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Singularities and the classical limit in quantum cosmology with scalar fields
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Minisuperspace models derived from Kaluza-Klein theories and low-energy string theory are studied. They
are equivalent to one and two minimally coupled scalar fields. The general classical and quantum solutions are
obtained. A Gaussian superposition of WKB solutions is constructed. Contrary to what is usually expected,
these states are sharply peaked around the classical trajectories only for small values of the scale factor. This
behavior is confirmed in the framework of the causal interpretation: the Bohmian trajectories of many quantum
states are classical for small values of the scale factor but present quantum behavior when the scale factor
becomes large. A consequence of this fact is that these states present an initial singularity. However, there are
some particular superpositions of these wave functions which have Bohmian trajectories without singularities.
There are also singular Bohmian trajectories with a short period of inflation which grow forever. We could not
find any nonsingular trajectory which grows to the size of our universe.@S0556-2821~98!07108-2#

PACS number~s!: 98.80.Hw, 04.20.Cv, 04.60.Kz
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I. INTRODUCTION

One of the main motivations to study quantum cosmolo
is to investigate if quantum gravitational effects can av
the singularities which are present in classical cosmolog
models@1#. If this is indeed the case for the initial singula
ity, the next step should be to find in what conditions t
universe recovers its classical behavior, yielding the la
classical expanding universe we live in. In this paper
investigate these problems in the framework of minisup
space models with scalar fields as sources of the gravitati
field.

As a first example, we took a nonmassive, minima
coupled scalar field, in a Friedmann-Robertson-Walker u
verse with spacelike sections with a positive constant cu
ture. This model can be viewed as an effective multidim
sional theory where the scalar field is understood as the s
factor of internal dimensions@2#, or as a Brans-Dicke mode
redefined by a conformal transformation@3#. We were able to
find the general classical solutions. All of them present ini
and final singularities. The model is quantized in the Dir
way, with arbitrary factor ordering, and the general solut
of the corresponding Wheeler-DeWitt equation is found.
interpret the solutions, we first adopted the ‘‘peak interp
tation,’’ where a prediction is made when the wave functi
is sharply peaked in a region and almost zero outside
region@4#. A Gaussian superposition of WKB solutions w
constructed. By employing the stationary phase condit
we were able to show that this superposition is shar
peaked around the classical trajectory only for small val
of the scale factor. Hence, contrary to what is usually
pected, the classical limit is recovered for small values of
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‡Email address: nen@lca1.drp.cbpf.br
570556-2821/98/57~8!/4707~11!/$15.00
y

al

e
e
r-
al

i-
a-
-
le

l
c

o
-

is

,
y
s
-
e

scale factor, not for large ones. A consequence of this fac
that the initial classical singularities continue to be presen
the quantum level. In order to confirm this strange behav
we also adopted an alternative interpretation of quantum
chanics which was not constructed for cosmology but wh
can be easily applied to a single system: it is the causal or
Bohm–de Broglie interpretation of quantum mechanics@5#.
It is completely different from the others because it is
ontological interpretation of quantum mechanics. In the c
of nonrelativistic particles, the quantum particles follows
real trajectory, independently of any observations, and i
accompanied by a wave function. The quantum effects
brought about by a quantum potential, which can be deri
from the Schro¨dinger equation. It is a rather simple interpr
tation which can be easily applied to minisuperspace mod
@6#. In this case, the Schro¨dinger equation is replaced by th
Wheeler-DeWitt equation, and the quantum trajectories
the time evolutions of the metric and field variables, whi
obey a Hamilton-Jacobi equation with an extra quantum
tential term. The application of this interpretation to some
the quantum solutions of our problem shows exactly
same behavior as found previously: the Bohmian trajecto
behave classically for small values of the scale factor wh
the quantum behavior appears when the scale factor beco
large. Singularities are still present. However, when we m
superpositions of these wave functions, the initial singula
disappears for some special cases, but none of these sp
trajectories grows to the size of our universe.

The other case studied involves two minimally coupl
scalar fields. They can be viewed as a tree level effec
action of string theory where the second scalar field com
from the Kalb-Rammond field@7#. They can also be under
stood as generalized Brans-Dicke-type models, which can
derived from compactification of multidimensional theori
with external gauge fields@8#. The results obtained in this
case were analogous to the preceding one. Along the line
4707 © 1998 The American Physical Society
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4708 57COLISTETE, FABRIS, AND PINTO-NETO
the peak interpretation, Gaussian WKB superpositions p
dict a classical universe for small values of the scale fac
because they are peaked around the classical trajectori
this region. Adopting the causal interpretation to investig
the singularity problem, we found, as before, that many
the solutions present classical behavior when the scale fa
is small ~and hence singularities! but behaves quantum me
chanically when the scale factor becomes large.

