In addition, the amplitudeQof
is irrelevant since the Hamiltoniaf®) is invariant underQ
dv —pQ, P—P~—Inp for any constanp. This also means that
q(t+At)=q(t), D(HAU:p(t)—d—q At. (120 any unpolarized model is qualitatively different from a po-
t larized Q=0) one no matter how smal. Traveling waves
(subject tofdfp,=0 wheregp, is the total§ momentum

Note that the absence of momentahy, makes Eq.(12) X oY o . . .
exact for any(g). One can then demonstrate that to evolveYield qualitatively similar behavidr24]. We are interested in

fromt to t+ At an evolution operata¥/,)(At) can be con- gh?[ Sﬁ):atlatlh.structure thathcan devdelop f;pr:’ndsmooéh initial
structed from the evolution suboperatofig At) andif,(At) ata. For this reason, we have usedfsgatial dependence.

IV. GOWDY PHENOMENOLOGY

p2
H=5—+V(a)=Hx+Hy. (10

obtained from Eqs(11) and (12). One can show thd21] Starting with a more cqmplicated wave form will yield an
eventually more complicated spatial structure but nothing
Uz (At) =Ue (AtI2)Uy( AU (A/2) (13)  qualitatively different will appear. Similarly, since rescaling

Q does not change the solution qualitatively, the amplitude
reproduces the true evolution operator through ordem?.  of Q is kept fixed. In this discussion, we shall consider only
Suzuki has developed a prescription to represent the full evd® andQ and construch later if desired.
lution operator to arbitrary ord¢3]. For example, From the chosen class of initial data, with high spatial

resolution, one obtains after some time<(12) the profiles

Uig)(At) =U2)(SA U (1—25)At]U ) (SAt), (14  for P and Q shown in Fig. 1. The numbered features are

typical for any generic solution. The peaks labeled No. 1,
wheres=1/(2—2"%). The advantage of Suzuki’s approach No. 2, and No. 3 arise from the same features of the nonlin-
is that one only needs to construdf,) explicitly. U,y IS ear interactions. On a finer spatial scale in Fig. 2, we notice
then constructed from appropriate combinationg/gf,_,).  that(a) the peak inP is associated with an extremum Qf

The generalization of this method t degrees of free- (which may be a maximum or minimunand (b) |7.,Q| be-
dom and to fields is straightforward. In the latter casecomes large Withr < (>0) for a maximum(minimum) in
V[q(t)]—V[q(x,t)] so thatdV/dq becomes the functional Q. The apparent discontinuity i@ (labeled No. 4 in Fig. L
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FIG. 1. P (solid line) andQ (dashed lingvs 6 at 7= 12.4 for the
standard initial data seP=0, mp=v, 0¥, Q=cos), my=0,
with vy=5 for O< #=<=. The simulation was run with 20 000 spa-
tial grid points in the interval & #<24. The numbers on the graph
refer to the most interesting features. Peak Nos. 1, 2, andP3are
essentially the same in that they occur at extréimad) of Q. (Q
has a maximum at the locations of peaks Nos. 1 and 3 and a mini- .
mum at No. 2. Structure No. 4 is qualitatively different in that -410 e ‘6'40‘ : ""'1‘ ‘6"60' -1 lelé(')‘ ‘
there appears to be a discontinuity@ This occurs wheré®<0 ’ ’ 6 * ’
(P=0 is shown as a dashed linand 7o~0.

FIG. 3. Details of feature No. 4 in Fig. 1a) P (circles and g

is shown on a finer scale in Fig. 3. We see that this featur&lid line vs 6. The horizontal dashed line indicates, =0 while
occurs asmg goes through zero whef<O0. In Fig. 4, the the vertical dashed line marks titevalue at vv_hl_ch the_nQ goes
same features No. 1 and No. 4 are showm-afl8. We see through zero. Note thg offset between the mlnlmgrrPlrand the
that the “spikes” have narrowed if. zero of g . (b) g (solid line) andQ (dot-dashed lingvs 6 near
The evolution ofP andQ is shown in Fig. 5see als¢8]) the feature.

