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Gravitational analogues of the nonlinear electrodynamics of Born and of Born and Infeld are introduced and
applied to the black hole problem. This work is mainly devoted to the 2-dimensional case in which the relevant
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PACS numbd(s): 04.20.Cv, 04.70.Bw, 04.98e

I. INTRODUCTION E
EB,=—A2\/—de< Ut —”) (1.4)

In open string theory the dynamics of gauge fields on A

D-branes is governe(.,2] by a Born-Infeld[4] Lagrangian  gyjitable traces in internal space are to be performed in the
or a non-Abelian generalization thereof, with the correspondy,on_abelian casé7].

ing point-charge solution describing the way fundamental  gjmilar constructs with scalars built out of Riemann ten-

strings attach to brang$,6]. The Born-Infeld Lagrangian is o, components instead of electromagnetic field components
one in a class devised by Bof8] to remove the point charge i pe considered in Secs. Il and Iil. For simplicity we will

singularity which mars classical electrodynamics. There igeat in this paper the 2-dimensional case. At the end of Sec.
plenty of evidence that string theory leads to a finite quantuny; e show how this can be generalized to higher dimen-

theory of gravity. It has long been expected that quantumijons |n Secs. IV-VI we take up the black hole problem in
effects will ultimately remove the singularities of classical {he 2_dimensional case. Unlike tielinear case, this is no
gravity and cut off curvatures at the string scale. Were one ®onger analytically solubléwith or without a dilaton fielt
integrate out all other degrees of freedom, an effective Lap i e can still derive its main physical features. We will see
grangian nonpolynomial ircurvature components would 4t the black hole singularity is eliminated and inside the
arise. One may therefore wish to investigate nonpolynor_nlaévem horizon a geodesically complete, asymptotically de
Lagrangians with the feature that they cut off the gravita-gjier space emerges. This occurs because the appearance of
tional field, i.e. the space-time Riemann curvature cOmpOgpace-time singularities associated with black holes is not a
nents, in a manner similar to that in which the nonpolyno-consequence of the principle of general covariance which

mial Born and Born-Infeld Lagrangians cut off the electric \,qerjies general relativity, but rather of the spediiinear
field components, i.e. the curvatures of the principal fibelgjnstein-Hilbert Lagrangian. In Sec. VIl we will discuss our
bundle corresponding to electrodynamics or to one of itgggts.

non-Abelian generalizations. _ _ Our work is related to the interesting papers of Branden-
Born achieves this through Lagrangians which have §grgerg 9] who uses Lagrange multipliers to eliminate cur-

branch point in some curvature scaferg.,F ,,F*"), sothat g re singularities. A Born-Infeld gravity of a very different
only for values of this invariant smaller than a critical value \jnq was considered ifLO).

(determined by the position of the branch poiist the La-
grangian real and thus meaningful. The simplest examples of "
a Born Lagrangian are

. R-NONLINEAR GRAVITATIONAL LAGRANGIANS

By switching to a Lagrangian nonpolynomial in the elec-
L=B(F.,F*), (1.)  tromagnetic field, Born was able to eliminate the singularity
of the electric field at the position of a point charge. In a
similar vein, we shall construct Lagrangians nonpolynomial
< in the components of the Riemann curvature, which elimi-
A2~ [1_ _ nate the curvature singularity associated with a black hole
Be)=A [ ! 2A2 1}’ 2 solution. To keep things simple we will mainly study the
2-dimensional case where the scalar curvature completely
or describes the situation. There are black holes in this case as
pointed out by Witter{11] for 2D dilaton gravity and also
B(x)= —In(l— _) (1.3 studied in the important work of Callan-Giddings-Harvey-
2 2A%)" ' Strominger(CGHS [12] and of Wadiaet al. [13]. We will
first construct the nonpolynomial counterparts of 2D dilaton
In both these examples the branch point is located agravity. The original “polynomial” version of this theory is
FWF’”=2A2, so that the square of the electric fidld is  governed by the actiofl2]
cut off, E><A?2, and cannot then blow up at the location of

the point charge. _ 2y [ aa— 267 A 2 2
Another example is the Born-Infeld Lagrangian ADG_J’ dXV-ge ANTHFRTA(VE? ], (2.1
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where ¢ is the dilaton field and the cosmological constant. with F(R) as in Eq.(2.7).