This paper is organized as follows: in the next section
describe the classical minisuperspace models of both one
two scalar fields models, presenting their general class
solutions. In Sec. III we quantize these models obtain
their corresponding Wheeler-DeWitt equations and their
spective general solutions. In Sec. IV, the Gaussian supe
sitions of WKB solutions are constructed and their pe
along the classical trajectories are exhibited. In Sec. V,
causal interpretation of quantum cosmology is shortly
viewed and applied to the quantum solutions. We end w
comments and conclusions.

II. THE CLASSICAL MODELS

Models with two scalar fields that interact nontrivial
between themselves can be obtained from different theo
cal contexts. Considering Kaluza-Klein supergravity the
ries, keeping just the bosonic sector, and reducing to f
dimensions, leads to effective actions with gravity plus t
scalar fields, one of them coupled nonminimally to t
Einstein-Hilbert Lagrangian; the two scalar fields have
interaction between them. More generally, every time
consider multidimensional models with gauge fields, and
duce them to four dimensions, we find such structure. St
theories, in particular, have an effective action in four dime
sions given by the expression

L5A2ge2fS R1f ;rf ;r2
1

12
HmnlHmnlD , ~1!

wheref is a dilaton field andHmnl is a Kalb-Ramond field
which in four dimensions is equivalent to a scalar fieldj.

In order to keep contact with this variety of models, all
them having great importance in high-energy conditions,
will consider the general Lagrangian

L5A2gS fR2v
f ;rf ;r

f
2

j ;rj ;r

f D , ~2!

wherev is a coupling constant. Note the nontrivial intera
tion betweenf and j. For the string effective action,v5
21 and for Kaluza-Klein theoriesv5(12d)/d, whered is
the dimension of internal compact spacelike dimensions
we perform a conformal transformation such thatgmn

5f21ḡmn , we obtain the Lagrangian

L5A2gFR2S v1
3

2Df ;rf ;r

f2
2

j ;rj ;r

f2 G , ~3!

where the bars have been suppressed. From Eq.~3! we de-
duce the field equations
e-
r
in

e
f
tor

e
nd
al
g
-
o-
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e
-
h

ti-
-
r

n
e
-
g
-
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If

Rmn2
1

2
gmnR5

k

f2S f ;mf ;n2
1

2
gmnf ;rf ;rD

1
1

f2S j ;mj ;n2
1

2
gmnj ;rj ;rD , ~4!

hf2
f ;rf ;r

f
1

j ;rj ;r

kf
50, ~5!

hj22
j ;rf ;r

f
50, ~6!

wherek5v1 3
2.

We consider now the Robertson-Walker metric

ds252N2dt21
a~ t !2

11~e/4!r 2
$dr21r 2@du21sin2~u!dw2#%,

~7!

where the spatial curvaturee takes the values 0, 1,21. The
equations of motion are, forN51,

3S ȧ

a
D 2

1
3e

a2
5

k

2
S ḟ

f
D 2

1
1

2
S j̇

f
D 2

, ~8!

f̈13
ȧ

a
ḟ2

ḟ2

f
1

j̇2

kf
50, ~9!

j̈13
ȧ

a
j̇22

ḟ

f
j̇50. ~10!

We will be interested in the casee51. In what follows we
will consider separately the cases wherej5 const andjÞ
const.

A. One scalar field minimally coupled to gravity

Henceforth, we consider in Eqs.~8!–~10! j5 const. The
solutions of the resulting equations can be easily found if
reparametrize the time coordinate asdt5a3du. The integra-
tion procedure is standard, and we just give the final resu

f5Aeu1B; ~11!

a5AAS k

6
D 1/4 1

Acosh@A2/3AAk~u1C!#

. ~12!

In these expressions,A, B, andC are integration constants
The universe expands from an initial singularity untill
maximum size and then contract to a final singularity. No
that a}t1/3 for small a. For A51 andB5C, we obtain the
implicit relation

a~f!5F2

3
kG1/4A fA2/3k

11f2A2/3k
. ~13!
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B. Two scalar fields coupled to gravity

Considering the fieldsf andj in Eqs.~8!–~10!, and using
again the same parameteru as defined previously, we find
the following solutions:

j5A1
C

B
k tanh S C~u1D !

k D ; ~14!

f5
C

B

1

cosh@C~u1D !/Ak#
; ~15!

a5
AC

61/4

1

Acosh@A2/3uCu~u1E!#
. ~16!

In these expressionsA, B, C, D, andE are constants. The
qualitative behavior of the scale factor is the same as in
preceding case@compare Eq.~12! with Eq. ~16!#. Again we
havea}t1/3 when a is small. ForA50, B5C, D5E, and
k5 3

2, we can find a simple implicit relation betweena, f,
andj:

f~a!5
1

uCu
A6a2; ~17!

a~j!5AuCuS 1

6
2

j2

9 D 1/4

; ~18!

f~j!5A12
2

3
j2. ~19!

