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Radiation damping in FRW space-times with different topologies
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We study the role played by the compactness and the degree of connectedness in the time evolution of the
energy of a radiating system in the Friedmann-Robertson-Walker~FRW! space-times whoset5const spacelike
sections are the Euclidean three-manifoldR3 and six topologically nonequivalent flat orientable compact
multiply connected Riemannian three-manifolds. An exponential damping of the energyE(t) is present in the
R3 case, whereas for the six compact flat three-spaces basically the same pattern is found for the evolution of
the energy, namely, relative minima and maxima occurring at different times~depending on the degree of
connectedness! followed by a growth ofE(t). Likely reasons for this divergent behavior ofE(t) in these
compact flat three-manifolds are discussed and further developments are indicated. A misinterpretation of
Wolf’s results regarding one of the six orientable compact flat three-manifolds is also indicated and rectified.
@S0556-2821~98!01006-6#
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I. INTRODUCTION

As general relativity is a purely metrical~local! theory it
clearly leaves unsettled the global structure~topology! of
space-time. However, in cosmology perhaps the most im
tant problems are related to the global structure of spa
time, where the topological degrees of freedom ought to p
an essential role.

Geometry constrains, but does not determine the topol
of space-time. Consider, for example, the Friedma
Robertson-Walker~FRW! space-times, whose line eleme
can be given by

ds25dt22A2~ t !F dr2

12kr 2
1r 2~du21sin2udw2!G ,

~1.1!

whereA(t) is the scale factor,t is the cosmic time, and the
constant spatial curvaturek50,61 specifies the type of ge
ometry~flat, elliptic, or hyperbolic! of the t5const spacelike
sectionM3. Clearly FRW space-time manifoldsM4 can be
split intoR3M3. The number of three-dimensional spac
like manifoldsM3 which can be endowed with the thre
possible geometries of thet5const three-spaces of FRW
space-time is quite large@1,2#: for k50 there are 18 topo
logically distinct three-spaces, while for bothk561 an infi-
nite number of three-spaces exist@2,3#. Even if we restrict
ourselves to orientable and compact manifolds we still h
an infinite number of three-spacesM3 for the elliptic and
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hyperbolic cases, and six families of topologically differe
spacelike manifolds for the flat three-spaces@1–4#.

Since physical laws are usually expressed in terms of
cal differential equations, in order to be confident about
physical results one derives it is often necessary to h
some degree of control over the topological structure of
space-time manifold so as to include constraints imposed
the topology@5#. One is then confronted with the question
what topologies are physically acceptable for a given spa
time geometry. An approach to this problem is to study
possible observational~or physical! consequences of adop
ing particular topologies for the space-time@6–19# ~see also
@3,40#, and references therein!.

In this work we study the role played by the compactne
and the degree of connectedness in the time evolution of
energy of a radiating system in the flat FRW space-tim
whose spaceliket5const sections are endowed with sev
different topologies: namely, the simply connected thre
spaceR3, and six multiply connected orientable compa
three-manifolds obtained by suitable identifications of opp
site faces of cubes~four! and of hexagonal prisms~two! after
suitable turns@2,4,41#.

The radiating system we shall be concerned with is r
resented by a pointlike harmonic oscillator~energy source!
coupled with a relativistic massless scalar field@20–29#.
Similar radiating systems have been used to study a w
class of radiation phenomena as, for example, gravitatio
waves@23# or the radiated energy of oscillating electroma
netic dipoles@30,31#. Our radiating system was also used
the study of dynamic and geometric constraints on the ra
tion in elliptic FRW expanding universes@27–29#.

In the next section the radiating system is described:
action integral is presented, its variation is performed, a
the corresponding evolution equations are obtained. We
outline there a proposal for solving these equations. In S
III the Green functions of the wave operator are derived
each specific space-time manifold with arbitrary scale fac
A(t), and combined with the evolution equations to give t
corresponding radiation reaction equations. A misinterpre
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4700 57BERNUI, GOMERO, REBOUC¸ AS, AND TEIXEIRA
tion @2–4# of Wolf’s @1# results ~theorem 3.5.5! regarding
one of the six orientable compact flat three-manifolds is a
indicated and rectified therein. In Sec. IV, the radiation re
tion equations are numerically integrated. Graphs that sh
how the system energy varies with the time for each to
logically different flat FRW manifold are presented for sta
and nonstatic cases. Our main conclusions are discusse
Sec. V. We show that when thet5const sections are th
simply connected three-spaceR3 the radiation damping phe
nomenon is present, whereas for all compact flat FRW sp
time manifolds we have investigated, the energyE(t) exhib-
its a few relative minima and maxima followed by a grow
of the energy with the time. Possible reasons for this div
gent behavior ofE(t) in these compact flat three-manifold
are examined. We also discuss the role played by the c
pactness and by the degree of connectedness in the en
patterns of our system in these space-time manifolds. Fur
developments are indicated therein.