The field equations obtained by varying this action have the In Sec. VI we shall discuss the black hole problem based
black hole solution on this action. Though string theory suggests a dilatonic
gravity action, it may be of some interest to consider in 2D a
purely gravitational action with black hole solutigobvi-
ously this cannot be the Einstein-Hilbert action which in 2D
is topologica). This action is most readily found by consid-
with ering a general action of the form

1
guu:gvvzo! gm):gvu:_iezp (223

2p—___
© M 225 Ag?;w:J d?x—gK(R) (2.9

with the functionK(R) to be determined by writing down

the corresponding field equations and requiring that the black
H(u,v)=p(u,v). (2.29  hole metric of Egs(2.29,(2.2b be a solution of these equa-

tions. The field equations then reduce to a differential equa-
The curvature scalar tion for the functionK (R) which appears in the Lagrangian.

As shown in the Appendix, solving this differential equation
R=8e *d,d,p (2.3 yields the action

and

obtained from the black hole metri2.2b is then
AM Ag(g;U:J d’xJ-gRInR. (2.10

R=v— (24 Actually two extra terms are possible: the classically irrel-
=W evant topological Einstein-Hilbert term and a term which
involves a transcendental functionRf which however does
not share the “residual Weyl invariance” of the action Eq.
(2.10 which will be described in Sec. lll. For this reason and
W= uvp, (2.5  for reasons of simplicity this term can be eliminated. The
action Eqg.(2.10 has some interesting properties which will
so thatR is singular at be studied in the next section. Here we limit ourselves to
presenting for this action a modification of the same type as
that undertaken above for dilaton gravity. The modified ac-
tion we propose is

where

M

w= 3, (2.6)

>

the familiar 2D black hole singularit{11,12,13. To main-
tain the role of the fieldp as dilaton field and in particular Ag@w:f d’xy—gR[{In R+ B In(a—R)]. (2.11)
the linear dilaton flat-space solution, the only change we

shall make will be to replace, in the manner of Born, the o . . )
curvature termy—ge 2R in the action Eq.(2.1) by Notice that the qu_mcatlon_ he(r(g is obtained by adding a
J=ge 2*F(R), where F(R) is a function with branch "€W tegm t.o the. original actiony,,, of .Eq: (2.10. In fact
points at values+8/8 of the scalar curvature, so that for hereAér)av. itself is already nonpolynomial iR, and had we
|R|=|8/8| the action is no longer redhere the factor 8 is also modified the originaR In R term to sayR In(R+b) we
inserted for future convenienceThe condition that the clas- Would have eliminated the possibility of asymptotically flat

sical action be real thus cuts the scalar curvature off and ngolutions, as will be shown in Sec. IV. The acti¢h11) will
singularity can arise. be studied in detail in Secs. IV and V. In the next section we

Specifically we will choose first describe the features of the actigij?), .
For the 2D action(2.8) the scalar curvature is cut off at

2 v B B |IR|<|8/B|, whereas for the 2D actio(®.11) the cutoff is O
/—3— E) 1+ oR- 1- §R <Rs=]al. In both these cases and in the more realistic higher

2.7 dimensional case, the cutoff in the relevant curvature invari-

ants is expected to occur near the string scale.
where the coefficients have been so chosen thagfe0 the To implement a similar program for higher dimensions,
function F(R) should reduce to the CGHS forR. Instead we have to contend with the facts that
of the square root branch point, we could equally well have (@) in addition to the scalar curvature and its powers, fur-
chosen a logarithmic branch point. For later use, let us writéher scalar invariants can be formed from the Riemann ten-
down the nonpolynomial action sor, e.gR,,,,R*"??, and
(b) the Einstein-Hilbert actiomg, is not topological.