These implicit classical relations, together with Eq.~13!, will
be compared with the trajectory on which the semiclass
wave function of the corresponding quantum model
peaked.

III. QUANTUM SOLUTIONS IN MINISUPERSPACE

We return to the Lagrangian~3! and we insert on it the
metric ~7!. The action takes the form

S5E L dt, ~20!

where

L5
12aȧ2

N
2~312v!

a3ḟ2

Nf2
22

a3j̇2

Nf2
212Na. ~21!

From Eq.~21! we obtain the conjugate momenta

pa524
aȧ

N
, ~22!

pf522~312v!
a3ḟ

Nf2
, ~23!

pj524
a3j̇

Nf2
. ~24!
e

al
s

We can now construct the HamiltonianH, which takes the
form

H5NF pa
2

48a
2

f2pf
2

4~312v!a3
2

f2pj
2

8a3
112aG[NH.

~25!

Variation of N yields the first class constraintH'0. The
Dirac quantization procedure yields the Wheeler-DeW
equation by imposing the condition

ĤC50 ~26!

and performing the substitutions

pa
2→2

]2

]a2
2

p

a

]

]a
, ~27!

pf
2→2

]2

]f2
2

q

f

]

]f
, ~28!

pj
2→2

]2

]j2
, ~29!

wherep andq are ordering factors. We have set\51. The
Wheeler-DeWitt equation in the minisuperspace reads

a2

12FCaa1
p

a
CaG2

f2

~312v!FCff1
q

f
CfG2

f2

2
Cjj

5VC~a!C, ~30!

whereVC(a)548a4.
We will solve this equation for the casesj50 ~one scalar

field! andjÞ0 ~two scalar fields!.

A. Solutions with one scalar field

Discarding the fieldj, we have to solve the equation

a2

12FCaa1
p

a
CaG2

f2

~312v!FCff1
q

f
CfG5VC~a!C.

~31!

Supposing the separability of this equation, we can w
C(a,f)5a(a)b(f) leading to two ordinary differentia
equations fora andb:

aaa1
p

a
aa5Va~a!a, ~32!

bff1
q

f
bf5Vb~f!b, ~33!

where

Va512S 48a22
k

a2D , Vb~f!52~312v!
k

f2
, ~34!

k being an integration constant. The solutions fora and b
are
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ak~a!5a~12p!/2@AaI n~12a2!1BaKn~12a2!#, ~35!

bk~f!5Abf~12m2q!/21Bb

f~11m2q!/2

m
, ~36!

with

n5A@~p21!2248k#/4

and

m5A~q21!224~312v!k .

The functiona does not exhibit an oscillatory behavior u
lessnPI . For this case,a oscillates for small values ofa,
increasing or decreasing for large values ofa, suggesting
that a classical phase may occur for small values ofa only.
The functionb has an oscillatory behavior, for allf, if m
PI . In Fig. 1 we show the behavior of the real and imagina
parts ofa for nP I . The complete solution of the Wheele
DeWitt equation is

C~a,f!5E A~k!ak~a!bk~f!dk. ~37!

B. Solutions with two scalar fields

For the case where both scalar fields are non null,
Wheeler-DeWitt equation in the minisuperspace reads

a2

12FCaa1
p

a
CaG2

f2

~312v!FCff1
q

f
CfG2S f2

2 DCjj

5VC~a!C. ~38!

We use again the separation of variables method wri
C(a,f,j)5J(a,f)l(j). Equation~38! separates in two:

ljj528k1l, ~39!

a2

12FJaa1
p

a
JaG2

f2

~312v!FJff1
q

f
JfG5VJ~a,f!J,

~40!

with VJ(a,f)548a424k1f2, k1 being an integration con
stant. WrittingJ(a,f)5a(a)b(f), we obtain two ordinary
equations:

FIG. 1. Behavior ofa(a) for nPI for the one scalar field case
with p51, k51, Aa51, andBa50. The dashed and continou
lines represent the imaginary and real parts ofa, respectively.
y

e

g

aaa1
p

a
aa5Va~a!a, ~41!

bff1
q

f
bf5Vb~f!b, ~42!

with

Va~a!512S 48a22
k2

a2D , ~43!

Vb~f!5~312v!S 4k12
k2

f2D . ~44!

The solutions fora, b, andl are

a~a!5a~12p!/2@AaI n~12a2!1BaKn~12a2!#,

n5
A~p21!2248k2

4
; ~45!

b~f!5f~12q!/2$AbI m@2A~312v!k1f#

1BbKm~2A~312v!k1f!%,

m5
A~q21!224~312v!k2

2
; ~46!

l~j!5AleiA8k1j1Ble2 iA8k1j. ~47!

