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Gravitational analogues of nonlinear Born electrodynamics
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Gravitational analogues of the nonlinear electrodynamics of Born and of Born and Infeld are introduced and
applied to the black hole problem. This work is mainly devoted to the 2-dimensional case in which the relevant
Lagrangians are nonpolynomial in the scalar curvature.@S0556-2821~98!02910-5#

PACS number~s!: 04.20.Cv, 04.70.Bw, 04.90.1e
o

nd
ta

e

um
um
a
e
La

i
ta
po
o

ric
e
it

ue

s

of

the

n-
ents
ll
ec.
n-
in

ee
he
de
ce of

ot a
ich

ur

en-
r-
t

c-
ity
a

ial
i-

ole
e
tely
e as

y-

on
I. INTRODUCTION

In open string theory the dynamics of gauge fields
D-branes is governed@1,2# by a Born-Infeld@4# Lagrangian
or a non-Abelian generalization thereof, with the correspo
ing point-charge solution describing the way fundamen
strings attach to branes@5,6#. The Born-Infeld Lagrangian is
one in a class devised by Born@3# to remove the point charg
singularity which mars classical electrodynamics. There
plenty of evidence that string theory leads to a finite quant
theory of gravity. It has long been expected that quant
effects will ultimately remove the singularities of classic
gravity and cut off curvatures at the string scale. Were on
integrate out all other degrees of freedom, an effective
grangian nonpolynomial incurvature components would
arise. One may therefore wish to investigate nonpolynom
Lagrangians with the feature that they cut off the gravi
tional field, i.e. the space-time Riemann curvature com
nents, in a manner similar to that in which the nonpolyn
mial Born and Born-Infeld Lagrangians cut off the elect
field components, i.e. the curvatures of the principal fib
bundle corresponding to electrodynamics or to one of
non-Abelian generalizations.

Born achieves this through Lagrangians which have
branch point in some curvature scalar~e.g.,FmnFmn!, so that
only for values of this invariant smaller than a critical val
~determined by the position of the branch point! is the La-
grangian real and thus meaningful. The simplest example
a Born Lagrangian are

L5B~FmnFmn!, ~1.1!

with

B~x!5L2FA12
x

2L221G , ~1.2!

or

B~x!5
L2

2
lnS 12

x

2L2D . ~1.3!

In both these examples the branch point is located
FmnFmn52L2, so that the square of the electric fieldE2 is
cut off, E2<L2, and cannot then blow up at the location
the point charge.

Another example is the Born-Infeld Lagrangian
570556-2821/98/57~8!/4738~7!/$15.00
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LBI52L2A2detS gmn1
Fmn

L D . ~1.4!

Suitable traces in internal space are to be performed in
non-Abelian case@7#.

Similar constructs with scalars built out of Riemann te
sor components instead of electromagnetic field compon
will be considered in Secs. II and III. For simplicity we wi
treat in this paper the 2-dimensional case. At the end of S
II we show how this can be generalized to higher dime
sions. In Secs. IV–VI we take up the black hole problem
the 2-dimensional case. Unlike theR-linear case, this is no
longer analytically soluble~with or without a dilaton field!,
but we can still derive its main physical features. We will s
that the black hole singularity is eliminated and inside t
event horizon a geodesically complete, asymptotically
Sitter space emerges. This occurs because the appearan
space-time singularities associated with black holes is n
consequence of the principle of general covariance wh
underlies general relativity, but rather of the specificR-linear
Einstein-Hilbert Lagrangian. In Sec. VII we will discuss o
results.

Our work is related to the interesting papers of Brand
berger@8,9# who uses Lagrange multipliers to eliminate cu
vature singularities. A Born-Infeld gravity of a very differen
kind was considered in@10#.

