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Late time behavior of the maximal slicing of the Schwarzschild black hole
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A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can evolve into a foliation of the
r .3m/2 region of spacetime by maximal surfaces with the requirement that time run equally fast at both
spatial ends of the manifold. This paper studies the behavior of these slices in the limit as proper time at infinity
becomes arbitrarily large. It is shown that the central lapse decays exponentially and an analytic expression is
given both for the exponent and for the preexponential factor.@S0556-2821~98!02708-8#
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I. INTRODUCTION

Maximal slices have been intensively studied, first to co
struct initial data for asymptotically flat solutions to the Ei
stein equations and second to investigate the evolving sp
time. In each case one obtains an elliptic equation wit
unique solution~modulo boundary conditions! for a confor-
mal factor and the lapse function, respectively.

A maximal slice is defined by the requirement that t
trace of the extrinsic curvature vanish. This is equivalen
demanding that the Lie derivative along the normal to
slice of Ag vanish. The Schwarzschild solution has
surface-orthogonal timelike Killing vector in the exterio
quadrants. Any spacelike slice perpendicular to this Killi
vector has vanishing extrinsic curvatures and is obviou
maximal. Thus each of thet5const slices in the standar
coordinates is maximal.

However, this slicing is not a foliation. The lapse functio
is zero at the bifurcation ‘‘point’’~actually, a two-sphere!,
which is a fixed point of the slicing, and this slicing look
antisymmetric in the extended Schwarzschild picture. A
runs forward in the right-hand quadrant, it runs backwards
the left-hand quadrant. It never enters ther ,2m region.

A very different spherically symmetric slicing exists. Th
is one where the lapse function along a central ‘‘axis’’~ac-
tually, a central cylinder! does not vanish and the slices d
enter the central quadrants. This slicing, or rather the spe
version which is symmetric across the central axis, has b
investigated in the past by a mixture of numerical and a
lytic techniques@1,2#.

It is apparent from the numerics that this slicing is a
liation; the slices do not seem to cross. It is a very unus
foliation, however, the first concrete example of the pheno
enon that came to be called ‘‘the collapse of the lapse.’’ T
central lapse goes to zero so that the slices never pass be
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r 53m/2. In this article we reanalyze this foliation focusin
especially on the late time behavior of the central lapse.
show that it goes to zero exponentially quickly and explici
display both the leading exponent and the coefficient mu
plying it.

In this work we study the time functiont on the
Schwarzschild black hole spacetime having the followi
properties.

~i! The level sets oft result from evolution of a time-
symmetric Cauchy slice of Schwarzschild spacetime
maximal surfaces under the additional requirement that
proper time for asymptotic observers at infinity, which are
rest relative to the slicing, runs equally fast at both spa
ends.

~ii ! The time functiont is zero on the time-symmetric
slice and coincides with the proper time of the infinite o
servers.~This means thata, the lapse of the time function
goes to 1 at both infinities along each slice.!

Note that~i! is really a property only of the slicing define
by t rather thant itself. This time function, which has firs
been considered in@1,2#, has two key properties: The firs
property is thatt takes all real values or, in other words, th
future singularity atr 50 does not preventt from assuming
arbitrarily large positive values~and similarly for the past!. It
is believed that this property holds on vacuum spacetim
more general than Schwarzschild spacetime. Here it is
portant to realize that such spacetimes are not ‘‘given’’
us. Rather, they have to be generated by a Cauchy p
lem: One first constructs regular asymptotically flat init
data, satisfying the vacuum constraints, say, maximal,
then tries to evolve these in time by analytical or numeri
means. Doing this involves ana priori choice of gauge
which in particular implies that the resultant globally hype
bolic spacetime comes already equipped with a specific t
function. Suppose the initial data has a future-trapped s
face. Then, by the Penrose singularity theorem@3#, any
Cauchy-evolved spacetime is singular in the sense of ha
future-incomplete null geodesics.~Similar conclusions, but
in both the future and past directions, hold when the init
data has an outer-trapped surface@4# or when the topology is
nontrivial, e.g., in the sense that there is more than
4728 © 1998 The American Physical Society
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57 4729LATE TIME BEHAVIOR OF THE MAXIMAL SLICIN G . . .
asymptotic end@5#.! Many maximal initial data sets havin
one of these properties exist~for trapped surfaces, see@6#!.
There is the conjecture, due to Moncrief and Eardley@7#, that
if one evolves the initial data in a gauge where the wh
slicing is maximal andt is the proper time at infinity, the
evolution should be extendable to arbitrarily large values
t, irrespective of whether singularities form or not. This g
bal existence result, if true, would, in spirit at least, go a lo
way toward settling in the affirmative the Penrose cosm
censorship hypothesis@8# in the case of asymptotically fla
vacuum data. The spacetime evolved in the way describe
the Schwarzschild case, has the second property that it
fact extendable: There are no maximal spherically symm
ric Cauchy slices of Schwarzschild spacetime reaching r
less than or equal tor 53m/2. Thus maximal slices o
Schwarzschild spacetime ‘‘avoid the singularity atr 50.’’ It
is this last property which numerical relativists expect to
true for evolutions of more general initial data and which
clearly desirable if numerical codes based on maximal s
ings are used.