_ An action which reduces tolgy as the parametgg—0
— 2y [ 2¢ 2 2 EH
A f dxV=ge “THF(R)+4(Ve)T], (28 and shares the features discussed above is

F(R)=4(y+
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whereU,(u) andV,(v) are two arbitrary functions. Defin-
A:f d\/-g ing the function

X[R+ BV1- 7R

RA7P7 = 75R R = 13R?]
(212

with B8 and »; (i=1,2,3) suitable parameters. The dilatonic
case can also be treated along these lines. In higher dime

urpo

1
Y(u,v)=2p+ Eln U,V,—In 8, (3.9

the second order equation, not surprisingly, can in turn be
ngritten in the Liouville form

sional cases actions that only depend on the scalar curvature 49,0, p=e?" 3.7
are of no use, as it is not the scalar curvatureRy, ,R**7” ue
which becomes singular for the black hole. whose general solution is

IIl. THE R In R LAGRANGIAN HUo)= %In(4)\4l ‘() '(v))—ln(%—)\zl(u)l(v))

As shown in the Appendix, the action E(.10 is ob- 3.9
tained by setting the constar@s andC; to zero in the most
general 2D dilatonless gravity action which admits the blackwith I(u) andl(v) the real restrictions of an arbitrary ana-
hole solution Eqgs(2.28, (2.2b. The C; term, being topo- lytic functionl(z) of the complex variable and withM and
logical, is classically irrelevant, as already noted above. Her& two real integration constants. We can now combine Egs.
we point out a residual Weyl invariance which is realized if (3.6) and (3.8) to write the general solution of E¢3.3) in
we also requireC;=0. the form

To this end notice that the actid@.10) is invariant under
those Wey! transformations,,,— exp(2v)g,, for which the (W)= Eln U(u)V(v) 3.9
function « is a solution of the 2D wave equati@ne=0. To PR, 2 1M ) ' '
see this, write the metric in the standard fof2123. Then a T‘A (Wl (v)
Weyl transformation amounts to a shift-> p+ «. Under this
shift the change in the Lagrangian densify-gRInRis  where
—2ad,d,p plus terms which vanish i& obeys the 2D wave
equation Ja=—4e ?’g,9,a=0. By two partial integra- U(u) = 3N V(o)= VDN
tions, the new term can be recast as th_e sum (_)f a surface term (WU (W) I (0)V1(0)
and of a term proportional té,d,« which again vanishes. (3.10
So we have established that the acti@l10 is invariant
under these residual Weyl transformations are two new arbitrary functions replacing those introduced in

Eqg. (3.5.
9 —exXp2a)g,,, UOa=0. 3.9 Changing coordinates to

This special Weyl invariance is lost when we include @e O=1(u), o=I(v) (3.11
term in the action(A8). Requiring that this residual Weyl ’ ' '
invariance be observed can thus be used to eliminat&this and performing a suitable residual Weyl transformation of
term from the general actiofA8), which then yields the type(3.1), we end up with the familiar Witten metric

uniquely the actior(2.10. (2.23, (2.2b.
The field equations obtained by extremizing the action Finally, for the metric(2.23, the remaining field equa-
(2.10 are tions, £&9)=0, £9=0, lead to relations between the, so far

1 arbitrary, functiondJ,V,I: to wit,
éﬂogigWR—vﬂvy In R+g,,VV, InR=0. (3.2 .
Inl"(u)y=In U(u)+AUJ U(t)dt
For a metric of the type Eq2.23, we first concentrate on
the trace of the field equation§?)=0, which takes the form v
Inl"(v)=In V(v)+AUf V(t)dt, (3.12
dyd,(In dy,d,p—4p)=0. (3.3

