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Singularities and the classical limit in quantum cosmology with scalar fields
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Minisuperspace models derived from Kaluza-Klein theories and low-energy string theory are studied. They
are equivalent to one and two minimally coupled scalar fields. The general classical and quantum solutions are
obtained. A Gaussian superposition of WKB solutions is constructed. Contrary to what is usually expected,
these states are sharply peaked around the classical trajectories only for small values of the scale factor. This
behavior is confirmed in the framework of the causal interpretation: the Bohmian trajectories of many quantum
states are classical for small values of the scale factor but present quantum behavior when the scale factor
becomes large. A consequence of this fact is that these states present an initial singularity. However, there are
some particular superpositions of these wave functions which have Bohmian trajectories without singularities.
There are also singular Bohmian trajectories with a short period of inflation which grow forever. We could not
find any nonsingular trajectory which grows to the size of our univg3@556-282(98)07108-3

PACS numbd(s): 98.80.Hw, 04.20.Cv, 04.60.Kz

[. INTRODUCTION scale factor, not for large ones. A consequence of this fact is

that the initial classical singularities continue to be present at

One of the main motivations to study quantum cosmologythe quantum level. In order to confirm this strange behavior,

is to investigate if quantum gravitational effects can avoidwe also adopted an alternative interpretation of quantum me-
the singularities which are present in classical cosmologicathanics which was not constructed for cosmology but which

models[1]. If this is indeed the case for the initial singular- can be easily applied to a single system: it is the causal or the

ity, the next step should be to find in what conditions theBohm-de Broglie interpretation of quantum mecharigls

universe recovers its classical behavior, yielding the larget is completely different from the others because it is an

classical expanding universe we live in. In this paper weontological interpretation of quantum mechanics. In the case
investigate these problems in the framework of minisuperof nonrelativistic particles, the quantum particles follows a
space models with scalar fields as sources of the gravitationgdg] trajectory, independently of any observations, and it is

field. ) _ o accompanied by a wave function. The quantum effects are
As a first example, we took a nonmassive, minimally ,ryght about by a quantum potential, which can be derived
coupled scalar field, in a Friedmann-Robertson-Walker uniz.om the Schidinger equation. It is a rather simple interpre-

verse with spacelike sections with a positive constant CUNV84tion which can be easily applied to minisuperspace models

ture. This model can be viewed as an effective multidimen ; o L
. T . In thi h hadinger ion is repl h

sional theory where the scalar field is understood as the scaEg] this case, the Schdinger equation is replaced by the

factor of internal dimension], or as a Brans-Dicke model heeler-DeWitt equation, and the quantum trajectories are

redefined by a conformal transformatii@j. We were able to thbe t|meHequ|E[Jt|or\1]s ofk;[_he mett_rlc a’?fr'] field vtarlables,t which
find the general classical solutions. All of them present initial®P€Y @ namiiton-Jacobi éguation with an extra quantum po-

and final singularities. The model is quantized in the Diractenual term. The application of this interpretation to some of

way, with arbitrary factor ordering, and the general solutiont® guantum solutions of our problem shows exactly the
of the corresponding Wheeler-DeWitt equation is found. ToSame behavpr as found previously: the Bohmian trajectories
interpret the solutions, we first adopted the “peak imerprebehave classically for small values of the scale factor while
tation,” where a prediction is made when the wave functionthe quantum behavior appears when the scale factor becomes
is sharply peaked in a region and almost zero outside thikrge. Singularities are still present. However, when we make
region[4]. A Gaussian superposition of WKB solutions was superpositions of these wave functions, the initial singularity
constructed. By employing the stationary phase conditiondisappears for some special cases, but none of these special
we were able to show that this superposition is sharplytrajectories grows to the size of our universe.
peaked around the classical trajectory only for small values The other case studied involves two minimally coupled
of the scale factor. Hence, contrary to what is usually exscalar fields. They can be viewed as a tree level effective
pected, the classical limit is recovered for small values of theaction of string theory where the second scalar field comes
from the Kalb-Rammond fielfi7]. They can also be under-
stood as generalized Brans-Dicke-type models, which can be