Take any observer at rest relative to the slicing defined
t ~‘‘Eulerian observer’’!. Then*adt along the trajectory of
that observer is her or his proper time. Since proper tim
finite as the slicing approaches the limiting maximal slice
r 53m/2, we must have*adt,`, and thus limt→` a(t)
50 ~‘‘collapse of the lapse’’@9#!. Our main result is that
along the Eulerian observers going through the bifurcat
two-sphere,

a~t!;
4

3&
expS 4A

3A6
D expS 2

4t

3A6m
D as t→`,

~1.1!

where the constantA is given by Eq.~3.41!, below. The
exponent Eq.~1.1! has been estimated before@1,10# by a
mixture of numerical and model calculations. The estimate
@10# of this exponent is 1.82, which agrees quite closely w
our exact 3A6/4;1.83. We hope that our result, Eq.~1.1!,
will be useful for the numerists as an accurate test for co
based on maximal slicings. An extension of the work here
the late time behavior ofa along the trajectories of arbitrar
Eulerian observers will appear elsewhere@17#. It remains to
be seen whether our results, which are strongly tied
spherical symmetry, shed any light on the general situat

Our plan is as follows. In Sec. II we review some gen
alities on lapse functions and foliations. Then we give a p
cise definition of the time function under study. In Sec.
we perform the asymptotic analysis leading to Eq.~1.1!. In
Appendix A we essentially rederive the Schwarzschild m
ric in terms of spherically symmetric maximal Cauchy da
In Appendix B we prove a calculus lemma which is basic
our analysis.

II. GENERALITIES

Let (M ,ds2) be a globally hyperbolic spacetime an
t:M→R a time function, i.e., a function the level sets
which form a foliationFt of M by Cauchy surfaces>S.
Then the functiona:M→R defined by

a ª@2~¹t!2#21/2 ~2.1!
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is called thelapseof Ft . The reason for this name is thata
measures the ‘‘lapse of proper time’’ along trajectories n
mal to the leaves ofFt as a function oft. To make this
explicit, define the vector fieldtm by

tm52a2¹mt ⇒tm¹mt51, ~2.2!

which is timelike and future~i.e., increasingt! pointing. We
assume for simplicity that the mapt is onto whence the
vector field tm is complete. Then the vectortm yields an
orthogonal decomposition ofM as M5R3S, as follows.
Construct a diffeomorphismw:R3S, i.e., w:(l,yi)PR
3S°xm5wl

m(yi)PM , by

ẇl
m~y! :5

d

dl
wl

m~y!5tm
„wl~y!…,

t„w0~y!…50. ~2.3!

It follows from Eq. ~2.2! that t„wl(y)…5l, which further
implies that

t ,m„wl~y!…wl,i
m ~y!50⇒ẇl

m~y!wl,i
n ~y!gmn„wl~y!…50.

~2.4!

Thusl, viewed as a function onM , coincides witht and the
lines of constantyi are orthogonal trajectories toFt . Con-
sequently, in (t,yi) coordinates, the metric takes the form

wt* ~ds2!5ẇt
mẇt

ngmndt21wt,i
m wt, j

n gmndyidyj

5gtt~t,y!dt21gi j ~t,y!dyidyj , ~2.5!

wheregi j is the induced metric on the leaves and

gtt~t,y!52a2
„wt~y!…. ~2.6!

Thus, alongyi5const, the proper times is given by

s5E a„wt8~y!…dt8. ~2.7!

Note that, whent8 is another time function giving the sam
foliation, i.e., t85t8(t), the lapsea changes according to
a85(dt8/dt)21a. Suppose now we are given another ve
tor field jm on M . This can be uniquely decomposed,

jm5Nnm1Xm, Xmnm50, ~2.8!

wherenm52a¹mt, is the future normal ofFt . To distin-
guishN from a, we callN the boost functionof jm relative
to Ft . If N is nonzero on some leafSt0

, it can be viewed as

the restriction toSt0
of the lapse of the time functiont8

obtained byjm¹mt850, t8uSt0
5const.

We have the relation

N5ajm¹mt, ~2.9!

which is, of course, trivial in the present context, but will b
extremely useful in our computation of the lapsea of a
maximal foliation of the extended Schwarzschild spacetim
wherejm can be chosen as the ‘‘static’’ Killing vector.
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4730 57R. BEIG AND N. ÓMURCHADHA
We now recall some features of Schwarzschild spacet
which are used in our construction. In the exterior regionr
.2m.0, we have

ds252S 12
2m

r Ddt21S 12
2m

r D 21

dr21r 2dV2,

2`,t,`. ~2.10!

