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Palatini variational principle for an extended Einstein-Hilbert action
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We consider a Palatini variation on a generalized Einstein-Hilbert action. We find that the Hilbert
constraint—that the connection equals the Christoffel symbol—arises only as a special case of this general
action, while, for particular values of the coefficients of this generalized action, the connection is completely
unconstrained. We discuss the relationship between this situation and that usually encountered in the Palatini
formulation.[S0556-282(198)03108-1

PACS numbes): 04.20.Fy

I. INTRODUCTION now a field equation that extremizes the acti@ph The fact
that this seemingly independent line of inquiry corroborated

From the earliest days since the advent of general relativ- ; . . .
y g tlhe metrically compatible choice of the Christoffel symbol

ity, attempts have been made to generalize it. The origin ) . " " :
motivations for doing so were concerned with unifyinga@1as been V'ewedo%r:gagé:)svzrl?;%r?fof%oeoéHO;:;in\]laiII;d'

gravitation and electromagnetism, which today have been si® Of the Hilbert(o _ _

perseded by the desire to construct a theory of quantum gray¢hich Eq.(3) is given and Eq(1) is therefore a functional

ity. There are presently many attempts to this end, includin{”'y of the metric degrees of freedom. Certainly it alters the

the superstring-theoretic formulati¢t], the connection dy- Lagrangian formulation of general relativity insofar as it re-

namics proposal[2], non-commutative geometrie$3], moves the need to include a boundary term because there are

Chern-Simons formulation$4], gauge-theoretic formula- no derivatives of field variations on the bound8y.

tions [5], quantization of topologie§6], topological geons However, as noted by Schiimger long agg10] and em-

[7], gravity as an induced phenonem(@j, and so on. phasized by Hehét al. [5], in a generalized theory of gravi-
Throughout this history the Palatini variational principle tation one expects the geometrical relationsk®p to be

has played a subtle but important role. As is well known, ifmodified in some manner that is typically not obvious.

one subjects the ordinariN-dimensional Einstein-Hilbert Hence the 2nd order variation is often not available, and one

(EH) action must resort to a Palatini-type of variational principle. Indeed,
the Palatini approach has been employed in most of the gen-
SEHZJ dNx[ \/—_g(R(F)+167r£m)] (1) eralized theories ofgquantum gravity mentioned above, ei-
ther in terms of affine connection—metric variableqas is

L . . common in supergravity theorigd.1]) spin connection—
to a Palatini variation, i.e. assumes that there isarariori - . )
. . . . S a vielbien variables. Furthermore, although the physical rel-
relationship between th@gorsion-free affine connectiod” . . . .
kv evance of the metrically compatible Christoffel symbol in

gng_t%earsn\elzvtgﬁ ’a;ncéihéj soilét?iﬁ(éf it::z d%ﬁggﬂ ttg tﬁevl?s”j;lordeneral relativity is clear, from a geometrical perspective the
'Y geY ™ Y )

field equation resulting from the metric variation, singling out of the Chnstoffgl c?onnecpon IS somewhat curt-
ous because the geometry is impervious to which particular

87T,,=G,,(I), (2)  connection is chosefChristoffel or otherwisg as long as it
is torsion-free.
from the connection variation the constraint Motivated by the above, we consider in this paper the
relationship between the Palatini variational principle and the
"= T "9 =T "009,,=0 (3)  condition of metric compatibility. Since the key premise of

the Palatini principle is that metric and connection are inde-
which is the familiar condition of metric compatibility, pendent of one another at the outset, we consider a generali-
whose solution zation of the EH actiori1) which includes all possible terms
that are at most quadratic in derivatives and/or connection
variables. We then determine the circumstances under which
a Palatini variational principle yields the compatibility con-
dition (3), and what the consequent gravitational dynamics
is the Christoffel symbol. In other words the geometricalwould be in situations that are more general. We workin
constraint(3) (henceforth called the “Hilbert constraint’is  dimensions, and consider actions which are functionals only
of the metric and the affine connectidalthough our ap-
proach could straightforwardly be extended to a vielbein for-
*Email address: hsburton@avatar.uwaterloo.ca malism). For simplicity we consider only torsion-free con-
'Email address: mann@avatar.uwaterloo.ca nections.
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Il. GENERALIZED ACTION AND
CONNECTION CONSTRAINTS

whose solution determines the connection as a function of
the metric in a manner which generalizes K.

