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Phenomenology of the Gowdy universe onT33R

Beverly K. Berger* and David Garfinkle†

Department of Physics, Oakland University, Rochester, Michigan 48309
~Received 24 October 1997; published 11 March 1998!

Numerical studies of the plane symmetric, vacuum Gowdy universe onT33R yield strong support for the
conjectured asymptotically velocity term dominated~AVTD ! behavior of its evolution toward the singularity
except, perhaps, at isolated spatial points. A generic solution is characterized by spiky features and apparent
‘‘discontinuities’’ in the wave amplitudes. It is shown that the nonlinear terms in the wave equations drive the
system generically to the ‘‘small velocity’’ AVTD regime and that the spiky features are caused by the absence
of these terms at isolated spatial points.@S0556-2821~98!03808-9#

PACS number~s!: 04.20.Jb, 98.80.Hw
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I. INTRODUCTION

Spatially inhomogeneous cosmologies constitute almo
‘‘terra incognita’’ for general relativity. In particular, the na
ture of the singularity in generic cosmologies is unkno
although Belinskii, Khalatnikov, and Lifshitz~BKL ! have
conjectured that it is locally mixmasterlike@1#. Spatially ho-
mogeneous universes’ approach to the singularity can be
ther asymptotically velocity term dominated~AVTD ! @2,3#
or mixmasterlike@1,4#. In general, AVTD singularities occu
when the influence of spatial derivatives can be neglec
This means that the solution to the full Einstein equatio
eventually comes arbitrarily close to the solution to the tru
cated equations one obtains by eliminating the terms cont
ing spatial derivatives@3#. In spatially homogeneous model
spatial derivatives in the metric create the spatial scalar
vature which appears as a potential in minisuperspace@4,5#.
An AVTD homogeneous cosmology eventually evolves
ward the singularity as a Kasner solution.~The Kasner uni-
verse is an exact solution of the vacuum Einstein equat
characterized by different expansion rates in different dir
tions with flat spacelike hypersurfaces@6#.! Mixmaster dy-
namics describes the evolution~of nonflat spacelike hyper
surfaces! toward the singularity as an infinite sequence
~approximately! Kasner epochs. The Kasner indices~which
determine the anisotropic expansion rates! change wheneve
the influence of the spatial scalar curvature reappears
recurring influence means that the mixmaster singularity
not AVTD. BKL claimed to prove that the generic singula
ity in Einstein’s equations and, in particular, in spatially i
homogeneous cosmologies is mixmasterlike. While this
sult remains controversial@7#, it provides a conjecture which
can be tested by evolving spatially inhomogeneous colla
ing universes numerically.

As part of such a study of this issue@8–10#, we have
considered the Gowdy universes onT33R as a test case
These models are one of the classes discovered by Go
@11–13# as a reinterpretation of Einstein-Rosen waves@14#.
While their plane symmetry precludes local mixmaster
havior, their nonlinear gravitational wave interactions lead
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an interesting phenomenology which forms the subject
this paper. The Gowdy singularity has been conjectured to
asymptotically velocity term dominated~AVTD ! @15# and
has been shown rigorously to be so for the polarized case@3#.
In addition, it has been shown that for the polarized ca
cosmic censorship holds: There exists a natural foliation
beled by 0<t,` such that regular initial data evolve with
out singularity for allt,` where~in the collapse direction!
a curvature singularity occurs att5` @16#. Here we shall
use numerical studies to provide support for the extensio
the polarized Gowdy results to generic Gowdy models.

Gowdy cosmologies represent the simplest spatially in
mogeneous cosmological solutions to Einstein’s equatio
The vacuum case may be interpreted as the two polarizat
of gravitational waves propagating in an inhomogeneo
background spacetime@8,12#. The model is plane symmetri
with the propagation direction of the waves orthogonal to
symmetry plane. Near the singularity, the metric may be
written as locally Kasner with spatially dependent Kasn
indices@12#. ~This is a nonrigorous statement of AVTD be
havior.!. Matter fields compatible with the Gowdy metri
have been discussed by Carmeli, Charach, and M
@17,18#, and Ryan@19#. Here we shall consider only vacuum
solutions.