Here ds2 can be smoothly extended acrossr 52m to the
Kruskal spacetimeM on whichr is a globally defined func-
tion r :M→R1, which has saddle points atS, the bifurcation
two-sphere of the horizon. The Killing vector field]/]t ex-
tends to a global Killing vector fieldjm on M which is
spacelike in the interior, i.e., black and white hole, regio
null on the horizon and zero onS. Both the black hole region
and the right exterior region can be written in the form~2.10!
with the understanding that the functions~u,w! andr together
with the retarded Eddington-Finkelstein coordinate

u5t2r 22m lnur 22mu ~2.11!

covers both regions and the horizon atr 52m. The function
t goes to` at the right component~where ‘‘right’’ refers to
the original unextended spacetime! and goes to2` at the
left horizon. The set wheret vanishes is the union ofS, the
original t50 spacelike hypersurface~extended in the obvi-
ous way to the left exterior region! and the timelike, totally
geodesic cylinderG, which is ruled by timelike radial geo
desics throughS which are orthogonal toS and which hit the
singularity asr→0. Sincer is constant along the trajectorie
of jm and r is, by Eq.~2.10!, an ‘‘areal radius,’’ it follows
that every spherically symmetric spacelike slice has a sph
cal minimal surface~a ‘‘throat’’ ! exactly where it is tangen
tial to jm @which, of course, can only happen in the interi
and it necessarily has to happen there for slices leaving to
other ~left! exterior region#.

Consider the functionh(r ,C) given by

h~r ,C!52E
r C

r C

~122m/x!~x422mx31C2!1/2dx,

~2.12!

where the integral is to be understood in the Cauc
principal-value sense for r .2m and where 0,C
,3()/4)m2, r .r C , and r C is the unique root ofP(x)
5x422mx31C2 for this range ofC in the interval 3m/2
,r C,2m. For x.r C , we haveP(x).0. Thush(r ,C)1r
12m lnur22mu depends smoothly on (r ,r C). We easily infer
that

t5h~r ,C! ~2.13!

defines, for each fixedC, a spacelike sliceSC which
smoothly extends to the black hole region, where it interse
G at r 5r C .

In order to see that this surface extends smoothly
symmetrically throughG, we use forr ,2m the parameter

l ~r !5E
r C

r x2dx

@P~x!#1/2, ~2.14!
e

,

ri-

he

-

ts

d

which is the proper distance along the slice, as can eithe
seen from Eqs.~2.10!, ~2.12!, or ~2.13! or from Appendix A.
Then, from Eqs.~2.12!, ~2.14!, we have the system of ordi
nary differential equations~ODE’s!

dh

dl
52

C

r 222mr
,

d2r

dl2
5

m

r 22
2C2

r 5 , ~2.15!

with h(0)50, r (0)5r C , (dr/dl)(0)50, which is regular at
l 50. Thus the functionr along the slice is symmetric with
respect tol 50 and smooth. This implies thatdr/dl5(1
22m/r 1C2/r 4)1/2 is antisymmetric.

Next, we observe that the level sets ofs5t2h(r ,C), for
fixed C in the allowed range, give rise to maximal surfac
on the Kruskal manifold; i.e., they satisfy

¹m
„@2~¹s!2#21/2¹ms…50. ~2.16!

The functions is not the time function of interest to us~in
fact, s being not differentiable atr C , it does not define a
global foliation!. Rather this local foliation arises from mov
ing a given maximal slice, say,s50, along the flow ofjm

5(]/]t)m. The functionN5@2(¹s)2#21/2 is nothing but
the boost function of]/]t relative tos50. There exists an
explicit solution of Eq.~2.14! due to Reinhart@2#. He, essen-
tially by guessing, foundN to be

N5S 12
2m

r
1

C2

r 4 D 1/2

~2.17!

and from this inferred Eq.~2.12!. For a more illustrative
derivation from the initial-value point of view, see Append
A. Note thatN as a function ofl is antisymmetric relative to
l 50.

We now claim that the surfacet5h(r ,C8) lies every-
where in the future oft5h(r ,C) when C8.C and thatt
5h(r ,C) lies to the future ofS5S0 . It is interesting that we
are unable to see this from the explicit integral~2.12!. In-
stead, we first compute (d/dC)r C from

r C
4 22mrC

3 1C250, ~2.18!

to yield

drC

dC
52

2C

4r C
3 ~123m/2r C!

,0. ~2.19!

Thus the claimed behavior is true at least along the thr
Next, observe that our slices are asymptotically flat at b
spatial ends and thatt`(C)5 limr→` h(r ,C) exists. Suppose
that h(R,C)5h(R,C8) for someR.r C to the right of G.
Then, by the symmetry with respect toG, this would have to
happen also to the left ofG. Thus we would have a lens
shaped region spanned by two maximal slices. But this,
an elegant argument due to Brill and Flaherty@11#, is impos-
sible, except if the two slices are identical, which they a
not in our case. This argument continues to be valid forR
5`. Thush(r ,C) monotonically increases withC for fixed
r and so doest`(C).
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57 4731LATE TIME BEHAVIOR OF THE MAXIMAL SLICIN G . . .
It follows that the equationt5h(r ,C) can be solved forC
to yield a smooth time function defined on ther ,3m/2 sub-
set of the part of Kruskal lying in the future of the Cauc
slice S. Here C labels the leaves of the foliation we a
interested in, but it is not yet the time function w
want: Rather, this is obtained by eliminatingC in terms of
t using the relation

t5t`~C!52E
r C

` C

~122m/x!~x422mx31C2!1/2 dx.