II. PHYSICAL SYSTEM AND EVOLUTION EQUATIONS

Radiation waves produced by an oscillating energy sou
as, e.g., an oscillating electromagnetic dipole, have b
studied by using a theoretical model represented by a cla
cal harmonic oscillator~energy source! coupled with a rela-
tivistic massless scalar field~scalar radiation waves propa
gating at speed of light! @20–28#. In our model the
gravitational field is treated as external, but a suitable c
formal coupling with the scalar field is considered@32#.

The dynamics of our system can be described by an ac
integral, which contains a term for the scalar fieldf(t,xW ),
another associated to the oscillation amplitudeQ(t) of the
pointlike harmonic oscillator, and a coupling term betwe
the scalar field and the harmonic oscillator according to

S5
1

2E d4xA2gFgmn]mf]nf2
1

6
R̂f2G

1
1

2E dt@Q̇22v«
2Q2#1lE d4xA2gr~ t,xW !

3Q~ t !f~ t,xW !, ~2.1!

where tP@ t0 ,`),xWPM3, gmn is the metric tensor onM4,
the g[ det(gmn), R̂ is the scalar curvature ofM4, overdot
means derivative with respect tot, andl is a coupling con-
stant. The functionr is the normalized density function
which accounts for the coupling between the harmonic os
lator and the scalar field. Similarly to the coupling betwe
charges and electromagnetic fields in classical electrodyn
ics, we shall consider in this work a pointlike coupling b
tween the harmonic oscillator and the scalar field, nam

the one in whichr(t,xW )5d (3)(xW )/A2g(t,xW ), whered (3) is
the three-dimensional Dirac delta function. This type of co
pling requires a renormalization of the frequencies, and
this end we need an« family of uncoupled frequenciesv«

~see Sec. III!. Here and in what follows units in whichc51
are used.

Varying the action~2.1! with respect tof and Q one
obtains the coupled evolution equations of the syste
namely,
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6
R̂Gf~ t,xW !5lr~ t,xW !Q~ t !, ~2.2!

Q̈~ t !1v«
2~ t !Q~ t !5lE d3xA2gr~ t,xW !f~ t,xW !, ~2.3!

where hf[(A2g)21]m(A2ggmn]nf) is the

d’Alembertian operator, andh1 1
6 R̂ is the wave operator

defined onM4, hereafter simply called the wave operat
@32,33#.

Before proceeding to the discussion of the Green fu
tions for the wave operator in flat FRW space-time manifo
@for any smoothA(t)] we shall consider how one can obta
the radiation reaction equation from the above equati
~2.2! and ~2.3!. One first solves Eq.~2.2! as an initial value
problem, by writing the solution in the form@34#

f(t,xW )5f I(t,xW )1fH(t,xW ), wherefH(t,xW ) satisfies the cor-
responding homogeneous equation, and where the solu
of the inhomogeneous equation is given by

f I~ t,xW !5E dt8d3x8A2g~ t8,xW8!G~ t,xW ;t8,xW8!

3lr~ t8,xW8!Q~ t8!, ~2.4!

with t8P@ t0 ,t#,xW8PM3. In Eq. ~2.4! G(t,xW ;t8,xW8) is the re-
tarded Green function, often referred to as a fundame
solution of the wave operator@33#. Since the scalar field o
our system may be thought of as the propagation medium
the radiating energy, we assume the initial conditi

@f(t0 ,xW ),] tf(t0 ,xW )#5(0,0), which means that the scala
field carries no energy att5t0. This condition implies that
fH(t,xW )50, and thereforef(t,xW )5f I(t,xW ). Finally, the ra-
diation reaction equation of the energy sourceQ(t) can be
found by using the relationf5f@Q# in Eq. ~2.3!. We shall
return to this point later in the next section.

