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Late time behavior of the maximal slicing of the Schwarzschild black hole
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A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can evolve into a foliation of the
r>3m/2 region of spacetime by maximal surfaces with the requirement that time run equally fast at both
spatial ends of the manifold. This paper studies the behavior of these slices in the limit as proper time at infinity
becomes arbitrarily large. It is shown that the central lapse decays exponentially and an analytic expression is
given both for the exponent and for the preexponential fag¢&0556-282198)02708-9

PACS numbd(s): 04.20.Cv

I. INTRODUCTION r=3m/2. In this article we reanalyze this foliation focusing
especially on the late time behavior of the central lapse. We

Maximal slices have been intensively studied, first to conshow that it goes to zero exponentially quickly and explicitly
struct initial data for asymptotically flat solutions to the Ein- display both the leading exponent and the coefficient multi-
stein equations and second to investigate the evolving spacplying it.
time. In each case one obtains an elliptic equation with a |n this work we study the time functionr on the
unique solutionimodulo boundary conditiongor a confor-  Schwarzschild black hole spacetime having the following
mal factor and the lapse function, respectively. properties.

A maximal slice is defined by the requirement that the (i) The level sets ofr result from evolution of a time-
trace of the extrinsic curvature vanish. This is equivalent tosymmetric Cauchy slice of Schwarzschild spacetime by
demanding that the Lie derivative along the normal to themaximal surfaces under the additional requirement that the
slice of \g vanish. The Schwarzschild solution has aproper time for asymptotic observers at infinity, which are at
surface-orthogonal timelike Killing vector in the exterior rest relative to the slicing, runs equally fast at both spatial
guadrants. Any spacelike slice perpendicular to this Killingends.
vector has vanishing extrinsic curvatures and is obviously (ii) The time functionr is zero on the time-symmetric
maximal. Thus each of the=const slices in the standard slice and coincides with the proper time of the infinite ob-

coordinates is maximal. servers.(This means that, the lapse of the time function,
However, this slicing is not a foliation. The lapse function goes to 1 at both infinities along each sljce.
is zero at the bifurcation “point”(actually, a two-sphebe Note that(i) is really a property only of the slicing defined

which is a fixed point of the slicing, and this slicing looks by 7 rather thanr itself. This time function, which has first
antisymmetric in the extended Schwarzschild picture. As itbeen considered ifi,2], has two key properties: The first
runs forward in the right-hand quadrant, it runs backwards irproperty is thatr takes all real values or, in other words, the
the left-hand quadrant. It never enters the2m region. future singularity at =0 does not prevent from assuming
A very different spherically symmetric slicing exists. This arbitrarily large positive value@nd similarly for the past It
is one where the lapse function along a central “axig¢- is believed that this property holds on vacuum spacetimes
tually, a central cylindgrdoes not vanish and the slices do more general than Schwarzschild spacetime. Here it is im-
enter the central quadrants. This slicing, or rather the speci@ortant to realize that such spacetimes are not “given” to
version which is symmetric across the central axis, has beems. Rather, they have to be generated by a Cauchy prob-
investigated in the past by a mixture of numerical and analem: One first constructs regular asymptotically flat initial
lytic techniqued1,2]. data, satisfying the vacuum constraints, say, maximal, and
It is apparent from the numerics that this slicing is a fo-then tries to evolve these in time by analytical or numerical
liation; the slices do not seem to cross. It is a very unusuaineans. Doing this involves aa priori choice of gauge
foliation, however, the first concrete example of the phenomwhich in particular implies that the resultant globally hyper-
enon that came to be called “the collapse of the lapse.” Thebolic spacetime comes already equipped with a specific time
central lapse goes to zero so that the slices never pass beyoiughction. Suppose the initial data has a future-trapped sur-
face. Then, by the Penrose singularity theorg3h any
Cauchy-evolved spacetime is singular in the sense of having
*Email address: BEIG@PAP.UNIVIE.AC.AT; Faxt+43-1-  future-incomplete null geodesicéSimilar conclusions, but

317-22-20. in both the future and past directions, hold when the initial
"Email address: NIALL@BUREAU.UCC.IE; Fax:+353-21- data has an outer-trapped surféaégor when the topology is
276949. nontrivial, e.g., in the sense that there is more than one
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asymptotic endl5].) Many maximal initial data sets having is called thelapseof F,. The reason for this name is that
one of these properties exidbr trapped surfaces, s¢6)). measures the “lapse of proper time” along trajectories nor-
There is the conjecture, due to Moncrief and Eardi@ythat mal to the leaves ofF, as a function ofr. To make this

if one evolves the initial data in a gauge where the wholeexplicit, define the vector field* by

slicing is maximal andr is the proper time at infinity, the

evolution should be extendable to arbitrarily large values of =—a?VFr=1MV =1, (2.2