~2.20!

Suppose we had started with the Cauchy slicet50 which,
being time symmetric, is in particular maximal and evolve
into a maximal slicing by a lapse functiona going to 1 at
both spatial ends. This is possible in a unique way~see@12#!.
Then the resultant time function is spherically symmetric a
symmetric with respect toG, and so it has to coincide with
the one obtained above. In particular, it follows that out
can be smoothly extended to negative values oft which
would have been very nonobvious from the explicit formu
~2.12!.

We next compute the lapse functiona of t. Using Eq.
~2.9!, this involves computing

~jm¹mt!215
dC

dt

]h

]CU
r

. ~2.21!

Note that the right-hand side~RHS! of Eq. ~2.21! blows up at
r 5r C , but in such a way that

a5~jm¹mt!21N ~2.22!

has a smooth limit asr→r C , as it has to be. Using formul
~B12! and Eqs.~2.17!, ~2.21!, there results

a5S dt

dCD 21 1

2 F 1

r 23m/2
2~122m/r 1C2/r 4!1/2

3E
r C

r x~x23m!dx

~x23m/2!2@x422mx31C2#1/2G , ~2.23!

with

dt

dC
52

1

2 E
r C

` x~x23m!dx

~x23m/2!2@x422mx31C2#1/2.

~2.24!

Note thatN and a are linearly independent radial solution
of

~DiDi2Ki j K
i j ! f 50, ~2.25!

whereN goes to 1 at the right infinity and to21 at the left
one, whereasa goes to 1 at both ends.

We are interested in studyinga along the trajectories o
Eulerian observers. This requires choosing a coordinatr
5r(r ,t) the level surfaces of which are timelike cylinde
orthogonal to our slicing.~One such timelike cylinder is al
ready known, namely,G given by r 5r C .! Such a coordi-
nate can be found without any calculation. Recall that ma
mal slicings preserve spatial volumes along Euler
t

d

i-
n

observers. Thus a suitable coordinate will be the ‘‘volum
radius’’ on each slice, defined by

r3~r ,t!53E
r C~t!

r x4dx

@x422mx31C2#1/2, ~2.26!

using that the spatial metric on each slice has the form~see
Appendix A!

gi j dxidxj5S 12
2m

r
1

C2

r 4 D 21

dr21r 2dV2. ~2.27!

In the coordinates (t,r,u,w), the Schwarzschild metric fo
r .3m/2 reads

ds252a2dt21S r

r D 4

dr21r 2dV2, ~2.28!

wherer 5r (r,t) is given implicitly by Eq.~2.26! anda by
Eq. ~2.23!. @To check Eq.~2.28! explicitly one should first
observe thatC]h/]Cur5r2]r/]Cur .#

Note that, asC approachesA27/16m2, r C approaches the
value 3m/2, since

P~x!5x422mx31C2

5S x2
3m

2 D 2S x21mx1
3m2

4 D1OXS x2
3m

2 D 2C.
~2.29!

Equation~2.29! also shows thatr C approaches a double roo
of P(x) asC→A27/16m2. Thus, as one letst tend to infinity
for fixed r, the functionr approaches 3m/2. In that sense the
slices approach the limiting maximal slice atr 53m/2. We
are interested in estimatinga in that limit. For simplicity, we
will confine ourselves tor50, i.e., the throatG.

III. LATE TIME ANALYSIS

It is convenient to replace the parameterC by d defined
by

d5r C2
3m

2
, r C

4 22mrC
3 1C250. ~3.1!

As C ranges between 0 and 3()/4)m2, d ranges monotoni-
cally from m/2 to 0. Using the rescaled quantities

C̄5
C

m2 , t̄5
t

m
, d̄5

d

m
, ~3.2!

we find that

t̄~ d̄ !52C̄E
3/21 d̄

` ydy

~y22!~y422y31C̄2!1/2
, ~3.3!

where

C̄5S d̄1
3

2D 3/2S 1

2
2 d̄ D 1/2

. ~3.4!

We have the following lemma:
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Lemma.

t̄~ d̄ !52
3A6

4
ln d̄1

3A6

4
lnu18~3&24!u

22 lnU 3)25

9A6222
U1O~ d̄ !

52
3A6

4
ln d̄1A1O~ d̄ ! as d̄→0. ~3.5!

Proof. First note that

d

dC̄
F C̄

~y422y31C̄2!1/2G5
y3~y22!

~y422y31C̄2!3/2
. ~3.6!