In this work, the Green function plays an essential role
that it incorporates both the geometrical and topological f
tures of the FRWt5const three-spaces. They will be ob
tained, in the next section, through the study of null geo
sics of the space-times for each distinct three-space~see
Table I!.

III. GREEN FUNCTIONS FOR THE WAVE OPERATOR

In this section we shall derive the Green functions of t
wave operator for the flat FRW space-times whose space
t5const sections are the multiply connected compact orie
able three-spaces, obtained by suitable identification of fa
of a basic cell~see Refs.@2,4#! according to Table I, and the
simply connected spaceR3. Clearly the metric tensor we
shall be concerned is given in Cartesian coordinates by

gmn5 diag@ 1,2A2~ t !,2A2~ t !,2A2~ t !#. ~3.1!

Regarding the manifoldT4 one often encounters in th
literature on compact orientable flat three-spaces refere
to a cube in which each pair of opposite faces is identifi
after half a turn@2–4#. However, if such a cube is endowe
with the Euclidean geometry then the resulting three-spac
not a manifold, but an orbifold@35,36,41#. This three-space
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TABLE I. The six compact orientable topologies for the flat three-manifolds can be obtained by id
fying opposite faces of a basic cell as shown in this table.

Topology type Basic cell Identifications of faces

T1 cube 3 pairs non rotated
T2 cube 2 pairs non rotated, 1 pair rotated 90°
T3 cube 2 pairs non rotated, 1 pair rotated 180°
T4 cube 1 pair rotated 180°, 2 pairs according to Fig. 1
H1 hexagonal prism top and bottom rotated 60°
H2 hexagonal prism top and bottom rotated 120°
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fails to be a manifold along the edges of the cube. Only wh
the cube is endowed with the elliptic geometry is the res
ing space indeed a manifold, namely, the well known r
projective spaceP3.

Recently, using theorem 3.5.5 by Wolf@1#, it has been
shown that a basic cell for the Euclidean manifoldT4 is the
cube shown in Fig. 1@41#. It should be stressed that the bas
cell for T4 shown in Fig. 1 is a standard basic cell; in gener
however, the basic cell forT4 need not be a cube.

The cubes andR3 cases. We shall discuss in this part th
Green functions for the wave operator on three-spaceTi
( i 51, . . . ,4)shown in Table I. The manifoldT1, referred to
in the literature as the three-torusT3 @37#, is a compact mul-
tiply connected Riemannian manifold, which can be obtain
by identifying the opposite faces of a cube of sidea.

To build the Green function inR3T1 we first use the
conformal properties of FRW space-times. Defining the c
formal time t[ f (t)[*dt8/A(t8) for t8P@ t0 ,t#, we trans-
form the problem of finding the Green functionG(t,xW ;t8,xW8)

of the operator (h1 1
6 R̂) into the problem of finding the

Green functionG(t,xW ;t850,xW8) of the operatorh @22,33#.
Moreover, a useful way of thinking aboutT1 in terms of the
simply connected three-manifoldR3 is to imagine the cube
repeated endlessly in a three-dimensional grid~basic cell and
its images!, where each repetition consists of the same ph
cal region of space. The spaceR3 containing an infinite grid
of copies of the basic cell is called the universal cover
space ofT1. In this way we now transform the problem o
calculating the Green function ofh at (t,xW )PR3T1 due to
a pointlike source located atxW85(0,0,0) and emitting at

FIG. 1. A basic cell for the manifoldT4 is a cube whose face
are pairwise identified as indicated in this figure.
n
t-
l

l,

d

-

i-

g

t850, to the equivalent problem of finding the field
(t,xW )PR3R3 due to an infinite set of pointlike source
each one located at the center of a cube of the grid, and a
them irradiating simultaneously att850.

In this infinite grid picture the Green function ofh is
calculated summing up the contributions of each one of
pointlike sources. Since a scalar ray is a null geodesic,
distance traveled by each scalar wave front is a measur
the corresponding time travel, so the conformal timet of
arrival atxW will depend on the position at which each sour
is located. Null geodesics corresponding to retarded wa
connecting@t850,aW (nW )# to the observation point (t,xW ) are
then such thatt2uxW2aW (nW )u50, so the Green function fo
t.0 is given by

G~t,xW ;t850,xW850!

5
1

4pR~t!R~t850!
(

n1 ,n2 ,n3

d~t2uxW2aW ~nW !u!

uxW2aW ~nW !u
,

~3.2!

wherexW ,aW (nW )PR3, aW (nW )[a(n1eW11n2eW21n3eW3). Here$eW i%
is the usual orthonormal basis vectors inR3 and (n1 ,n2 ,n3)
are integers, andR(t)[A( f 21(t)).