where it is clearly seen that ever shorter wavelength modes . _ . , .
develop until the point at which the AVTD behavior sets in. Where7 is the time at whiciN peaks are first present in the
Figure 6 shows an interesting self-similarity in the early evo-wave form anday is a constant. From Eq15), v, denotes
lution. The parameten, in the initial data is varied in a the value ofv, such that theNth peak appears only at
sequence of simulations. In each case, the number of peaks®. The scaling shown in Fig. 6 is fad=5. Similar (but

in P is counted after each time step. We find less accurajestraight line fits are found fox equal 3 and 7.
R C— (15
— =an(Vo— Vo), [ _
™ - —1=124 (a)
| . . . 0.95768 r —=-1=18.6 1
21 (&) ] i ]
b e . 10.95767 . ]
19 R r
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P L . s ]
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15 , o , 1.620 1.640 g 1.660 1.680
0.35 0.36 g 0.37

FIG. 4. Evidence for the narrowing of spiky features with in-

FIG. 2. Details of feature No. 1 in Fig. 18) P (solid line) and creasingr. (a) P as shown in Fig. 2 is plotted at two different times.

Q (dashed lingvs 6 near the peak. Note the scalesQnand 6. (b) (b) Q as shown in Fig. 3 is plotted at two different times. The
P (solid line) and 7q (dashed lingvs 6 near the peak. amplitudes ofP andQ have been rescaled for clarity.
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FIG. 5. P, Q, N, andU=e"“"(P,5+e°"Q,%) are shown in the

6-7 plane. The arrow is in the direction of increasing FIG. 7. b, Vs 7 for the Gowdy model withy=5. The solid
.7 X .

i o curve is from a simulation with 3200 spatial grid points while the
(The wave equations are evendnas are the initial data so gpen circles represent one with 20 000 spatial grid points. The

thatP andQ remain even functions of. Thus, except for a  horizontal line isv,=1. The difference near the end of the higher
central peak, other peaks will form two at a time. resolution simulation is due to the influence of the nongeneric point
Thus, one may summarize that spatial structure formsvhereQ,,=0.
more rapidly and evolves a more complicated form, the
greater the initial “energy” in the waves as denoted by, e.g. ted for three different spatial resolutions. Note that for two of
v? from Eq. (8). Eventually, the wave forms dP andQ the spikesP, . is larger for the finest resolution. In Fig. 9, the
“freeze” to the AVTD behavior ofP increasing linearly and difference betwee/r andv is plotted vsr. SinceP—uv 7
Q constant inr. As has been emphasized by Hern and Stuarais —«, we see the influence of the ne¢donstant inr)
(HS) [25], the duration inr of the observed non-AVTD re- term Py+ In[(1+cosp)/2], in the AVTD solution forP, Eq.
gime depends on the spatial resolution of the simulation. (7).
In Fig. 7, the maximum value over the spatial gwig.,, of
the AVTD parameter is shown as a function of time for V. STRUCTURE IN THE GOWDY MODEL
two simulations with different spatial resolutions. The steps
iN v ;max OCCUr When the location of the spatial point with the ~ T0 understand the Gowdy phenomenology of Sec. IV, we
maximum value of) changes. Note that, for the lower reso- Must explore the structure of the wave equationsHaand
lution simulation,vmay eventually falls below unity in sup- Q- Let us consider Eq3) first. The equation foQ may be
port of the GM conjecturg15]. We also see that the higher rewritten in first order form as
resolution simulation starts to diverge from the lower reso-

—a-2P
lution one, signaling the presence of narrow features that are Q.,=e Tmg,
unresolved by the coarser resolutigithe former was not _

i it : 7q,,=e (e’"Q,)) (16)
run longer primarily because the Courant condition requires Q7 16516

small time steps for high resolution studie$his suggests
(as confirmed by Hpthat the higher spatial resolution simu-
lation will take longer before it becomes AVTD everywhere.
This is shown explicitly in Fig. 8 whererp>1 vs 7 is plot-

This immediately provides the explantion for both the large
central peak which quickly forms i@ and for the apparent
discontinuity inQ seen in Figs. 1 and 3. From E(L.6), Q

will grow rapidly whereP is negative. Since, early in the
evolution, P~v,7c0os), one expects a large pea#s is ob-

T served in Figs. 1 and)Svhere cog<0. We shall see later
,,?fg] that P is driven to positive values eventually stopping the

2t o ] 1.3
1/t : , ] 3 O 1024
5 - ] ]
! ] X 4096 ]
1 E ] 1.2 F ]