It is worthwhile to notice that, as a consequence of this equa\fvge.mAlu anbd Ay da;e tg? tw)ttconstatnys. These relations are
tion, the logarithm of the scalar curvature obeys the Liouville®PVIously obeyed for the Witten metric.

equation
IV. SMOOTHING THE R In R LAGRANGIAN

InR c —
e" "+ VoVeIn R=0. (34 The pure gravitationa(no dilator) action of Eq.(2.10

can be integrated twice and one obtains the second ordép€ extent that the logarithm becomes compleR is nega-
equation tive. By adding a term involving I&—R), we can further

limit the scalar curvature to the ranges®<a. Thus in Eq.
dudyp=U1(U)V(v)e*, (3.5  (2.11) we were led to consider



Agf;:f d’xy—gR[In R+ B In(a—R)]. (4.0

Without loss of generality we can sat=8 here(this can
always be achieved by simultaneous constant shifisand
a). The field equations now take the form

1 BR? N
g,uvzigp,v R_ﬁ _V[LVVI(R)+g/LVV V)\I(R):O:
(4.2
where
_ 88
I(R)=In R+ In(8~R)~ g—=. (4.3

Requiring thatp depends only onv=uv, we obtain, again
first for the trace of the field equations,

88

2[8__R‘3—1 dyd,p+3dyd,1(R)=0, (4.4

whereR is given in terms ofp by Eq. (2.3). We are inter-

ested in black hole-type solutions in whiéhgoes asymp-
totically to zero awv— —, so let us consider the following
1M expansion of:

(4.9

__ 4 LN
p= 2”( HW) w w2 ;
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FIG. 1. (a) Numerical solution fop(w) obtained from Eq(4.4)

where A and B are constants. We then obtain the scalarand the corresponding scalar curvat&@v) in units in which the

curvature
n 4B—2A?
R=-8— | A+ ——— +0(1w?) |, (4.6)
w W
and
—8uA| 4B—2A% uAB uA
(-] A 8 Sy
+0O(1Mm?). 4.7
Inserting this into Eq(4.4), we find that
Bz(l—’;—ﬁ)Az. 4.8

Comparing this result to a W/ expansion of the function
for the Witten black hole, Eq2.2b), we identify our inte-
gration constants ag=A? and A=M/2\3. In the limit B
—0, we recover the usual 2D black hole redit A%, So as

parametem in Eq. (4.1) is set toa=8. (b) Numerical results for
the curvatureR(w) at different values of8, compared to the Witten
solution.

Inserting into this equation the ansatz of E4.5), we find
that A=0, and the only asymptotically flat solution is pure
2D Minkowski space. Thus, were we to consider a more
“symmetric” action by replacingR In R by R In(a+R), this
action would not admit black hole solutions.

Since Eq.(4.4) is nonlinear(in fact nonpolynomiaglin R,
we cannot find an exact solution fpr and so we must be
content with numerical methods if we wish to extend these
solutions in Iw. If 8<0, I1(R) is a monotonically increasing
function ranging over the reals for<OR<8, and so we can
numerically integrate Eq4.4) to obtainl (R) and then solve
Eq. (4.3 for R. If B is small anduA<8, deviations of the
solution given in Eq.(4.5 from the usual black hole are
negligible for large|w|. As an example, consider say=
—20. Then we can determine the boundary conditions by
settingp, dp/dw, R, anddR/dw equal to their usual black
hole values fow= —20. The results of such an integration

w— —o we have solutions that behave like the usual blackior

hole.

As already mentioned in Sec. ll, it is essential that the

action in Eq.(4.) have a term of the form/—gRInR
which cannot be expanded arouR&-=0. If we consider the
simplest nontrivial actionfd?x\/—gR? which can be ex-

panded aroun&=0, we obtain the Euler-Lagrange equation

dudy[€7 20,0, p]=€"(3yd,p)°. (4.9

M=x=1, B=-.001 (4.10

are presented in Fig. la.