Thus, from the mean value theorem,

U y

y22
S C̄

~y422y31C̄2!1/2
2

A27/16

~y422y3127/16!1/2D U
<

A27d̄2y4

~y422y31C̄2!3/2
, ~3.7!

where we have used

A27/162C̄<A27d̄2. ~3.8!

Inequality~3.7! is valid for yÞ2, but, by continuity, also for
y52. We will find it convenient to sometimes expressC̄ in
terms ofd̄, using Eq.~3.4!. Writing

Q~s!5s2S s214s1
9

2D2 d̄2S d̄214d̄1
9

2D , ~3.9!

Eq. ~3.3! can, after substitutings5y23/2, be written as

t̄5S d̄1
3

2D 3/2S 1

2
2 d̄ D 1/2E

d̄

` ~s13/2!ds

~1/22s!@Q~s!#1/2.

~3.10!

It is elementary to see that, fors>d̄,

0<
9

2
~s22 d̄2!<Q~s!<~s22 d̄2!F9

2
12s~41s!G ,

~3.11!

which, usingA11x<11x/2 for x>0, implies

U 1

@Q~s!#1/2
2

1

@ 9
2 ~s22 d̄2!#1/2U<

2s

9
~41s!

@ 9
2 ~s22 d̄2!#1/2

.

~3.12!

The estimate~3.7! now takes the form
Us13/2

1/22s
S ~ d̄13/2!3/2~1/22 d̄ !1/2

@Q~s!#1/2
2

A27/16

@s2~s214s19/2!#1/2D U
<

A27d̄2~s13/2!4

@Q~s!#3/2

<
A27d̄2~s13/2!4

@ 9
2 ~s22 d̄2!#3/2

. ~3.13!

The inequalities~3.12!, ~3.13! are the basic estimates we wi
be using. We now split the integration domain in Eq.~3.10!,

d̄<s<Ad̄/2, Ad̄/2<s<`, ~3.14!

and write

t̄5 t̄11 t̄2 , ~3.15!

accordingly. We furthermore define (0, d̄,1/2)

t̄1
05A27/16E

d̄

Ad̄/2 s13/2

~1/22s!@ 9
2 ~s22 d̄2!#1/2

ds, ~3.16!

t̄2
05A27/16EAd̄/2

` s13/2

~1/22s!@s2~s214s19/2!#1/2 ds.

~3.17!

Equation ~3.17! is in the principal-value sense ats51/2.
These integrals and the one following later in Eq.~3.32! can
be explicitly computed using the formulas~see, e.g.,@14#!

E dx

x2Ax22 d̄2
5

Ax22d2

xd̄2
, x. d̄.0, ~3.18!

E dx

Ax22d2
5 lnux1Ax22 d̄2u, x. d̄.0, ~3.19!

E dx

xAax21bx1c

5
1

Ac
ln

u22Ac~ax21bx1c!12c1bxu
2uxu

, c.0.

~3.20!

Using (s13/2)/s(1/22s)53/s24/(s21/2), there results,
after straightforward manipulations,

t̄1
052

3A6

4
ln d̄1

3A6

4
ln Ad̄/21o~1! as d̄→0,

~3.21!

t̄2
052

3A6

4
ln Ad̄/21

3A6

4
ln 21

3A6

4
lnU 18

413&
U

22 lnU 3)25

9A6222
U1o~1! as d̄→0. ~3.22!

Next, we have to estimate the remainders. We have



57 4733LATE TIME BEHAVIOR OF THE MAXIMAL SLICIN G . . .
Dt̄15E
d̄

Ad̄/2 s13/2

1/22s F C̄~ d̄ !

@Q~s!#1/22
A27/16

@ 9
2 ~s22 d̄2!#1/2Gds. ~3.23!

Using C̄( d̄)5A27/161O( d̄2) and Eqs.~3.11!, ~3.12!, this
has

uDt̄1u<const3E
d̄

Ad̄/2 sds

As22d2
5O~ d̄1/2!. ~3.24!

Next,

Dt̄25EAd̄/2

` s13/2

1/22s F C̄~ d̄ !

@Q~s!#1/22
A27/16

@s2~s214s19/2!#1/2Gds.

~3.25!

By inequality ~3.13!, this has a bound of the form

uDt̄2u<const3 d̄2EAd̄/2

` ~s13/2!4

@s2~s214s19/2!#3/2 ds5const

3 d̄2I . ~3.26!

The integral I in Eq. ~3.26! can be further split asI 5I 2

1I 28 , where

I 25EAd̄/2

1 ~s13/2!4

@s2~s214s19/2!#3/2
ds<const

3EAd̄/2

1 ds

~s22 d̄2!3/2

5const3
1

d̄2 EA2/d̄

1/d̄ d f

~ f 221!3/2
5OS 1

d̄
D . ~3.27!

Now

I 285E
1

` ~s13/2!4

@s2~s214s19/2!#3/2 ds<const3E
1

` ds

s2,`.

~3.28!