The coefficientsA’s andB’s are constants. The general s
lution of the Wheeler-DeWitt equation is

C~a,f,j!5E A~k1 ,k2!ak2
~a!bk1 ,k2

~f!lk1
~j!dk1dk2 .

~48!

In general,a is an exponentially growing or decreasing fun
tion of a. If the order of the modified Bessel functions
imaginary,a may exhibit an oscillatory behavior. Howeve
for these cases,a oscillates for small values ofa, increasing
or decreasing for large values ofa, suggesting again that
classical phase may occur only for smalla. This behavior is
displayed in Fig. 2.

FIG. 2. Behavior ofa(a) for the two scalar fields case forp
51, k251, Aa51, andBa50. The real part is represented by th
continous line while the imaginary part is represented by the das
line.
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IV. THE WKB APPROXIMATION

One way to try to obtain the transition to the classic
regime from the quantum solutions is to employ the WK
approximation, as in usual quantum mechanics. This
achieved by rewriting the wave function as

C5exp S i

\
SD , ~49!

substituting it into the Wheeler-DeWitt equation, and p
forming an expansion in orders of\ in S,

S5S01\S11\2S21••• . ~50!

The classical solution must be recovered by constructin
wave packet fromS0:

C5E A~k0! exp S i

\
S0Ddk0 , ~51!

wherek0 is an integration constant. As in the preceding s
tions, we will analyze the WKB approximation separately f
the cases with one and two scalar fields, respectively.

A. WKB approximation with one scalar field

In this case, we haveS5S(a,f), and the WKB expan-
sion in the minisuperspace Wheeler-DeWitt equation, le
to the following equations connectingS0 andS1:

a2

12S ]S0

]a D 2

2
f2

312vS ]S0

]f D 2

1VC~a!50; ~52!

a2

12F i S ]2S0

]a2 D 22S ]S0

]a D S ]S1

]a D1
ip

a S ]S0

]a D G
2

f2

312vF i S ]2S0

]f2 D 22S ]S0

]f D S ]S1

]f D1
iq

f S ]S0

]f D G50.

~53!

First we get a solution forS0. It can be obtained by taking

S0~a,f!5S0~a!1S0~f!, ~54!

leading to two differential equations:

S dS0~a!

da D 2

512S k0

a2
248a2D , ~55!

S dS0~f!

df D 2

5~312v!
k0

f2
, ~56!

wherek0 is a separation constant. These equations admit
following analytic solutions:

S0~a!56FA3~k0248a4!2A3k0 arctanhSAk0248a4

k0
D G

1A0, ~57!

S0~f!56A~312v!k0 ln f1B0 , ~58!
l

is

-

a

-
r

s

he

whereA0 and B0 are integration constants. We follow th
same procedure in order to obtain a solution forS1(a,f),
considering firstS1(a,f)5S1(a)1S1(f). We get the solu-
tions,

S1~a!56
k1

2
A 3

k0
F arctanhSAk0248a4

k0
D 1 i

p21

2
ln a

1
i

4
ln ~48a42k0!1A1G , ~59!

S1~f!56F i
q21

2
2

k1

2
A312v

k0
ln fG1B1 , ~60!

whereA1 andB1 are integration constants. From the soluti
for S0(a), we can easily see that only fork0.0 we can
obtain an oscillatory behavior of the wave function for sm
values ofa, while for k0,0 the wave function has an expo
nential behavior for any value ofa. Similarly, if (3
12v)k0.0, then exp@(i/\)S0(f)# is oscillatory for any
value off, otherwise it has an exponential behavior. Hen
for k0.0 andv.2 3

2, exp (i/\)S0(a,f) oscillates for small
values ofa and any value off.

We can construct a wave packet from the above soluti
through the expression

C~a,f!5E A~k0! exp F i

\
S0~k0 ,a,f!Gdk0, ~61!

where the functionA(k0) is a sharply peaked Gaussian ce
tered in k̄0, with width s. Examining Eq.~57!, we can see
that S0(a) becomes very large whena becomes very small
Hence, in the integral~61!, constructive interference happen
only if

]S0~a,f!

]k0
50, ~62!

which implies a relation betweenk0 ,a andf, k05k0(a,f).
The wave function turns out to be

C~a,f!5A@k0~a,f!# exp H i

\
S0@k0~a,f!,a,f#J .

~63!

As the Gaussian is sharply peaked atk0(a,f)5 k̄0, then we
obtain that the wave function~63! is sharply peaked a
k0(a,f)5 k̄0. It can be verified that this relation is exact
the classical relation~13! with k̄0 playing the role of the
integration constantA.