We can match this numerical result to approximate ana-
lytical solutions in certain convenient limits. For smaill
consider the ansatz
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1 totically de Sitter. This is similar to the situation described in
p=—5In y+Lw+ Nw?. (4.1)  Refs.[8,9]. Notice that this is also quite similar to what
happens in Born’'s electrodynamics, in which the electric
Then we find field attains its maximum value at the point that would cor-
respond to the singularity in the Maxwell case. In the gravi-
R(w)=8y(L+(4N—2L?)w), (4.12 tational case as well, the scalar curvature attains its maxi-
mum value near the point which would have formerly
and corresponded to the curvature singularity. Only here, because
of the absence of a space-time singularity, the space-time
o ByL cannot end at a finite distance and the point of maximum
N=L2 1+ . (413 , 1vs At
2[(1—yL)2—ByL(2—yL)] <r:]ur\_/ature is pushed to an infinite distance from the event
orizon.
In the limit of small B, this last result reduces to The behavior ofp andR for 8= —.001 is representative
of what happens for sma@ if we integrate Eq(4.4) and use
N~L2 1+ YBL (4.14) Eq. (2.3 to calculate the scalar curvature, starting from the
2(1— «y|_)2 : ' same boundary conditions. In Fig. 1b we compare graphs of

the curvature forB=—.001, B=—1, B=—10, and for the
For the Witten black holé2.2b the curvature aw=0 is  Witten black hole f=0).
R(0)=4\? [see Eq.2.4)], which for our numerical choice Finally, we have checked that the remaining field equa-
Eq. (4.10 becomedR(0)=4. In Eq.(4.12) this then requires tions&,,=0, &,,=0 are obeyed, as expected, near the points
yL— 3 for B—0 so that to lowest order if this agrees with  w=0, w=« and for large negativev, i.e. in the regions of
our numerical result. Herev=0 still corresponds to the validity of the expansion$4.11), (4.19, (4.5).
event horizon of this smoothed black hole, and, for the above It should also be noticed that fpiositiveg the field equa-
choice of parameters, the deviation of the curvature in Edtions (4.2) are solved by the de Sitter metric wit=8/(1
(4.12 from the usual black hole curvature is proportional to + g).
B and so will be very small at the horizon. Consequently, an
experimentalist living in this 2D universe might have a dif-
ficult time indeed determining whether the laws of physics
admit singularities. To do so he would actually have to pass Let us consider a space-time which far-— has the
through the event horizon, at which point he would be unablenetric
to publish his results.
In Fig. 1a, the functiorp (not the curvatureappears to ds’=—e?’dudv, (5.7
become singular near the powt=1.333. Closer examina-
tion of the behavior op near the poiniv=qa at whichp is  where we assumg takes the form of Eq(4.5). To calculate
singular shows that the Arnowitt-Deser-MisnefADM) mass of this space-time,
we need to work in an asymptotically flat coordinate system,

V. ADM MASSES FOR THE R In R LAGRANGIAN

a—W so let us consider the asymptotic coordinate transformation
p(w)=—In (4.15

Ja

u=—exp(yu(r—t)) (5.2
there. The curvaturR, meanwhile, approaches its maximum

allowed valueR=8 along a linear trajectory ag— «. If we v =exp(\/;(r +1)). (5.3

include the next higher order term

Then for larger,
)=l 22 ) 4 D(a—w) + O((a—w)?)

p(W)==In| —== |+ Dla=w)+O((a=w)"), d?=(1+2Ae 25" (—d2+dr?), (5.4

(4.19

then we find this is indeed a solution to E@.4) with R
=8(1-2D(a—w)). R=8Aue 2k (5.5