*Email address: roberto@cce.ufes.br derived from compactification of multidimensional theories
"Email address: fabris@cce.ufes.br with external gauge fieldg8]. The results obtained in this
*Email address: nen@Ical.drp.cbpf.br case were analogous to the preceding one. Along the lines of
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the peak interpretation, Gaussian WKB superpositions pre- P 1
dict a classical universe for small values of the scale factor,,,— §9wR: —2( . uh.— ngqs;pd;?/’)
because they are peaked around the classical trajectories in ¢
this region. Adopting the causal interpretation to investigate
the singularity problem, we found, as before, that many of 1 1 ;
. ! . ' . ’ +— é: gv__g vg' g’p ’ (4)
the solutions present classical behavior when the scale factor 2\ >H A
is small (and hence singularitigdbut behaves quantum me-

chanically when the scale factor becomes large. bPp., &£ EP
This paper is organized as follows: in the next section we O¢— ——2L+22 =0, (5)
describe the classical minisuperspace models of both one and ¢ K¢

two scalar fields models, presenting their general classical

solutions. In Sec. lll we quantize these models obtaining

their corresponding Wheeler-DeWitt equations and their re-

spective general solutions. In Sec. 1V, the Gaussian superpo-

sitions of WKB solutions are constructed and their peakwherex=w+ 3.
along the classical trajectories are exhibited. In Sec. V, the We consider now the Robertson-Walker metric
causal interpretation of quantum cosmology is shortly re-

viewed and applied to the quantum solutions. We end with a(t)2

comments and conclusions. ds?=—N2dt?+

£,07_

Dg-2-"

0, (6)

{dr?+r{de?+sird(6)de?]},
(7)

where the spatial curvaturetakes the values 0, +,1. The

1+ (eld)r?
Il. THE CLASSICAL MODELS

Models with two scalar fields that interact nontrivially i .
between themselves can be obtained from different theoretEduations of motion are, foi=1,
cal contexts. Considering Kaluza-Klein supergravity theo- 2 2 2
ries, keeping just the bosonic sector, and reducing to four E) N %_5( f) +}< é) ®
dimensions, leads to effective actions with gravity plus two a a2 2\ ¢ 2\ @)’
scalar fields, one of them coupled nonminimally to the
Einstein-Hilbert Lagrangian; the two scalar fields have an . Yo o
interaction between them. More generally, every time we $+3§(';,)_ i+§—=0 (9)
consider multidimensional models with gauge fields, and re- a ¢ k¢
duce them to four dimensions, we find such structure. String

3

theories, in particular, have an effective action in four dimen- . a. ¢
sions given by the expression &+ 355— 2$§= 0. (10
L=yV—-ge % R+ ¢. gb?P—iH AHEA | (1)  We will be interested in the case=1. In what follows we
'’ 12°°# will consider separately the cases whére const andé+

const.
where ¢ is a dilaton field andH ,,, is a Kalb-Ramond field
which in four dimensions is equivalent to a scalar figld
In order to keep contact with this variety of models, all of o
them having great importance in high-energy conditions, we Henceforth, we consider in Eq&8)—(10) {= const. The

A. One scalar field minimally coupled to gravity

will consider the general Lagrangian solutions of the resulting equations can be easily found if we
reparametrize the time coordinatedts=a®dé. The integra-
b bP £ EP tion procedure is standard, and we just give the final results:
L=V-g| gR-w—L—— =], 2
¢ ¢ dp=Ae’"B: (11)

wherew is a coupling constant. Note the nontrivial interac- | 14 1
tion betweeng and . For the string effective actiorny= a= \/K( _) .
—1 and for Kaluza-Klein theories = (1—d)/d, whered is 6 \/COSh[\/EgA\/;(gjL O)]
the dimension of internal compact spacelike dimensions. If

we perform a conformal transformation such thaf, |n these expressions, B, andC are integration constants.

(12

= ¢~ '9,.,, We obtain the Lagrangian The universe expands from an initial singularity untill a
maximum size and then contract to a final singularity. Note
3\ pP £ EP thatact* for smalla. For A=1 andB=C, we obtain the
L=v-g|R- ot 'pz - ’p2 (3 implicit relation
¢ ¢

1/4 23k
where the bars have been suppressed. From3qve de- a(¢)=[zf<} [ ¢ _ 13
duce the field equations 3 1+ ¢2\em
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B. Two scalar fields coupled to gravity We can now construct the Hamiltonid#h, which takes the
Considering the fieldg and¢ in Egs.(8)—(10), and using 0™
again the same parametéras defined previously, we find 2 2 2 2 2
the following solutions: =N M My ¢ +12a|=NH.