’ ] —— 40960 ]
ITUT 5 P,. 3 g
Il_.A'?l 1

R

0 b N L e ] 1.1F .
0 5 10 15 20 ]
" x i |
. i . 1.00Lv 1 L ALX S V.-
FIG. 6. Scaling in the Gowdy model. Plot of7i/ the inverse of 0 1 0 2 3
the time at which the fifth peak appearsRnvs vo,. Two cases are
shown for initial dataP=0, Q=cos: (1) 7rp:1/\/§ voCOSH, Tq FIG. 8. P,, >1 vs 6 at 7=24.79 with standard initial data with

=1/\/2 vocos is indicated by filled circles(2) 7p=uv,co%, mq vo=10 for three spatial resolutions. For the coarser resolutions, all
=0 is indicated by open squares. The solid line is a linear best fitsimulation spatial points are shown.
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FIG. 9. The same as Fig. 7 with the maximum valuePRdf
—uv over the spatial grid also plotte@ashed lingvs 7. The ob-
served behavior is due to the forf—uv 7+ In[(1+cos))/2] in the
AVTD limit as 7— .

growth of Q. However, we shall also see that#f,~0, P
can remain negative longer. S&r~—P, for P;>0 at a
value of = 6, where g~ 7T0Q(9— 6,). Thus we find that

17

so that|Q,,| is large andQ increasegdecreasesexponen-
tially depending(say for 73>0) on whetherg>(<)#.
Note that we assumeq,,~0. However, Eq.(16) implies
this for P large and negative.

More interesting is the equation fér. Consider two ap-

Q,,~ (60— 6;)e*"
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Thus if P,.>1, the dynamics oP is dominated by an effec-
tive potential

V,=Q,% 2P~ 7, (23
Again, from Eq.(16), our implicit assumption tha®, .~0 is
consistent. One sees immediately, tha& jf>1 a bounce off
V, will occur with the result thaZ,,——Z2, . or

P,.——(P,,—2). (29
Thus the existence of, provides a mechanism to drive, ,
and thus asymptotically to values below unity. In the ac-
tual simulation, the asymptotic regions for the scattering are
not reached so that EqR4) cannot be used to compute the
numerical value of the change i, with 7. Again one sees
that nongeneric behavior can arise, in this case@=aw,
whereQ, ,=0. At 8, the mechanism to drive below unity

is absent so that larger values ofare allowed. IfV, is
nonvanishing but small, it will take a long time for the
bounce to occur so that the AVTD limit will take a long time
to arise. This also explains the peaksRnseen in Fig. 1.
WhereQ, ,~0, V, is small so thatP can increase without
hindrance with a large positive value Bf ...

For a more quantitative understanding of the small scale
spatial structure, note that both Eq4.8) and (21) have
closed form solutions. Equatidi8) holds in the AVTD re-
gime, where the solution is given in E,). The exceptional
point ¢, is the point where cag=—1. Near this point we
have cog~—1+(y')%(6— 6,)%/2 wherey' = 4(6,). It then

proximate forms of Eq(2) depending on which nonlinear follows that, for larger,
term dominates. Since the nonlinear terms depend exponen-
tially on P, they will dominate the linear spatial derivative
term when the exponential is large.

P~Po—vr+In[1+(y')%e®7(6— 6,)/4],

e Poy’' (60— 6,)

For example, ifP is large and negative, Q~Q, e T ()2 (0= 677" (25)
P,,,~mhe F~0 (18) _ : . .
Thus there is a spiky feature in bofhandQ at 6= 6, as is
which has the first integral shown in Fig. 10. Furthermore, these features steepen expo-
2 2 om o nentially with time. Because of this steepening, the spatial
P2t mge T =ki. (19 derivatives ofP andQ become large at late times. However,
. . . _ the AVTD equations are formed by dropping spatial deriva-
This allows one to define an effective potential tives from the exact Eqg2) and (3). Therefore, one might
V= Trée,zp (20) worry that the terms that have been neglected are not actually

negligible near the peaks. However, using E®). one can

which is important wherP, <0 and (especially ij P<0.  Show that neag= 6, the neglected terms go a8~ 7 and
This allows immediate explanation of the following phenom-2ar€ therefore exponentially damped for 1.

ena.(a) In the AVTD regime,P>0 and its asymptotic time 1€ solution of Eq(21) is

derivativev >0 since ifP, <0, a bounce ofiV; will occur
at whichP, .— — P, . so thatP will eventually reach positive
values.(b) However, if mq~0, V;~0 so that bothP® and  Here, P,,w=0, and ¢ are functions of 6, and Q.
P, can remain negative for a long time. Nongeneric behav— g~Poysing. Note thatP— (1—w)r for large = where
ior occurs at the isolated poirt=#6, whereV, vanishes cosp+1. The exceptional poiné, is the point where cas
sinceP andP, - will never be driven to positive values there. —1 Near this point we have cés-1—(¢')2(6— 6,)%/2 where