ThusDt̄25O( d̄). Putting all this together implies

t̄~ d̄ !52
3A6

4
ln d̄1A1o~1! as d̄→0, ~3.29!

which is not quite good enough. From Eq.~B12! in the limit
that r goes to infinity and

2C̄
dC̄

dd̄
524d̄S d̄1

3

2
D 2

, ~3.30!

we see that

dt̄

dd̄
5

d̄~ d̄13/2!1/2

~1/22 d̄ !1/2 E
d̄

` ~s13/2!~s23/2!

s2@Q~s!#1/2
ds

5A3d̄E
d̄

1s229/4

s2

ds

@Q~s!#1/21O~ d̄ !5) d̄J1O~ d̄ !.

~3.31!
HereJ can in turn be split asJ5J01DJ, where

J05E
d̄

1 s229/4

s2

ds

@ 9
2 ~s22 d̄2!#1/2

5A2/9E
1

1/d̄
d f

Af 221

29/4A2/9
1

d̄2
E

1

` d f

f 2Af 221

1OS 1

d̄
D

5O~ ln d̄ !2A9/8
1

d̄2
31. ~3.32!

Finally,

DJ5E
d̄

1 s229/4

s2 F 1

@Q~s!#1/2
2

1

@ 9
2 ~s22 d̄2!#1/2Gds.

~3.33!

Thus, using inequality~3.12!,

uDJu<const3E
d̄

1 s

s2

ds

As22d2
5

const

d̄
. ~3.34!

Putting Eqs.~3.31!, ~3.32!, ~3.33! together, there results

dt̄

dd̄
52

3A6

4

1

d̄
1O~1! as d̄→0. ~3.35!

Integrating Eq.~3.35!, we obtain

t̄~ d̄ !52
3A6

4
ln d̄1A81O~ d̄ !, ~3.36!

for some constantA8. Comparing with Eq.~3.29!, we infer
A5A8 and the proof of the estimate~3.5! is complete. j

From A5A8 and Eq.~3.36! it is elementary to infer that

d̄5expS 2
4

3A6
~ t̄2A!D 1OFexpS 2

8

3A6
t̄ D G as t̄→`.

~3.37!

Using Eq.~3.30!, Eq. ~3.35! can be written as

dt̄

dC̄
5

3

4&

1

d̄2
1OS 1

d̄
D . ~3.38!

We want to evaluate the lapsea of the time functiont
5mt̄ along the central throatr 5r C . This, using Eqs.~2.23!
and ~2.24!, is given by

a~t!5
1

2md̄
S dt̄

dC̄
D 21

. ~3.39!

Using Eq.~3.36!, this finally leads to
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a~t!5
4

3&
d̄1O~ d̄2!

5
4

3&
expS 4A

3A6
D expS 2

4t

3A6m
D

1OFexpS 2
8t

3A6m
D G for t→`. ~3.40!

We sum up our results in the following theorem.
Theorem.For the chosen maximal foliation, with the tim

function t coinciding with proper time at infinity and bein
zero on the time-symmetric leafS, the lapse along the cen
tral geodesics orthogonal to the leaves behaves, as a fun
of t, according to Eq.~3.40! with A given by

A5
3A6

4
lnu18~3&24!u22 lnU 3)25

9A6222
U520.2181.

~3.41!

It would be interesting to estimate the lapse for larget
along arbitrary Eulerian observers rather than just the o
along G. In terms of the coordinater introduced in Sec. II,
we conjecture that

a~r,t!5B~r!expS 2
4

3A6

t

mD
1OFB2~r!expS 2

8

3A6

t

mD G , ~3.42!

whereB(r) behaves for larger as

B~r!;const3cosh
4

3A6
S r

mD 3

. ~3.43!

The form ofB(r) in Eq. ~3.43! is motivated by the solution
to the lapse equation~2.25! on the limiting slice at r
53m/2, which is symmetrical with respect to the throat.
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APPENDIX A

The following discussion is similar in spirit to@15#. Let S
be the manifoldR3S2 with a Riemannian, spherically sym
metric metric, which we write in the ‘‘radial’’ gauge, i.e.,

g5dl21r 2~ l !dV2, r P~0,̀ !. ~A1!

The unit vector l i5(]/] l ) i is geodesic and satisfies (r 8
5dr/dl)

Dil j5
r 8

r
qi j , ~A2!
ion

es

whereqi j 5gi j 2 l i l j and a prime means derivative with re
spect tol . After a calculation, which most easily follows th
lines of Besse@13#, we find, for the Riemann tensor,

Ri jkl l
j l k5

r 9

r
qil ~A3!

and

qi
i 8qj

j 8qk
k8ql

l 8Ri 8 j 8k8 l 85
2

r 2 ~12r 82!qk[ iqj ] l . ~A4!

Identities~A3!, ~A4! imply that

Ri j 52
r 9

r
~2l i l j1qi j !1

12r 82

r 2 qi j , ~A5!

R524
r 9

r
12

12r 82

r 2 . ~A6!

The extrinsic curvature onS, in order to be spherically sym
metric, has to be of the form

Ki j 5v l i l j1wqi j . ~A7!