We shall consider now the radiation reaction equation
our energy source inT1. Using the Green functionG and Eq.
~2.4! one findsf@Q#, which can be used in Eq.~2.3! to
furnish the radiation reaction equation of our system. N
that in these calculations the first term (n15n25n350) of
the Green function gives rise to the ter
(l2/4 p)*dxd(x)/@A(t)x#, that formally diverges. A suit-
able renormalization procedure is therefore necessary.
resembles the need for renormalization one finds when d
ing with accelerated point charges in classical electrodyn
ics @30#. We learn from@28# that a renormalization procedur
can always be made in this case. This amounts to saying
for any 0,V2,`, and any«.0, one can always define a
«-parameter family of frequenciesv«

2 by

v«
2~ t ![V21

2 G

A~ t !E dx
r«~x!

x
, ~3.3!

such thatr«(x) is a d sequence that in the limit«→0 con-
verges to the Dirac deltad(x).

Using now Eq. ~3.3!, in which we have made
2 G[l2/(4p), one finds that, for arbitrary initial data
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4702 57BERNUI, GOMERO, REBOUC¸ AS, AND TEIXEIRA
@Q(t0),Q̇(t0)#, the renormalized radiation reaction equati
of the source can be written in the form

Q̈~ t !12 GQ̇~ t !1V2Q~ t !

5
2 G

A~ t ! (
n1 ,n2 ,n3

1

a~nW !
Q~ t2tn!Q$ f 21@ f ~ t !2a~nW !#%,

~3.4!

for any tP@ t0 ,`), and where a(nW )[uaW (nW )u
5a@n1

21n2
21n3

2#1/2 for all (n1 ,n2 ,n3) integers not all
zero, tn[ f 21@a(nW )# and the step distributionQ(s)50 for
any s<0, Q(s)51 for all s.0. Note that the radiation re
action equation~3.4! contains an infinite, but countable
number of retarded terms. Note also that, for a given pai
initial data@Q(t0),Q̇(t0)#, the continuity ofQ andQ̇ for all
t is sufficient to ensure that Eq.~3.4! can be integrated to
give a unique solution.

The next three-manifolds we shall consider areT2, T3 and
T4 ~see Table I!. The three-spaceT2 is a compact multiply
connected flat three-dimensional Riemannian manifold,
tained by identifying opposites faces of a cube, with a p
being identified after a rotation of 90° of one face relative
the opposite face. The three-manifoldT3 is obtained by iden-
tification of opposites faces of a cubic cell, but now a pair
faces are identified after a turn of 180°~see Table I!. Finally,
the three-manifoldT4 is obtained by pairwise identifying th
faces of the cube according to Fig. 1. For these three-sp
the Green functions for the wave operator can again be b
by using the infinite grid of cubes picture. It should be n
ticed, however, that the grids of cubes corresponding toT1,
T2, T3, andT4 are different.1 Nevertheless, as the center of
basic cell in each case represents the same infinite se
points@images of the pointlike source at (0,0,0)# of the cov-
ering spaceR3, the Green functions for the wave operator
these three-spaces are equal to the one we have calculate
T1, i.e., are given by~3.2!. Thus, for arbitrary initial data

@Q(t0),Q̇(t0)# the radiation reaction equation inT2, T3, and
T4 reduces to Eq.~3.4! obtained forT1.

A word of clarification is in order here: the above Gre
functions for the wave operator for the three-spacesTi
( i 51, . . . ,4) coincide only because in each case the po
like source is located at the center of the basic cellxW850.
This is so because although all these three-spaces are lo
homogeneous, the three-spacesT2, T3, andT4 are not glo-
bally homogeneous, thus the corresponding Green funct
of h for xW8Þ0 are more involved and do not depend simp
on the relative position between the source and the obse

Regarding the simply connected flat three-dimensio
Riemannian manifold R3 (t5const section of the
Minkowski space-time!, the Green function for the wave op
erator h is equal to the first term (n15n25n350) of G
appearing in Eq.~3.2!. Thus the radiation reaction equatio

1This is so because each three-manifold is obtained by form
the quotientM35R3/G i ( i 51, . . .,4), where for each caseG i is a
different discrete group of isometries of the covering spaceR3

acting properly discontinuously, without fixed points@2#.
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in this manifold reduces to Eq.~3.4! with the right-hand side
equal to zero, for alltP@ t0 ,`).