On the other hand, ifa) P is large and positive antb) &' =1 ,(6,). It then follows that, for larger,
P,.>1, the wave equation fdP is given by '

P=Py+ 7—In[coshwr—cosp sinhwr]. (26)

P~Po+(1+w)7—In[1+(p")%e*V7(6— 6,)2/4].

P,..+eXP 7Q,2~0 (21) (27)
which is easy to integratdor Z=P—7) as Thus the feature i narrows exponentially with time as can
) 2 o7 2 be seen in Fig. 10. The spatial derivativesfobecome very
Z,7+Q,5e=xk3. (22 large. However, the neglected terms in the equations go as
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FIG. 11. Q vs 6 for 7=24.79 withvy=10 at the site of the

apparent discontinuity for three spatial resolutions. At this value of
7, the feature is not resolved even at the finest resolution used.

The effective potentialy/; andV, are displayed in Fig.
14. We see that the approach to the AVTD regime is char-
acterized by repeated alternate interactionB @fith the two
potentials. This is displayed explicitly for a typical valuetf
in Fig. 15 whereP, V,, andV, are shown as functions of
After each interaction withV/,, the quantityP, .—1 changes
sign. If this yields G=P,.<1, no further bounces occur. If
P,,<0, there will be an interaction witv;. Eventually,
|P,,| falls below unity so thaV, permanently disappearB.
then continues to increase for all subsequentith constant
slope O<v <1 as is characteristic of the AVTD limitNote
thatV, will also decrease exponentially &increases even

FIG. 10. Sketches of the analytic approximations to the peaks ifhough it is part of the AVTD solution Examination of Eq.
P andQ. The largerr value is indicated by the broken line P (16) shows that, whenP, | falls below unity andr— -,
from Eg. (25). (b) Q from Eq. (25). (c) P from Eq. (27). mq,,—0 as rgquired by the AVTD Ii-mit. Oncep becomes
ow-1)r o ] ) constant, a® increasesQ, ,—0, again as required. The de-
e - Sincew—1<0 for P ;>0 asymptotically, it fol-  yelopment ofQ with time is shown in Fig. 16 for the same
lows that these terms become negligible after the lasyjye ofg as in the previous figure. Here we see clearly how

bounce. ; ;
. N . . Q grows fastest wherV; dominates. This becomes even
The differences in Figs. 7 and 8 seen by increasing the, e gramatic in Fig. 17 which is the same graph for
spatial resolution are also understood in terms of our analysis

of structure growth. At higher spatial resolution it is more Né:l’ _th_e site of the appar:en_t d'sﬁont'r?u'ty@l itud d i
likely that a spatial grid point of the numerical simulation t IS Important to emphasize that t € Ff!agn't“ e and time
will be very close to a hongeneric point whe@e,=0. Thus evolution Ofvl anq Vz as .Wel.l as the |n!t|aI values Qf the
the nongeneric behavior will become more apparent and th&ave amplitude time derivatives are different at different
time to reach the AVTD limit characterized by<1 every- values off. This .explams the development of complicated
where will be longer. Clearly, the observed resolution depenSmall scale spatial structure. From Eq$9) or (22), one
dence may be interpreted to be evidence for the existence §Pmputes the time to the first bounce df or V, as
nongeneric points. The apparent discontinuity@nseen in

Figs. 1 and 3 is evidence for the nongeneric poin iwhere —in(\VYxy) dx;
mo=0. Its effect may be seen as a resolution dependence of Ar= f I \/——/z (28)
the shape of this feature. It becomes steeper and narrower 0 KyN1=Vil ks