7, irrespective of whether singularities form or not. Thisglo- =~ o ] o

bal existence result, if true, would, in spirit at least, go a longwhich is timelike and futuréi.e., increasing) pointing. We
way toward settling in the affirmative the Penrose cosmic@Ssume for simplicity that the mapis onto whence the
censorship hypothes[®] in the case of asymptotically flat Vvector field 7 is complete. Then the vectar yields an
vacuum data. The spacetime evolved in the way described, irthogonal decomposition d# as M=RxX, as follows.
the Schwarzschild case, has the second property that it is faonstruct a diffeomorphismp:Rx%, ie., ¢:(\,y')eR
fact extendable: There are no maximal spherically symmetx 2—>x*= ¥ (y') e M, by

ric Cauchy slices of Schwarzschild spacetime reaching radii
less than or equal to=3m/2. Thus maximal slices of
Schwarzschild spacetime “avoid the singularityrat0.” It

is this last property which numerical relativists expect to be

. d
oN(y) =N el(y)=m™(e\(¥)),

true for evolutions of more general initial data and which is T(po(y))=0. (2.3
clearly desirable if numerical codes based on maximal slic-
ings are used. It follows from Egq. (2.2) that 7(¢,(y))=\, which further

Take any observer at rest relative to the slicing defined bymplies that
7 (“Eulerian observer’). Then [ ad7 along the trajectory of ) ,
that observer is her or his proper time. Since proper time is  7.x(@x(Y)¢Xi(Y)=0=0{(Y) ¢} i(¥)9,,(er(¥))=0.
finite as the slicing approaches the limiting maximal slice at 2.4

r_= 3T/2’ we must havefad”r<oc, and thys “m*‘”.a(T) Thus)\, viewed as a function oM, coincides withr and the
=0 (“collapse of the lapse”[9]). Our main result is that, . i : .
lines of constany' are orthogonal trajectories t6,. Con-

f\lll\/%rjgpreereEulenan observers going through the beurCatlonsequently, in ¢,y') coordinates, the metric takes the form

¢} (ds) = ekelg, ,dr°+ % 07 g, dy'dy

47
exp(‘s@m> as =, =g, (ry)d2+g;(ry)dydy, (2.5
(1.2)

where the constanA is given by Eq.(3.41), below. The

exponent Eq(1.1) has been estimated befof#,10] by a 9-A(7.Y) =~ a*(g,(y)). (2.6
mixture of numerical and model calculations. The estimate in]_
[10] of this exponent is 1.82, which agrees quite closely with
our exact 3/6/4~1.83. We hope that our result, E€l.1),

will be useful for the numerists as an accurate test for codes s=f ale(y)d7'. 2.7
based on maximal slicings. An extension of the work here to

the Igte time behavior ok along the trajectories of a_rbitrary Note that, wherr’ is another time function giving the same
Eulerian observers will appear elsewhgt&]. It remains to foliation, i.e., 7' = ' (r), the lapsea changes according to
be seen whether our results, which are strongly tied th,r:(dT//dT)fla Suppose now we are given another vec-
spherical symmetry, shed any light on the general situation, . o4 ¢* on M. This can be uniquely decomposed

Our plan is as follows. In Sec. Il we review some gener- '
alities on lapse functions and foliations. Then we give a pre- Er=Nn“+ X~ X¢n,=0 2.9
cise definition of the time function under study. In Sec. i #
we perform the asymptotic analysis leading to Egl). In - wheren#= — aV*7, is the future normal ofF,. To distin-
Appendix A we essentially rederive the Schwarzschild metyyishN from a, we callN the boost functiorof ¢ relative
ric in terms of spherically symmetric maximal Cauchy data.to 7. If N is nonzero on some ledf. , it can be viewed as
In Appendix B we prove a calculus lemma which is basic tothe restriction to2 . of the lapse 010‘ the time functiot’

70

o 4 p( 4A
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whereg;; is the induced metric on the leaves and

hus, alongy' = const, the proper tims is given by

our analysis. )
obtained byé“V ,t'=0,t'|s =const.
7o
Il. GENERALITIES We have the relation
Let (M,ds?) be a globally hyperbolic spacetime and N=aétV 7, (2.9

7:M—R a time function, i.e., a function the level sets of
which form a foliation 7, of M by Cauchy surfacesX.. which is, of course, trivial in the present context, but will be
Then the functiorw: M —R defined by extremely useful in our computation of the lapaeof a
maximal foliation of the extended Schwarzschild spacetime,
a=[—(Vr)?] ¥ (2.1)  where&* can be chosen as the “static” Killing vector.
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We now recall some features of Schwarzschild spacetimevhich is the proper distance along the slice, as can either be
which are used in our construction. In the exterior region seen from Egs(2.10), (2.12), or (2.13 or from Appendix A.