The hexagonal prism cases. We shall discuss now the
Green functions for the wave operator on the flat hexago
prism manifoldsH1 andH2 described in Table I. The three
spaceH1 is a compact multiply connected flat thre
dimensional Riemannian manifold, which can be obtained
identifying the top and bottom faces of a regular hexago
prism after a rotation of 60°, while the lateral faces are pa
wise identified in the usual manner. The three-manifoldH2
can be similarly defined, but now the identification of the t
and bottom faces~regular hexagons! is made after a turn of
120°. In both cases we denote bya the shortest distance
between two opposite sides of the regular hexagon and bh
the height of the hexagonal prism cell.

For a pointlike source located at the center of the ba
cell, the Green functions for the wave operator in the thr
manifoldsH1 andH2 are obviously the same. Moreover the
turn out to be similar to the Green function~3.2!. But now

instead of aW (nW ) one has bW (nW )[an1(A3/2)eW11a( 1
2 n1

1n2)eW21hn3eW3, where (n1 ,n2 ,n3) are integers, to locate
the centers of the hexagonal prism cells in whichR3 has
been tessellated. Note that the number of images at a g
distance from the pointlike source clearly depends upon
ratio h/a. The radiation reaction equation in the prese
cases is similar to Eq.~3.4! but with the obvious change
a(nW )→b(nW )[ubW (nW )u5@a2(n1

21n1n21n2
2)1h2n3

2#1/2 and
again the integers (n1 ,n2 ,n3) are not all zero.

It should be emphasized that as the three-manifoldsH1
andH2 are locally but not globally homogeneous, the Gre
function for the wave operator in these manifolds is ag
given by Eq.~3.2!, with bW (nW ) instead ofaW (nW ), only because
the pointlike source is at the center of the basic cellxW850.
To close this section we emphasize that the Green functi
obtained for flat FRW space-time manifoldsM45R3M3,
contain the topological constraints ofM3, information that
makes it possible to find out the exact radiation react
equation in each case.

IV. NUMERICAL ANALYSIS

In this section we shall discuss the time behavior
the energy of the harmonic oscillatorE(t)51

2 @Q̇2(t)1
V2Q2(t)], where the functionQ(t) is the solution of the
radiation reaction equation corresponding to each flat m
fold we have discussed in the previous section. Without l
of generality in the integration of the radiation reaction equ
tions and in the plotting of the energy function we have tak
specific values for the constants. We have also assumed
continuity of Q and Q̇, and chosen suitable values for th
initial dataQ(t0) andQ̇(t0). For a neat comparison betwee
the simply and multiply connected cases we have cho
G51, V2530, the lengtha51, and for the heights of the
hexagonal prism and three-torus we have takenh50.4 and
1. As a matter of fact, our three-torusT1 was obtained from
a parallelepiped with edgesa,a,h, so a(nW )5@a2(n1

2

1n2
2)1h2n3

2#1/2 was used in Eq.~3.4!. Further, we have
also chosen as initial datat050, @Q(0),Q̇(0)#5(A2/V,0),

g
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which means that the initial energy of the source has b
normalized, i.e.,E(0)51.

Figures 2, 3, and 4 correspond to the static c
A(t)5const[A0, which we have normalized to 1 (A051),
while dynamic situations@Ȧ(t)Þ0# are considered in Fig. 5

FIG. 2. Behavior of the energy of the harmonic oscillator f
G51 and V2530 in static flat FRW space-times withT1 space
slices. There are a few relative maxima followed by a growth
E(t). Two different ratiosh/a are considered (h is the height anda
is the side of the square basis of the basic cell!.

FIG. 3. Behavior of the energyE(t) of the harmonic oscillator
for G51 andV2530 in static flat FRW space-times with thre
spaceH1. There are a few relative maxima followed by a growth
E(t). It shows the energyvs. time curves for distinct ratiosh/a (h
is the height of the hexagonal prism anda is shortest distance
between two opposite sides of the regular hexagon!.
n

e

Taking into account the above choices of values and us
the computer algebra systemsMATHEMATICA @38# and
MAPLE @39# the numerical integrations of the radiation rea
tion equations as well as the corresponding graphs for
energy function were obtained~see Figs. 2–5!.

