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Radiation damping in FRW space-times with different topologies
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We study the role played by the compactness and the degree of connectedness in the time evolution of the
energy of a radiating system in the Friedmann-Robertson-W&HeW) space-times whode= const spacelike
sections are the Euclidean three-manif@td and six topologically nonequivalent flat orientable compact
multiply connected Riemannian three-manifolds. An exponential damping of the eBérgis present in the
R3 case, whereas for the six compact flat three-spaces basically the same pattern is found for the evolution of
the energy, namely, relative minima and maxima occurring at different tighgsending on the degree of
connectednegdollowed by a growth ofE(t). Likely reasons for this divergent behavior B{t) in these
compact flat three-manifolds are discussed and further developments are indicated. A misinterpretation of
Wolf's results regarding one of the six orientable compact flat three-manifolds is also indicated and rectified.
[S0556-282(98)01006-9

PACS numbe(s): 98.80.Hw, 04.20.Cv, 04.20.Gz, 04.20.Jb

I. INTRODUCTION hyperbolic cases, and six families of topologically different
spacelike manifolds for the flat three-spaggs4].
As general relativity is a purely metricélbcal) theory it Since physical laws are usually expressed in terms of lo-

clearly leaves unsettled the global structitepology of cal differential equations, in order to be confident about the
space-time. However, in cosmology perhaps the most impoiphysical results one derives it is often necessary to have
tant problems are related to the global structure of spacesome degree of control over the topological structure of the
time, where the topological degrees of freedom ought to plagpace-time manifold so as to include constraints imposed by
an essential role. the topology[5]. One is then confronted with the question of
Geometry constrains, but does not determine the topologyhat topologies are physically acceptable for a given space-
of space-time. Consider, for example, the Friedmanntime geometry. An approach to this problem is to study the
Robertson-WalkeFRW) space-times, whose line element possible observationdbr physical consequences of adopt-
can be given by ing particular topologies for the space-tiff&-19| (see also
[3,40], and references thergin
In this work we study the role played by the compactness
and the degree of connectedness in the time evolution of the
energy of a radiating system in the flat FRW space-times
(1.1)  whose spaceliké=const sections are endowed with seven
different topologies: namely, the simply connected three-
spaceR?®, and six multiply connected orientable compact
whereA(t) is the scale factor, is the cosmic time, and the three-manifolds obtained by suitable identifications of oppo-
constant spatial curvature=0,=1 specifies the type of ge- site faces of cube$our) and of hexagonal prisni$wo) after
ometry flat, elliptic, or hyperboli¢ of thet=const spacelike suitable turng2,4,41.
sectionM;. Clearly FRW space-time manifold$t, can be The radiating system we shall be concerned with is rep-
split into R X M3. The number of three-dimensional space-resented by a pointlike harmonic oscillat@nergy source
like manifolds M3 which can be endowed with the three coupled with a relativistic massless scalar figkD—29.
possible geometries of the=const three-spaces of FRW Similar radiating systems have been used to study a wide
space-time is quite larggl,2]: for k=0 there are 18 topo- class of radiation phenomena as, for example, gravitational
logically distinct three-spaces, while for bod++1 an infi-  waves[23] or the radiated energy of oscillating electromag-
nite number of three-spaces exj&,3]. Even if we restrict netic dipoleg30,31. Our radiating system was also used in
ourselves to orientable and compact manifolds we still havehe study of dynamic and geometric constraints on the radia-
an infinite number of three-spacesl; for the elliptic and tion in elliptic FRW expanding univers¢g7—29.
In the next section the radiating system is described: the
action integral is presented, its variation is performed, and
*Permanent address: Facultad de Ciencias, Universidad Naciontiie corresponding evolution equations are obtained. We also
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tion [2—4] of Wolf's [1] results (theorem 3.5.5 regarding
one of the six orientable compact flat three-manifolds is also
indicated and rectified therein. In Sec. 1V, the radiation reac-
tion equations are numerically integrated. Graphs that show
how the system energy varies with the time for each topo- Q(t)+w§(t)Q(t):)\f d3X\/—_gp(t,>z)¢(t,>Z), (2.3
logically different flat FRW manifold are presented for static

and nonstatic cases. Our main conclusions are discussed ,j - - v ;
. Where  O¢=(V-0)19,.(JV-99"9,4) is the
Sec. V. We show that when the=const sections are the |, . 1A
d’Alembertian operator, anfll+ R is the wave operator

simply connected three-spa the radiation damping phe- X :
nomenon is present, whereas for all compact flat FRW spac ;fzf'g%d onM,, hereafter simply called the wave operator

time manifolds we have investigated, the enekgy) exhib- Before proceeding to the discussion of the Green func-

its a few relative minima and maxima followed by a growth . . - .
yag tions for the wave operator in flat FRW space-time manifolds

of the energy with the time. Possible reasons for this diver ¢ A hall ider h btai
gent behavior oE(t) in these compact flat three-manifolds [for any smoothA(t)] we shall consider how one can obtain

are examined. We also discuss the role played by the cor%; radiation reaction equation from the above equations