>2m>0, we have Then, from Eqs(2.12), (2.14), we have the system of ordi-
nary differential equationfODE’s)
2m 2m\ 1
ds’=— l—T dt?+ l—T dr2+r2dQZ, dh C
ar - P—amr
—o<t<o, (2.10
d’r m 2C?
Here ds?> can be smoothly extended across2m to the diz =2 5 (2.19

Kruskal spacetimé on whichr is a globally defined func-
tionr:M—R™, which has saddle points & the bifurcation  with h(0)=0,r(0)=r¢, (dr/dl)(0)=0, which is regular at
two-sphere of the horizon. The Killing vector fiefdot ex- 1=0. Thus the functiorr along the slice is symmetric with
tends to a global Killing vector field* on M which is  respect tol=0 and smooth. This implies thatr/dl=(1
spacelike in the interior, i.e., black and white hole, regions,—2m/r + C?/r*)¥2 is antisymmetric.
null on the horizon and zero a$i Both the black hole region Next, we observe that the level setsoft—h(r,C), for
and the right exterior region can be written in the fq2rlQ  fixed C in the allowed range, give rise to maximal surfaces
with the understanding that the functiof#se) andr together  on the Kruskal manifold; i.e., they satisfy
with the retarded Eddington-Finkelstein coordinate B

VA= (Vo)3 VW ,o)=0. (2.18

u=t—r—2min|r—2m| (2.11 , _ . . . :
The functiono is not the time function of interest to ym

covers both regions and the horizonrat2m. The function ~ fact, o being not differentiable atc, it does not define a
t goes tow at the right componer(where “right” refers to global fpllatlorl). F.Zather'tms local foliation arises from mov-
the original unextended spacetimand goes to- at the NG @ given maximal slice, say;=0, along the flow of§*
left horizon. The set wherevanishes is the union @&, the = (d/dt)*. The functionN=[—(V)?]~*? is nothing but
original t=0 spacelike hypersurfadextended in the obvi- the pqost functlon obl/ ot relative too= 0. There exists an
ous way to the left exterior regiorand the timelike, totally —e€xplicit solution of Eq(2.14) due to Reinharf2]. He, essen-
geodesic cylindel, which is ruled by timelike radial geo- tially by guessing, found\ to be
desics througls which are orthogonal t& and which hit the om  C2\12
singularity ag — 0. Sincer is constant along the trajectories N= ( 1—-—+ _4)
of &* andr is, by Eq.(2.10, an “areal radius,” it follows r r
that every spherically symmetric spacelike slice has a spheri- L . .
cal minimal surfacda “throat”) exactly where it is tangen- and_ frqm this mfer_re_d_ Eq(2.12. _For a more |I|ustrat|ve_
tial to & [which, of course, can only happen in the interior derivation from the |n|t|al_—value.p0|nt_ of view, see Ap.pendlx
and it necessarily has to happen there for slices leaving to th" Note thatN as a function of is antisymmetric relative to

other (left) exterior region. =0. . N
Consider the functiom(r,C) given by We now claim that the surface=h(r,C’) lies every-

where in the future ot=h(r,C) whenC’'>C and thatt

(2.17

r C =h(r,C) lies to the future oS=3. It is interesting that we
h(r,C)=— — v 10X, are unable to see this from the explicit integ(al12. In-
re (1=2m/x)(x*=2mx+C?) 212 stead, we first computed(dC)r ¢ from
4 _ 3 2_
where the integral is to be understood in the Cauchy- fe=2mre+Co=0, (218
principal-value sense forr>2m and where 6C to yield
<3(V314)m?, r>rc, andrc is the unique root ofP(x)
=x*—2mx3+ C? for this range ofC in the interval 3n/2 drc 2C
<re<2m. Forx>rc, we haveP(x)>0. Thush(r,C)+r dc - T ari(1-3mizrg) 0. (219
+2m In|r—2m| depends smoothly on {rc). We easily infer c ¢
that Thus the claimed behavior is true at least along the throat.
Next, observe that our slices are asymptotically flat at both
t=h(r,C) (2.13