The main phenomena of interest in the Gowdy unive
are the growth of small scale spatial structure and the
proach to the AVTD regime. We shall demonstrate that b
result from the nonlinear terms in the wave equation forP,
the 1 polarization of the gravitational waves. These act
space and time dependent potentials whose effect is to d
the system to velocity dominance. As the AVTD regime
reached, the potentials approach zero. Their spatial de
dence means that wave amplitudes grow at some sp
points and decrease at others, eventually producing s
scale spatial dependence in the wave forms. Nongeneric
havior occurs at points where the coefficients of the pot
tials ~separately! vanish identically. We note that this analy
sis in terms of potentials explains the observed episo
evolution of the system to the AVTD regime and the fact th
the conditions for AVTD are reached at some spatial poi
before others. This should be considered together with
asymptotic expansion developed by Grubis˘ić and Moncrief
~GM! @15# which displays an exponential decay to th
AVTD limit, applicable in the last episode.
4767 © 1998 The American Physical Society
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4768 57BEVERLY K. BERGER AND DAVID GARFINKLE
The primary advantage of the Gowdy models as a
case for the study of inhomogeneous cosmologies is the
istence of variables in which the dynamical equations for
wave amplitudes decouple from the constraints. Initial d
for the wave equations may be freely specified~restricted
only in that the total momentum along the direction of prop
gation must vanish! while the constraints appear as prescr
tions for the construction of the background metric from t
known solution to the dynamical equations. Thus the t
principal difficulties of numerical relativity—solving the ini
tial value problem and preserving the constraints during
evolution—become trivial. This decoupling between d
namical and constraint equations disappears in more com
cated inhomogeneous models. However, studies of U~1!
symmetric cosmologies~with only one Killing field! indicate
that many features of the Gowdy phenomenology such
spiky small scale spatial structure persist in these more c
plicated models@8,20,10# and, presumably, would be impo
tant in the dynamics of generic cosmologies.

In Sec. II, the Gowdy model onT33R will be reviewed.
Section III will contain a brief description of the numeric
method. In Sec. IV, the phenomenology will be describ
Section V will contain a unified explanation for the pheno
enology. Discussion will be given in Sec. VI.

II. THE MODEL

The Gowdy model onT33R is described by the metric
@11,8#

ds25e2l/2et/2~2e22t dt21du2!1e2t @ePds2

12ePQ ds dd1~ePQ21e2P!dd2#, ~1!

wherel, P, Q are functions ofu, t. The sign ofl differs
from that in @8# as required for consistency with the for
given there for the equations forl. The arguments in@8# did
not depend on this error. We imposeT3 spatial topology by
requiring 0<u,s,d<2p and the metric functions to be pe
riodic in u. If we assumeP andQ to be small, we find them
to be, respectively, the amplitudes of the1 and3 polariza-
tions of the gravitational waves withl describing the back-
ground in which they propagate. The time variablet mea-
sures the area in the symmetry plane witht5` a curvature
singularity. Einstein’s equations split into two groups. T
first is nonlinearly coupled wave equations forP and Q
~where ,a5]/]a):

P,tt2e22tP,uu2e2P~Q,t
22e22tQ,u

2!50, ~2!

Q,tt2e22tQ,uu12~P,tQ,t2e22tP,uQ,u!50. ~3!

The second contains the Hamiltonian andu-momentum con-
straints which can be expressed as first order equations fl
in terms ofP andQ:

l,t2@P,t
21e22tP,u

21e2P~Q,t
21e22tQ,u

2!#50, ~4!

l,u22~P,uP,t1e2PQ,uQ,t!50. ~5!

This split into dynamical and constraint equations remo
two of the most problematical areas of numerical relativ
from this model.~1! The normally difficult initial value prob-
st
x-
e
a

-
-

o

e
-
li-

s
-

.
-

s

lem becomes trivial sinceP, Q and their first time deriva-
tives may be specified arbitrarily. The only restriction, th
the total u momentum in the waves vanishes, is a con
quence of the requirement that metric variables be perio
in u. ~2! The constraints, while guaranteed to be preserve
an analytic evolution by the Bianchi identities, are not au
matically preserved in a numerical evolution with Einstein
equations in differenced form. However, in the Gow
model, the constraints are trivial sincel may be constructed
from the numerically determinedP and Q. For the special
case of the polarized Gowdy model (Q50), P satisfies a
linear wave equation whose exact solution is well kno
@12#. For this case, it has been proven that the approac
the singularity is AVTD@3#. This has also been conjecture
to be true for generic Gowdy models@15#. We shall show in
Sec. V how a numerical study of this model provides stro
support for this conjecture.

The wave equations~2! and~3! can be obtained by varia
tion of the Hamiltonian@13#

H5
1

2E0

2p

du@pP
2 1e22PpQ

2 #1
1

2E0

2p

du@e22t~P,u
2

1e2PQ,u
2!#5HK1HV . ~6!

The variation of the kinetic energy termHK yields equations
of motion for the AVTD solution which arises when spati
derivatives are neglected. These equations are exactly s
able with the solution

P5P01 ln@coshvt1cosc sinh vt#→vt as t→`,

Q5Q01
e2P0 sinc tanhvt

11cosc tanhvt
→Q` as t→`,

pP5v
tanhvt1cosc

11cosc tanhvt
→v as t→`,

pQ5eP0vsinc[pQ
0 ~7!

given in terms of four functions ofu: c, v>0, P0, andQ0.
Here Q`[Q01e2P0sinc/(11cosc). The large t limits
given above are for coscÞ21. The special case cosc521
will be discussed later. While Eq.~7! may be solved for all
these functions, it is convenient to note that@15#

v5ApP
2 1pQ

2 e22P ~8!