Like for the usual black hole, we have a coordinate sin-
gularity at a finite value ofv, but, unlike the usual black
hole, the scalar curvature remains finite at this point. It is
readily seen that

and

If we varyg,, in Aé?)av, we obtain the field equation

1
. gﬂ())EEgMVR—VMVV In R+g,, V'V, In R=0. (5.6
s= (4.17

a—W

As is well known, if the space-time possesses an asymptotic
is an affine parameter along null geodesics for the metric ofime-translation symmetry, then we can wréigy=dJ,m(r),
Eq. (4.195. Since s—x as w—a, we conclude that the and the ADM mass of the space-time will ben
space-time is geodesically complete. Instead of terminating=lim,_,.m(r).
in a curvature singularity, as—o° the space-time is asymp- For a time-independent solution like the present metric,
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1 1 For the particular case when bgitand ¢ only depend on
&Y= 5 9ocR+ Goo == 71( J=gg'%9, InR). (5.7 w=uv, the field equations following from the above action
g

VT are

The first term goes as exp@y/ur) and so does not contrib- 2 2 :
ute to m(r). The remainder goes as d5(In R)+O(exp eI NP+ y+ e %) \/1+'BR_(E+ %) \/1—,373} —4¢
(=2y/ur)), and
— 4w+ 4w p?=0 (6.29
m(r)=—d,(—2\/ur +In(8A))=2pu. (5.9
and

Thus the ADM mass for a black hole-type solution4f), _ ) ' ) S _
will be 2. For the choice of constants corresponding to 2 f(p+wp)+2(f—2)(p+we) — (f+wf)+4we?(1—f )
the solution of Eq(2.2b, m=2\. Keep in mind that ap- .-

pears here as a free parameter, i.e. an integration constant of +awgf=0 (6.2b

this solution, andnot as a cosmological constamif the

theory, as in the dilatonic gravity. where
Thus it is the constant term in EG}.5) which determines d 1 d
the ADM mass for theR In R theory. This is in contrast to f(R)= d_RF(R):§ ﬁF(SR) (6.3

the original CGHS gravity, for which the coefficient ofnl/

determines the mass. and dot indicates derivative with respectwo The “non-

i (8)
. I er CQnS'de(B“)‘lgfav_ for [#_0’ the ADM mass due to the 5o gravitational field equatior{®btained from the action
free” action Ay, will remain unchanged, but there may (6.1)] both reduce to the form:

be an additional contribution due to the perturbative term

proportional to 8. The gravitational field equation corre- 41— )—F+4dt+2fh—afpp+2pf=0. (6.4
sponding to this perturbation is

Unlike in the CGHS case, these nonlinear equations can-

EIELZE (5#[3_5(03)5 — Rzgw ~V,V,/In(a-=R)— i} not be so_lved analytically._ Howe\{er, for our purpose, it suf-
B ® 2(a—R) u a—R fices to find an asymptotic solution for whidR—0 asw
— —oo. This asymptotic solution will allow us to calculate
+g,,V,VN In(a—R)— ——| =0, (5.9 the ADM mass of the black hole as fifi1]. With the known
a a—-R B—0 behavior, we look for an asymptotic solution of the

. following form:
The first term of &Yy, being proportional toR?, goes as

exp(-4/ur) and so does not contribute. The other terms re- 1 1 /1

duce for larger to p==3 In po—n In w+ WP W
int A R
OOZZ(V,(LVV_g/LVV)\V ) a

+O(exp —44ur)), b= —KInw+ =0
w
(5.10

which will go as exp(-2/ur). Thus the perturbation does not

affect the ADM mass. This was expected since, to lowes
order inR, the perturbation is topological.