48 4(3+2w)a® 8a®

c C(6+D)\ (25)

E=A+ B tanh| ———|; (14)
Variation of N yields the first class constraifit~0. The
c 1 Dirac quantization procedure yields the Wheeler-DeWitt

=_ : 15 equation by imposing the condition
- cosh[C(6+D)/ k] (13

C 1
a=—: .
614 \Jcosh[ 273 C[(6+E)]

HP=0 (26)

(16 and performing the substitutions

#? pa
In these expression&, B, C, D, andE are constants. The wgﬂ— 2 ada’ (27)
gualitative behavior of the scale factor is the same as in the Ja
preceding casfcompare Eq(12) with Eq. (16)]. Again we )
haveaxt!® whena is small. ForA=0, B=C, D=E, and 2 _ 9 q a9 28
k=23, we can find a simple implicit relation between ¢, T ag? ¢ g’
and ¢:
1 7 29
P(a)= W\/gaz; (17) T e
1 g2\ 14 wherep andq are ordering factors. We have get 1. The
a(é)= w/|(;|(E_ 5) : (18  Wheeler-DeWitt equation in the minisuperspace reads

a? P ¢* [ q ¢?
s(E)=\J1- 22 (19 1_2[%& E‘Pa}_m TeetgNe g e
° ~Vy(a)V, (30

These implicit classical relations, together with Eg), will
be compared with the trajectory on which the semiclassic
wave function of the corresponding quantum model is

avhereVy (a)=48a".
We will solve this equation for the casés-0 (one scalar

peaked. field) and ¢+ 0 (two scalar fields

Ill. QUANTUM SOLUTIONS IN MINISUPERSPACE A. Solutions with one scalar field

We return to the Lagrangiaf8) and we insert on it the Discarding the fieldt, we have to solve the equation
metric (7). The action takes the form a2 P ¢2 q

1—2[\1’6164- E\I’a —(3_}_—26())[‘I’¢¢+$‘P¢ =Vy(a)¥.
Szf L dt, (20 (3D
. h i ¢ thi . )

where Supposing the separability of this equation, we can write

V(a,¢)=a(a)B(¢4) leading to two ordinary differential
equations fore and g:

12aa2 a3('b2 a3-§2
L=— —(8+20) ———-2———1Na (21) 0
NoT e taat @a=V(@)a, (32
From Eq.(21) we obtain the conjugate momenta
) q
aa Bgs+ 7 Bs=Vp(P)B, (33
7Ta:24ﬁi (22 66T HPsT Vh
where
T =—2(3+2w)ﬁ (23 k k
¢ N2’ Va=12(48a2—; , vﬂ(¢):—(3+2w)?, (34)
5
= _4a_§ (24)  k being an integration constant. The solutions #oand 3

Np? are
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FIG. 1. Behavior ofe(a) for ne| for the one scalar field case,
with p=1, k=1, A,=1, andB,=0. The dashed and continous
lines represent the imaginary and real partstpfespectively.

a(@)=al"PA I,(12a%)+B,K,(12a%)], (35
e pttrmmarz
B d)=Apgt M VLB, (36)
with
n=\[(p—1)2-48&]/4
and

m=(q—1)>—4(3+ 2w)k.

The functiona does not exhibit an oscillatory behavior un-
lessnel. For this caseq oscillates for small values d,
increasing or decreasing for large valuesagfsuggesting
that a classical phase may occur for small valuea ofily.
The functionB has an oscillatory behavior, for a, if m

el. In Fig. 1 we show the behavior of the real and imaginary

parts ofa for ne |. The complete solution of the Wheeler-
DeWitt equation is

W(a,¢)= f A(K) (@) Byl #)dk. (37

B. Solutions with two scalar fields

For the case where both scalar fields are non null, the

Wheeler-DeWitt equation in the minisuperspace reads

a? p ¢? q ®?
ﬁ[qfaa"' E\Pa _m \de/ﬁg‘l’qs —(7)\If§§
=Vy(a)W. (38
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FIG. 2. Behavior ofa(a) for the two scalar fields case fqr
=1,k,=1,A,=1, andB,=0. The real part is represented by the
continous line while the imaginary part is represented by the dashed
line.

Qaa™t Eaazva(a)au (41
o
q
Bpot E,&/Fvﬁ((ﬁ)ﬁa (42)
with
ka
Va(a)=12( 48a%— —2), (43
a
ka
Vg($)=(3+2w)| 4k;— E) (44)
The solutions fore, 8, and\ are
a(a)=at"P" Al (12a%) +B K, (12a%)],
_(p—1)* 48,
== (45)
B(¢)= " VAL [2V(3+2w)k  p]
+BgKm(2V(3+2w)ky )},
—1)2—
e Vig-1) ;(3+2w)kz; (46)
A& =A, e \BiEy B e IVBKiE (47)

The coefficientsA’s and B’s are constants. The general so-
lution of the Wheeler-DeWitt equation is

We use again the separation of variables method writing

V(a,¢,&)=E(a,d)\(&). Equation(38) separates in two:

aZ
1
with V=(a, ¢p) =48a*— 4k, ¢?, k, being an integration con-

stant. Writting= (a, ¢) = «(a) 8(¢), we obtain two ordinary
equations:

¢2
(3+2w)

—_

—
‘-aa+

=]

¢¢+ %‘:4’} =V5(a, d))E,
(40)

I
it

a

P
a

V(a,¢,8)= j A(Ky ko) o, (@) Bi, k,( D)k, (£)dkydks.
(48)

In generala is an exponentially growing or decreasing func-
tion of a. If the order of the modified Bessel functions is
imaginary,« may exhibit an oscillatory behavior. However,
for these casesy oscillates for small values &, increasing
or decreasing for large values af suggesting again that a
classical phase may occur only for smallThis behavior is
displayed in Fig. 2.



57 SINGULARITIES AND THE CLASSICAL LIMIT IN ... 4711

IV. THE WKB APPROXIMATION where Ay and B, are integration constants. We follow the
same procedure in order to obtain a solution fa, ¢),

One way to try to obtain the transition to the Class'calconsidering firsS,(a, ) = S,(a) + Sy($). We get the solu-

regime from the quantum solutions is to employ the WKB

approximation, as in usual quantum mechanics. This iélons,
achieved by rewriting the wave function as K ko—48a%| p-1
. Si(a)=*—=1\/ arctanh +i Ina
i 2 Vkg Ko 2
¥ =exp %S , (49
i
L . : + f—ko)+ A1,
substituting it into the Wheeler-DeWitt equation, and per- g N (487 —ko) A (59
forming an expansion in orders éfin S,
) g-1 k; [3+2w
S:SO+ﬁS]_+ﬁ SZ+ . (50) Sl(¢)=i IT—? k—ln(f) +Bl, (60)
0

The classical solution must be recovered by constructing a ) ) ]
wave packet fronsy: whereA; andB; are integration constants. From the solution

for Sp(a), we can easily see that only fdp>0 we can
i obtain an oscillatory behavior of the wave function for small
%So)dko, 51 values ofa, while for ky<<0 the wave function has an expo-
nential behavior for any value of. Similarly, if (3
wherek, is an integration constant. As in the preceding sec+2w)ky>0, then exgd(i/h)S(#)] is oscillatory for any
tions, we will analyze the WKB approximation separately forvalue of ¢, otherwise it has an exponential behavior. Hence,

\P=f A(kg) exp

the cases with one and two scalar fields, respectively. for ko>0 andw>—3, exp (/4)Sy(a,¢) oscillates for small
values ofa and any value ofp.
A. WKB approximation with one scalar field We can construct a wave packet from the above solutions

In this case, we hav&=S(a, ¢), and the WKB expan- through the expression

sion in the minisuperspace Wheeler-DeWitt equation, leads

[
to the following equations connectirgy and S;: ‘P(a,¢)=f A(kg) exp %So(ko,a,gb) dky, (61
a’(0S\? 4% [9)? _ . _
272 372096 +Vy(a)=0; (520  where the functiorA(ko) is a sharply peaked Gaussian cen-
tered inkg, with width o. Examining Eq.(57), we can see
2 2 . that Sp(a) becomes very large whembecomes very small.
a i ﬁ -2 ﬁ (9_81 + 'P @ Hence, in the integrdlbl), constructive interference happens
1 Ja? da |\ da a\ da only if
2 52 S\ [0S\ iq[d 9S(a, )
— ¢ i _SO -9 _SO e +£ _SO =0. ——F =0, (62
3+20| | g¢2 apl\ag| ¢\ i Ko

53
®3 which implies a relation betweédky,,a and ¢, ko=kq(a, @).

First we get a solution fo8,. It can be obtained by taking, The wave function turns out to be

So(@,#)=So(a) + So( ), (54

leading to two differential equations:

W(a,)=Alko(a,6)] exp ;,L—So[ko(a@),a.(b]}-

(63
2 _
dSo(a) = 12( k_g—48a2) , (55) As the Gaussian is sharply peakedkgta, ¢) =k,, then we
da a obtain that the wave functioni63) is sharply peaked at

ko(a, ¢)=k,. It can be verified that this relation is exactly

2 _
dSo(¢)> :(3+2w)ﬁ, 56y  the classical relatior{13) with ko playing the role of the
dé 2 integration constan.

wherek, is a separation constant. These equations admit the 5 g approximation with two coupled scalar fields

following analytic solutions: -
We follow the same procedure as before, writing the wave

ko—48a* function ¥ in terms ofS(a, ¢, £), and performing an expan-
So(a)=*| V3(ko—48a")— 3k, arctanh k—o” sion in orders ofi. The final equations fo8, andS; are
+Ao, (57) a_2 95 2_ ¢’ 7% 2_(&2 %S0 2+V (a)=0;
12\ 9a| 3+2w|dp 2\ 9¢ v ’