spatial ends and that(C)=Ilim,_, h(r,C) exists. Suppose
that h(R,C)=h(R,C") for someR>r to the right of I.
Then, by the symmetry with respectko this would have to
ﬁappen also to the left df. Thus we would have a lens-
haped region spanned by two maximal slices. But this, by
n elegant argument due to Brill and Flahd@y], is impos-
sible, except if the two slices are identical, which they are
r y2dx not in ﬁur r(1:&':13((52.)This argumelrt continues toté)ef ve;lich{jor
I(r)= —_——, 21 =, Thush(r,C) monotonically increases wit@ for fixe
™ ffc [P(x)]¥* (214 r and so does..(C).

defines, for each fixedC, a spacelike sliceX which
smoothly extends to the black hole region, where it intersect
I'atr=r¢.

In order to see that this surface extends smoothly an
symmetrically throug’, we use forr <2m the parameter
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It follows that the equatiob=h(r,C) can be solved fo€ observers. Thus a suitable coordinate will be the “volume
to yield a smooth time function defined on the3m/2 sub-  radius” on each slice, defined by
set of the part of Kruskal lying in the future of the Cauchy 4
slice S. Here C labels the leaves of the foliation we are 3 T):3fr x“dx (2.26
interested in, but it is not yet the time function we pRLs DX =2myd+ cz '
want: Rather, this is obtained by eliminatifgin terms of

fer

7 using the relation using that the spatial metric on each slice has the f(zee
Appendix A
© c
=t,.(C)=— dx. o 2\ -1
O re (1=2m/x)(x*—2mx3+C?)172 020 gjdxdx=|1- "=+ (:—4 dr2+r2dQ2.  (2.27)
2.2

Suppose we had started with the Cauchy dlie@ which,  In the coordinatest(p,6,¢), the Schwarzschild metric for
being time symmetric, is in particular maximal and evolve it" >3m/2 reads
into a maximal slicing by a lapse functiom going to 1 at
both spatial ends. T_his is pogsib[e ina unique \Asne[lz]). d?= — a2d 2+
Then the resultant time function is spherically symmetric and
symmetric with respect td, and so it has to coincide with
the one obtained above. In particular, it follows that eur -~ ,
can be smoothly extended to negative valuesrafhich ~ Ed- (2.23. [To check Eq.(2.28 explicitly one should first

_ 2
would have been very nonobvious from the explicit formula®PServe thaCah/daC|, = p=dp/C|, .]
(2.12. Note that, a<C approaches/27/16n?, r approaches the

We next compute the lapse functienof 7. Using Eq.  Value 3m/2, since
(2.9), this involves computing P(x)=x— 2m+C2

4

Pl dp2+r2d02, (228

r

wherer =r(p, ) is given implicitly by Eq.(2.26) and « by

2

dC sh 2
-1_ 3m 3m
(&"Vur) =47 7cl - (2.2 =(x——> x2+mx+—)+0
r

2 4 (X_ BTm)z)

Note that the right-hand sid®HS) of Eq. (2.21) blows up at (2.29
r=rc, butin such a way that

Equation(2.29 also shows that: approaches a double root
az(gf‘VMr)’lN (2.22 of P(x) asC— \/27/1@m?. Thus, as one letstend to infinity
for fixed p, the functionr approaches®/2. In that sense the
has a smooth limit as—r, as it has to be. Using formula slices approach the limiting maximal slice &t 3m/2. We
(B12) and Eqgs.(2.17), (2.21), there results are interested in estimatingin that limit. For simplicity, we
will confine ourselves tp=0, i.e., the throaf".

dr\ 11 1
a=( T) —{——(1—2m/r+C2/r4)1’2

dc/ 2|r-3m2 lll. LATE TIME ANALYSIS
r X(Xx—3m)dx . . '
It is convenient to replace the parame@iby 6 defined
% f,c x—3m2 K —ame+ca @3
with smo 3, 2
5=rc—7, re—2mrg+Ce=0. (3.1
dr 1= X(Xx—3m)dx
dC 2 Jio (x=3m/2)x*—2mx3+ 22 As C ranges between 0 and&/4)m?, &ranges monotoni-
(2.29 cally from m/2 to 0. Using the rescaled quantities
Note thatN and « are linearly independent radial solutions — C _ 7 — 6
of =—, 7=—, 6=—, (3.2
m m m
(D'D;—K;;K)f=0, (2.29  we find that
whereN goes to 1 at the right infinity and te 1 at the left - [ ydy
one, whereas goes to 1 at both ends. ()= —Cf S v_ 2 —2vis R (3.3
We are interested in studying along the trajectories of 32+ (y=2)(y"—2y°+C%)
Eulerian observers. This requires choosing a coordipate \ynere
=p(r,7) the level surfaces of which are timelike cylinders
orthogonal to our slicing(One such timelike cylinder is al- — [— 3\%1 12
ready known, namel’ given byr=r..) Such a coordi- C=|o+ 5 5 5| . (3.4

nate can be found without any calculation. Recall that maxi-
mal slicings preserve spatial volumes along EulerianWe have the following lemma:



4732 R. BEIG AND N. bMURCHADHA 57
Lemma. s+312 [ (843123 1/2— 5)12 27/16
_— 36 36 1/2—s [Q(s)]¥? [s2(s?+4s+9/2)]Y2
(5)=—=—1In 5+—In|18(31f 4| _
_ V278%(s+3/2)
3V3-5 _ - )32
2 3 [Q(9)]
9v6-2 \/—752 s+3/2)* 513
36 — _ “2\132 :
=—%—In 5+A+0(3) =)

as 6—0. (3.5

Proof. First note that

d C y3(y—2)
dc (y*—2y3+ C2)12 (y4—2y3+62)3’2' (36
Thus, from the mean value theorem,
y c \27/16 )
y—2 (y4—2y3+62)1/2 (y4—2y3+27/16)1/2
\/2—7§2y4
= (y4_2y3+€2)3/2' (3.7
where we have used
J27/16- C< 2752 (3.9

Inequality(3.7) is valid fory#2, but, by continuity, also for

y=2. We will find it convenient to sometimes expressin
terms of §, using Eq.(3.4). Writing

2+4+9
s*+ast

Q(s)=¢?

—(—= — 9
- 52( S2+45+ E) ., (39
Eq. (3.3 can, after substituting=y—3/2, be written as

R

It is elementary to see that, fng,

(s+3/2)ds
(1/2-s)[Q(s)]"*

7'—(3+

osg (s2- 82 <Q(s)<(s*~ )| 5

+2$(4+s)}
(3.11)

which, usingy1+x=<1+x/2 for x=0, implies

( )

Q2 [y 517 (4

_32)]1/2'
(3.12

The estimaté3.7) now takes the form

The inequalitie$3.12), (3.13 are the basic estimates we will
be using. We now split the integration domain in E8.10),

s<s<\[52, ol2<s<, (3.14
and write
=TT, (3.19
accordingly. We furthermore define ﬁg< 1/2)
Jsr2 s+3/2
= \/27/16f_ = ds, (3.16
o (U2-9)[3(s*=6%)]2
s+3/2
= 27716 _ 73 (12— 9[4S+ as+ a2 98
(3.1

Equation (3.17) is in the principal-value sense at=1/2.
These integrals and the one following later in E832 can
be explicitly computed using the formulésee, e.g.[14])

dx Vx2— 82 —
f _ =" " x>5>0, (3.18
X2\/x2— 52 x&°
=In|x+ Vx?— &%, x>6>0, (3.19
| gy
J' dx
xyax’+bx+c
I |—2c(ax?+bx+c) +2c+bx| —0
:—n c>0.
Jc 2|x|
(3.20

Using (s+3/2)/s(1/2—s)=3/s—4/(s—1/2),
after straightforward manipulations,

there results,

3 —
ﬁ:—%—l 5+i In Vél2+0(1) as 60,
(3.21)
36 36 36 | 18 |
9=———In &2+ In 2+ In
Ty 4 4 4+3v3)
W3-5), (1) as 60 (3.22
—2In————|+o0 as 6—0. )
96— 22

Next, we have to estimate the remainders. We have



57 LATE TIME BEHAVIOR OF THE MAXIMAL SLICIN G . ..

Vi s+312[ C(9) 27716
AT]_ f 1/2 s [Q(S)]1/2 [%(SZ—EZ)]IIZ ds. (323)

Using C(8) = \27/16+ O(8%) and Egs.(3.11), (3.12, this

has

Jsz  Sds

|A71|<const><f Noar —0(6Y?). (3.29
Next,
s+3/2[ C(o) J27116

Qo1 [A(+as+o’®
(3.29

A= J& 1/2—s

By inequality (3.13), this has a bound of the form

(s+3/2)%

< X &2
|Amg<constx&® | — o s o)