is the geodesic velocity in the target space~with metric ds2

5dP21e2PdQ2) of the wave map@13,15,8#. If, as the sin-
gularity is approached, the behavior is AVTD, the true so
tion will approach the AVTD one. The exponential prefact
e22t in HV of Eq. ~6! makes plausible the conjecture
AVTD singularity. However,P→vt ~for v.0) ast→`. If
v.1, the termV25e22te2PQ,u

2 in HV can grow rather than
decay ast→`. In fact, if one assumes the AVTD behavio
ast→` in Eq. ~7!, the wave equations become@15#

P,tt52e22[12v] t @Q8̀ #21e22tv9t1pQ
2 e22vt,

pQ ,t5e22[12v] t @Q9̀ 12v8Q8̀ t#, ~9!
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57 4769PHENOMENOLOGY OF THE GOWDY UNIVERSE ONT33R
where 85d/du. These equations are inconsistent ifv.1
unlessQ8̀ 505Q9̀ , which does not occur in a generic~un-
polarized! Gowdy model. However, in generic Gowdy mo
els, one also expects isolated points~a set of measure zero!
with Q8̀ 50 but Q9̀ Þ0. In Sec. V, we shall see thatv.1
can persist at such isolated values ofu where the AVTD
conditions may not be satisfied. GM thus conjecture that
AVTD limit as t→` requires 0<v,1 everywhere except
perhaps, at a set of measure zero~isolated values ofu) @15#.
We note that the polarized Gowdy model (Q5pQ50) has
the AVTD solution P5P01at, pP5a with a(u) unre-
stricted in sign or magnitude@12,3#. The fact that this behav
ior is not a limit of the generic AVTD solution~7! illustrates
further the qualitative distinction between the polarized c
andQÞ0 but arbitrarily small.

III. NUMERICAL METHODS

The numerical method is discussed in detail elsewh
@8#. However, we shall summarize it here. The work repor
here was performed by using a symplectic partial differen
equation~PDE! solver @21,22#. Consider a system with on
degree of freedom described byq(t) and its canonically con-
jugate momentump(t) with a Hamiltonian

H5
p2

2m
1V~q!5HK1HV . ~10!

Note that the sub-HamiltoniansHK andHV separately yield
equations of motion which are exactly solvable no matter
form of V. Variation of HK yields q̇5p/m, ṗ50 with the
solution

p~ t1Dt !5p~ t !, q~ t1Dt !5q~ t !1
p~ t !

m
Dt. ~11!

Variation of HV yields q̇50, ṗ52dV/dq with solution

q~ t1Dt !5q~ t !, p~ t1Dt !5p~ t !2
dV

dq U
t

Dt. ~12!

Note that the absence of momenta inHV makes Eq.~12!
exact for anyV(q). One can then demonstrate that to evo
from t to t1Dt an evolution operatorU(2)(Dt) can be con-
structed from the evolution suboperatorsUK(Dt) andUV(Dt)
obtained from Eqs.~11! and ~12!. One can show that@21#

U~2!~Dt !5UK~Dt/2!UV~Dt !UK~Dt/2! ~13!

reproduces the true evolution operator through order (Dt)2.
Suzuki has developed a prescription to represent the full e
lution operator to arbitrary order@23#. For example,

U~4!~Dt !5U~2!~sDt !U~2!@~122s!Dt#U~2!~sDt !, ~14!

wheres51/(2221/3). The advantage of Suzuki’s approac
is that one only needs to constructU(2) explicitly. U(2n) is
then constructed from appropriate combinations ofU(2n22) .

The generalization of this method toN degrees of free-
dom and to fields is straightforward. In the latter ca
V@qW (t)#→V@qW (xW ,t)# so thatdV/dq becomes the functiona
e

e

re
d
l

e

o-

,

derivativedV/dq. On the computational spatial lattice, th
derivatives that are obtained in the expression for the fu
tional derivative must be represented in differenced for
We note that, to preserventh order accuracy in time,nth
order accurate spatial differencing is required. Some disc
sion of this has been given elsewhere@8#.

Convergence studies have been performed to test the
gorithm. We have already shown@8# that at any fixed value
of t, there exists a spatial resolution at which every sp
feature is resolved. Any finer resolution will yield identic
results. However, as we shall see, generic spiky featu
grow narrower as the singularity is approached. This me
~see@8#! that a spatial resolution which was adequate at so
t0 will fail to resolve all features at somet1.t0. This type
of ‘‘resolution dependence’’ is well understood to be a co
sequence of the physical behavior of the model. If the phy
cal system has features which become arbitrarily narrow
t→`, no resolution will be adequate everywhere for
time.