So(Pp) == (3+2w)kg In ¢+ By, (58 (64)
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a? [ s, IS\ [9S,\ ip[ S, tively. As before,Sy(a) becomes very large for smadi.
— —2) 2| —|| =+ —| — Hence, we have to guarantee constructive interference by the
1 Ja dgaj\daj ajoa condition
¢° | [7So] _[So)(9S1|, ia[ Sy 9So(,.£) 2 [ 1So(a,¢,8) 2
3520\ 992 2\90)\ 0] " 9176 ke |, o) T\ T =0
¢ 0 ko=ko 0 Ko=Ko
T s 1 &S")(&Sl) =0 65 "
2| 92 g\ ot || (65) The implicit relations coming from Ed70) are the same as

Imposing again the ansatfSy(a,®,&)=Sy(a)+ Sy(¢)
+ Sp(€), we obtain the following equations:

9S(a)|? K
| =12 a—§—48a2), (66)
ISo( )\ ? Ko
( 70 )=(3+2w)(g—ko), (67)
(9 2
LELT o

whereKy andk, are separation constants. The solutions are

So(a)==*| V3(Ko—48a%)
( Ko,—48a*
— 3Ky arctanh| \/————| [+ A,,
Ko
So(¢)=i[\/(3+2w)(Ko_ko¢2)
Ko—koo*
—V(3+2w)K, arctanh K + By,
0

So(é)= = \2keé+ Co,

whereA,, By, andCy are integration constants. As in the one
scalar field case, we can find solutions &rbut they are not

the classical relation€l7)—(19). The classical limit is again
recovered only for smakh.

V. THE PERSPECTIVE
OF THE CAUSAL INTERPRETATION

In this section, we will apply the rules of the causal inter-
pretation to the wave functions we have obtained in Sec. lll.
We first summarize these rules for the case of homogeneous
minisuperspace models. In the case of homogeneous models,
the supermomentum constraft is identically zero, and the
shift functionN; can be set to zero without losing any of the
Einstein’s equations. The Hamiltonian is reduced to general
minisuperspace form:

Her=N()H[p*(1),da(D)], (71
where p¢(t) andq,(t) represent the homogeneous degrees

of freedom coming frondI'l(x,t) andh;;(x,t). The minisu-
perspace Wheeler-DeWitt equation is

H[P*(1),0,() ]V (q)=0. (72)

Writing ¥ =R exp (S/%), and substituting it into Eq(72),
we obtain the following equation:

1f IS 93 U =0 73
> ag(qﬂ)E@Jf (9,)+Q(q,)=0, (73

where

1 9°R
Q(q,)=- (74)

Rias 99,395’

important for the construction of the wave packet in our ap- o _
proximation. The solution§, will be enough to recover the andf,z(q,) andU(q,) are the minisuperspace particular-

classical trajectory. First we note th&i;>0 leads to an

izations of the DeWitt metridG;;,; [9] and of the scalar

oscillatory behavior for exp(1/)So(a)]. On the other hand, curvature density-h2R®)(h;;) of the spacelike hypersur-

if (3+2w)Ky>0, keepingKy>0, then exg(i/)S(d)] is

oscillatory for any value ofp whenky<<0, or only for small
then

values of ¢ when ky>0. If (3+2w)Ky<0,

faces, respectively. The causal interpretation, applied to
quantum cosmology, states that the trajectodgét) are
real, independently of any observations. Equatio®) is the

exp[(i/%)S(#)] has an exponential behavior for any value of Hamilton-Jacobi equation for them, which is the classical

¢ whenky<<0 or for small values ofp whenky,>0.
We consider now the superposition given by

‘I’(a,cﬁ,f):J JA(ko,Ko)

X expSy(a,6.£ ko Ko)dkedKo, (69

whereA(kq,Ky) is a bidimensional Gaussian function, cen-
tered onky>0 andKy>0 with width ¢, and o, respec-

one ammended with a quantum potential teif4), respon-
sible for the quantum effects. This suggests to define

s

pa
where the momenta are related to the velocities in the usual
way:

1 dqg

a_ faf
PU=T"S Tt

(76)



57 SINGULARITIES AND THE CLASSICAL LIMIT IN ... 4713

To obtain the quantum trajectories we have to solve the fol- ¢ 9S(a,d)
lowing system of first order differential equations: —2(3+2w)a—= — . (89