T ds=const

x &1,

(3.26
The integrall in Eq. (3.26 can be further split as=1,

+1,, where
B f (s+3/2)*
Vor2 [ $%(s?+4s+9/2)]%2

ds<const

XJ’@ (Sz_gz)slz

t>< 1 (ws df 5 1 (3.2
=cons =]. .
\/%(fZ 1)3/2 S
Now
= jw (s+3/2)* g Jm ds<
= = —5< 00
2= |, [SA(Frast o dST oS | =
(3.28
ThusA7,= 0(5) Putting all this together implies
_— 36 — _
7(8)=———1In §+A+0(1) as 6—0, (3.29

4

which is not quite good enough. From E812) in the limit
thatr goes to infinity and

—dC — 3
2C —=—46| 5+ >
ds 2

dr  8(5+3/22 Joc (s+3/2)(s—3/2)
)

2

: (3.30

we see that

d_5 (1/2 5)1/2 SZ[Q(S)]IIZ
1s2-9/4 d - —
—J_fs > [Q(S?]1,2+0(5)=\f353+0(5).

(3.3

4733

HereJ can in turn be split ag=J%+AJ, where

e s2—9/4 ds
o g
S 52 [%(32_52)]1/2

=\/Zaff —9/4\/_9 fm

f2Vf2-1

fo—1
1
+0| =
o
_ 1
=0(In §)— \/9/8:2><1. (3.32
o
Finally,
AJ jl s2—9/4 1 1 d
=|_ — — S
s 8 |[Q(s)]? [§(s?- 6712
(3.33
Thus, using inequality3.12),
Al t><j const (3.34
<cons — .
\/ Ny 7 o
Putting Egs.(3.31), (3.32, (3.33 together, there results
dr  3V61 _
—=—-———=+40(1) as 6—0. 3.3
4o 4 o oW - (339
Integrating Eq.(3.35, we obtain
_— 36 — —
7(8)=———In 6+A'+0(9), (3.36

for some constanf\’. Comparing with Eq(3.29, we infer
A=A’ and the proof of the estimat8.5) is complete. W
FromA=A' and Eq.(3.36 it is elementary to infer that

_ 4 8 _| _
o=exp ———=(7—A) |+0O|exp — ——= as oo,
p( 36 p( 36 T) H
(3.37
Using Eq.(3.30, Eq. (3.395 can be written as
dr 3 1 o 1 (3.39
ic a2 \a) '

We want to evaluate the lapseof the time functionr
=mr along the central throat=r. This, using Eqs(2.23

and(2.24), is given by
(ﬂ -
dc/

Using EQq.(3.36), this finally leads to

1

a( ’T): ﬁ (339)
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4 — whereq;;=g;;—I;l; and a prime means derivative with re-
a(1)=—— 6+0(6°) spect tol. After a calculation, which most easily follows the
V2 lines of Bess¢13], we find, for the Riemann tensor,

4 4A 4r o
=——exg —=|exp — <
3v2 3.6 3\/6m Rijkllllk:T ot (A3)

87
exp ————
3\/5m
. . o 2
We sum up our results in the following theorem. Vel g ad Ry =— (1—1"2)uri Qi Ad
TheoremFor the chosen maximal foliation, with the time o i A Rivjrier =z ( )il a4
function 7 coinciding with proper time at infinity and being

zero on the time-symmetric le&, the lapse along the cen- ldentities(A3), (A4) imply that
tral geodesics orthogonal to the leaves behaves, as a function

+0 for r—. (3.40 and

of 7, according to Eq(3.40 with A given by r’ 1—r'2
Rij=—+ @hlj+ai) + —=— aij., (A5)
36 3v3-5
A= ——1In|18(3v2—4)| -2 Inl——— = —0.2181.
4 91622 o112

It would be interesting to estimate the lapse for large
along arbitrary Eulerian observers rather than just the oneShe extrinsic curvature oB, in order to be spherically sym-
alongTI'. In terms of the coordinatg introduced in Sec. ll, metric, has to be of the form
we conjecture that

4 7

a(p,7)= B(P)eXP( - % m

The conditionK;;g" =0 implies thatv +2w=0. Using Eq.
(A2), we have

+0| B%(p) T (3.42
exp ———=—=—11|, . ,
P 3\/g m i ’ r
DKij: v +3TU IJ (A8)
whereB(p) behaves for large as
4 3 Thus the maximal momentum constraint implies 2C/r3
B(p)~constx cosh% (%) (3.43  for some constan€. Consequently,
. . . . 2C C
The form of B(p) in Eq. (3.43 is motivated by the solution Kij=—3 lilj— = a, (A9)
to the lapse equatiorf2.25 on the limiting slice atr r r
=3m/2, which is symmetrical with respect to the throat.
o c?
K=
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r" 1—r 12 CZ
~4—42-——=6. (A11)