IV. GOWDY PHENOMENOLOGY

Here we report the results of a numerical study of t
evolution of generic Gowdy models toward the singular
(t→`). Rather than perform simulations for hundreds
Gowdy models, we consider a single class of models
argue that the observed behavior is generic. For the m
part, we shall use the initial dataP50, pP5v0cosu, Q
5cosu, and pQ50. This model is actually generic for th
following reasons: The cosu dependence is the smoothe
nontrivial possibility. Since we shall discuss the growth
small scale spatial structure, we expect the cleanest effec
arise from the smoothest initial data. A more complicat
initial state will not yield any qualitatively new phenomen
For example, choosing cosnu instead yields the same solu
tion repeatedn times on the grid thus yielding the sam
result with poorer resolution. In addition, the amplitude ofQ
is irrelevant since the Hamiltonian~6! is invariant underQ
→rQ, P→P2 lnr for any constantr. This also means tha
any unpolarized model is qualitatively different from a p
larized (Q50) one no matter how smallQ. Traveling waves
~subject to*du`u50 where`u is the totalu momentum!
yield qualitatively similar behavior@24#. We are interested in
the spatial structure that can develop from smooth ini
data. For this reason, we have used cosu spatial dependence
Starting with a more complicated wave form will yield a
eventually more complicated spatial structure but noth
qualitatively different will appear. Similarly, since rescalin
Q does not change the solution qualitatively, the amplitu
of Q is kept fixed. In this discussion, we shall consider on
P andQ and constructl later if desired.

From the chosen class of initial data, with high spat
resolution, one obtains after some time (t'12) the profiles
for P and Q shown in Fig. 1. The numbered features a
typical for any generic solution. The peaks labeled No.
No. 2, and No. 3 arise from the same features of the non
ear interactions. On a finer spatial scale in Fig. 2, we no
that ~a! the peak inP is associated with an extremum ofQ
~which may be a maximum or minimum! and ~b! upQu be-
comes large withpQ,(.0) for a maximum~minimum! in
Q. The apparent discontinuity inQ ~labeled No. 4 in Fig. 1!
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is shown on a finer scale in Fig. 3. We see that this fea
occurs aspQ goes through zero whereP,0. In Fig. 4, the
same features No. 1 and No. 4 are shown att'18. We see
that the ‘‘spikes’’ have narrowed inu.

The evolution ofP andQ is shown in Fig. 5~see also@8#!
where it is clearly seen that ever shorter wavelength mo
develop until the point at which the AVTD behavior sets
Figure 6 shows an interesting self-similarity in the early ev
lution. The parameterv0 in the initial data is varied in a
sequence of simulations. In each case, the number of p
in P is counted after each time step. We find

1

tN
5aN~v02 v̄0 !, ~15!

FIG. 1. P ~solid line! andQ ~dashed line! vsu at t512.4 for the
standard initial data set,P50, pP5v0 cosu, Q5cosu, pQ50,
with v055 for 0<u<p. The simulation was run with 20 000 spa
tial grid points in the interval 0<u<2p. The numbers on the grap
refer to the most interesting features. Peak Nos. 1, 2, and 3 inP are
essentially the same in that they occur at extrema~in u) of Q. (Q
has a maximum at the locations of peaks Nos. 1 and 3 and a m
mum at No. 2.! Structure No. 4 is qualitatively different in tha
there appears to be a discontinuity inQ. This occurs whereP,0
(P50 is shown as a dashed line! andpQ'0.

FIG. 2. Details of feature No. 1 in Fig. 1.~a! P ~solid line! and
Q ~dashed line! vs u near the peak. Note the scales inQ andu. ~b!
P ~solid line! andpQ ~dashed line! vs u near the peak.
re

es
.
-

ks

wheretN is the time at whichN peaks are first present in th
wave form andaN is a constant. From Eq.~15!, v̄0 denotes
the value ofv0 such that theNth peak appears only att
5`. The scaling shown in Fig. 6 is forN55. Similar ~but
less accurate! straight line fits are found forN equal 3 and 7.

i-

FIG. 3. Details of feature No. 4 in Fig. 1:~a! P ~circles! andpQ

~solid line! vs u. The horizontal dashed line indicatespQ50 while
the vertical dashed line marks theu value at which thepQ goes
through zero. Note the offset between the minimum inP and the
zero ofpQ . ~b! pQ ~solid line! andQ ~dot-dashed line! vs u near
the feature.

FIG. 4. Evidence for the narrowing of spiky features with i
creasingt. ~a! P as shown in Fig. 2 is plotted at two different time
~b! Q as shown in Fig. 3 is plotted at two different times. Th
amplitudes ofP andQ have been rescaled for clarity.
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57 4771PHENOMENOLOGY OF THE GOWDY UNIVERSE ONT33R
~The wave equations are even inu as are the initial data so
that P andQ remain even functions ofu. Thus, except for a
central peak, other peaks will form two at a time.!