II. R-NONLINEAR GRAVITATIONAL LAGRANGIANS

By switching to a Lagrangian nonpolynomial in the ele
tromagnetic field, Born was able to eliminate the singular
of the electric field at the position of a point charge. In
similar vein, we shall construct Lagrangians nonpolynom
in the components of the Riemann curvature, which elim
nate the curvature singularity associated with a black h
solution. To keep things simple we will mainly study th
2-dimensional case where the scalar curvature comple
describes the situation. There are black holes in this cas
pointed out by Witten@11# for 2D dilaton gravity and also
studied in the important work of Callan-Giddings-Harve
Strominger~CGHS! @12# and of Wadiaet al. @13#. We will
first construct the nonpolynomial counterparts of 2D dilat
gravity. The original ‘‘polynomial’’ version of this theory is
governed by the action@12#

ADG5E d2xA2ge22f@4l21R14~¹f!2#, ~2.1!
4738 © 1998 The American Physical Society
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wheref is the dilaton field andl the cosmological constan
The field equations obtained by varying this action have
black hole solution

guu5gvv50, guv5gvu52
1

2
e2r ~2.2a!

with

e2r5
1

M

l
2l2uv

~2.2b!

and

f~u,v !5r~u,v !. ~2.2c!

The curvature scalar

R58e22r]u]vr ~2.3!

obtained from the black hole metric~2.2b! is then

R5

4M

l

M

l3 2w

, ~2.4!

where

w5uv, ~2.5!

so thatR is singular at

w5
M

l3 , ~2.6!

the familiar 2D black hole singularity@11,12,13#. To main-
tain the role of the fieldf as dilaton field and in particula
the linear dilaton flat-space solution, the only change
shall make will be to replace, in the manner of Born, t
curvature termA2ge22fR in the action Eq. ~2.1! by
A2ge22fF(R), where F(R) is a function with branch
points at values68/b of the scalar curvature, so that fo
uRu>u8/bu the action is no longer real~here the factor 8 is
inserted for future convenience!. The condition that the clas
sical action be real thus cuts the scalar curvature off and
singularity can arise.

Specifically we will choose

F~R!54Xg1S 2

b
2

g

2DA11
b

8
R2S 2

b
1

g

2DA12
b

8
RC
~2.7!

where the coefficients have been so chosen that forb→0 the
function F(R) should reduce to the CGHS formR. Instead
of the square root branch point, we could equally well ha
chosen a logarithmic branch point. For later use, let us w
down the nonpolynomial action

AF5E d2xA2ge22f@4l21F~R!14~¹f!2#, ~2.8!
e

e

o

e
e

with F(R) as in Eq.~2.7!.
In Sec. VI we shall discuss the black hole problem bas

on this action. Though string theory suggests a dilato
gravity action, it may be of some interest to consider in 2D
purely gravitational action with black hole solution~obvi-
ously this cannot be the Einstein-Hilbert action which in 2
is topological!. This action is most readily found by consid
ering a general action of the form

Agrav
~0! 5E d2xA2gK~R! ~2.9!

with the functionK(R) to be determined by writing down
the corresponding field equations and requiring that the bl
hole metric of Eqs.~2.2a!,~2.2b! be a solution of these equa
tions. The field equations then reduce to a differential eq
tion for the functionK(R) which appears in the Lagrangian
As shown in the Appendix, solving this differential equatio
yields the action

Agrav
~0! 5E d2xA2gR ln R. ~2.10!

Actually two extra terms are possible: the classically irr
evant topological Einstein-Hilbert term and a term whi
involves a transcendental function ofR, which however does
not share the ‘‘residual Weyl invariance’’ of the action E
~2.10! which will be described in Sec. III. For this reason a
for reasons of simplicity this term can be eliminated. T
action Eq.~2.10! has some interesting properties which w
be studied in the next section. Here we limit ourselves
presenting for this action a modification of the same type
that undertaken above for dilaton gravity. The modified a
tion we propose is

Agrav
~b! 5E d2xA2gR@ ln R1b ln~a2R!#. ~2.11!

Notice that the modification here is obtained by adding
new term to the original actionAgrav

(0) of Eq. ~2.10!. In fact
hereAgrav

(0) itself is already nonpolynomial inR, and had we
also modified the originalR ln R term to sayR ln(R1b) we
would have eliminated the possibility of asymptotically fl
solutions, as will be shown in Sec. IV. The action~2.11! will
be studied in detail in Secs. IV and V. In the next section
first describe the features of the actionAgrav

(0) .
For the 2D action~2.8! the scalar curvature is cut off a

uRu<u8/bu, whereas for the 2D action~2.11! the cutoff is 0
<R<uau. In both these cases and in the more realistic hig
dimensional case, the cutoff in the relevant curvature inv
ants is expected to occur near the string scale.