¢? 99

_aS(qa) :faﬁi aq_ﬁ

9 N ot (77)  The quantum potential for this problem can be calculated in

the usual way. We substitutd =Re® into the Wheeler-
Equations(77) are invariant under time reparametrization. PEWitt equation, obtaining the Hamilton-Jacobi-like equa-
Hence, even at the quantum level, different choicebl)  tion With the extra quantum potential terQr

yield the same spacetime geometry for a given nonclassical

2 2
solution q,(t). There is no problem of time in the causal - (S _,_L( ‘9_5) —48%+Q=0, (89
interpretation of minisuperspace quantum cosmology. Let us 12\9a) " 3+2w\d¢
then apply this interpretation to our minisuperspace models
and choose the gaudé=1 ere
2 2 2
A. One scalar field ; 12( IR PR -5 ¢’2 IR ﬁ)
a da + 2 J
The general solution of the Wheeler-DeWitt equation is oa? olog? ¢ 99 (90)
given by
Let us apply this interpretation to the simplest cade
V(a,¢)= f A(K) a(a) Bi( ) dKk, (78 = a,(a) Br(#). Then the wave function has the form
= i[S1(a)+Sy(9)]
where ¥=R;i(a)Ry(p)e"™1 : (91)

sinceS(a, ¢) = S,(a) + Sy(¢). This implies that Eq(87) be-
comes independent oth. From Eq. (90), we see that
B, Q(a,¢)=Q(a) +Qs(¢). To simplify the calculations we
Bi=Agpt M2 £ ¢<1+m a2 (80) SetAz=Bz=0, andp=qg=1. We will first calculate the
dynamics of the scale factor whanis small, in order to see

if there are singularities. In this approximation we can take

a=al"PA | (1232 +B,K,(1222)], (79

with just the first term of the series representation (k) [10],
V(p—1)%—48 n+2l
e E— (81 =[x
4 n()= E I'F(n+|+1) (92)
and For n real, the modified Bessel functidpg(x) is real and the
_ — phase ofy, is zero. Hence, the Bohmian equati@?) yields
m=1(q—-1)*~4(3+2w)k. (82) thata is a constant. It is a nonsingular quantum solution but
The momenta are with little physical interest. Hence, in a first moment, we will
restrict ourselves to the case wheards a pure imaginary
o number. Combinations of these two situations will be ana-
=248, 83 |yzed afterwards.
In the case whera is pure imaginaryg, can be written
as
w¢=—2(3+2w)a3%. (84)
¢ a=coX'V=coe'” "X n=iv=*i3k. (93
The causal interpretation states that the momenta are als,ﬁ1e ohase and the norm are
given by
9S(a, ¢) Si(a)=v In x,
T= , (85)
7a Ry(a)=cq. (94)
dS(a, ¢) Defining x=12a2, Eq. (87) becomes
dp
. ds v
where S(a, ¢) is the total phase of the wave functioh. a= ax X’ (95)
Hence, the Bohmian trajectories will be solutions of the fol-
lowing system of equations: whose solution is
2= ") @7 a=( 4] N (99
Ja ' 4/
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We can see that, in accordance to what was suggested

rhe quantum trajectory is evidently

previous sections, the behavior of the quantum trajectory is

similar to the classical one for small, and the singularity
will still be present. Note that i is positive we have ex-
pansion, while ifv is negative we have contraction. For the
scalar field, we have

ﬁk:AB¢iuZ Baeiu In (f)’

whereu=— /(3+2w)k. The phase and the norm are

Sy(¢p)=uln ¢,
Ra(¢)=B,. (98)
From Eq.(88) we have
3+2w ,. 9IS U
- pE a T (99
Using Eq.(96) we get
p=123ET20) (100

which is also the classical behavior fA=1.

It is not surprising that we have obtained the classical

behavior. Sincér;(a) andR,(a) are constants, the quantum
potential is zero, and there is no quantum effect. Note als
that solutions(96) and (100) satisfy the Hamiltonian con-
straint withV(a) =48a* neglected becauseis very small.

For very largea, the Bessel functiori,(z) can be ap-
proximated tq10]

2
elZa

In(X)"'ClT,

(101

wherec, is a complex constant. In this case, we have

S,(a)=const, (102
12a?
Ru(a)=|e,| ——. (103

a=const, (109

which is not the classical one. For the scalar field, Egs.
(88),(98),(104) now yields

b= e(L/2\K(BF2u)]t

(105

which is the classical behavior f@¥ in this regime note that
asa= const,f=t in Eq. (11)]. The different behaviors of the
scale factor and the scalar field can be explained with the
quantum potential. For the scale fact@; will be given as
[see Eq(90) with p=1]