Figure 2 shows the behavior of the energy with the tim

f

FIG. 4. The time evolution of the energy of the harmonic osc
lator for flat, static FRW space-times with different topologies f
the spaceliket5const sections:R3, T1, and H1 ~both with
a5h51). Different degree of connectedness implies different p
terns ofE(t). Here againG51 andV2530.

FIG. 5. The time evolution of the energy of the harmonic osc
lator in FRW expanding space-times with three-spaceT1 ~for
a5h51). Three types of dynamic expansion are shown: lin

@Ȧ(t)51 #, square root @A(t)5t1/2#, and inflationary

@Ȧ(t)5aeat, a21521/2#. Here againG51 andV2530.
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for the flat FRW space-times, in which thet5const sections
are any of the orientable compact multiply connected thr
manifoldsT1, T2, T3, andT4 for different ratiosh/a. Note
that h is the height of the parallelepiped of square basis
side a. The curves exhibit basically the same patte
namely, relative minima and maxima followed by a predom
nant growth of the energy with the time@E(t)→` when t
→`]. These extrema are related to the contribution of
discrete retarded terms~the right-hand side of the radiatio
reaction equation! demanded by the compactness and
corresponding connectedness of these manifolds. The
that the relative extrema occur at different times and are
different amplitudes~intensities! for distinct tessellations
~different ratiosh/a) of the covering manifold, basically re
veals the differences in their degree of connectedness~re-
turning rays take different times to return to the origin!. This
growth of the energy is discussed in the next section.

Regarding the behavior of the energy function for t
cases in which thet5const sections areH1 andH2, shown
in Fig. 3, we again note that due to the compactness
connectedness we have relative minima and maxima w
distinct intensities, which take place at different instants
distinct ratiosh/a. The curves again display an eventu
growth of the energy with the time for these manifolds.

Figure 4 compares the variation of the energyE with the
time for the cases where thet5const sectionsM3 areR3, T1
~with a5h51), andH1 ~also with a5h51). This figure
shows for the Minkowski space-time, as expected, an ex
nential decay of the energy with the time, whereas for
manifoldsT1 andH1 it shows basically the same pattern, i.
relative minima and maxima occurring at different time
depending on the degree of connectedness, followed b
growth of the energy with time.

Although the net role played by the degree of connect
ness as well as compactness can be singled out in the s
casesA(t)5const[A0, for the sake of completeness we ha
examined three instances where dynamic expansion t
place. Figure 5 corresponds to the plot of the energy func
for theT1 manifold ~with a5h51) in the dynamic expand
ing cases:~i! linear expansionA(t)5t10.7, ~ii ! square root
expansion A(t)50.8At10.4, ~iii ! inflationary expansion
A(t)5et/A2, that is, an expansion with future event horizo

Although for case~iii ! one clearly has radiation damping
we have not been able to find out so far a closed formal pr
of the asymptotical behavior for the other two cases.
emphasize, nevertheless, that the net role played by the
nectedness and compactness can be better singled out
static cases, where the dynamical degrees of freedom
frozen. The study of that role for the static cases is in fact
major aim of the present work.

V. CONCLUSIONS AND FINAL REMARKS

In this work we have studied the role played by the top
logical compactness and connectedness in the time evolu
of the energy of an harmonic oscillator in flat FRW spac
time manifolds, whoset5const sections are~i! the orientable
simply connected noncompact three-spaceR3 and ~ii ! six
possible flat orientable multiply connected compact thr
manifolds given in Table I.

For theR3 case we found that the energy functionE(t)
-
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exhibits an exponential decay with the time — the radiat
damping@E(t)→0 when t→`] takes place, as one coul
have expected in agreement with@20–26#. For the manifolds
T1, T2, T3, andT4 as well as for the manifoldsH1 andH2 the
behavior of the energy with the time exhibits basically t
same pattern: relative minima and maxima occur at differ
times for distinct ratiosh/a ~distinct tessellations! depending
on the degree of connectedness of each three-manifold,
are followed by a growth ofE(t).