To implement a similar program for higher dimension
we have to contend with the facts that

~a! in addition to the scalar curvature and its powers, f
ther scalar invariants can be formed from the Riemann t
sor, e.g.RmnrsRmnrs, and

~b! the Einstein-Hilbert actionAEH is not topological.
An action which reduces toAEH as the parameterb→0

and shares the features discussed above is
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4740 57FEIGENBAUM, FREUND, AND PIGLI
A5E ddxA2g

3@R1bA12h1RmnrsRmnrs2h2RmnRmn2h3R2#

~2.12!

with b andh i ( i 51,2,3) suitable parameters. The dilaton
case can also be treated along these lines. In higher dim
sional cases actions that only depend on the scalar curva
are of no use, as it is not the scalar curvature butRmnrsRmnrs

which becomes singular for the black hole.

III. THE R ln R LAGRANGIAN

As shown in the Appendix, the action Eq.~2.10! is ob-
tained by setting the constantsC1 andC3 to zero in the most
general 2D dilatonless gravity action which admits the bla
hole solution Eqs.~2.2a!, ~2.2b!. The C3 term, being topo-
logical, is classically irrelevant, as already noted above. H
we point out a residual Weyl invariance which is realized
we also requireC150.

To this end notice that the action~2.10! is invariant under
those Weyl transformationsgmn→exp(2a)gmn for which the
functiona is a solution of the 2D wave equationha50. To
see this, write the metric in the standard form~2.2a!. Then a
Weyl transformation amounts to a shiftr→r1a. Under this
shift the change in the Lagrangian densityA2gR ln R is
22a]u]vr plus terms which vanish ifa obeys the 2D wave
equationha524e22r]u]va50. By two partial integra-
tions, the new term can be recast as the sum of a surface
and of a term proportional to]u]va which again vanishes
So we have established that the action~2.10! is invariant
under these residual Weyl transformations

gmn→exp~2a!gmn , ha50. ~3.1!

This special Weyl invariance is lost when we include theC1
term in the action~A8!. Requiring that this residual Wey
invariance be observed can thus be used to eliminate thiC1
term from the general action~A8!, which then yields
uniquely the action~2.10!.

The field equations obtained by extremizing the act
~2.10! are

Emn
~0![

1

2
gmnR2¹m¹n ln R1gmn¹l¹l ln R50. ~3.2!

For a metric of the type Eq.~2.2a!, we first concentrate on
the trace of the field equations,Euv

(0)50, which takes the form

]u]v~ ln ]u]vr24r!50. ~3.3!

It is worthwhile to notice that, as a consequence of this eq
tion, the logarithm of the scalar curvature obeys the Liouv
equation

eln R1¹c¹
c ln R50. ~3.4!

Without any further ado the fourth order equation~3.3!
can be integrated twice and one obtains the second o
equation

]u]vr5U1~u!V1~v !e4r, ~3.5!
n-
re

k

re
f

rm

n

a-

er

whereU1(u) andV1(v) are two arbitrary functions. Defin
ing the function

c~u,v !52r1
1

2
ln U1V12 ln 8, ~3.6!

the second order equation, not surprisingly, can in turn
rewritten in the Liouville form

4]u]vc5e2c ~3.7!

whose general solution is

c~u,v !5
1

2
ln„4l4l 8~u!l 8~v !…2 lnS M

l
2l2l ~u!l ~v ! D

~3.8!

with l (u) and l (v) the real restrictions of an arbitrary ana
lytic function l (z) of the complex variablez and withM and
l two real integration constants. We can now combine E
~3.6! and ~3.8! to write the general solution of Eq.~3.3! in
the form

r~u,v !5
1

2
lnF U~u!V~v !

M

l
2l2l ~u!l ~v !G , ~3.9!

where

U~u!5
4l

Al 8~u!U1~u!
, V~v !5

4l

Al 8~v !V1~v !
~3.10!

are two new arbitrary functions replacing those introduced
Eq. ~3.5!.

Changing coordinates to

û5 l ~u!, v̂5 l ~v !, ~3.11!

and performing a suitable residual Weyl transformation
the type ~3.1!, we end up with the familiar Witten metric
~2.2a!, ~2.2b!.