B. WKB approximation with two coupled scalar fields

We follow the same procedure as before, writing the wa
functionC in terms ofS(a,f,j), and performing an expan
sion in orders of\. The final equations forS0 andS1 are

a2

12S ]S0

]a D 2

2
f2

312vS ]S0

]f D 2

2
f2

2 S ]S0

]j D 2

1VC~a!50;

~64!
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a2

12F i S ]2S0

]a2 D 22S ]S0

]a D S ]S1

]a D1
ip

a S ]S0

]a D G
2

f2

312vF i S ]2S0

]f2 D 22S ]S0

]f D S ]S1

]f D1
iq

f S ]S0

]f D G
1

f2

2 F i S ]2S0

]j2 D 22S ]S0

]j D S ]S1

]j D G50. ~65!

Imposing again the ansatzS0(a,f,j)5S0(a)1S0(f)
1S0(j), we obtain the following equations:

S ]S0~a!

]a D 2

512S K0

a2
248a2D , ~66!

S ]S0~f!

]f D 2

5~312v!S K0

f2
2k0D , ~67!

S ]S0~j!

]j D 2

52k0 , ~68!

whereK0 andk0 are separation constants. The solutions

S0~a!56FA3~K0248a4!

2A3K0 arctanhSAK0248a4

K0
D G1A0,

S0~f!56FA~312v!~K02k0f2!

2A~312v!K0 arctanhSAK02k0f2

K0
D G1B0,

S0~j!56A2k0j1C0 ,

whereA0, B0, andC0 are integration constants. As in the on
scalar field case, we can find solutions forS1 but they are not
important for the construction of the wave packet in our a
proximation. The solutionsS0 will be enough to recover the
classical trajectory. First we note thatK0.0 leads to an
oscillatory behavior for exp@(1/\)S0(a)#. On the other hand
if (3 12v)K0.0, keepingK0.0, then exp@(i/\)S0(f)# is
oscillatory for any value off whenk0,0, or only for small
values of f when k0.0. If (312v)K0,0, then
exp@(i/\)S0(f)# has an exponential behavior for any value
f whenk0,0 or for small values off whenk0.0.

We consider now the superposition given by

C~a,f,j!5E E A~k0 ,K0!

3exp
i

\
S0~a,f,j,k0 ,K0!dk0dK0 , ~69!

whereA(k0 ,K0) is a bidimensional Gaussian function, ce
tered onk̄0.0 and K̄0.0 with width s1 and s2, respec-
e

-

f

tively. As before,S0(a) becomes very large for smalla.
Hence, we have to guarantee constructive interference by
condition

S ]S0~a,f,j!

]k0
U

k05 k̄0

D 2

1S ]S0~a,f,j!

]K0
U

K05K̄0

D 2

50.

~70!

The implicit relations coming from Eq.~70! are the same as
the classical relations~17!–~19!. The classical limit is again
recovered only for smalla.

V. THE PERSPECTIVE
OF THE CAUSAL INTERPRETATION

In this section, we will apply the rules of the causal inte
pretation to the wave functions we have obtained in Sec.
We first summarize these rules for the case of homogene
minisuperspace models. In the case of homogeneous mo
the supermomentum constraintHi is identically zero, and the
shift functionNi can be set to zero without losing any of th
Einstein’s equations. The Hamiltonian is reduced to gene
minisuperspace form:

HGR5N~ t !H@pa~ t !,qa~ t !#, ~71!

wherepa(t) and qa(t) represent the homogeneous degre
of freedom coming fromP i j (x,t) andhi j (x,t). The minisu-
perspace Wheeler-DeWitt equation is

H@ p̂a~ t !,q̂a~ t !#C~q!50. ~72!

Writing C5R exp (iS/\), and substituting it into Eq.~72!,
we obtain the following equation:

1

2
f ab~qm!

]S

]qa

]S

]qb
1U~qm!1Q~qm!50, ~73!

where

Q~qm!52
1

R
f ab

]2R

]qa]qb
, ~74!

and f ab(qm) and U(qm) are the minisuperspace particula
izations of the DeWitt metricGi jkl @9# and of the scalar
curvature density2h1/2R(3)(hi j ) of the spacelike hypersur
faces, respectively. The causal interpretation, applied
quantum cosmology, states that the trajectoriesqa(t) are
real, independently of any observations. Equation~73! is the
Hamilton-Jacobi equation for them, which is the classi
one ammended with a quantum potential term~74!, respon-
sible for the quantum effects. This suggests to define

pa5
]S

]qa
, ~75!

where the momenta are related to the velocities in the u
way:

pa5 f ab
1

N

]qb

]t
. ~76!



fo

n

ic
al
t u
e

is

a

ol

in

a-

ke

ut
ill

a-

57 4713SINGULARITIES AND THE CLASSICAL LIMIT IN . . .
To obtain the quantum trajectories we have to solve the
lowing system of first order differential equations:

]S~qa!

]qa
5 f ab

1

N

]qb

]t
. ~77!