Thus, one may summarize that spatial structure for
more rapidly and evolves a more complicated form,
greater the initial ‘‘energy’’ in the waves as denoted by, e
v2 from Eq. ~8!. Eventually, the wave forms ofP and Q
‘‘freeze’’ to the AVTD behavior ofP increasing linearly and
Q constant int. As has been emphasized by Hern and Stu
~HS! @25#, the duration int of the observed non-AVTD re
gime depends on the spatial resolution of the simulation

In Fig. 7, the maximum value over the spatial gridvmax of
the AVTD parameterv is shown as a function of timet for
two simulations with different spatial resolutions. The ste
in vmax occur when the location of the spatial point with th
maximum value ofv changes. Note that, for the lower res
lution simulation,vmax eventually falls below unity in sup
port of the GM conjecture@15#. We also see that the highe
resolution simulation starts to diverge from the lower re
lution one, signaling the presence of narrow features that
unresolved by the coarser resolution.~The former was not
run longer primarily because the Courant condition requ
small time steps for high resolution studies.! This suggests
~as confirmed by HS! that the higher spatial resolution simu
lation will take longer before it becomes AVTD everywher
This is shown explicitly in Fig. 8 wherepP.1 vs t is plot-

FIG. 5. P, Q, l, andU5e22t(P,u
21e2PQ,u

2) are shown in the
u-t plane. The arrow is in the direction of increasingt.

FIG. 6. Scaling in the Gowdy model. Plot of 1/t5, the inverse of
the time at which the fifth peak appears inP vs v0. Two cases are
shown for initial dataP50, Q5cosu : ~1! pP51/A2 v0cosu, pQ

51/A2 v0cosu is indicated by filled circles;~2! pP5v0cosu, pQ

50 is indicated by open squares. The solid line is a linear bes
s
e
.,

rt

s

-
re

s

.

ted for three different spatial resolutions. Note that for two
the spikes,P,t is larger for the finest resolution. In Fig. 9, th
difference betweenP/t andv is plotted vst. SinceP→vt
as t→`, we see the influence of the next~constant int)
term P01 ln@(11cosc)/2#, in the AVTD solution forP, Eq.
~7!.

V. STRUCTURE IN THE GOWDY MODEL

To understand the Gowdy phenomenology of Sec. IV,
must explore the structure of the wave equations forP and
Q. Let us consider Eq.~3! first. The equation forQ may be
rewritten in first order form as

Q,t5e22PpQ ,

pQ ,t5e22t~e2PQ,u!,u . ~16!

This immediately provides the explantion for both the lar
central peak which quickly forms inQ and for the apparen
discontinuity inQ seen in Figs. 1 and 3. From Eq.~16!, Q
will grow rapidly whereP is negative. Since, early in th
evolution, P'v0tcosu, one expects a large peak~as is ob-
served in Figs. 1 and 5! where cosu,0. We shall see later
that P is driven to positive values eventually stopping t

FIG. 8. P,t .1 vsu at t524.79 with standard initial data with
v0510 for three spatial resolutions. For the coarser resolutions
simulation spatial points are shown.t.

FIG. 7. vmax vs t for the Gowdy model withv055. The solid
curve is from a simulation with 3200 spatial grid points while t
open circles represent one with 20 000 spatial grid points. T
horizontal line isv051. The difference near the end of the high
resolution simulation is due to the influence of the nongeneric p
whereQ,u50.
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4772 57BEVERLY K. BERGER AND DAVID GARFINKLE
growth of Q. However, we shall also see that ifpQ'0, P
can remain negative longer. SayP'2P0 for P0.0 at a
value ofu5u1 wherepQ'pQ

0 (u2u1). Thus we find that

Q,t'pQ
0 ~u2u1!e2P0 ~17!

so thatuQ,tu is large andQ increases~decreases! exponen-
tially depending~say for pQ

0 .0) on whetheru.(,)u1.
Note that we assumepQ ,t'0. However, Eq.~16! implies
this for P large and negative.

More interesting is the equation forP. Consider two ap-
proximate forms of Eq.~2! depending on which nonlinea
term dominates. Since the nonlinear terms depend expo
tially on P, they will dominate the linear spatial derivativ
term when the exponential is large.

For example, ifP is large and negative,

P,tt2pQ
2 e22P'0 ~18!

which has the first integral

P,t
21pQ

2 e22P5k1
2 . ~19!

This allows one to define an effective potential

V15pQ
2 e22P ~20!

which is important whenP,t,0 and ~especially if! P,0.
This allows immediate explanation of the following pheno
ena.~a! In the AVTD regime,P.0 and its asymptotic time
derivativev.0 since ifP,t,0, a bounce offV1 will occur
at whichP,t→2P,t so thatP will eventually reach positive
values.~b! However, if pQ'0, V1'0 so that bothP and
P,t can remain negative for a long time. Nongeneric beh
ior occurs at the isolated pointu5u1 where V1 vanishes
sinceP andP,t will never be driven to positive values ther

On the other hand, if~a! P is large and positive and~b!
P,t.1, the wave equation forP is given by

P,tt1e2~P2t!Q,u
2'0 ~21!

which is easy to integrate~for Z5P2t) as

Z,t
21Q,u

2 e2Z5k2
2 . ~22!

FIG. 9. The same as Fig. 7 with the maximum value ofP/t
2v over the spatial grid also plotted~dashed line! vs t. The ob-
served behavior is due to the formP→vt1 ln@(11cosc)/2# in the
AVTD limit as t→`.
n-

-

-

Thus if P,t.1, the dynamics ofP is dominated by an effec
tive potential

V25Q,u
2 e2~P2t!. ~23!