Finally, for the metric~2.2a!, the remaining field equa
tions, Euu

(0)50, Evv
(0)50, lead to relations between the, so f

arbitrary, functionsU,V,l : to wit,

ln l 8~u!5 ln U~u!1AuEu

U~ t !dt

ln l 8~v !5 ln V~v !1AvEv
V~ t !dt, ~3.12!

whereAu andAv are the two constants. These relations a
obviously obeyed for the Witten metric.

IV. SMOOTHING THE R ln R LAGRANGIAN

The pure gravitational~no dilaton! action of Eq.~2.10!
already has part of the cutoff feature we wish to exploit
the extent that the logarithm becomes complex ifR is nega-
tive. By adding a term involving ln(a2R), we can further
limit the scalar curvature to the range 0<R<a. Thus in Eq.
~2.11! we were led to consider
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57 4741GRAVITATIONAL ANALOGUES OF NONLINEAR BORN . . .
Agrav
~b! 5E d2xA2gR@ ln R1b ln~a2R!#. ~4.1!

Without loss of generality we can seta58 here~this can
always be achieved by simultaneous constant shifts inr and
a!. The field equations now take the form

Emn[
1

2
gmnS R2

bR2

82RD2¹m¹nI ~R!1gmn¹l¹lI ~R!50,

~4.2!

where

I ~R!5 ln R1b ln~82R!2
8b

82R
. ~4.3!

Requiring thatr depends only onw5uv, we obtain, again
first for the trace of the field equations,

2F 8b

82R
2b21G]u]vr1]u]vI ~R!50, ~4.4!

whereR is given in terms ofr by Eq. ~2.3!. We are inter-
ested in black hole-type solutions in whichR goes asymp-
totically to zero asw→2`, so let us consider the following
1/w expansion ofr:

r52
1

2
ln~2mw!1

A

w
1

B

w2 1¯ , ~4.5!

where A and B are constants. We then obtain the sca
curvature

R528
m

w S A1
4B22A2

w
1O~1/w2! D , ~4.6!

and

I ~R!5 lnS 28mA

w D1
4B22A2

Aw
1

mAb

w
2bS 12

mA

w D
1O~1/w2!. ~4.7!

Inserting this into Eq.~4.4!, we find that

B5S 12
mb

2 DA2. ~4.8!

Comparing this result to a 1/w expansion of ther function
for the Witten black hole, Eq.~2.2b!, we identify our inte-
gration constants asm5l2 and A5M /2l3. In the limit b
→0, we recover the usual 2D black hole resultB5A2. So as
w→2` we have solutions that behave like the usual bla
hole.

As already mentioned in Sec. II, it is essential that
action in Eq. ~4.1! have a term of the formA2gR ln R
which cannot be expanded aroundR50. If we consider the
simplest nontrivial action*d2xA2gR2 which can be ex-
panded aroundR50, we obtain the Euler-Lagrange equatio

]u]v@e22r]u]vr#5e22r~]u]vr!2. ~4.9!
r

k

e

Inserting into this equation the ansatz of Eq.~4.5!, we find
that A50, and the only asymptotically flat solution is pu
2D Minkowski space. Thus, were we to consider a mo
‘‘symmetric’’ action by replacingR ln R by R ln(a1R), this
action would not admit black hole solutions.

Since Eq.~4.4! is nonlinear~in fact nonpolynomial! in R,
we cannot find an exact solution forr, and so we must be
content with numerical methods if we wish to extend the
solutions in 1/w. If b,0, I (R) is a monotonically increasing
function ranging over the reals for 0<R<8, and so we can
numerically integrate Eq.~4.4! to obtainI (R) and then solve
Eq. ~4.3! for R. If b is small andmA,8, deviations of the
solution given in Eq.~4.5! from the usual black hole are
negligible for largeuwu. As an example, consider sayw5
220. Then we can determine the boundary conditions
settingr, dr/dw, R, anddR/dw equal to their usual black
hole values forw5220. The results of such an integratio
for

M5l51, b52.001 ~4.10!

are presented in Fig. 1a.
We can match this numerical result to approximate a

lytical solutions in certain convenient limits. For smallw,
consider the ansatz

FIG. 1. ~a! Numerical solution forr(w) obtained from Eq.~4.4!
and the corresponding scalar curvatureR(w) in units in which the
parametera in Eq. ~4.1! is set toa58. ~b! Numerical results for
the curvatureR(w) at different values ofb, compared to the Witten
solution.
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4742 57FEIGENBAUM, FREUND, AND PIGLI
r52
1

2
ln g1Lw1Nw2. ~4.11!