Equations~77! are invariant under time reparametrizatio
Hence, even at the quantum level, different choices ofN(t)
yield the same spacetime geometry for a given nonclass
solution qa(t). There is no problem of time in the caus
interpretation of minisuperspace quantum cosmology. Le
then apply this interpretation to our minisuperspace mod
and choose the gaugeN51.

A. One scalar field

The general solution of the Wheeler-DeWitt equation
given by

C~a,f!5E A~k!ak~a!bk~f!dk, ~78!

where

ak5a~12p!/2@AaI n~12a2!1BaKn~12a2!#, ~79!

bk5Abf~12m2q!/21
Bb

m
f~11m2q!/2, ~80!

with

n5
A~p21!2248k

4
~81!

and

m5A~q21!224~312v!k. ~82!

The momenta are

pa524aȧ, ~83!

pf522~312v!a3
ḟ

f2
. ~84!

The causal interpretation states that the momenta are
given by

pa5
]S~a,f!

]a
, ~85!

pf5
]S~a,f!

]f
, ~86!

where S(a,f) is the total phase of the wave functionC.
Hence, the Bohmian trajectories will be solutions of the f
lowing system of equations:

24aȧ5
]S~a,f!

]a
, ~87!
l-

.

al

s
ls

lso

-

22~312v!a3
ḟ

f2
5

]S~a,f!

]f
. ~88!

The quantum potential for this problem can be calculated
the usual way. We substituteC5ReiS into the Wheeler-
DeWitt equation, obtaining the Hamilton-Jacobi-like equ
tion with the extra quantum potential termQ:

2
a2

12S ]S

]aD 2

1
f2

312vS ]S

]f D 2

248a41Q50, ~89!

where

Q5
1

RFa2

12S ]2R

]a2
1

p

a

]R

]a D 2
f2

312vS ]2R

]f2
1

q

f

]R

]f D G .

~90!

Let us apply this interpretation to the simplest caseC
5ak(a)bk(f). Then the wave function has the form

C5R1~a!R2~f!ei [S1~a!1S2~f!] , ~91!

sinceS(a,f)5S1(a)1S2(f). This implies that Eq.~87! be-
comes independent off. From Eq. ~90!, we see that
Q(a,f)5Q1(a)1Q2(f). To simplify the calculations we
set Ab5Bb50, and p5q51. We will first calculate the
dynamics of the scale factor whena is small, in order to see
if there are singularities. In this approximation we can ta
just the first term of the series representation ofI n(x) @10#,

I n~x!5(
l 50

`
1

l !G~n1 l 11!S x

2D n12l

. ~92!

For n real, the modified Bessel functionI n(x) is real and the
phase ofak is zero. Hence, the Bohmian equation~87! yields
that a is a constant. It is a nonsingular quantum solution b
with little physical interest. Hence, in a first moment, we w
restrict ourselves to the case wheren is a pure imaginary
number. Combinations of these two situations will be an
lyzed afterwards.

In the case wheren is pure imaginary,ak can be written
as

ak5c0xin5c0ein ln x, n5 in56 iA3k. ~93!

The phase and the norm are

S1~a!5n ln x,

R1~a!5c0 . ~94!

Defining x512a2, Eq. ~87! becomes

ȧ5
dS

dx
5

n

x
, ~95!

whose solution is

a5S nt

4 D 1/3

. ~96!
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FIG. 3. Field plot ofa versusf using the
causal interpretation for the superpositions of t
wave functions in the one scalar field case, in t
region of smalla.
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We can see that, in accordance to what was suggeste
previous sections, the behavior of the quantum trajector
similar to the classical one for smalla, and the singularity
will still be present. Note that ifn is positive we have ex-
pansion, while ifn is negative we have contraction. For th
scalar field, we have

bk5Abf iu5Baeiu ln f, ~97!

whereu52A(312v)k. The phase and the norm are

S2~f!5u ln f,

R2~f!5Ba . ~98!

From Eq.~88! we have

22
312v

f2
a3ḟ5

]S

]f
5

u

f
. ~99!

Using Eq.~96! we get

f5t2/A3~312v!, ~100!

which is also the classical behavior forA51.
It is not surprising that we have obtained the classi

behavior. SinceR1(a) andR2(a) are constants, the quantu
potential is zero, and there is no quantum effect. Note a
that solutions~96! and ~100! satisfy the Hamiltonian con
straint withV(a)548a4 neglected becausea is very small.

For very largea, the Bessel functionI n(z) can be ap-
proximated to@10#

I n~x!;c1

e12a2

a
, ~101!

wherec1 is a complex constant. In this case, we have

S1~a!5const, ~102!