. . . We next seek to find the conditions under which E2).

If one assumes that metric and connection variables are : . '

: ! may be solved fot™ in terms of the metric. Tracing E@9)
independent of one another, then there is no longerany on the . o) indices yields

priori reason to consider the EH acti¢h as the action on g y

which to base a theory of gravitation. One is guided only by
principles of general covariance, minimal coupling, simplic-

ity, and logical economy.

Hence we seek a Lagrangian which is a scalar under gen-
eral coordinate transformations and which has the minimal
number of derivatives and/or powers of the field variables in
every term. Since the connection does not transform like avhile ap—\ contraction of Eq(9) gives
tensor, one must construct objects from it which have tenso-
rial properties. The simplest of these are the Riemann curva-L(N=1)+8H=2(N+ 1)1 +4J+(N+3)K]Vy+[(N—1)

ture tensor —4H—-6J—(N+1)K+2(N+3)L]Z,=0. (12)

[(N=3)+21—4J— (N+1)K]V,+[4H+2J+K

—2L(N+1)—1]Z,=0, (10)

R =0,1%,— 3,1, +T%,,17,—T%, ', (5
and the covariant derivative of the metric

V)\g,u,V:ahg,u,v_l—‘”)\,u,gnv_rn)\vg,ur; (6)

where in Egs.(5) and (6) the connection is assumed to be

torsion-free.

The most general action iN dimensions that one can

Equations(10) and(11) are two equations in the two un-
known vector fields/, andZ, . Provided the determinant of
coefficients is non-zero, the only possible simultaneous solu-
tions of Egs.(10) and(11) are

V)\:Z)\:O (12)

which implies

construct out of these objects subject to these constraints is —V,07[1+2J]+(2H+3)[ g, (VPG 7+ VgP")]=0

S= f d"xy = g[R+H(V,g%)(V"Gup) +I1VZ+I(V g,,)

X(V*g")+KV-Z+LZ-Z], (7)
where
V [ —
V, = f/_g, z=Vv, g™ (8)
-9

and where the coefficientd, |, J, K andL are constants.

Other scalar quantities exist, but they either can be rewritte@;n pe shown that®

as linear combinations of the terms in E@) up to total

derivatives or they are at least cubic in derivatives and/or

H H H a
connection variables. Since we assudg,, and ol';,, to

vanish at the boundary, no additional boundary terms in Eq.

(7) are required.
Variation of Eq.(1) with respect to the connectioﬂfm
leads to the following constraint:

1

1
= VilV=9971- 5 VIV-99718

+HL(VPg77+V7g"")g,,

1
—5 V=997
— V8,077 = V0,97 1+ 1 [VP 57+ V7 &)
+I[g (VP97 + V)97~ g**{g""(V),..)

1

+Vg,,t+K >

1
(2780+2087) — 5 (V7 & +VPS))

—ng”"} —L[ZP8+27 8, +22,9°"]=0 9)

(13

upon insertion of Eq(12) into Eq. (9). It is straightforward
to show that

a 1 al K
Fuvzzg (&Mgav_*—ﬂvga,u_aagy,v)z w v (14)

is the only solution to Eq(13) provided that 3+2H# —1

or H# 3. Consequently we see that metric compatibility
arises within the Palatini formalism under quite general con-
ditions unless 3+2H=—1, in which case, fod# —3, it

uv IS Of the form

r,,= +oMY,,,+Y,,,—2Y,,.] (15

mov

wh(ireYY,wy is a tensor obeyin ,,,,=Y,,, andg*Y ,,,
=g v

.,v bUt is otherwise arbitary. Similarly, iff =2, we
find, again forJ# — 3, thatT™* ,, is of the form

FOMTA AL T A L

vyp

(16)

ury

MmooV

whereA ,,,=A,,,, is an arbitrary tensor that is traceless on
all indices. We further note that the condition that trivializes
Eq. (13), i.e. J=—3, H=1, is a simultaneous solution of
both of the above special cases and thus le&ygg” com-
pletely undetermined modulo the conditions given in Eq.
(12). In this case, the Palatini variation provides almost no
information about the relationship between the metric and
the connection, as Eq12) furnishes only 8 equations to
determine the 24 unknowrs. Furthermore, Eq(12) would

not exist if the determinant of coefficients in Eq$0),(11)
were set to zero, thereby yielding a redundancy.
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We expect that this redundancy is made manifest by some&his type of transformation is sometimes called a deforma-
symmetry on the connection coefficients. To this end, contion transformatior{5]. Under the above transformation we
sider the following general transformation of the connectionfind that the actiorn(7) is correspondingly transformed:

A A T\ A ~
r /LV:>]‘—‘ ,uV_F MV+Q 12 (17) S=S=S+ 58, (18)

whereQ" uv 1S @n arbitrary tensor field with the sole restric-

tion that it, like F“W, is symmetric in its last two indices. where

|
8S=—[1+231(V*g*")Qy,,—[2H+IUV*g*")(Qns+ Qur) —[1+2H+3J]Q'Q, ., —[2H+I]QM'Q, ,,
+[1=K+LIQMQ¢,,+[1-K+2L]Q",, Q"¢ +LQ, Q™ +[1-2I +K]V,Q  +[K—-1]V,Q", +2LZ*Q, ,”
+[1+2L-K]Z*Q7,,. (19

For F”W to be completely unconstrained, we must havemation (17) with Q”W completely unconstrained other than
8S=0 regardless of the choice @*W(Qwv). This can  being symmetric in its lower two indices. Accordingly, the

only happen if values(20) will henceforth be called the “maximally sym-
metric” values?
H= } J=— E |=K=1 L=0 (20) From this perspective one can say that the compatibility
4’ 2’ ' ' condition (3), obtained by applying the Palatini variational

principle to the EH action, is an example of a constraint

which we note ensures that the determinant of coefficients ifhduced by a broken symmetry. That is, the EH action is a
the systen{10),(11) vanishes. special case of our general actigh above, with the particu-

Conversely, consider subsitution of E4.7) for I'*,,,  |ar requirement thaH=1=J=K=L=0. That these values
into the general actior(7), and then varying thetrans-  of H,|,J,K,L break the general symmetry is obvious from
formed action with respect t@Q",,. This yields a set of the above analysis, and it is this breaking of this “connection
complicated algebraic equations 1@* ,, . Insertion into Eq.  symmetry” which singles out the Christoffel symbol.
(7) of their solution forQ*,,, in terms ofT™* ,, andg,,, leads

directly to a modified action of the form given in E7) Il EXTENDED ACTION DYNAMICS
whose specific values fdi,|,J,K,L are given by Eqs(20) '
above! Momentarily putting aside our consideration of the “con-

In other words, Eqs(20) clearly compose the unique set nection dynamics” of our extended action and calculating
of values such that our action is invariant under the transforthe ordinary “metric dynamics,” we find

1 1
87T ,,=Gun(I)+(1-K)V,V,— EK[V#V,,-i-V,,VM]—Z(V)A—V}\)Q"E HV.g,,+ EJ(VMg,,e—FV,,gM) -L[Vv,Z,

1
+sz,u+ V,uvv+ Vvv,u+ Z,uzv] + H[(V,ugaﬁ)(vygaﬁ) + zgaﬁ(v)\gaﬂ)(v)\gﬁv)] + E‘][(Vnga,u)(vagvn)

1 1 ) 1 1 ) 1
+(Vngav)(vag,u17)]+gy,v _EH(Vpgaﬁ)(VpgaB)+§|V _EJ(VegaB)(VagE'B)_ELZ +V€ IV€+§KZ€

(21)

See the Appendix for more explicit details.
2“Maximally” symmetric to distinguish them from other partial symmetries which may occur when one assumes some particular tensorial

structure inQ* .
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upon variation of Eq(7) with respect to the metric. Provided 1 N .

the constant$i,|,J,K,L are chosen so that E(4) is satis- 87T =+ 7[VuPuy "+ V. Py "]

fied (i.e. the coefficients are chosen so that+P?H# -1

andH # 3), then all terms on the right-hand side of E1) 1. A 1. R
vanish except for the first one, which becomes the usual V5P ; +4l2(P P )(Prg)
expression for the Einstein tensor in terms of the metric. ®