The conditionKi j g
i j 50 implies thatv12w50. Using Eq.

~A2!, we have

DiKi j 5S v813
r 8

r
v D l j . ~A8!

Thus the maximal momentum constraint impliesv52C/r 3

for some constantC. Consequently,

Ki j 5
2C

r 3 l i l j2
C

r 3 qi j , ~A9!

Ki j K
i j 56

C2

r 6 . ~A10!

Inserting Eqs.~A10! and ~A6! into the Hamiltonian con-
straint, there results

24
r 9

r
12

12r 82

r 2 56
C2

r 6 . ~A11!

Next, we definem(r ) by

m~r ! ª

r

2
~12r 82!1

C2

2r 3 . ~A12!

Now Eq. ~A11! implies thatdm/dr is zero. Thus

r 85S 12
2m

r
1

C2

r 4 D 1/2

. ~A13!
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Assuming m.0 and 0<uCu,3()/4)m2, there are two
initial-data sets consistent with Eqs.~A9! and ~A13!. One
starts atr 50, expands to anr max,3m/2, and collapses bac
to r 50. The other is an asymptotically flat complete met
on R3S2 with massm at both ends which is symmetric wit
respect to the throat atr 5r C.3m/2 with

12
2m

r C
1

C2

r C
4 50. ~A14!

Here we restrict ourselves to asymptotically flat data. Th
constitute a two-parameter family of solutions to the sph
cally symmetric, maximal vacuum constraints. Of course,
know from the Birkhoff theorem that members of this fam
with different C but the samem have all to lie in the same
spacetime, namely, the extended Schwarzschild space
‘‘Discovering’’ this fact in the present context amounts
finding the ‘‘height function’’ written down in Sec. II. The
trick is to try to find the remaining Killing vector and to see
the SC’s as graphs over the surfaces orthogonal to this K
ing vector. If (gi j ,Ki j ) evolve to a spacetime having anoth
Killing vector, there must be a functionN, not identically
zero, and a vector fieldXi so that

2NKi j 12D ( iXj )50. ~A15!

AssumingXi to be again spherical, i.e.,

Xi5m l i , m5m~r !, ~A16!

and again using Eqs.~A2! and ~A9!, we infer that

22
NC

r 3 12r 8
m

r
50, ~A17!

4
NC

r 3 12r 8
dm

dr
50. ~A18!

After combining Eqs.~A17! and ~A18!, there results

m~r !5
D

r 2 , D5const, ~A19!

N5
D

C
r 8, ~A20!

where we have assumedCÞ0. We assume without loss tha
D5C. The existence of (N,Xi) solving Eq.~A15! does not
necessarily imply that the vacuum evolution of the initia
data set has a static Killing vector. There also has to
satisfied

LXKi j 1DiD jN5N~Ri j 22Kil K j
l !. ~A21!

It is straightforward to check that Eqs.~A19!, ~A20! do sat-
isfy Eq. ~A21!. @In the case whereC is zero,Xi50, and Eq.
~A21! implies thatN;r 8.#

We remark in passing that the functionN, by virtue of
Eqs.~A15! and ~A21!, satisfies

DiDiN5NKi j K
i j . ~A22!
e
i-
e

e.

-

e

@Of the two linearly independent spherical solutions of E
~A22!, N is that combination which vanishes on the throa#

It now follows that forr .r C the metrics

ds252~N22gi j X
iXj !ds212gi j X

jdxids1gi j dxidxj ,
~A23!

with Ni , Xi , gi j extended in as-independent way to
R3S, are vacuum solutions evolving from the above initia
data sets. They havejm5(]/]s)m as a Killing vector. More
explicitly, since

N22XiX
i512

2m

r
, ~A24!

we have

ds252S 12
2m

r Dds212
C

r 2 dlds1dl21r 2dV2,

~A25!

wherer ( l ) is given implicitly by

l ~r !5E
r C

r dx

A122m/x1C2/x4
. ~A26!

@For C50, l (r ) can be written asl (r )5rA122m/r
1m lnu(11A122m/r )/(12A122m/r )u.#

Note that forCÞ0 the above metrics extend smooth
acrossr 52m. We now seek a functiont with level surfaces
orthogonal to]/]s. Writing this function as

t5F~r !1s, ~A27!

we obtain from

gmnjmdxn52~N22XiX
i !ds1Xidxi5v~dF1ds!,

~A28!

for some functionv, the equation

2DiF5
Xi

N22XjX
j , ~A29!

which makes sense only off the horizon. Using Eqs.~A16!,
~A19!, this leads to

dF

dr
52

C

r 222mr

1

A122m/r 1C2/r 4
. ~A30!

Now consider the coordinate transformation

s5t2F. ~A31!

Then

ds252~N22XjX
j !dt21ḡi j dxidxj , ~A32!

with

ḡi j 5gi j 12X( iF , j )2~N22XlX
l !F ,iF , j ~A33!