R1~a!5uc1u
e12a2

a
. ~103!
in
is

l

o

The quantum trajectory is evidently

a5const, ~104!

which is not the classical one. For the scalar field, E
~88!,~98!,~104! now yields

f5e~1/2!A[k/~312v!] t, ~105!

which is the classical behavior forf in this regime@note that
asa5 const,u}t in Eq. ~11!#. The different behaviors of the
scale factor and the scalar field can be explained with
quantum potential. For the scale factor,Q1 will be given as
@see Eq.~90! with p51#

Q1~a!548a41
1

12
~106!

which is of the same size of the classical potentialV(a)5
248a4, and hence responsible for this quantum behav
For the scalar field, asR2(f) is constant,Q2(f)50, and the
scalar field continues to follow its classical trajectory. No
that the Hamiltonian constraint is also satisfied in this lim
Hence we have again obtained the strange result where
classical limit happens only for small values ofa.

Let us now take some superpositions of theak(a) and
bk(f) given in Eqs. ~79!,~80!. For definitiness, we will
choosep5q51, andv50. We will continue to take only
pure imaginaryn’s. Combinations of real and pure imagina
n’s do not change qualitatively the results. The wave fun
tion will be given by

C5(
i 51

3

I ni
~12a2!@Aif

2ui1Bif
ui#, ~107!

where
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FIG. 4. Plot of a particular singular solutio
for a(t), coming from Fig. 3, which begins with
an inflationary phase.
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k15
1

3
→n15 i , u15 i ,

k25k35
e2p i

3
→n25n352 i , u25u352 i ,

A15A251, A350,

B15B250, B351

6 .

~108!

Using Eq.~92! we obtain, for smalla,

C5S 12a2

f D i

1
1

~12a2f! i
1S f

12a2D i

. ~109!

Figure 3 shows a field plot ofa versusf, for smalla, for the
Bohmian equations~87!,~88!, with S being the phase of the
wave function~109!. We can see that there are periodic s
lutions with very small oscillations arounda. They are eter-
nal quantum universes which never grow. The solutio
which grow beyond the validity of Eq.~109! are singular and
inflationary. This can be seen in Fig. 4.

This result suggests that the initial singularity can
avoided only if we superpose eigenfunctions of opposite
quencies. However, it seems to be be difficult to obtain,
scalar field models, nonsingular universes with long exp
sion period@11#.

B. Two Scalar Fields

In this case, we have studied the quantum trajecto
driven by wave functions obtained from Eq.~48! for some
particularA(k1 ,k2).

~i! We have fixedp5q51, v50, k152 1
12, k[k2, Aa

5Ab50, Ba5Bb5Al5Bl51, and A(k1 ,k2)5 3
2 d(k1

1 1
12 ) tanh (pA3k2). Using a result of Ref.@10#, we obtain,
-

s

-
n
-

s

C~x,f,j!5coshSA2

3
j D E

0

3

2

3tanh~pA3k!KiA3k~x!KiA3k~ if!dk,

5coshSA2

3
j Dp

2
A xf

x21f2
e2x

3exp H i Fp4 2farctanS f

x D G J . ~110!

The quantum trajectories can be calculated from the follo
ing equations~in the gaugeN51):

pa524aȧ5
]S

]a
5

24af

x21f2
,

pf526
a3ḟ

p2
5

]S

]f
5

x21f21x

x21f2
, ~111!

pj524
a3j̇

f2
5

]S

]j
50.

The solutions are

a5
1

A12
F ln S C

A114h2D G 1/2

,

f52
1

2h
ln S C

A114h2D 526
a2

h
, ~112!

j5const,

whereh5*(dt/a) is the conformal time andC is an inte-
gration constant. For smalla, when h approaches
6Ac221/2, these function tend to
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a~ t !}t1/3,

f~ t !}t2/3}a2, ~113!

j5const,

which is exactly the classical behavior forv50. Whena is
not small, the trajectories are not classical@compare Eq.
~112! with Eqs. ~14!–~16!#. This can be seen by inspectin
the quantum potential. For two scalar fields it is given by

Q5
1

RFa2

12S ]2R

]a2
1

p

a

]R

]a D 2
f2

312vS ]2R

]f2
1

q

f

]R

]f D
2

f2

2

]2R

]j2 G . ~114!

For our particular problem, we obtain

Q5
1

3

~x422f2x1f4!

x21f2
. ~115!

For small a we haveQ}a2 ~remember thatf}a2 in this
limit !. In this domain, the kinetic terms dominate:

Ka5
a2pa

2

12
5

a2

12S ]S

]aD 2

5
1

3

x2f2

~x21f2!2
}const, ~116!

Kf52
f2pf

2

3
52

f2

3 S ]S

]f D 2

52
f2

3 S x21f21x

x21f2 D 2

}const.

~117!

Hence the quantum potential becomes negligible w
compared with the classical kinetic terms. Fora not small,
for instance, whenn→0 yielding a→amax and f→`, the
quantum potential diverges,

Q}f2, ~118!

while the classical potential and kinetic terms behave as

Ka}
1

f2
, ~119!

