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Palatini variational principle for an extended Einstein-Hilbert action

Howard Burton* and Robert B. Mann†

Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
~Received 10 November 1997; published 12 March 1998!

We consider a Palatini variation on a generalized Einstein-Hilbert action. We find that the Hilbert
constraint—that the connection equals the Christoffel symbol—arises only as a special case of this general
action, while, for particular values of the coefficients of this generalized action, the connection is completely
unconstrained. We discuss the relationship between this situation and that usually encountered in the Palatini
formulation.@S0556-2821~98!03108-7#
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I. INTRODUCTION

From the earliest days since the advent of general rela
ity, attempts have been made to generalize it. The orig
motivations for doing so were concerned with unifyin
gravitation and electromagnetism, which today have been
perseded by the desire to construct a theory of quantum g
ity. There are presently many attempts to this end, includ
the superstring-theoretic formulation@1#, the connection dy-
namics proposal@2#, non-commutative geometries@3#,
Chern-Simons formulations@4#, gauge-theoretic formula
tions @5#, quantization of topologies@6#, topological geons
@7#, gravity as an induced phenonemon@8#, and so on.

Throughout this history the Palatini variational princip
has played a subtle but important role. As is well known
one subjects the ordinaryN-dimensional Einstein-Hilber
~EH! action

SEH5E dNx@A2g~R~G!116pLm!# ~1!

to a Palatini variation, i.e. assumes that there is noa priori
relationship between the~torsion-free! affine connectionGmn

a

and the metric, and thus subjects the action to a varia
dGS50 as well asdgS50, one finds, in addition to the usua
field equation resulting from the metric variation,

8pTmn5Gmn~G!, ~2!

from the connection variation the constraint

]lgmn2Gh
lmghn2Gh

lngmh50 ~3!

which is the familiar condition of metric compatibility
whose solution

Gmn
h 5H h

m nJ ~4!

is the Christoffel symbol. In other words the geometric
constraint~3! ~henceforth called the ‘‘Hilbert constraint’’! is
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now a field equation that extremizes the action~1!. The fact
that this seemingly independent line of inquiry corrobora
the metrically compatible choice of the Christoffel symb
has been viewed by many as a kind of ‘‘proof’’ of the valid
ity of the Hilbert~or 2nd-order! variation of the EH action, in
which Eq. ~3! is given and Eq.~1! is therefore a functiona
only of the metric degrees of freedom. Certainly it alters t
Lagrangian formulation of general relativity insofar as it r
moves the need to include a boundary term because ther
no derivatives of field variations on the boundary@9#.

However, as noted by Schro¨dinger long ago@10# and em-
phasized by Hehlet al. @5#, in a generalized theory of gravi
tation one expects the geometrical relationship~3! to be
modified in some manner that is typically not obviou
Hence the 2nd order variation is often not available, and
must resort to a Palatini-type of variational principle. Indee
the Palatini approach has been employed in most of the g
eralized theories of~quantum! gravity mentioned above, ei
ther in terms of affine connection—metric variables or~as is
common in supergravity theories@11#! spin connection—
vielbien variables. Furthermore, although the physical r
evance of the metrically compatible Christoffel symbol
general relativity is clear, from a geometrical perspective
singling out of the Christoffel connection is somewhat cu
ous because the geometry is impervious to which partic
connection is chosen~Christoffel or otherwise!, as long as it
is torsion-free.

Motivated by the above, we consider in this paper t
relationship between the Palatini variational principle and
condition of metric compatibility. Since the key premise
the Palatini principle is that metric and connection are in
pendent of one another at the outset, we consider a gene
zation of the EH action~1! which includes all possible term
that are at most quadratic in derivatives and/or connec
variables. We then determine the circumstances under w
a Palatini variational principle yields the compatibility co
dition ~3!, and what the consequent gravitational dynam
would be in situations that are more general. We work inN
dimensions, and consider actions which are functionals o
of the metric and the affine connection~although our ap-
proach could straightforwardly be extended to a vielbein f
malism!. For simplicity we consider only torsion-free con
nections.
4754 © 1998 The American Physical Society
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II. GENERALIZED ACTION AND
CONNECTION CONSTRAINTS

If one assumes that metric and connection variables
independent of one another, then there is no longer ana
priori reason to consider the EH action~1! as the action on
which to base a theory of gravitation. One is guided only
principles of general covariance, minimal coupling, simpl
ity, and logical economy.