Again, from Eq.~16!, our implicit assumption thatQ,t'0 is
consistent. One sees immediately, that ifP,t.1 a bounce off
V2 will occur with the result thatZ,t→2Z,t or

P,t→2~P,t22!. ~24!

Thus the existence ofV2 provides a mechanism to driveP,t
and thus asymptoticallyv to values below unity. In the ac
tual simulation, the asymptotic regions for the scattering
not reached so that Eq.~24! cannot be used to compute th
numerical value of the change inP,t with t. Again one sees
that nongeneric behavior can arise, in this case, atu5u2
whereQ,u50. At u2 the mechanism to drivev below unity
is absent so that larger values ofv are allowed. IfV2 is
nonvanishing but small, it will take a long time for th
bounce to occur so that the AVTD limit will take a long tim
to arise. This also explains the peaks inP seen in Fig. 1.
WhereQ,u'0, V2 is small so thatP can increase withou
hindrance with a large positive value ofP,t .

For a more quantitative understanding of the small sc
spatial structure, note that both Eqs.~18! and ~21! have
closed form solutions. Equation~18! holds in the AVTD re-
gime, where the solution is given in Eq.~7!. The exceptional
point u1 is the point where cosc521. Near this point we
have cosc'211(c8)2(u2u1)

2/2 wherec8[c ,u(u1). It then
follows that, for larget,

P'P02vt1 ln@11~c8!2e2vt~u2u1!2/4#,

Q'Q02
e2P0c8~u2u1!

2e22vt1~c8!2~u2u1!2/2
. ~25!

Thus there is a spiky feature in bothP andQ at u5u1 as is
shown in Fig. 10. Furthermore, these features steepen e
nentially with time. Because of this steepening, the spa
derivatives ofP andQ become large at late times. Howeve
the AVTD equations are formed by dropping spatial deriv
tives from the exact Eqs.~2! and ~3!. Therefore, one might
worry that the terms that have been neglected are not actu
negligible near the peaks. However, using Eq.~9! one can
show that nearu5u1 the neglected terms go ase2(v21)t and
are therefore exponentially damped forv,1.

The solution of Eq.~21! is

P5P01t2 ln@coshwt2cosf sinh wt#. ~26!

Here, P0 ,w>0, and f are functions of u, and Q,u
5e2P0wsinf. Note that P→(12w)t for large t where
cosfÞ1. The exceptional pointu2 is the point where cosf
51. Near this point we have cosf'12(f8)2(u2u2)

2/2 where
f8[c ,u(u1). It then follows that, for larget,

P'P01~11w!t2 ln@11~f8!2e2wt~u2u2!2/4#.
~27!

Thus the feature inP narrows exponentially with time as ca
be seen in Fig. 10. The spatial derivatives ofP become very
large. However, the neglected terms in the equations go
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57 4773PHENOMENOLOGY OF THE GOWDY UNIVERSE ONT33R
e2(w21)t. Sincew21,0 for P,t.0 asymptotically, it fol-
lows that these terms become negligible after the
bounce.

The differences in Figs. 7 and 8 seen by increasing
spatial resolution are also understood in terms of our anal
of structure growth. At higher spatial resolution it is mo
likely that a spatial grid point of the numerical simulatio
will be very close to a nongeneric point whereQ,u50. Thus
the nongeneric behavior will become more apparent and
time to reach the AVTD limit characterized byv,1 every-
where will be longer. Clearly, the observed resolution dep
dence may be interpreted to be evidence for the existenc
nongeneric points. The apparent discontinuity inQ seen in
Figs. 1 and 3 is evidence for the nongeneric point inu where
pQ50. Its effect may be seen as a resolution dependenc
the shape of this feature. It becomes steeper and narro
with increasing spatial resolution for sufficiently larget @see
Fig. 11~b!# or for increasingt with fixed spatial resolution
@see Fig. 4~b!#. As in Fig. 2, we note that the spikes in Fig.
wherev.1 are associated with extrema inQ. This is shown
in Fig. 12. Note that the alignment is not perfect between
peak inP,t and the extremum inQ where the spike is wel
resolved@see also Fig. 3~a!#. This is understood as evidenc
that the AVTD regime has not yet been reached. In parti
lar, the site of the extremum may be distorted by a nea
larger feature inQ. Running the simulation twice as lon
~Fig. 13! shows much closer alignment and is evidence t
the predicted nongeneric behavior will eventually domin
the spikes.