with increasing spatial resolution for sufficiently largésee

Fig. 11(b)] or for increasingr with fixed spatial resolution WhereJ=1 or 2 andV}=V; at 7=0. Here y;=—P and
[see Fig. 4b)]. As in Fig. 2, we note that the spikes in Fig. 8 x,=Z. Evaluation of Eqs(19) and(22) at =0 yields an
wherev>1 are associated with extrema@ This is shown approximate inverse scaling withy seen in Fig. 6. The cen-
in Fig. 12. Note that the alignment is not perfect between thdral peak appears first and is easy to understand. Since, ini-
peak inP,, and the extremum i where the spike is well tially, P,,=vocos, the highest negative velocity occurs at
resolved[see also Fig. @]. This is understood as evidence 6= causing the bounce oW, to occur there firstP then
that the AVTD regime has not yet been reached. In particubegins to increase &= both earlier and faster than at
lar, the site of the extremum may be distorted by a nearbyeighboring values of. More complicated is the next pair of
larger feature inQ. Running the simulation twice as long peaks which occur ned= m/4,77/4. Initially, the profile of
(Fig. 13 shows much closer alignment and is evidence thaP vs 6 steepens. However, bounces &ff will begin to
the predicted nongeneric behavior will eventually dominateoccur. This causes the tangent Rovs 6 to evolve from
the spikes. negative (positive to positive (negative slope for
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FIG. 13. Spiky featurega) and (b) of P (solid lines, left axis
.69520 scale with the associate (dot-dashed lines, right axis scalie
1 Fig. 12 atr=49.5. Part of the previous figufat 7= 24.8) is shown
' -63518 with finer lines. Note the improvement in alignment and the nar-
rowing of the spike inP.
.69516
1.
1.420 1.424 1.428 1.432 0<6<7/2 (3w/2<6<2) eventually creating a pair of
1. 5 132.6562 peaks. The higher the original valuewf, the greater will be
] the number of bounces befoxg disappears for good. Ever
] finer small scale structures are createddavalues where
1. ]132.65%8 many bounces occur sind® will increase for some spatial
regions and decrease for others in a manner that changes
] with time. Asv falls below unity, at a giver, the bounces,
1 ] 132.6534 and thus structure formation, will cease there but structure
formation will continue in the ever smaller spatial regions
. 1132 6550 wherev continues to exceed unity.
l.Oé . . . . . 430.02265
(e)' ___________________________ VI. DISCUSSION AND CONCLUSIONS
L H 1
1 oa ,' H We see that both potentials, andV, drive the cosmol-
TP 4 ogy toward the AVTD regime characterized by E@) as
a : i —oo with 0<P,,—v<1. This is becaus#&/; appears and
102 F i H influences the dynamics only when and where<0 while
o bemam V, does so only forP, . >1. In the AVTD regime, with O
a ] <p<1, both corresponding terms in the wave equation for
1.00 s ! s . . 430.0226 P are exponentially small. We note that the wave equations
2.695 2.696 2.697 2.698

FIG. 12. Details ofP (solid line, left axis scalevs Q (dot-
dashed line, right axis scaléor the spikes in Fig. 8(a) Note that
the spike is completely resolved and that there is an offset of the
extrema. The inset shows that this peak is part of a larger feature in
Q. (b) Again the offset can be related to a larger featur€in(c)
The extrema are much more closely alignéd). The features are
not completely resolved. The extrema are aligned to within the

Vi)

Va(Z)

resolution.(e) Again the features are not well resolved. The change
in the value ofQ is the smallest that can be seen in single precision.

Z=P-z

The simulations were done in double precision but the data was FIG. 14. V, vs P andV, vs P— 7 shown as solid lines. The

reported in single precision.

horizontal dashed arrows denote the constantand .
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FIG. 15. P (solid curvg, V; (dash-dotted curye and V, FIG. 17. Q (solid curv_e), Vi (dash-dotted_cur_\}e and —P
(dashed curvevs 7 at a fixed value o (dashed curvevs 7 at the site of feature No. 4 in Fig. 1.

strated in[8].) But the “center” of each spiky feature is the
(2) and(3) provide no other mechanism to drife into the ~ Sit¢ Of @ nongeneric point. As one moves away from this
required range if it is not there initially. Recall that the po- POINt in either direction ir, the coefficient of the potential
larized Gowdy model can have any value Ry.. Thus we will be larger. Thus the interaction with the potential will
argue that at isolated pointa set of measu,rfe. zero i) occur first at regions away from the center of the feature and
where eitherrq, or Q, , is precisely zeroP, , could remain move closer to the center asincreases. Since the effect of
outside the allowed range. In the formeTr casay até the i_nteracti_on s to change th‘? s.ign of eitiigr. or P, —1,
— 6,), the consistency equatio@) are satisfied so that one the interactions will tend to eliminate the outer part of the
expeéts the solution a, to be similar to an AVTD polar- spiky feature. Thgs the spiky feature gets narrower in time
ized solution. However, in the latter caEay, atd= 6,), the  until for somer> 7, the original resolution is no longer ad-
equate. Although, in a peak ne@t,=0, P, . should be>1,

consistency conditions requireQ,,,=0 as well as ¢ r . ,
Q,,=0—something one does not expect generically. Ifinadequate resolution may act as an effective averaging to