APPENDIX A

The following discussion is similar in spirit {d5]. Let >,
be the manifoldR X S? with a Riemannian, spherically sym-
metric metric, which we write in the “radial” gauge, i.e.,

Next, we definem(r) by

r C?
g=dI2+r2(1)dQ2, re(0w). (A1) m(r) == (1=r'?)+ 53. (A12)

The unit vectorl'=(4d/dl)! is geodesic and satisfies’
—dr/dl) (9191) g ( Now Eq.(A11) implies thatdnvdr is zero. Thus

1/2

r’ 2m C2
r'= (A13)

Dili:T qij! (AZ) 1—T+r—4
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Assuming m>0 and 0<|C|<3(v3/4)m?, there are two [Of the two linearly independent spherical solutions of Eq.
initial-data sets consistent with EgEA9) and (A13). One  (A22), N is that combination which vanishes on the thrpat.
starts atr =0, expands to an,,,,<3m/2, and collapses back It now follows that forr >r . the metrics

to r=0. The other is an asymptotically flat complete metric 5 Ui o - .
onRx S? with massm at both ends which is symmetric with ~ d5°= = (N*=g;;X'X))do?+ 2g;; X/ dX'do + g;;dx d/,

respect to the throat at=rc>3m/2 with (A23)
om G2 with N;, X!, gjj extended in ac-independent way to
1- —+ —4=0. (A14) RX 3, are vacuum solutions evolving from the above initial-
re Tc data sets. They haw = (d/do)* as a Killing vector. More

. . explicitly, since
Here we restrict ourselves to asymptotically flat data. These

constitute a two-parameter family of solutions to the spheri- ,

cally symmetric, maximal vacuum constraints. Of course, we N?—X;X'=1~ et (A24)
know from the Birkhoff theorem that members of this family

with different C but the samen have all to lie in the same e have

spacetime, namely, the extended Schwarzschild spacetime.

“Discovering” this fact in the present context amounts to 2m , . C s 2o
finding the “height function” written down in Sec. Il. The ds?=—{1- —|dot+2 5 dido+dI"+r7dQs,
trick is to try to find the remaining Killing vector and to seek (A25)

the X.'s as graphs over the surfaces orthogonal to this Kill-

ing vector. If (g;; ,Kj;) evolve to a spacetime having another wherer (1) is given implicitly by
Killing vector, there must be a functioN, not identically

zero, and a vector field' so that

=]’ o (A26)
ry= .
J1—2mix+ C2x*
2NK;;+2DX;,=0. (A15) re V1—2m/x+C/x
AssuminaX! to be again spherical. i.e [For C=0, I(r) can be written asl(r)=ry1-—2m/r
9 gain sp 1€, +m In|(1+ yI—2mir)/(1— yI—2mir)].]
Xi=pli,  w=p(r), (A16) Note that forC+#0 the above m_etric_s extend smoothly
across =2m. We now seek a functiohwith level surfaces
NC m t=F(r)+O', (A27)
—2—+2r" —=0, (A17) _
r r we obtain from
NC _  du 9,,£4dx"= — (N2=X;X)do + X;dX' = o(dF+do),
After combining Eqs(Al17) and(A18), there results for some functionw, the equation
D _Ph.E— i
u(r)= 2 D =const, (A19) DiF NZ—X]-Xl ' (A29)
which makes sense only off the horizon. Using E@sL6),
N= % [ (A20) (A19), this leads to
dF C 1 (A30)
where we have assuméti# 0. We assume without loss that e . e
D=C. The existence ofN,X') solving Eq.(A15) does not dr ro=2mr J1-2m/r+Cor
necessarily imply thgt the' vacuum evolution of the initial- Now consider the coordinate transformation
data set has a static Killing vector. There also has to be
satisfied o=t—F. (A31)
EXK”+DiDjN=N(RiJ——2K“KJ-'). (A21)  Then
It is straightforward to check that Eq&A19), (A20) do sat- ds?=— (N2=X;X))dt?+g;;dxdx, (A32)
isfy Eq. (A21). [In the case wher€ is zero,X'=0, and Eq.
(A21) implies thatN~r'.] with
We remark in passing that the functith by virtue of o |
Egs.(A15) and (A21), satisfies 0ij = 0ij + 2XF jy— (N>~ X XF ;F (A33)

D'DiN=NK;K". (A22) =0;; + (N2=X X" XX, (A34)
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whereX;=g;;X!. Using Egs.(A29) and (A30),

2m\ 1 C?
+H1-=—] =
r r

2m| !
:<1—T> dr?+r2dQ2.

gijdx'dxi= di2+r2dQ?