This asymptotical divergent behavior ofE(t) for these
compact manifolds contrasts with the radiation damping
the energy we have found forR3. There is a quite simple
heuristic argument which supports our numerical resu
though. If onead hocassumes an exponential asymptotic
behavior forQ, i.e., Q(t)5g exp(bt) with b and g real
constants, then for the static cases@A(t)51#, and for each of
the above compact manifolds, in the limitt→` Eq. ~3.4!
reduces to

b212 Gb1V2

2 G
5 (

m51

`
cm

am
exp~2bam!, ~5.1!

wherecm is the number of images of the pointlike source
a distanceam in the infinite grid picture. To attain our goa
we will show that Eq.~5.1! has only one real solution forb,
which is positive. Indeed, letf (b) be the right-hand side o
Eq. ~5.1!, which is a positive monotone decreasing functi
of b, and such that

lim
b→0

f ~b!5`

and

lim
b→`

f ~b!50. ~5.2!

Thus f (b) lies entirely in the first quadrant of the plane an
crosses it from the top left to the bottom right. Now, sin
G.0 then for a given pair (G,V) the left-hand side of Eq.
~5.1! is a parabola curved upwards with vertex atb52G.
Therefore, it always intersects the curve forf (b) in just one
point, which is in the first quadrant. In other words, there
only one realb solution to Eq.~5.1!, which is positive.

The unexpected~unphysical ?! growth of the energy with
the time for the above compact flat three-manifolds ca
illustrates that nontrivial topologies can induce rather imp
tant dynamic changes in the behavior of a physical syst
This type of sensitivity has been referred to astopological
fragility and can occur without violation of any local phys
cal law @18#. A rigorousnon-numericalanalysis of the rea-
sons for this surprising divergent behavior ofE(t) when
compact flat FRW space-times are considered has been
ried out, and we hope to publish our results shortly el
where. We anticipate, however, that the causes for suc
behavior lie in the compactness of the manifold in at le
one direction, on the one hand, and in the type of coupl
betweenQ andf, on the other hand.

A possible physical measure of the degree of connec
ness in thesecompactthree-manifolds can be made throug
the study of the number of emitted rays that return to
origin within a given lapse of time. According to this conce
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of degree of connectedness one learns from Figs. 2, 3, a
that the greater is the degree of connectedness the earl
the occurrence of the first relative minimum in the ener
function. Incidentally, note that the extension of this conc
of degree of connectedness to noncompact three-manif
implies thatR3 has a null degree of connectedness. This
course, is indicated in Fig. 4, which shows a net exponen
decay of the energy with the time; no relative minima a
maxima come about, which means that no ray returns to
origin.

A simple inspection of the graphs forE(t) clearly shows
that the derivativeĖ5Q̇(Q̈1V2Q) of the energy function is
discontinuous at a few points. Indeed, for the static case
example, using Eq.~3.4! one obtains

Ė~ t !52GQ̇~ t !F (
n1 ,n2 ,n3

1

a~nW !
Q@ t2a~nW !#

3Q@ t2a~nW !#2Q̇~ t !G . ~5.3!

From this equation one sees that the discontinuities occu
t5a(nW ), that is, they come about each time a new te
Q@ t2a(nW )#/a(nW ) is taken into account in the right-hand sid
of Eq. ~3.4!. A question which naturally arises here
whether the inverse problem, i.e., that of determining
basic cell~topology! corresponding to the spaceliket5const
sections from the graphs of the energyE(t), can be solved.
Regarding this problem it is clear that one can find the d
tances of the pointlike source to its images by using wh
t.
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the discontinuities ofĖ(t) take place, and the number o
images at a given distance through the magnitude of
corresponding discontinuities. So, one can probe the to
ogy of the three-spaces at least in a few cases. It is not
clear whether an algorithm for solving the inverse proble
for the most general~Euclidean! setting can be found
though. As far as we are aware@3# this is the first work in
which a physical consequence of adopting the flat hexago
prismsH1 andH2 has been studied.

It is of worth emphasizing that when the expansion of t
universe is considered the degree of connectedness is
than the ones for the static cases. For the manifoldT1 this
can be seen by comparing Fig. 2@static caseȦ(t)50] and
Fig. 5 @monotone expansionsȦ(t).0].

Before closing this article we would like to stress that o
study does not cover all possible spatially compact orienta
flat FRW manifolds. Thus, for example, we have not cons
ered that for the three-manifoldsT1 andT3 the basis of the
basic cell need not be a square, it can be a parallelogram.
restriction we have made, however, does not seem to be
cisive for the patterns of the behavior of the energy with
time we have found. To conclude we remark that the stu
of radiation damping in elliptic (k51) FRW manifolds in
which thet5const sections are endowed with different~ori-
entable compact! topologies is being carried out.
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