Then we find

R~w!58g„L1~4N22L2!w…, ~4.12!

and

N5L2F11
bgL

2@~12gL !22bgL~22gL !#
G . ~4.13!

In the limit of smallb, this last result reduces to

N'L2F11
gbL

2~12gL !2G . ~4.14!

For the Witten black hole~2.2b! the curvature atw50 is
R(0)54l2 @see Eq.~2.4!#, which for our numerical choice
Eq. ~4.10! becomesR(0)54. In Eq.~4.12! this then requires
gL→ 1

2 for b→0 so that to lowest order inb this agrees with
our numerical result. Herew50 still corresponds to the
event horizon of this smoothed black hole, and, for the ab
choice of parameters, the deviation of the curvature in
~4.12! from the usual black hole curvature is proportional
b and so will be very small at the horizon. Consequently,
experimentalist living in this 2D universe might have a d
ficult time indeed determining whether the laws of phys
admit singularities. To do so he would actually have to p
through the event horizon, at which point he would be una
to publish his results.

In Fig. 1a, the functionr ~not the curvature! appears to
become singular near the pointw51.333. Closer examina
tion of the behavior ofr near the pointw5a at whichr is
singular shows that

r~w!'2 lnS a2w

Aa
D ~4.15!

there. The curvatureR, meanwhile, approaches its maximu
allowed valueR58 along a linear trajectory asw→a. If we
include the next higher order term

r~w!52 lnS a2w

Aa
D 1D~a2w!1O„~a2w!2

…,

~4.16!

then we find this is indeed a solution to Eq.~4.4! with R
58„122D(a2w)….

Like for the usual black hole, we have a coordinate s
gularity at a finite value ofw, but, unlike the usual black
hole, the scalar curvature remains finite at this point. It
readily seen that

s5
1

a2w
~4.17!

is an affine parameter along null geodesics for the metric
Eq. ~4.15!. Since s→` as w→a, we conclude that the
space-time is geodesically complete. Instead of termina
in a curvature singularity, ass→` the space-time is asymp
e
.

n

s
s

le

-

s

f

g

totically de Sitter. This is similar to the situation described
Refs. @8,9#. Notice that this is also quite similar to wha
happens in Born’s electrodynamics, in which the elect
field attains its maximum value at the point that would co
respond to the singularity in the Maxwell case. In the gra
tational case as well, the scalar curvature attains its m
mum value near the point which would have former
corresponded to the curvature singularity. Only here, beca
of the absence of a space-time singularity, the space-t
cannot end at a finite distance and the point of maxim
curvature is pushed to an infinite distance from the ev
horizon.

The behavior ofr andR for b52.001 is representative
of what happens for smallb if we integrate Eq.~4.4! and use
Eq. ~2.3! to calculate the scalar curvature, starting from t
same boundary conditions. In Fig. 1b we compare graph
the curvature forb52.001, b521, b5210, and for the
Witten black hole (b50).

Finally, we have checked that the remaining field equ
tionsEuu50, Evv50 are obeyed, as expected, near the po
w50, w5a and for large negativew, i.e. in the regions of
validity of the expansions~4.11!, ~4.15!, ~4.5!.

It should also be noticed that forpositiveb the field equa-
tions ~4.2! are solved by the de Sitter metric withR58/(1
1b).

V. ADM MASSES FOR THE R ln R LAGRANGIAN

Let us consider a space-time which forw→2` has the
metric

ds252e2rdudv, ~5.1!

where we assumer takes the form of Eq.~4.5!. To calculate
the Arnowitt-Deser-Misner~ADM ! mass of this space-time
we need to work in an asymptotically flat coordinate syste
so let us consider the asymptotic coordinate transformat

u52exp„Am~r 2t !… ~5.2!

v5exp„Am~r 1t !…. ~5.3!