1
a)=48"+ —

12 (106

Qa(

which is of the same size of the classical potentigh) =
—48a* and hence responsible for this quantum behavior.
|For the scalar field, aR,(¢) is constantQ,(#)=0, and the
scalar field continues to follow its classical trajectory. Note
hat the Hamiltonian constraint is also satisfied in this limit.
ence we have again obtained the strange result where the

classical limit happens only for small values af

Let us now take some superpositions of aga) and
Bi(d) given in EQgs.(79),(80). For definitiness, we will
choosep=q=1, andw=0. We will continue to take only
pure imaginann’s. Combinations of real and pure imaginary
n’'s do not change qualitatively the results. The wave func-
tion will be given by

3
W= 10, (122%) [ A+ Bigp" ], (107

where
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FIG. 4. Plot of a particular singular solution
0.21 for a(t), coming from Fig. 3, which begins with
an inflationary phase.

0.1
0 0.2 0.4 oTe 0.8 1
t
k ! i u,=i \ 2 ~3
==-—N;=lI, =1 = = =
153 1 1 ¥(X,¢,&)=cosh \/3§ foZ
27i
e . .
kp=kg=—g-—Np=ng=—i, Uz=Us=—1, . x tanh (my3K)K; g0 K; gx(i ) dk,
A=A=1, A3=0, \F T | Xé
B]_:BZ:O, B3:l ) =cosh §§ E X2+ ¢Ze
(108
| ¢
xXexpii Z—d)arctan —I1t- (110
Using Eq.(92) we obtain, for smalh, X
The quantum trajectories can be calculated from the follow-
ing equationgin the gaugeN=1):
1222 1 ! . 2
:( ) + 5 .+( <z’>2> ) (109 =243a= — IS _4a¢>
) (12a%¢)' \12a Ja 2+ g2’
3 24 42
Figure 3 shows a field plot af versusé, for smalla, for the o g IS X+ P7HX (119)
Bohmian equation$87),(88), with S being the phase of the ¢ w2 0P X242 ]
wave function(109. We can see that there are periodic so-
lutions with very small oscillations aroural They are eter- a3t s
nal quantum universes which never grow. The solutions Tp=—A— =
which grow beyond the validity of Eq109 are singular and ¢ g
inflationary. This can be seen in Fig. 4.
This result suggests that the initial singularity can beThe solutions are
avoided only if we superpose eigenfunctions of opposite fre- 2
quencies. However, it seems to be be difficult to obtain, in ae 1 [ C
sg:alar flgld models, nonsingular universes with long expan- \/—2[ 1+47]
sion period[11].
1 C 2
B. Two Scalar Fields ¢=- 27 In Vit 4,2 =—6—, (112

In this case, we have studied the quantum trajectories
driven by wave functions obtained from E@8) for some &=const,
particularA(k; ,ks).

(i) We have fixedp=q=1, =0, k;=—3, k=k,, A,  where = [(dt/a) is the conformal time an€ is an inte-
=Az=0, B,=Byz=A,=B,=1, and A(k;,k;)=348(k; gration constant. For smalla, when 7 approaches
+ ) tanh (ry3k,). Using a result of Ref{10], we obtain, = +/c?—1/2, these function tend to
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P(t)xt?Poca?, (113

&=const,

which is exactly the classical behavior fer=0. Whena is
not small, the trajectories are not classifabmpare Eq.
(112 with Eqgs. (14)—(16)]. This can be seen by inspecting
the quantum potential. For two scalar fields it is given by

1la aZR p iR ¢? (92R+q dR
"R 12 (;xa aoda 3+2w ap? ¢ Id
¢ °R
For our particular problem, we obtain
1 (x*—2¢>x+ ¢*
_ L -2¢ixt oY) ws

3 X2+ 2

For smalla we haveQxa? (remember thaip<a? in this
limit). In this domain, the kinetic terms dominate:

< a’mi a?(dS|?2 1 xP¢? t 116

= = —| ==

P12 12\da) 3 (x2+ ¢?)2 const, (116

< @ 92 9S\2 B X0+ pP+x)’

6= 3 ___ﬁ ——? )(2—|——¢2 occonst.
(117

Hence the quantum potential becomes negligible when

compared with the classical kinetic terms. Fonot small,
for instance, whem—0 yielding a— ap, and ¢— =, the
guantum potential diverges,

Qo ¢?,

while the classical potential and kinetic terms behave as

(118

1
e (119
K o 2, (120
VC|°CaA. (121)
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The equations of motion are
_ . _aS_ ag¢
7Ta 2488—%-2 X2 )
a’p S 1 193
_ % s \/5
The solutions are
$=Coa’=cot™®, (124

£=—[ct**+C,.