Consider next the condition of maximal symmetry. Inser- —(P ) (P,\,)—2(P*, )(P™ )]
tion of our maximally symmetric values, Eq0), into the a T e ’

above dynamical equation yields 1 . . . e
+ §g,u,v[2( P)\nn)(P)\pp) - 2( PE}\ 1])( P}\ 7’)

1 +(Py o) (PA)+4V (P e—Pe7 )] (26)
87T, =Gun(D)+ Z[V,P,, "+ VP, 7] ! !

where P, #":=4,g*". Further simplification of the right-

hand side of Eq(26) yields

! 7 A ! AB

87TTy<r: G(yo-)(g) (27)
= (P )Py, —2(PY, ) (P7),)]
whereG,,(9) is the Einstein tensor expressed as a func-
1 o rer tional of th_e metric, |.eG(_w)(g)=G(W)({ 1. Hence Eq.
+ ggW[Z(P)\,7 J(P* ) =2(P o) (P*7) (27) also yields the equatlon_s _of genergl reIat|V|_ty. _
The above case of examinidg=0 raises an interesting
curiosity. Clearly, as the maximally symmetric case only re-
+(Py ) (PM€) +4V (P = P<7 )] (22)  stricts the connection to be torsion-fréde=0 is an available
option. But the fact that we are able to choose such a con-
nection globally enables us to say something additional
where about the geometry of our manifold—namely that it is flat or,
rather, that it can be made flat with no physical sacrifice.
The preceding situation is also a generalization of a result
P, =V, gr (23)  obtained by Gegenberet al. for (1+1) gravity[12]. Con-
sider the actior(7) for N=2 with each ofH,l,J,K,L set to
zero. In this case the determinant of coefficients in E4S)

and and(11) vanishes, and the general solution to B3).is given
by [12]
N 1 N N N — A N a ~a K a @ a
E ”V'_E[P v~ Pu =Py = w v -0 re,=Gg,= u v +(6,B,+5,B,—0,,B%) (29

(29)
whereB,, is an arbitrary vector field. The Einstein tensor is

thus enabling us to put some terms directly in terms of th'Ven by
Christoffel symbol.

Hence the field equations in the case of maximal symme- G(oy)(G):G(w)({ )
try consist of EQ.(22) alone—there is no equation which
determines the connection in terms of the metric. In this =0 (29

sense the maximally symmetric action is a theory of gravity
determined in terms of metric dynamics alone, with the conand so renders the 41)-dimensional field equations
nection freely specifiable. trivial, as in the usual Hilbert case. We see from the preced-
Since the connection may be freely specified, one choicghg analysis of Eq(22) that an analogous situation holds in
is to make it compatible with the metric, i.e. to demand thathigher dimensions for the maximally symmetric action: al-
Eq. (14) hold. In this case alP,*"=0, and Eq(22) reduces  though the field equations do not determine the connection in
to terms of the metric, one can choose the connection to be
compatible with the metric by appropriately choosi@g,,,
in Eq. (17) and recover the metric field equations of general
87TT,LLV:G(;LV)({ }) (25) rEIatiVity.

More generally, the choice of connection is completely
which are the field equations for general relativity. Alterna-irrelevant to the theory in the maximally symmetric case.
tively, suppose we choosé”,,=0. In this case Eq(22) = One has only Eq(22), which determines the evolution of the
becomes metric in terms of the basic matter fields.
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V. CONCLUSIONS theories in quantum gravity is, however, not clear, and would

From the connection-dynamics perspective we haveb € interesting to study further.

adopted in this paper, the most general action which is 2nd
order in connection and derivatives is given by Ef). In the

usual formulation of the Palatini principle thd,I,J,K,L This work was supported in part by the Natural Sciences
coefficients are all set to zero. We have shown that thergnd Engineering Research Council of Canada. One of us

exists a unique choice of these coefficients, given by Eq(r.B.M.) would like to thank R. Sorkin and M. Grisaru for
(20), such that the action is invariant under E@7). This interesting dicussions.

case of maximal symmetry yields a theory of gravity which
is independent of the connection. APPENDIX

From this perspective the condition of metric compatibil-
ity (3) in the usual Palatini formulation arises as a field equa- The following is a proof of the claim made at the end of
tion because this formulation breaks the maximal symmetngec. Il
condition (20), hence uniquely determining the connection. If one begins with our usual generalized action, with
The equations of general relativity are recovered as a consét,l,J,K,L arbitrary, that is,
guence of this broken symmetry.