1
w) (6.9

where pg, n and k are constants, an® and Q admit a
Taylor series expansion in tifemal)) variable 1. Inserting
E6.5) into the field equations, we obtain the solution

VI. R-NONLINEAR 2D DILATON GRAVITY p== ; In(—A2w) + w Kﬂo(v%)
’ For a me.tric of.the standard for(ﬁ.za, the R-nonlinear 1 1M 1
ilaton gravity action(2.8) can be written as b=— > In W = TJFO =. (6.6)
AFZJ dudv \/—_ge‘2¢[4)\2—16e‘2”¢9u¢av¢+F(8R)]. Since for small curvatures our Lagrangian reproduces to

(6.2 leading order the CGHS Lagrangian, it is clear that a solution
of the type Eq.(6.6) exists. The curvature cut-off dependent

Here, for simplicity, we have introduced the notatidh  departures from the CGHS solution appear in the higher or-
=R/8 andF is the function defined in Eg2.7). By con-  der terms not displayed here, since they do not affect the
struction, A reduces to the CGHS action in tife—0 limit. ~ value of the mass. Although both the functignand ¢ be-
We should point out that by substituting the explicit confor- come infinite asv— —, just like in the CGHS case, physi-
mal gauge forn(2.2a of the metric into the action, we limit cally relevant quantities, such as the meg¥¢ and the cur-
ourselves to the trace of the full set of gravitational equavature, remain finite. The integration constdmtequals the
tions. The remaining equations can then be dealt with as imass of the black hole. Because of the form4gf, we must
Secs. lll and IV. haveR e (—1/8,1/8), so thatR(=87R) is necessarily finite.
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As in Sec. IV, we expect a point= « at which the cur- M
vature R attains its maximum allowed value=_8/8. Nu- e_ZPZT—)\zw (A2)
merical solutions with such a behavior are being studied.
and the curvature is foundee Eq.(2.3)] to be
VII. DISCUSSION
AM\?
In this paper we have constructed gravitational analogues R= IVECTE (A3)

of Born’s nonlinear electrodynamics and applied them to the
black hole problem. This involves Lagrangians which arep
nonpolynomial in the components of the Riemann tensor. By
constrL_Jcti_on, curvature siqgularities are _then eliminated. 262K (R) —8(p+wp)K'(R)+4(K'(R)+ WK’ (R))=0,
Once inside the event horizon, a geodesic approaches for (Ad)
large values of the affine parameter a region in which the

scalar curvature is constant and equal to its maximum poswhere the dot stands for derivative with respecitand the
sible value, while space-time remains geodesically completgrime stands for derivative with respectRo

We have treated here mainly the 2D problem, though higher In terms of the new function
dimensional cases can be treated in a similar manner, as

discussed briefly in Sec. Il. In the course of our arguments T(R)zRi (K(R)
we were led to study the 2R In R Lagrangian and its re- drR

sidual Weyl invariance.

Unlike the Abelian and non-Abelian Born-Infeld cases the third order equatiofA4) becomes a second order differ-
[1,2,7), there is no string theory argument leading directly toential equation
the Lagrangians introduced in Sec. Il. The appearance of the
Born-Infeld Lagrangian can be understood as describing,

he field equation following from the actiof\1) is

= (A5)

T'(R)  (3R—8)\?)

through its point charge solutions, the way fundamental T(R)  R(R—4\?) (A6)
strings attach to brang$,6]. It remains an interesting open o

problem to find the string-theoretic, or more generally M-Which can be easily integrated:

theoretic, role of the nonsingular black holes implied by the )

gravitational analogues introduced here. T(R)zCl( In(R—4\2)—In R+ 4% +C,. (A7)
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APPENDIX

In this appendix we will find the most general 2D gravi- dR|+C3R In R+C3R.

tational action

In(R—4\?)
R J e

(A8)

A= J d?x\/—gK(R)

(A1) The last term in the above result is topological and thus

classically irrelevant. TheR In R Lagrangian discussed in

such that the Witten black hole Eq&.23a, (2.2b solves the
corresponding field equations. For metrics of the t{he3,
we have, as was shown in Sec.R=8e~2°9,d,p. In terms
of the variablew=uv, the functionp of Eq. (2.2b is

Sec. lll is the second term. The term in square brackets,
beyond representing an unwieldy transcendental function in
R, does not share the “residual” Weyl invariance of the
R In R Lagrangian, which was discussed in Sec. lll.
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