FIG. 10. Sketches of the analytic approximations to the peak
P andQ. The largert value is indicated by the broken line.~a! P
from Eq. ~25!. ~b! Q from Eq. ~25!. ~c! P from Eq. ~27!.
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The effective potentialsV1 and V2 are displayed in Fig.
14. We see that the approach to the AVTD regime is ch
acterized by repeated alternate interactions ofP with the two
potentials. This is displayed explicitly for a typical value ofu
in Fig. 15 whereP, V1, andV2 are shown as functions oft.
After each interaction withV2, the quantityP,t21 changes
sign. If this yields 0<P,t,1, no further bounces occur. I
P,t,0, there will be an interaction withV1. Eventually,
uP,tu falls below unity so thatV2 permanently disappears.P
then continues to increase for all subsequentt with constant
slope 0<v,1 as is characteristic of the AVTD limit.~Note
that V1 will also decrease exponentially asP increases even
though it is part of the AVTD solution.! Examination of Eq.
~16! shows that, whenuP,tu falls below unity andt→`,
pQ ,t→0 as required by the AVTD limit. OncepQ becomes
constant, asP increases,Q,t→0, again as required. The de
velopment ofQ with time is shown in Fig. 16 for the sam
value ofu as in the previous figure. Here we see clearly h
Q grows fastest whenV1 dominates. This becomes eve
more dramatic in Fig. 17 which is the same graph foru
'u1, the site of the apparent discontinuity inQ.

It is important to emphasize that the magnitude and ti
evolution of V1 and V2 as well as the initial values of the
wave amplitude time derivatives are different at differe
values ofu. This explains the development of complicate
small scale spatial structure. From Eqs.~19! or ~22!, one
computes the time to the first bounce offV1 or V2 as

Dt5E
0

2 ln~AVJ
0/kJ! dXJ

kJA12VJ /kJ
2

, ~28!

where J51 or 2 andVJ
05VJ at t50. Herex152P and

x25Z. Evaluation of Eqs.~19! and ~22! at t50 yields an
approximate inverse scaling withv0 seen in Fig. 6. The cen
tral peak appears first and is easy to understand. Since,
tially, P,t5v0cosu, the highest negative velocity occurs
u5p causing the bounce offV1 to occur there first.P then
begins to increase atu5p both earlier and faster than a
neighboring values ofu. More complicated is the next pair o
peaks which occur nearu5p/4,7p/4. Initially, the profile of
P vs u steepens. However, bounces offV2 will begin to
occur. This causes the tangent toP vs u to evolve from
negative ~positive! to positive ~negative! slope for

in

FIG. 11. Q vs u for t524.79 with v0510 at the site of the
apparent discontinuity for three spatial resolutions. At this value
t, the feature is not resolved even at the finest resolution used
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FIG. 12. Details ofP ~solid line, left axis scale! vs Q ~dot-
dashed line, right axis scale! for the spikes in Fig. 8.~a! Note that
the spike is completely resolved and that there is an offset of
extrema. The inset shows that this peak is part of a larger featu
Q. ~b! Again the offset can be related to a larger feature inQ. ~c!
The extrema are much more closely aligned.~d! The features are
not completely resolved. The extrema are aligned to within
resolution.~e! Again the features are not well resolved. The chan
in the value ofQ is the smallest that can be seen in single precisi
The simulations were done in double precision but the data
reported in single precision.
0<u<p/2 (3p/2<u<2p) eventually creating a pair o
peaks. The higher the original value ofv0, the greater will be
the number of bounces beforeV2 disappears for good. Eve
finer small scale structures are created atu values where
many bounces occur sinceP will increase for some spatia
regions and decrease for others in a manner that cha
with time. Asv falls below unity, at a givenu, the bounces,
and thus structure formation, will cease there but struct
formation will continue in the ever smaller spatial regio
wherev continues to exceed unity.

VI. DISCUSSION AND CONCLUSIONS

We see that both potentialsV1 andV2 drive the cosmol-
ogy toward the AVTD regime characterized by Eq.~7! ast
→` with 0<P,t→v,1. This is becauseV1 appears and
influences the dynamics only when and whereP,t,0 while
V2 does so only forP,t.1. In the AVTD regime, with 0
<v,1, both corresponding terms in the wave equation
P are exponentially small. We note that the wave equati

FIG. 14. V1 vs P and V2 vs P2t shown as solid lines. The
horizontal dashed arrows denote the constantsk1 andk2.

e
in

e
e
.
s

FIG. 13. Spiky features~a! and ~b! of P ~solid lines, left axis
scale! with the associatedQ ~dot-dashed lines, right axis scale! in
Fig. 12 att549.5. Part of the previous figure~at t524.8) is shown
with finer lines. Note the improvement in alignment and the n
rowing of the spike inP.
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57 4775PHENOMENOLOGY OF THE GOWDY UNIVERSE ONT33R
~2! and~3! provide no other mechanism to driveP,t into the
required range if it is not there initially. Recall that the p
larized Gowdy model can have any value forP,t . Thus we
argue that at isolated points~a set of measure zero inu)
where eitherpQ or Q,u is precisely zero,P,t could remain
outside the allowed range. In the former case~say at u
5u1), the consistency equations~9! are satisfied so that on
expects the solution atu1 to be similar to an AVTD polar-
ized solution. However, in the latter case~say, atu5u2), the
consistency conditions requireQ,uu50 as well as
Q,u50—something one does not expect generically.
Q,uu50 atu2, then the solution is of the AVTD largev type
there. If Q,uuÞ0, the behavior cannot be analyzed eith
numerically or by these analytic methods. We may theref
conclude that the simulations provide strong support for
conjecture that the Gowdy models have a singularity wh
is AVTD except, perhaps, at a set of measure zero.