Hence we seek a Lagrangian which is a scalar under g
eral coordinate transformations and which has the mini
number of derivatives and/or powers of the field variables
every term. Since the connection does not transform lik
tensor, one must construct objects from it which have ten
rial properties. The simplest of these are the Riemann cu
ture tensor

Ra
bmn5]nGa

bm2]mGa
bn1Ga

smGs
bn2Ga

snGs
bm ~5!

and the covariant derivative of the metric

¹lgmn5]lgmn2Gh
lmghn2Gh

lngmh ~6!

where in Eqs.~5! and ~6! the connection is assumed to b
torsion-free.

The most general action inN dimensions that one ca
construct out of these objects subject to these constraint

S5E dNxA2g@R1H~¹ngab!~¹ngab!1IV21J~¹egmn!

3~¹mgen!1KV•Z1LZ•Z#, ~7!

where

Vr :5
¹rA2g

A2g
, Zl:5¹hghl ~8!

and where the coefficientsH, I , J, K and L are constants
Other scalar quantities exist, but they either can be rewri
as linear combinations of the terms in Eq.~7! up to total
derivatives or they are at least cubic in derivatives and
connection variables. Since we assumedgmn and dGmn

a to
vanish at the boundary, no additional boundary terms in
~7! are required.

Variation of Eq.~1! with respect to the connectionGrs
l

leads to the following constraint:

1

A2g
S ¹l@A2ggrs#2

1

2
¹e@A2ggre#dl

s

2
1

2
¹e@A2ggse#dl

r D1H@~¹rgsg1¹sgrg!ggl

2¹rglggsg2¹sglggrg#1I @Vrdl
s1Vsdl

r#

1J@gnl~¹rgsn!1¹lgrs2gmr$gns~¹lgmn!

1¹sgml%#1KF1

2
~Zsdl

r1Zrdl
s!2

1

2
~Vsdl

r1Vrdl
s!

2VlgrsG2L@Zrdl
s1Zsdl

r12Zlgsr#50 ~9!
re
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whose solution determines the connection as a function
the metric in a manner which generalizes Eq.~4!.

We next seek to find the conditions under which Eq.~9!
may be solved forG in terms of the metric. Tracing Eq.~9!
on the (r,s) indices yields

@~N23!12I 24J2~N11!K#Vl1@4H12J1K

22L~N11!21#Zl50, ~10!

while a r2l contraction of Eq.~9! gives

@~N21!18H22~N11!I 14J1~N13!K#Vl1@~N21!

24H26J2~N11!K12~N13!L#Zl50. ~11!

Equations~10! and~11! are two equations in the two un
known vector fieldsVl andZl . Provided the determinant o
coefficients is non-zero, the only possible simultaneous s
tions of Eqs.~10! and ~11! are

Vl5Zl50 ~12!

which implies

2¹lgrs@112J#1~2H1J!@glg~¹rgsg1¹sgrg!#50
~13!

upon insertion of Eq.~12! into Eq. ~9!. It is straightforward
to show that

Gmn
a 5

1

2
gal~]mgan1]ngam2]agmn![H h

m nJ ~14!

is the only solution to Eq.~13! provided that 3J12HÞ21
or HÞ 1

4. Consequently we see that metric compatibil
arises within the Palatini formalism under quite general c
ditions unless 3J12H521, in which case, forJÞ2 1

2, it
can be shown thatGl

mn is of the form

Gl
mn5H l

m nJ 1glg@Ymgn1Yngm22Ymng# ~15!

whereYmng is a tensor obeyingYmng5Ynmg andgmnYmng
5gmnYmgn but is otherwise arbitary. Similarly, ifH5 1

4, we
find, again forJÞ2 1

2, thatGl
mn is of the form

Gl
mn5H l

m nJ 1glg@Lmng1Lngm1Lgmn# ~16!

whereLmng5Lnmg is an arbitrary tensor that is traceless
all indices. We further note that the condition that trivializ
Eq. ~13!, i.e. J52 1

2, H5 1
4, is a simultaneous solution o

both of the above special cases and thus leaves¹lgrs com-
pletely undetermined modulo the conditions given in E
~12!. In this case, the Palatini variation provides almost
information about the relationship between the metric a
the connection, as Eq.~12! furnishes only 8 equations to
determine the 24 unknownsG. Furthermore, Eq.~12! would
not exist if the determinant of coefficients in Eqs.~10!,~11!
were set to zero, thereby yielding a redundancy.
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We expect that this redundancy is made manifest by so
symmetry on the connection coefficients. To this end, c
sider the following general transformation of the connecti