Kf}f2, ~120!

Vcl}a4. ~121!

Hence, together withKf , the quantum potential becomes th
more important term. This behavior of the quantum poten
explains why the trajectories are classical for smalla and
quantum otherwise.

~ii ! Let us now takep5q51, v50, k15 i /6, k[k2, Aa
5Ab5Bl50, Ba5Bb5Al51, and A(k1 ,k2)5d(k1

2 i /6) sinh (pA3k2)KiA3k2(A2eip/4). Then we obtain the
following wave function~see Ref.@10#!:

C5
p2

4
exp F2

x

2S f1
1

f D2A2

3
jG exp F i SA2

3
j2

f

x D G .
~122!
n

l

The equations of motion are

pa524aȧ5
]S

]a
524

af

x2
,

pf526
a3ḟ

f2
5

]S

]f
52

1

x
, ~123!

pj524
a3j̇

f2
5

]S

]j
5A2

3
.

The solutions are

a5t1/3,

f5C0a25c0t2/3, ~124!

j52uc1ut4/31C2 .

Note again that these solutons approach the classical
whena is small but are completely different whena is large.
Once again, this can be explained by the behavior of
quantum potential when compared with the kinetic and cl
sical potential terms. The quantum potential is given by

Q548a42
f2

3
. ~125!

The kinetic and classical potential terms are given by

Ka5
f2

3x2
,

Kf52
f2

3x2
,

~126!

Kj5
f2

3
,

Va5248a4.

For smalla, Q, Va , andKj goes to zero whileKa andKf
are constant. For largea, Q, Vf , andKj become comparable
and large, whileKa andKf continue to be constant. Henc
in this situation, the quantum potential becomes importa
driving the quantum behavior of the Bohmian trajectorie
Note that the sum of Eq.~125! with Eq. ~126! gives zero
because the Bohmian trajectories must satisfy the Ha
tonian constraint ammended with the quantum poten
term. We have also calculated the Bohmian trajectories
other exact wave solutions of the Wheeler-DeWitt equati
All of them present the same behavior.

We conclude this section by stating that in quantum c
mology it is not necessary that the classical behavior app
whena is large, while quantum behavior is present whena is
small. It can indeed be the reverse. This was already poin
out in @12# and we presented specific examples illustrat
this fact. It should also be commented that the result of t
section using the causal interpretation are in qualitat
agreement with the results of the previous section.
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VI. CONCLUSION

In this paper, we have studied classical and quan
minisuperspace models containing one and two scalar fie
We have shown that all classical solutions are singular. A
quantizing the models, we have obtained the general solu
of the Wheeler-DeWitt equation. Usually, the solutions a
oscillatory when the scale factor is small and not oscillat
when the scale factor becomes larger. This suggests that
classical behavior may occur when the scale factor is la
We studied Gaussian superpositions of WKB wave functi
to investigate if they correspond to quasiclassical states
suggested in Ref.@13#. We have shown that indeed the
wave functions are peaked around the classical trajectorie
configuration space, but only for smalla.

Afterwards, we applied the causal interpretation of qu
tum mechanics to these models. In this interpretation, i
possible to calculate quantum trajectories, independentl
any observations. We have shown that the trajectories ca
lated following this interpretation usually present the clas
cal behavior when the scale factor is small and nonclass
behavior whena is large, as suspected. This means that th
quantum trajectories still present an initial singularity. W
have also seen that if we superpose negative with pos
frequency solutions, then we can find trajectories which
no more classical for smalla. We can have eternal periodi
quantum universes with very small oscilations. These u
verses, however, never escape the Planck length. Ther
also singular solutions with a short period of inflation whi
-

n
m

m
s.
r

on
e
y
on-
e.
s
as

in
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u-
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grow forever. We could not find any nonsingular solutio
which grows to the size of our universe, with a classical lim
for largea.

The fact that quantum behavior happens whena is large
is not surprising. It was already obtained in Ref.@11# and
suggested to exist when the scale factor grows ast1/3 in Ref.
@12#, which is our case. Hence, in quantum cosmology it
not necessarily true that large scale factors implies class
behavior. For the scalar field models we have analyzed
this paper, the reverse seems to be more usual. It means
it is possible to have in our universe some degrees of fr
dom which still behave quantum mechanically in spite of
being very big. This gives us some hope of being possible
detect or experience quantum cosmological effects in the
universe we live in, bringing quantum cosmology to t
realm of testable physical theories. The problem should b
find which degrees of freedom can possess this property
do this, we should improve this minisuperspace model w
the accretion of small inhomogeneous perturbations, wh
contain an infinity number of degrees of freedom, and
what happens with the new inhomogeneous degrees of f
dom. We will get closer to the real universe but we will ha
to face new technical and interpretational problems. This w
be the subject of our future investigations.
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