Q.»,=0 até,, then the solution is of the AVTD large type give a measured smal_ler valu.e Bf .. Thus the peak in
there. If Q,,,#0, the behavior cannot be analyzed either@Ppears to decrease in amplitude only because, at fost
numerically or by these analytic methods. We may therefor&/alues, the interaction witll, has already occurred. We note
conclude that the simulations provide strong support for théhat this effective averaging will give<v <1 everywhere
conjecture that the Gowdy models have a singularity whicifor some ¢ for any fixed spatial resolution. As the spatial
is AVTD except, perhaps, at a set of measure zero. resolution is increased;: will also increase since accurate

The existence of this set of measure zero of “nongenerfGSO'Ution of Splky features can be maintained farther into
ic” spatial points can be inferred from the simulations sincethe simulation and the effective averaging will take longer to
near them the potentials are very flat. Thus, the closer one &ome into play. Thus the apparent resolution dependence is
to, e.g.,0, or 6, defined as above, the longer it will take to consistent with the behavior of the potentiglg andV, ex-
drive P, to the rangd 0,1) there. This manifests itself as a Pected near the nongeneric points.

resolution dependence of the simulations of a very specific Several examples are shown in Figs. 18-21. In Fig. 18, a
spiky feature inP, . is shown for three different spatial reso-

type. At any value ofr (say 7), there is a spatial resolution SP! - . .
sufficient to resolve all spiky feature¢This was demon- lutions at 7=24.79. While the coarsest resolution shows

— T T T T
:: ] E 7
Co! ]
il 1
i v
H n e -
i E.’ i 1
[
! [ T mmme=-. 4
I Vv, -
i B :
N SR NN ; ]
% ‘ ] 1.755
O 1 2 31 4 5 6 FIG. 18. The same spiky feature B, vs 8 is shown at the

same 7 for resolutions of 1024 dash-dotted ling 4096 (dashed
FIG. 16. Q (solid curve, V; (dash-dotted curye and V, line), and 40 96Qsolid line) spatial grid points. The horizontal line
(dashed cunjevs 7 at the same value of as in Fig. 15. marksv=1.
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FIG. 19. For a fixed resolution of 20 224 spatial grid points, a  FIG. 21. Part of the region wheR<0 vs 4 at three values of
spiky feature inP, . is shown vs#@ for three different values of. for 20 224 spatial grid points.

v<1, it also clearly fails to resolve the spiky feature. The

that it has a core where>1 as expected. A similar spiky cjearly that the spatial resolution which was adequate at

feature inP, . is shown in Fig. 19 for three different times for _15 4 nas become inadequate at later times and that the

the same spatial resolution. One expects that the clearly reyqherties of the spike are not correctly represented. Figure

solved spike observed early in the simulation will narrow a 0 shows that the apparent discontinuityQnbecomes nar-

7 INcreases remaining alwaysl at the center of the peak. e ang steeper with time and eventually is not adequately

This is not observefrather one sees the constét behav- resolved at a given spatial resolution. One expéct® be

increasingly negative at the center of this feature siRce

80.0 ' ' ' <0 is maintained at that nongeneric point. At fixed spatial

© 1240 resolution, we see in Fig. 21 that the negative regiorPof

; ) both narrows and deepensascreases from 12.4 to 18.6 as

40.0 [ 1 expected. However, at=24.8, the expected behavior is not

[ seen since the depth of the negative region fails to increase.

However, we also see that the spatial resolution has become

inadequate. Presumably, adequate spatial resolution would

i show the narrowness and depth of the negative region sug-
b F ] gested by the curvature &f vs 6 in the region just outside
—40.0 L ‘ s ‘ . the core.
1.