Then for larger ,

ds25~112Ae22Amr !~2dt21dr2!, ~5.4!

and

R58Ame22Amr . ~5.5!

If we vary gmn in Agrav
(0) , we obtain the field equation

Emn
~0![

1

2
gmnR2¹m¹n ln R1gmn¹l¹l ln R50. ~5.6!

As is well known, if the space-time possesses an asympt
time-translation symmetry, then we can writeE005]1m(r ),
and the ADM mass of the space-time will bem
5 limr→`m(r ).

For a time-independent solution like the present metri
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E00
~0!5

1

2
g00R1g00

1

A2g
]1~A2gg11]1 ln R!. ~5.7!

The first term goes as exp(22Amr ) and so does not contrib
ute to m(r ). The remainder goes as2]1

2(ln R)1O„exp
(22Amr )…, and

m~r !52]1„22Amr 1 ln~8A!…52Am. ~5.8!

Thus the ADM mass for a black hole-type solution ofAgrav
(0)

will be 2Am. For the choice of constants corresponding
the solution of Eq.~2.2b!, m52l. Keep in mind thatl ap-
pears here as a free parameter, i.e. an integration consta
this solution, andnot as a cosmological constantof the
theory, as in the dilatonic gravity.

Thus it is the constant term in Eq.~4.5! which determines
the ADM mass for theR ln R theory. This is in contrast to
the original CGHS gravity, for which the coefficient of 1/w
determines the mass.

If we considerAgrav
(b) for bÞ0, the ADM mass due to the

‘‘free’’ action Agrav
(0) will remain unchanged, but there ma

be an additional contribution due to the perturbative te
proportional to b. The gravitational field equation corre
sponding to this perturbation is

Emn
int 5

1

b
~Emb2Emn

~0!![
2R2gmn

2~a2R!
2¹m¹nF ln~a2R!2

a

a2RG
1gmn¹l¹lF ln~a2R!2

a

a2RG50. ~5.9!

The first term ofE00
int , being proportional toR2, goes as

exp(-4Amr ) and so does not contribute. The other terms
duce for larger to

E00
int52~¹m¹n2gmn¹l¹l!S R

a D1O„exp~24Amr !…,

~5.10!

which will go as exp(-2Amr ). Thus the perturbation does no
affect the ADM mass. This was expected since, to low
order inR, the perturbation is topological.

VI. R-NONLINEAR 2D DILATON GRAVITY

For a metric of the standard form~2.2a!, theR-nonlinear
dilaton gravity action~2.8! can be written as

AF5E dudvA2ge22f@4l2216e22r]uf]vf1F~8R!#.

~6.1!

Here, for simplicity, we have introduced the notationR
5R/8 and F is the function defined in Eq.~2.7!. By con-
struction,AF reduces to the CGHS action in theb→0 limit.
We should point out that by substituting the explicit confo
mal gauge form~2.2a! of the metric into the action, we limi
ourselves to the trace of the full set of gravitational eq
tions. The remaining equations can then be dealt with a
Secs. III and IV.
t of

-

t

-
in

For the particular case when bothr andf only depend on
w5uv, the field equations following from the above actio
are

e2rFl21g1S 2

b
2

g

2DA11bR2S 2

b
1

g

2DA12bRG24ḟ

24wf̈14wḟ250 ~6.2a!

and

2 f ~ ṙ1wr̈ !12~ f 22!~ḟ1wf̈ !2~ ḟ 1w f̈ !14wḟ2~12 f !

14wḟ ḟ 50 ~6.2b!

where

f ~R!5
d

dR
F~R!5

1

8

d

dRF~8R! ~6.3!

and dot indicates derivative with respect tow. The ‘‘non-
trace’’ gravitational field equations@obtained from the action
~6.1!# both reduce to the form:

4ḟ2~12 f !2 f̈ 14ḟ ḟ 12 f f̈24 f ḟṙ12ṙ ḟ 50. ~6.4!