In the maximally symmetric case we also recover the field :f Ny [ aBy v 2
equations of general relativity but for a different reason. In S d"x = g[R+H(V,g"")(¥ Gap) +IVEH IV G0)
this case the connection may be freely chosen by an appro- e
priate choice ofQ®,, in Eqg. (17), and so choosing it to be X(VEgT)+KV-Z+L2-2], (A1)
metrically compatible obviously yields the metric field equa- gnq applies to it the variation
tions of general relativity. However, these equations are re-

ACKNOWLEDGMENTS

covered even if one does not choose the connection to be A A T\ A
rr» =r* =T* + - A2
compatible, as shown by the choiEé,,=0 in the preced- K’ ’ ot Qu A2)
ing section. we find thatS consequently transforms to
Classically, then, it would appear that maximally symmet-
ric theories in the Palatini formulation are classically equiva- S=S=S+6S, (A3)

lent to their broken counterparts, at least insofar as metric
dynamics is concerned. The role of maximally symmetricwhere

8S=—[1+231(V*g*")Qy ., = [2H+IUV*g*")(Q,n s+ Qur ) —[1+2H+3J]Q"Q, ., —[2H+I]Q'Q, ,,
+[1—K+LIQMQ%,,+[1-K+2L1QMN, Q7 +LQ, QN +[1— 21 +KIV,Q M +[K— 1]V, Q7 +2LZ*Q, 7

+[1+2L-K]Z*Q7,, . (A4)
Now if we subject this new actior§, to a variation with respect t@"aﬁ, we clearly have
Sr, ;5= 8or,(89),

since 6Qxaﬁ(8)=0. Now, from the above we see th@@ws:O: 5@@(58) can be expressed as

~(1420)V, g™~ (2H+ )0, [ Vg4 + VAgHa]—[1+2H +33](Q", + Q%))

0= f d¥x\—g(8Q} )

1
—2(2H+2)Qu P +[I =K+ LI(QA) 87+ (Q. ) ] +[1-K+2L] §[<Qﬂz>6i“+(Q“:)éfh%g“ﬁ)

1 1
g 2L(Qu+Zy) + (K= DVy]+ S[(1 =21+ K)VA+ (14 2L = K)ZP] 6+ 5 [(1 =21+ K)V+ (14 2L = K)Z*]&f

(A5)
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Clearly, for arbitrary&Q”aﬁ, we have the constraint that the and

coefficient in square brackets vanishes. Takingghgtrace
of this quantity yields

AQo +B[Q\+2Z,]+CV\=0 (A6)
while contracting over, say, and « yields
DQa+E[Q\+Z\]+FV,=0 (AT)

where

A=[(N—=2)—4H+21 —6J—K(N+2)+2L(N+1)]

(A8)

B=[1-4H-2J—K+(1+N)L] (A9)

C=[(3—N)—21+4J+(1+N)K] (A10)
D=[—6H+(N+1)I—5J— (N+2)K+(N+3)L]

(A11)

E= %(N—l)—ZH—SJ—%(N+1)K+(N+3)L}
) (A12)

(1 1
F= E(N—1)+4H—(N+1)I +2J+ E(N+3)K}

) (A13)
We note the following relationships:

BD—AE=CE-BF (Al14)

F+D=E. (A15)

Meanwhile, together EqgA6) and (A7) imply the follow-
ing:

[BD—-AE]Q¢, +[BF—-CE]V,=0. (A16)
Therefore, Eqs(A14), (A15) and(A16) in turn imply

Qa=V, (A17)

and
Qref=—(\+Z)). (A18)

Inserting Eqs(A17) and(A18) into the coefficient of5Q in
Eq. (A5) yields, after a bit of symmetrization and manipula-
tion,

1
Q)\aBZE[P)\aB_ Pasr—Paral (A19)

where P,"’=V g"” and P,,,=—-V,g,,. Inserting Egs.
(A17), (A18) and(A19) into Eqg.(19) gives

8S=—S+ f dNx+/—g|

1 1
R+ Z(Vagﬂv)(vag,uv)_z(veg,uv)

X(VHQ)+V2+V.Z|, (A20)

in other words, our maximally symmetric values.
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