620 1.640 1.660 1.680 In conclusion, the behavior of generic Gowdy cosmolo-

_ . gies onT3X R can be completely understood in terms of the

C y ] nonlinear interactions between the two polarizations of the

a00.0 [ 18.59 .- . ] gravitational waves. These act as effective potentials which

. ] drive the system to the prediced AVTD behavior and then

_ cease to play a role. At the set of measure zero where the

0.0 F ] potentials are abser®, . may lie outside its allowed AVTD

. ] range of[0,1) for all 7 if it does so at any time since the

24000 O 1 mechanism to correct its value is absent. The existence of
Tl ] this set of measure zero is infered from the details of the

IIIIIIIIIIII " L I—ﬁ shape and time dependence of the spiky features and from

. the inability to resolve them with a given spatial resolution
beyond a certain time.

2000.0 [ 24.79 ]
ACKNOWLEDGMENTS
The authors would like to thank Vincent Moncrief and
Sercestnsesiecensd Boro Grubisc for useful discussions. B.K.B. would like to
thank the Institute for Geophysics and Planetary Physics at
1 Lawrence Livermore National Laboratory and the Albert
: Einstein Institute at Potsdam for hospitality. This work was
-2000-10 6>50‘ s —— '1‘6'6'0 E—— supported in part by National Science Foundation Grant Nos.
) ) PHY9507313 and PHY9722039 to Oakland University.
FIG. 20. The apparent discontinuity @ vs @ at three values of Computations were performed at the National Center for Su-
7 with 20 224 spatial grid points. percomputing ApplicationgUniversity of lllinois).

0.0 :n..ocoocoaohoo...

.




57 PHENOMENOLOGY OF THE GOWDY UNIVERSE ON3x R 4777

[1] V.A. Belinskii, E.M. Lifshitz, and I.M. Khalatnikov, Sov.
Phys. Usp.13, 745(1971); Adv. Phys.19, 525 (1970.

[2] D. Eardley, E. Liang, and R. Sachs, J. Math. Phi3. 99
(1972.

[3] J. Isenberg and V. Moncrief, Ann. Phy$N.Y.) 199 84
(1990.

[4] C.W. Misner, Phys. Rev. LetR2, 1071(1969.

[5] M.P. Ryan, Jr. and L.C. Shepletdjomogeneous Relativistic
CosmologiegPrinceton University, Princeton, 19775

[6] E. Kasner, Am. J. Math43, 130(1921).

[7] J.D. Barrow and F. Tipler, Phys. Rep6, 372(1979.

[8] B.K. Berger and V. Moncrief, Phys. Rev. &8, 4676(1993.

[9] B.K. Berger, inProceedings of the 14th International Confer-
ence on General Relativity and Gravitatioedited by M.
Francaviglia, G. Longhi, L. Lusanna, and E. Sord@¢orld
Scientific, Singapore, 1997

[10] B.K. Berger, D. Garfinkle, and V. Moncrief, iRroceedings of
the Workshop on Black Hole Interigrklaifa, 1997, edited by
L. Burko and A. Ori, gr-qc/9709073.

[11] R.H. Gowdy, Phys. Rev. LetR7, 826(1971.

[12] B.K. Berger, Ann. Phys(N.Y.) 83, 458 (1974.

[13] V. Moncrief, Ann. Phys(N.Y.) 132 87 (198).

[14] A. Einstein and N.J. Rosen, J. Franklin In223 43 (1937).

[15] B. Grubis¢ and V. Moncrief, Phys. Rev. @7, 2371(1993.

[16] P.T. Chrusciel, J. Isenberg, and V. Moncrief, Class. Quantum
Grav.7, 1671(1990.

[17] Ch. Charach and S. Malin, Phys. Rev.2, 3284(1980.

[18] M. Carmeli, Ch. Charach, and S. Malin, Phys. R&p, 79
(1981.

[19] M.P. Ryan, Jr. inRelativity and Gravitation, Classical and
Quantum, Proceedings of SILARG6 VII, Cocoyoc, Mexico, 1990
edited by J. C. d'Olivoet al. (World Scientific, Singapore,
1991, p. 96.

[20] B.K. Berger and V. Moncriefunpublishegl

[21] J.A. Fleck, J.R. Morris, and M.D. Feit, Appl. Phy$0, 129
(1976.

[22] V. Moncrief, Phys. Rev. 28, 2485(1983.

[23] M. Suzuki, Phys. Lett. AL46, 319(1990.

[24] C.M. Swift, Masters thesis, Oakland University, 1993.

[25] S.J. Hern and J.M. Stewart, gr-qc/97080@8wever, see also
B. Berger, D. Garfinkle and V. Moncrief, gr-qc/9708060.