(A35)

We have thus recovered the Schwarzschild metric. In par-

ticular, this calculation shows that the parametein our
initial-data sets is “pure gauge:

Initial data with the same

OMURCHADHA 57
2 (x d V(y)W(y)
—_ _ _ _ 32 N TN
J(x,E) 3LE dy[E V(y)] V) dy,
(B5)
J(x,E)= ——[E V(x )]3’2%
V(y)W(y)
3/2
J[E Vi) y[ V'(y) }
(B6)

m lie in the same spacetime, namely, as level sets of the

function o. They can also be written as

t=Fc(r) (A36)
and its translates undeér = (d/dt)*, where
Fein-—c| ”
c(n=- o (1—2m/x)(1—2mix+ CZIxH 72
(A37)

for some ry. Taking ro=rc, we have, with h(r,C)
=F(r), recovered Eq(2.12.

It is shown in Sec. Il that

=h(r,C) (A38)

implicitly defines a smooth time function on the-3m/2
subset of the future half of Kruskal. The boost functidn
obtained in this Appendix satisfies the same equation,
each leaf2. ., as the lapse function &, namely Eq.(A22).
The reason for this is that, for fixedl., £* defines another
local foliation, which is again maximal sing is a Killing
vector.

APPENDIX B
Consider
F(x,E)= " % dy, (B1)
xe=v-1E) [E=V(Y)]

whereV is a smooth functioV:[xg,°)—R with

0<V(Xq), V'(x)<0 for x>xq, V(x)=0, (B2)
and

0<E<V(Xq), V(X)<E. (B3)

The functionW is smooth except perhaps st x, where it
may have a simple pole(Thus the pole of\EW(y)/[E
—V(y)]¥?is independent oE.) In the latter case, E¢B1)

Differentiating Eq.(B6) with respect tcE twice, we obtain

a_ZJ N 1 V(X)W(X)
22 B =T S eV V)
1 (x 1 d [V(y)W(y)
*ELE[E—vwnl’zd_y{ V'(y) }d
(B7)

On the other hand, differentiating E@4) once with respect
to E, it follows that

(9J E_lJ
“E (X, )_E ‘e

X V(y)—E+E

on 5 WWW)GV

V(y)
m@ww)dy

_1 ) _ 1
> LE[E V(y)I*W(y)dy

1
+ = EF(x,E).

5 (B8)

Differentiating Eq.(B8) once more with respect t& and
comparing with Eq(B7), we finally find

1F E+1E(9F E
2 FXE)+ 5 E -2 F(XE)

1 1

2 [E-V(x)]7?
1 (x 1

2 Jx. [E-V(y)]%2dy

V(X)W(X)
V' (x)

V(y)W(y)}
V'(y)
(B9)

In our case we will have tha¥’' (xg)=0 and we study the
blowup of F.(E)=Ilim,_.F(x,E) as E tends to E,

is to be understood in the principal-value sense and the fol=V(X,). As for a mechanical analogue, we could think of a

lowing operations valid fox#x. Next, define(we follow
[16] in spirit)

IXE)= f TE-VO TP (y)W(y)dy.  (B4)
Xe

Note thatV-W is smooth. EquatioB4) can be rewritten as
follows:

particle on a half-line in a repulsive potenti&{x) and imag-
ine F(x,E) to be the time it takes a particle of enerfyto
travel fromxg to x. [If it were not for the presence &f/(y)
in Eg. (B1), this interpretation would be literally true. The
force on the particle grows so fast for langéhat the particle
reaches infinity in finite timeé~_,(E). There is an unstable
equilibrium point atx=x,. We ask for the way in which
F..(E) blows up asE approache¥(xg). If the energyE is
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further increased, the orbits reagk-0: This corresponds 9 9 )

to maximal slices hitting the singularity. o¢ h(r,C)=2E_= F(r.E) +F(r,C%, (B1l
To make contact with our function(r,C), set E=C?

which, combined with Eq(B9), gives
V(x)=—x*+2mx3, E=C? W(x)=

~1-2m/x’
D oy 1
h(r,C)=CF(r.C%, ®10 56 "0 S ) Tz cane
X:3_m X=2m 1 (r X(x—3m)dx
02 ' 2 i (x=3m/2)2(x*~2mx3+C?) 2
Thus (B12
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