D+%I3€ H(t,X)=\p(1,X)Q(1), (2.2)

pactness and by the degree of connectedness in the ene Zg)land (253)' On.(t':f firsttﬁolves lE;.I'Z'Z) as ?f? iniftial vgl;e
patterns of our system in these space-time manifolds. Furth oblem, by writing the solution in the form/34]

developments are indicated therein. (1) = ¢y (t,X) + i (t,X), wheregy(t,x) satisfies the cor-
responding homogeneous equation, and where the solution
Il. PHYSICAL SYSTEM AND EVOLUTION EQUATIONS of the inhomogeneous equation is given by

Radiation waves produced by an oscillating energy source v :f N IR Cor O
as, e.g., an oscillating electromagnetic dipole, have been $i(t.X) dt'dx gt X G(Lx x")

studied by using a theoretical model represented by a classi- R

cal harmonic oscillatofenergy sourcecoupled with a rela- XAp(t',x")Q(t"), (2.4

tivistic massless scalar fielgscalar radiation waves propa- - .

gating at speed of light[20-28. In our model the Witht'e[to,t].x"eMs. In Eq.(2.4 G(t,x;t’,x") is the re-

gravitational field is treated as external, but a suitable contarded Green function, often referred to as a fundamental

formal coupling with the scalar field is considerk8®]. solution of the wave operatdB3]. Since the sc.alar flelq of
The dynamics of our system can be described by an actiofUr system may be thought of as the propagation medium for

integral, which contains a term for the scalar fieMt,i), the rajjiating energy, we as_sume the initial - condition
another associated to the oscillation amplit@g) of the [ #(to.X),di$(to,x)]=(0,0), which means that the scalar
pointlike harmonic oscillator, and a coupling term betweenfield carries no energy dt=t,. This condition implies that
the scalar field and the harmonic oscillator according to  ¢y(t,x) =0, and therefores(t,x) = ¢,(t,x). Finally, the ra-
diation reaction equation of the energy souf@g) can be
S— 1] d4x\/—_g found by using the relatio®= ¢[ Q] in Eq. (2.3). We shall
2 return to this point later in the next section.
1 In this work, the Green function plays an essential role in
= N2 22 4y, [ v that it incorporates both the geometrical and topological fea-
* 2[ dfQ™~:Q ]+)\J' d x\/_gp(t,x) tures of the FRWt=const three-spaces. They will be ob-
tained, in the next section, through the study of null geode-

v 1. 2
043,60, SR

XQ(t) o(t,x), (2.D)  sics of the space-times for each distinct three-sp@ee
. Table ).
wherete[ty,©),xe M3z, g,, is the metric tensor oo\,
the g= det(g,,), R is the scalar curvature of1,, overdot Ill. GREEN FUNCTIONS FOR THE WAVE OPERATOR
means derivative with respect tpand\ is a coupling con- . . ) .
stant. The functionp is the normalized density function, In this section we shall derive the Green functions of the

which accounts for the coupling between the harmonic oscil"Vave operator for the flat FRW space-times whose spacelike
lator and the scalar field. Similarly to the coupling betweent = COnst sections are the multiply connected compact orient-
charges and electromagnetic fields in classical electrodynan®P!€ three-spaces, obtained by suitable identification of faces
ics, we shall consider in this work a pointlike coupling be- Of & basic cellsee Refs[2,4]) according to Table I, and the

. 3 .
tween the harmonic oscillator and the scalar field, namelySimPly connected spac&”. Clearly the metric tensor we

the one in whichp(t,x) = gg)(;)/m, where 5@ is shall be concerned is given in Cartesian coordinates by

the three-dimensional Dirac delta function. This type of cou- 9,,= diad 1,—A(t), — A%(t),— A%(1)]. (3.2

pling requires a renormalization of the frequencies, and to

this end we need aa family of uncoupled frequencies, Regarding the manifold; one often encounters in the

(see Sec. I). Here and in what follows units in whioh=1 literature on compact orientable flat three-spaces references

are used. to a cube in which each pair of opposite faces is identified
Varying the action(2.1) with respect to¢p and Q one  after half a turn2—4]. However, if such a cube is endowed

obtains the coupled evolution equations of the systemwith the Euclidean geometry then the resulting three-space is

namely, not a manifold, but an orbifol@i35,36,41. This three-space
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TABLE I. The six compact orientable topologies for the flat three-manifolds can be obtained by identi-
fying opposite faces of a basic cell as shown in this table.