Note again that these solutons approach the classical one
whena is small but are completely different wheris large.
Once again, this can be explained by the behavior of the
guantum potential when compared with the kinetic and clas-
sical potential terms. The quantum potential is given by

(129
The kinetic and classical potential terms are given by

¢2

3’

a

(126

=—48a%.

Va

For smalla, Q, V,, andK, goes to zero whil&, andK

are constant. For large Q, V,,, andK; become comparable
and large, whileK, andK 4 continue to be constant. Hence,
in this situation, the quantum potential becomes important,
driving the quantum behavior of the Bohmian trajectories.
Note that the sum of Eq125 with Eq. (126) gives zero
because the Bohmian trajectories must satisfy the Hamil-

Hence, together witK,,, the quantum potential becomes the tonjan constraint ammended with the quantum potential
more important term. This behavior of the quantum potentiaterm. We have also calculated the Bohmian trajectories for

explains why the trajectories are classical for snaaland
guantum otherwise.

(i) Let us now takep=q=1, w=0, k;=i/6, k=k,, A
=Az=B,=0, B,=Bg=A =1, and A(kq k)= 5(k1
—|/6) sinh (Tr\/W)K 3k,(\/2e ™). Then we obtain the
following wave function(see Ref[10]):

2 ¢
(V35

.
(122)

7_[_2
V=— exp

¢+

exp|i

other exact wave solutions of the Wheeler-DeWitt equation.
All of them present the same behavior.

We conclude this section by stating that in quantum cos-
mology it is not necessary that the classical behavior appears
whena is large, while quantum behavior is present when
small. It can indeed be the reverse. This was already pointed
out in [12] and we presented specific examples illustrating
this fact. It should also be commented that the result of this
section using the causal interpretation are in qualitative
agreement with the results of the previous section.
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VI. CONCLUSION grow forever. We could not find any nonsingular solution

. . . which grows to the size of our universe, with a classical limit
In this paper, we have studied classical and quanturr]aOr large a
minisuperspace models containing one and two scalar fields: Th(agfad that quantum behavior happens wheis large

We have shown that all classical solutions are singular. AftelrS not surprising. It was already obtained in REF1] and
guantizing the models, we have obtained the general solution prising. Y

4 7 :
of the Wheeler-DeWitt equation. Usually, the solutions ar suggesr:(_adhtp exist when the scal_e factor growss émIRef._ .
oscillatory when the scale factor is small and not oscillator 12], whic |s_|our casr(]a. I-||ence, |nlqufantum _cos?qo ogljy It s |
when the scale factor becomes larger. This suggests that no c_)thne.cessl,:arl 3;htrue ¢ Iat ?r?g scaael actori Implies ?:aszpa
classical behavior may occur when the scale factor is larg he. avior. t?]r € scalar fie tmcl)) els we avel :I:}[na yze tlr? i
We studied Gaussian superpositions of WKB wave function IS paper, the reverse Seems 1o be more usual. 1t means ha

: . : . . it.is possible to have in our universe some degrees of free-
to investigate if they correspond to quasiclassical states, a

suggested in Ref[13]. We have shown that indeed these dom which still behave quantum mechanically in spite of it

wave functions are peaked around the classical trajectories Il%elng very big. .Th|s gives us some hope_ of being ppssmle to
. : detect or experience quantum cosmological effects in the real

configuration space, but only for small universe we live in, bringing quantum cosmology to the

Afterwards, we applied the causal interpretation of quan- ' ging 9 9y

tum mechanics to these models. In this interpretation, it iﬁrealm of testable physical theories. The problem should be to

. . o *'nd which degrees of freedom can possess this property. To
possible to calculate quantum trajectories, independently o . : LR _
do this, we should improve this minisuperspace model with

any observations. We have shown that the trajectories Cak.:"fﬁe accretion of small inhomogeneous perturbations, which

lated following this interpretation usually present the classi- ontain an infinity number of dearees of freedom. and see
cal behavior when the scale factor is small and nonclassical Y . 9 '

X . ; what happens with the new inhomogeneous degrees of free-
behavior whera is large, as suspected. This means that thes

; : : L . dom. We will get closer to the real universe but we will have
quantum trajectories still present an initial singularity. We

. ; . ..._to face new technical and interpretational problems. This will
have also seen that if we superpose negative with positiv

frequency solutions, then we can find trajectories which areBe the subject of our future investigations.

no more classical for smad. We can have eternal periodic
guantum universes with very small oscilations. These uni-
verses, however, never escape the Planck length. There are We thank CNPqBrazil) and CAPES(Brazil) for finan-
also singular solutions with a short period of inflation which cial support.
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