Unlike in the CGHS case, these nonlinear equations c
not be solved analytically. However, for our purpose, it s
fices to find an asymptotic solution for whichR→0 as w
→2`. This asymptotic solution will allow us to calculat
the ADM mass of the black hole as in@11#. With the known
b→0 behavior, we look for an asymptotic solution of th
following form:

r52
1

2
ln r02n ln w1

1

w
PS 1

wD
f52k ln w1

1

w
QS 1

wD ~6.5!

where r0, n and k are constants, andP and Q admit a
Taylor series expansion in the~small! variable 1/w. Inserting
~6.5! into the field equations, we obtain the solution

r52
1

2
ln~2l2w!1

1

w

M

2l3 1OS 1

w2D
f52

1

2
ln w1

1

w

M

2l3 1OS 1

w2D . ~6.6!

Since for small curvatures our Lagrangian reproduces
leading order the CGHS Lagrangian, it is clear that a solut
of the type Eq.~6.6! exists. The curvature cut-off depende
departures from the CGHS solution appear in the higher
der terms not displayed here, since they do not affect
value of the mass. Although both the functionsr andf be-
come infinite asw→2`, just like in the CGHS case, phys
cally relevant quantities, such as the metrice2r and the cur-
vature, remain finite. The integration constantM equals the
mass of the black hole. Because of the form ofAF , we must
haveRP(21/b,1/b), so thatR(58R) is necessarily finite.
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As in Sec. IV, we expect a pointw5a at which the cur-
vature R attains its maximum allowed valueR58/b. Nu-
merical solutions with such a behavior are being studied

VII. DISCUSSION

In this paper we have constructed gravitational analog
of Born’s nonlinear electrodynamics and applied them to
black hole problem. This involves Lagrangians which a
nonpolynomial in the components of the Riemann tensor.
construction, curvature singularities are then eliminat
Once inside the event horizon, a geodesic approaches
large values of the affine parameter a region in which
scalar curvature is constant and equal to its maximum p
sible value, while space-time remains geodesically compl
We have treated here mainly the 2D problem, though hig
dimensional cases can be treated in a similar manner
discussed briefly in Sec. II. In the course of our argume
we were led to study the 2DR ln R Lagrangian and its re
sidual Weyl invariance.

Unlike the Abelian and non-Abelian Born-Infeld cas
@1,2,7#, there is no string theory argument leading directly
the Lagrangians introduced in Sec. II. The appearance o
Born-Infeld Lagrangian can be understood as describ
through its point charge solutions, the way fundamen
strings attach to branes@5,6#. It remains an interesting ope
problem to find the string-theoretic, or more generally M
theoretic, role of the nonsingular black holes implied by t
gravitational analogues introduced here.
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APPENDIX

In this appendix we will find the most general 2D grav
tational action

A5E d2xA2gK~R! ~A1!

such that the Witten black hole Eqs.~2.2a!, ~2.2b! solves the
corresponding field equations. For metrics of the type~2.2a!,
we have, as was shown in Sec. II,R58e22r]u]vr. In terms
of the variablew5uv, the functionr of Eq. ~2.2b! is
o

s
e
e
y
.

for
e
s-
e.
er
as
ts

he
g,
l

-
e

e22r5
M

l
2l2w ~A2!

and the curvature is found@see Eq.~2.3!# to be

R5
4Ml2

M2l3w
. ~A3!

The field equation following from the action~A1! is

2e2rK~R!28~ ṙ1wr̈ !K8~R!14„K̇8~R!1wK̈8~R!…50,
~A4!

where the dot stands for derivative with respect tow and the
prime stands for derivative with respect toR.

In terms of the new function

T~R!5R
d

dR S K~R!

R D ~A5!

the third order equation~A4! becomes a second order diffe
ential equation

T9~R!

T8~R!
52

~3R28l2!

R~R24l2!
~A6!

which can be easily integrated:

T~R!5C1S ln~R24l2!2 ln R1
4l2

R D1C2 . ~A7!

Inserting this into Eq.~A5! we can solve forK(R) with the
result

K~R!5C1F2
R

2
„ln2 R1 ln2~4l2!…24l2

1RE ln~R24l2!

R
dRG1C2R ln R1C3R.

~A8!

The last term in the above result is topological and th
classically irrelevant. TheR ln R Lagrangian discussed in
Sec. III is the second term. The term in square brack
beyond representing an unwieldy transcendental function
R, does not share the ‘‘residual’’ Weyl invariance of th
R ln R Lagrangian, which was discussed in Sec. III.
.
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