Topology type Basic cell Identifications of faces
T cube 3 pairs non rotated
T cube 2 pairs non rotated, 1 pair rotated 90°
T3 cube 2 pairs non rotated, 1 pair rotated 180°
T cube 1 pair rotated 180°, 2 pairs according to Fig. 1
Hy hexagonal prism top and bottom rotated 60°
Ho hexagonal prism top and bottom rotated 120°

fails to be a manifold along the edges of the cube. Only when’=0, to the equivalent problem of finding the field at
the cube is endowed with the elliptic geometry is the result{ 7 x) e R x R3 due to an infinite set of pointlike sources,
ing space indeed a manifold, namely, the well known reakach one located at the center of a cube of the grid, and all of
projective spac§>3. ) them irradiating simultaneously at=0.

Recently, using theorem 3.5.5 by Wdff], it has been In this infinite grid picture the Green function &fl is
shown that a basic cell for the Euclidean manifaldis the  calculated summing up the contributions of each one of the
cube shown in Fig. 141]. It should be stressed that the basic pointlike sources. Since a scalar ray is a null geodesic, the
cell for 7, shown in Fig. 1 is a standard basic cell; in general distance traveled by each scalar wave front is a measure of
however, the basic cell foT, need not be a cube. the corresponding time travel, so the conformal timef

The cubes an®” cases We shall discuss in this part the 541 atx will depend on the position at which each source
Green functions for the wave operator on three-spakes g |5cated. Null geodesics corresponding to retarded waves

(i=1,...,4)shown in Table |. The manifold;, referred to i '—04(M)] 1o the ob i it
in the literature as the three-torli$ [37], is a compact mul- connecting] 7' =0.a(n)] to the observation pointr(x) are

tiply connected Riemannian manifold, which can be obtainedhen such that—|x—a(n)|=0, so the Green function for
by identifying the opposite faces of a cube of sale >0 is given by
To build the Green function iIrRX7; we first use the . .
conformal properties of FRW space-times. Defining the con- G(7,x;7'=0x’'=0)
formal time r=f(t)=/dt'/A(t") for t’' €[ty,t], we trans-

form the problem of finding the Green functigift,x;t’,x’) _ 1 5(7: |X:i(”)|)
of the operator [0+ :R) into the problem of finding the A7R(7)R(7'=0)niinzng [x—a(n)|
Green functionG(r,x; 7 =0x’) of the operatof] [22,33. (3.2

Moreover, a useful way of thinking aboli in terms of the
simply connected three-manifol@? is to imagine the cube wherex,a(n) e R3, a(n)=a(n,e;+n,e,+nse;). Here{e;}
repeated endlessly in a three-dimensional gvakic cell and s the usual orthonormal basis vectorsRa and (1;,n,,N3)
its image$, where each repetition consists of the same physiyre integers, an®(7)=A(f (7).
cal region of space. The spa containing an infinite grid We shall consider now the radiation reaction equation of
of copies of the basic cell is called the universal coveringoyr energy source iff;. Using the Green functio and Eq.
space of7;. In this way we now transf(zrm the problem of (2 4) one finds #[Q], which can be used in E¢2.3 to
calculating the Green function @f at (7,x) e RX7; dueto  furnish the radiation reaction equation of our system. Note
a pointlike source located at'=(0,0,0) and emitting at that in these calculations the first term;&n,=n;=0) of
the Green function gives rise to the term
(N%14 ) fdx S(x)/[A(t) x], that formally diverges. A suit-

y 4 able renormalization procedure is therefore necessary. This

resembles the need for renormalization one finds when deal-

ing with accelerated point charges in classical electrodynam-
ics[30]. We learn fron{28] that a renormalization procedure
can always be made in this case. This amounts to saying that
4 for any 0<Q?<, and anye >0, one can always define an

e-parameter family of frequenciesi by

2T pe(X)
2 —02 €
P wi(1)=0 +A(t)f dy X 3.3
oy >4
,/’ such thatp_(x) is a 6 sequence that in the limi¢—0 con-