5gi j 1~N22XlX
l !21XiXj , ~A34!
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whereXiªgi j X
j . Using Eqs.~A29! and ~A30!,

ḡi j dxidxj5F11S 12
2m

r D 21 C2

r 4 Gdl21r 2dV2

5S 12
2m

r D 21

dr21r 2dV2. ~A35!

We have thus recovered the Schwarzschild metric. In p
ticular, this calculation shows that the parameterC in our
initial-data sets is ‘‘pure gauge’’: Initial data with the sam
m lie in the same spacetime, namely, as level sets of
function s. They can also be written as

t5FC~r ! ~A36!

and its translates underjm5(]/]t)m, where

FC~r !52CE
r 0

r dx

~122m/x!~122m/x1C2/x4!1/2,

~A37!

for some r 0 . Taking r 05r C , we have, with h(r ,C)
5FC(r ), recovered Eq.~2.12!.

It is shown in Sec. II that

t5h~r ,C! ~A38!

implicitly defines a smooth time function on ther .3m/2
subset of the future half of Kruskal. The boost functionN
obtained in this Appendix satisfies the same equation,
each leafSC, as the lapse function ofC, namely Eq.~A22!.
The reason for this is that, for fixedSC , jm defines another
local foliation, which is again maximal sincejm is a Killing
vector.

APPENDIX B

Consider

F~x,E!5E
xE5V21~E!

x W~y!

@E2V~y!#1/2 dy, ~B1!

whereV is a smooth functionV:@x0 ,`)→R with

0,V~x0!, V8~x!,0 for x.x0 , V~ x̄!50, ~B2!

and

0,E,V~x0!, V~x!,E. ~B3!

The functionW is smooth except perhaps atx5 x̄, where it
may have a simple pole.„Thus the pole ofAEW(y)/@E
2V(y)#1/2 is independent ofE.… In the latter case, Eq.~B1!
is to be understood in the principal-value sense and the
lowing operations valid forxÞ x̄. Next, define~we follow
@16# in spirit!

J~x,E!5E
xE

x

@E2V~y!#1/2V~y!W~y!dy. ~B4!

Note thatV•W is smooth. Equation~B4! can be rewritten as
follows:
r-

e

n

l-

J~x,E!52
2

3 E
xE

x d

dy
@E2V~y!#3/2

V~y!W~y!

V8~y!
dy,

~B5!

J~x,E!52
2

3
@E2V~x!#3/2

V~x!W~x!

V8~x!

1
2

3 E
xE

x

@E2V~y!#3/2
d

dy FV~y!W~y!

V8~y! Gdy.

~B6!

Differentiating Eq.~B6! with respect toE twice, we obtain

]2

]E2 J~x,E!52
1

2

1

@E2V~x!#1/2

V~x!W~x!

V8~x!

1
1

2 E
xE

x 1

@E2V~y!#1/2

d

dy FV~y!W~y!

V8~y! Gdy.

~B7!

On the other hand, differentiating Eq.~B4! once with respect
to E, it follows that

]

]E
J~x,E!5

1

2 E
xE

x V~y!

@E2V~y!#1/2 W~y!dy

5
1

2 E
xE

x V~y!2E1E

@E2V~y!#1/2 W~y!dy

52
1

2 E
xE

x

@E2V~y!#1/2W~y!dy

1
1

2
EF~x,E!. ~B8!

Differentiating Eq.~B8! once more with respect toE and
comparing with Eq.~B7!, we finally find

1

4
F~x,E!1

1

2
E

]

]E
F~x,E!

52
1

2

1

@E2V~x!#1/2

V~x!W~x!

V8~x!

1
1

2 E
xE

x 1

@E2V~y!#1/2

d

dy FV~y!W~y!

V8~y! Gdy.

~B9!

In our case we will have thatV8(x0)50 and we study the
blowup of F`(E)5 limx→`F(x,E) as E tends to E0
5V(x0). As for a mechanical analogue, we could think of
particle on a half-line in a repulsive potentialV(x) and imag-
ine F(x,E) to be the time it takes a particle of energyE to
travel fromx0 to x. @If it were not for the presence ofW(y)
in Eq. ~B1!, this interpretation would be literally true.# The
force on the particle grows so fast for largex that the particle
reaches infinity in finite timeF`(E). There is an unstable
equilibrium point atx5x0 . We ask for the way in which
F`(E) blows up asE approachesV(x0). If the energyE is
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further increased, the orbits reachx50: This corresponds
to maximal slices hitting the singularity.

To make contact with our functionh(r ,C), set

V~x!52x412mx3, E5C2, W~x!52
1

122m/x
,

h~r ,C!5CF~r ,C2!, ~B10!

x05
3m

2
, x̄52m.

Thus
L

d

]

]C
h~r ,C!52E

]

]E
F~r ,E!U

E5C2

1F~r ,C2!, ~B11!

which, combined with Eq.~B9!, gives

]

]C
h~r ,C!5

1

2~r 23m/2!A122m/r 1C2/r 4

2
1

2 E
r C

r x~x23m!dx

~x23m/2!2~x422mx31C2!1/2.
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