Gl
mn⇒Ĝl

mn5Gl
mn1Ql

mn , ~17!

whereQl
mn is an arbitrary tensor field with the sole restri

tion that it, like Gl
mn , is symmetric in its last two indices
v

s

et
fo
e
-
:

This type of transformation is sometimes called a deform
tion transformation@5#. Under the above transformation w
find that the action~7! is correspondingly transformed:

S⇒Ŝ5S1dS, ~18!

where
dS52@112J#~¹lgmn!Qlmn2@2H1J#~¹lgmn!~Qmln1Qnlm!2@112H13J#QlmnQnml2@2H1J#QlmnQlmn

1@ I 2K1L#Ql
lrQe

er1@12K12L#Ql
lrQre

e1LQre
eQrl

l1@122I 1K#VlQe
el1@K21#VlQlh

h12LZlQlh
h

1@112L2K#ZlQh
hl . ~19!
n
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For Gl
mn to be completely unconstrained, we must ha

dS50 regardless of the choice ofQl
mn(Qlmn). This can

only happen if

H5
1

4
, J52

1

2
, I 5K51, L50, ~20!

which we note ensures that the determinant of coefficient
the system~10!,~11! vanishes.

Conversely, consider subsitution of Eq.~17! for Gl
mn ,

into the general action~7!, and then varying the~trans-
formed! action with respect toQl

mn . This yields a set of
complicated algebraic equations forQl

mn . Insertion into Eq.
~7! of their solution forQl

mn in terms ofGl
mn andgmn leads

directly to a modified action of the form given in Eq.~7!
whose specific values forH,I ,J,K,L are given by Eqs.~20!
above.1

In other words, Eqs.~20! clearly compose the unique s
of values such that our action is invariant under the trans
e

in

r-

mation ~17! with Ql
mn completely unconstrained other tha

being symmetric in its lower two indices. Accordingly, th
values~20! will henceforth be called the ‘‘maximally sym
metric’’ values.2

From this perspective one can say that the compatib
condition ~3!, obtained by applying the Palatini variation
principle to the EH action, is an example of a constra
induced by a broken symmetry. That is, the EH action i
special case of our general action~7! above, with the particu-
lar requirement thatH5I 5J5K5L50. That these values
of H,I ,J,K,L break the general symmetry is obvious fro
the above analysis, and it is this breaking of this ‘‘connect
symmetry’’ which singles out the Christoffel symbol.

III. EXTENDED ACTION DYNAMICS

Momentarily putting aside our consideration of the ‘‘co
nection dynamics’’ of our extended action and calculati
the ordinary ‘‘metric dynamics,’’ we find
nsorial
8pTmn5G~mn!~G!1~ I 2K !VmVn2
1

2
K@¹mVn1¹nVm#22~¹l1Vl!gleFH¹egmn1

1

2
J~¹mgne1¹ngme!G2L@VmZn

1VnZm1¹mVn1¹nVm1ZmZn#1H@~¹mgab!~¹ngab!12gab~¹lgam!~¹lgbn!#1
1

2
J@~¹hgam!~¹agnh!

1~¹hgan!~¹agmh!#1gmnH 2
1

2
H~¹rgab!~¹rgab!1

1

2
IV22

1

2
J~¹egab!~¹ageb!2

1

2
LZ21¹eS IVe1

1

2
KZeD J

~21!

1See the Appendix for more explicit details.
2‘‘Maximally’’ symmetric to distinguish them from other partial symmetries which may occur when one assumes some particular te

structure inQl
mn .
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upon variation of Eq.~7! with respect to the metric. Provide
the constantsH,I ,J,K,L are chosen so that Eq.~14! is satis-
fied ~i.e. the coefficients are chosen so that 3J12HÞ21
andHÞ 1

4 ), then all terms on the right-hand side of Eq.~21!
vanish except for the first one, which becomes the us
expression for the Einstein tensor in terms of the metric.

Consider next the condition of maximal symmetry. Ins
tion of our maximally symmetric values, Eqs.~20!, into the
above dynamical equation yields

8pTmn5G~mn!~G!1
1

4
@¹mPnh

h1¹nPmh
h#

1F¹l2
1

2
~Plh

h!G~El
mn!1

1

4
@2~Plb

m!~Plbn!

2~Pm
lh!~Pnlh!22~Pl

hm!~Ph
ln!#

1
1

8
gmn@2~Plh

h!~Plr
r!22~Pelh!~Pleh!