The existence of this set of measure zero of ‘‘nongen
ic’’ spatial points can be inferred from the simulations sin
near them the potentials are very flat. Thus, the closer on
to, e.g.,u1 or u2 defined as above, the longer it will take
drive P,t to the range@0,1) there. This manifests itself as
resolution dependence of the simulations of a very spec
type. At any value oft ~say t̄ ), there is a spatial resolutio
sufficient to resolve all spiky features.~This was demon-

FIG. 16. Q ~solid curve!, V1 ~dash-dotted curve!, and V2

~dashed curve! vs t at the same value ofu as in Fig. 15.

FIG. 15. P ~solid curve!, V1 ~dash-dotted curve!, and V2

~dashed curve! vs t at a fixed value ofu.
f
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strated in@8#.! But the ‘‘center’’ of each spiky feature is th
site of a nongeneric point. As one moves away from t
point in either direction inu, the coefficient of the potentia
will be larger. Thus the interaction with the potential w
occur first at regions away from the center of the feature
move closer to the center ast increases. Since the effect o
the interaction is to change the sign of eitherP,t or P,t21,
the interactions will tend to eliminate the outer part of t
spiky feature. Thus the spiky feature gets narrower in ti
until for somet. t̄ , the original resolution is no longer ad
equate. Although, in a peak nearQ,u50, P,t should be.1,
inadequate resolution may act as an effective averagin
give a measured smaller value ofP,t . Thus the peak inv
appears to decrease in amplitude only because, at mou
values, the interaction withV2 has already occurred. We not
that this effective averaging will give 0<v,1 everywhere
for sometF for any fixed spatial resolution. As the spati
resolution is increased,tF will also increase since accurat
resolution of spiky features can be maintained farther i
the simulation and the effective averaging will take longer
come into play. Thus the apparent resolution dependenc
consistent with the behavior of the potentialsV1 andV2 ex-
pected near the nongeneric points.

Several examples are shown in Figs. 18–21. In Fig. 18
spiky feature inP,t is shown for three different spatial reso
lutions at t524.79. While the coarsest resolution show

FIG. 17. Q ~solid curve!, V1 ~dash-dotted curve!, and 2P
~dashed curve! vs t at the site of feature No. 4 in Fig. 1.

FIG. 18. The same spiky feature inP,t vs u is shown at the
samet for resolutions of 1024~dash-dotted line!, 4096 ~dashed
line!, and 40 960~solid line! spatial grid points. The horizontal line
marksv51.
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4776 57BEVERLY K. BERGER AND DAVID GARFINKLE
v,1, it also clearly fails to resolve the spiky feature. T
highest resolution both resolves the spiky feature and sh
that it has a core wherev.1 as expected. A similar spiky
feature inP,t is shown in Fig. 19 for three different times fo
the same spatial resolution. One expects that the clearly
solved spike observed early in the simulation will narrow
t increases remaining always.1 at the center of the peak
This is not observed~rather one sees the constantP,t behav-

FIG. 20. The apparent discontinuity inQ vs u at three values of
t with 20 224 spatial grid points.

FIG. 19. For a fixed resolution of 20 224 spatial grid points
spiky feature inP,t is shown vsu for three different values oft.
s

e-
s

ior expected in the AVTD limit!. However, one again see
clearly that the spatial resolution which was adequate at
512.4 has become inadequate at later times and that
properties of the spike are not correctly represented. Fig
20 shows that the apparent discontinuity inQ becomes nar-
rower and steeper with time and eventually is not adequa
resolved at a given spatial resolution. One expectsP to be
increasingly negative at the center of this feature sinceP,t
,0 is maintained at that nongeneric point. At fixed spat
resolution, we see in Fig. 21 that the negative region oP
both narrows and deepens ast increases from 12.4 to 18.6 a
expected. However, att524.8, the expected behavior is n
seen since the depth of the negative region fails to incre
However, we also see that the spatial resolution has bec
inadequate. Presumably, adequate spatial resolution w
show the narrowness and depth of the negative region
gested by the curvature ofP vs u in the region just outside
the core.

In conclusion, the behavior of generic Gowdy cosmo
gies onT33R can be completely understood in terms of t
nonlinear interactions between the two polarizations of
gravitational waves. These act as effective potentials wh
drive the system to the prediced AVTD behavior and th
cease to play a role. At the set of measure zero where
potentials are absent,P,t may lie outside its allowed AVTD
range of@0,1) for all t if it does so at any time since th
mechanism to correct its value is absent. The existenc
this set of measure zero is infered from the details of
shape and time dependence of the spiky features and
the inability to resolve them with a given spatial resoluti
beyond a certain time.
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