1~Plhe!~Plhe!14¹e~Pl
le2Peh

h!# ~22!

where

Ph
mn:5¹hgmn ~23!

and

El
mn :5

1

2
@Pl

mn2Pmn
l2Pnm

l#5F H l

m nJ 2Gl
mnG ,

~24!

thus enabling us to put some terms directly in terms of
Christoffel symbol.

Hence the field equations in the case of maximal symm
try consist of Eq.~22! alone—there is no equation whic
determines the connection in terms of the metric. In t
sense the maximally symmetric action is a theory of grav
determined in terms of metric dynamics alone, with the c
nection freely specifiable.

Since the connection may be freely specified, one cho
is to make it compatible with the metric, i.e. to demand th
Eq. ~14! hold. In this case allPh

mn50, and Eq.~22! reduces
to

8pTmn5G~mn!~$ %! ~25!

which are the field equations for general relativity. Altern
tively, suppose we chooseGh

mn50. In this case Eq.~22!
becomes
al

-

e

-

s
y
-

e
t

-

8pTmn51
1

4
@¹mP̂nh

h1¹nP̂mh
h#

1F¹l2
1

2
P̂lh

hG H l

m nJ 1
1

4
@2~ P̂lb

m!~ P̂lbn!

2~ P̂m
lh!~ P̂nlh!22~ P̂l

hm!~ P̂h
ln!#

1
1

8
gmn@2~ P̂lh

h!~ P̂lr
r!22~ P̂elh!~ P̂leh!

1~ P̂lhe!~ P̂lhe!14¹e~ P̂l
le2 P̂eh

h!# ~26!

where P̂h
mn:5]hgmn. Further simplification of the right-

hand side of Eq.~26! yields

8pTgs5G~gs!~g! ~27!

whereG(gs)(g) is the Einstein tensor expressed as a fu
tional of the metric, i.e.G(gs)(g)5G(gs)($ %). Hence Eq.
~27! also yields the equations of general relativity.

The above case of examiningG50 raises an interesting
curiosity. Clearly, as the maximally symmetric case only
stricts the connection to be torsion-free,G50 is an available
option. But the fact that we are able to choose such a c
nection globally enables us to say something addition
about the geometry of our manifold—namely that it is flat o
rather, that it can be made flat with no physical sacrifice.

The preceding situation is also a generalization of a re
obtained by Gegenberget al. for (111) gravity @12#. Con-
sider the action~7! for N52 with each ofH,I ,J,K,L set to
zero. In this case the determinant of coefficients in Eqs.~10!
and~11! vanishes, and the general solution to Eq.~9! is given
by @12#

Gmn
a 5Ḡmn

a 5H h

m nJ 1~dm
aBn1dn

aBm2gmnBa! ~28!

whereBm is an arbitrary vector field. The Einstein tensor
given by

G~sg!~Ḡ!5G~sg!~$ %!

50 ~29!

and so renders the (111)-dimensional field equation
trivial, as in the usual Hilbert case. We see from the prec
ing analysis of Eq.~22! that an analogous situation holds
higher dimensions for the maximally symmetric action:
though the field equations do not determine the connectio
terms of the metric, one can choose the connection to
compatible with the metric by appropriately choosingQa

mn

in Eq. ~17! and recover the metric field equations of gene
relativity.

More generally, the choice of connection is complete
irrelevant to the theory in the maximally symmetric cas
One has only Eq.~22!, which determines the evolution of th
metric in terms of the basic matter fields.
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IV. CONCLUSIONS

From the connection-dynamics perspective we h
adopted in this paper, the most general action which is
order in connection and derivatives is given by Eq.~7!. In the
usual formulation of the Palatini principle theH,I ,J,K,L
coefficients are all set to zero. We have shown that th
exists a unique choice of these coefficients, given by
~20!, such that the action is invariant under Eq.~17!. This
case of maximal symmetry yields a theory of gravity whi
is independent of the connection.

From this perspective the condition of metric compatib
ity ~3! in the usual Palatini formulation arises as a field eq
tion because this formulation breaks the maximal symme
condition ~20!, hence uniquely determining the connectio
The equations of general relativity are recovered as a co
quence of this broken symmetry.

In the maximally symmetric case we also recover the fi
equations of general relativity but for a different reason.
this case the connection may be freely chosen by an ap
priate choice ofQa

mn in Eq. ~17!, and so choosing it to be
metrically compatible obviously yields the metric field equ
tions of general relativity. However, these equations are
covered even if one does not choose the connection to
compatible, as shown by the choiceGa

mn50 in the preced-
ing section.

Classically, then, it would appear that maximally symm
ric theories in the Palatini formulation are classically equiv
lent to their broken counterparts, at least insofar as me
dynamics is concerned. The role of maximally symmet
e
d

re
.

-
y
.
e-

d

o-

-
-

be

-
-
ic
c

theories in quantum gravity is, however, not clear, and wo
be interesting to study further.
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APPENDIX

The following is a proof of the claim made at the end
Sec. II:

If one begins with our usual generalized action, w
H,I ,J,K,L arbitrary, that is,

S5E dNxA2g@R1H~¹ngab!~¹ngab!1IV21J~¹egmn!

3~¹mgen!1KV•Z1LZ•Z#, ~A1!

and applies to it the variation

Gl
mn⇒Ĝl

mn5Gl
mn1Ql

mn , ~A2!

we find thatS consequently transforms to

S⇒Ŝ5S1dS, ~A3!

where
dS52@112J#~¹lgmn!Qlmn2@2H1J#~¹lgmn!~Qmln1Qnlm!2@112H13J#QlmnQnml2@2H1J#QlmnQlmn

1@ I 2K1L#Ql
lrQe

er1@12K12L#Ql
lrQre

e1LQre
eQrl

l1@122I 1K#VlQe
el1@K21#VlQlh

h12LZlQlh
h

1@112L2K#ZlQh
hl . ~A4!

Now if we subject this new action,Ŝ, to a variation with respect toQl
ab , we clearly have

dQl
ab

Ŝ5dQl
ab

~dS!,

sincedQl
ab

(S)50. Now, from the above we see thatdQl
ab

Ŝ505dQl
ab

(dS) can be expressed as

05E dNxA2g~dQab
l !F2~112J!¹lgab2~2H1J!glm@¹agmb1¹bgma#2@112H13J#~Qab

l1Qba
l!

22~2H1J!Ql
ab1@ I 2K1L#@~Qe

eb!dl
a1~Qe

ea!dl
b#1@12K12L#S 1

2
@~Qbe

e!dl
a1~Qae

e!dl
b#1Qe

elgabD
1gab@2L~Qle

e1Zl!1~K21!Vl#1
1

2
@~122I 1K !Vb1~112L2K !Zb#dl

a1
1

2
@~122I 1K !Va1~112L2K !Za#dl

bG .
~A5!
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Clearly, for arbitrarydQl
ab , we have the constraint that th

coefficient in square brackets vanishes. Taking thegab trace
of this quantity yields

AQe
el1B@Qle

e1Zl#1CVl50 ~A6!

while contracting over, say,l anda yields

DQe
el1E@Qle

e1Zl#1FVl50 ~A7!

where

A5@~N22!24H12I 26J2K~N12!12L~N11!#
~A8!

B5@124H22J2K1~11N!L# ~A9!

C5@~32N!22I 14J1~11N!K# ~A10!

D5@26H1~N11!I 25J2~N12!K1~N13!L#
~A11!

E5F1

2
~N21!22H23J2

1

2
~N11!K1~N13!LG

~A12!

F5F1

2
~N21!14H2~N11!I 12J1

1

2
~N13!KG .

~A13!

We note the following relationships:

BD2AE5CE2BF ~A14!
n
la

d-
n

ny

n
gs
and

F1D5E. ~A15!

Meanwhile, together Eqs.~A6! and ~A7! imply the follow-
ing:

@BD2AE#Qe
el1@BF2CE#Vl50. ~A16!

Therefore, Eqs.~A14!, ~A15! and ~A16! in turn imply

Qe
el5Vl ~A17!

and

Qle
e52~Vl1Zl!. ~A18!

Inserting Eqs.~A17! and~A18! into the coefficient ofdQ in
Eq. ~A5! yields, after a bit of symmetrization and manipul
tion,

Qlab5
1

2
@Plab2Pabl2Pbla# ~A19!

where Pm
nr5¹mgnr and Pmnl52¹mgnl . Inserting Eqs.

~A17!, ~A18! and ~A19! into Eq. ~19! gives

dS52S1E dNxA2gFR1
1

4
~¹agmn!~¹agmn!2

1

2
~¹egmn!

3~¹mgen!1V21V•ZG , ~A20!

in other words, our maximally symmetric values.
s.

of

1,
s.
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