verges to the Dirac delta(y).
FIG. 1. A basic cell for the manifold; is a cube whose faces Using now Eg. (3.3, in which we have made
are pairwise identified as indicated in this figure. 2T'=M\?/(47), one finds that, for arbitrary initial data
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[Q(tO)!Q(tO)]i the renormalized radiation reaction equationin this manifold reduces to Eq34) with the right-hand side

of the source can be written in the form equal to zero, for alt e [tp,).
The hexagonal prism case®Ve shall discuss now the
O(t)+2TQ(t) +Q2Q(t) Green functions for the wave operator on the flat hexagonal
prism manifoldsH, andH, described in Table I. The three-
oT 1 . space H; is a compact multiply connected flat three-
—0O(t—t,)Q{f [f(t)—a(n)]}, dimensional Riemannian manifold, which can be obtained by

A(Uny nz.n; a(n) identifying the top and bottom faces of a regular hexagonal

prism after a rotation of 60°, while the lateral faces are pair-
R wise identified in the usual manner. The three-manifhlg
for ?ny 2 te[ztol’,f)’ and  where a(n)=la(n)| can be similarly defined, but now the identification of the top
=a[n;"+ny +n?1] for all (ny,nz,n5) integers not all and bottom face¢regular hexagonss made after a turn of
zero,t,=f *[a(n)] and the step distributio®(s)=0 for  120°. In both cases we denote bythe shortest distance
anys<0, ©(s)=1 for all s>0. Note that the radiation re- petween two opposite sides of the regular hexagon aridl by
action equation(3.4) contains an infinite, but countable, the height of the hexagonal prism cell.
number of retarded terms. Note also that, for a given pair of For a pointlike source located at the center of the basic
initial data[ Q(tg),Q(tg) ], the continuity ofQ andQ for all cell, the Green functions for the wave operator in the three-
t is sufficient to ensure that E¢3.4) can be integrated to manifolds,; and®, are obviously the same. Moreover they
give a unique solution. turn out to be similar to the Green functi@¢8.2). But now
The next three-manifolds we shall consider #e7; and  jnstead of a(n) one has b(n)=an,(y3/2)e,+a(in,

7, (see Table )l The three-spacé, is a compact multiply 1n,)6,+hngds, where fi,,n,.n3) are integers, to locate

connected flat three-dimensional Riemannian manifold, Obfhe centers of the hexagonal prism cells in whief has
tained by identifying opposites faces of a cube, with a pair, g P

being identified after a rotation of 90° of one face relative tobeen tessellated. Note that the number of images at a given
the opposite face. The three-manifdiglis obtained by iden- distance from the pointlike source clearly depends upon the

tification of opposites faces of a cubic cell, but now a pair Ofratio h/a. The radiation reaction equation in the present
: o ' . cases is similar to Eq3.4 but with the obvious change

faces are identified after a turn of 18®ee Table)l Finally, - S es o ’ 2 212

the three-manifold’; is obtained by pairwise identifying the 2(N)—b(n)=[b(n)|=[a*(ny"+ninz+ny%) +h*ns]"* and

faces of the cube according to Fig. 1. For these three-spac89@in the integersng,n;,ns) are not all zero. _

the Green functions for the wave operator can again be built 't Should be emphasized that as the three-maniféids

by using the infinite grid of cubes picture. It should be no-and7{; are locally but not globally homogeneous, the Green

ticed, however, that the grids of cubes corresponding;to function for the wave cipgrator in thesﬁeamanlfolds is again

T,, Tz, and7, are different: Nevertheless, as the center of a given by Eq.(3.2), with b(n) instead ofa(n), only because

basic cell in each case represents the same infinite set efe pointlike source is at the center of the basic gé&#O0.

points[images of the pointlike source at (0,0]®f the cov-  To close this section we emphasize that the Green functions,

ering spaceR?®, the Green functions for the wave operator in obtained for flat FRW space-time manifoldg ,=R X Mg,

these three-spaces are equal to the one we have calculated §@ntain the topological constraints @5, information that

T, i.e., are given by3.2). Thus, for arbitrary initial data makes it possible to find out the exact radiation reaction

[Q(to),Q(to)] the radiation reaction equation i, 73, and  equation in each case.

7, reduces to Eq(3.4) obtained for7;.

A word of clarification is in order here: the above Green
functions for the wave operator for the three-spadgs IV. NUMERICAL ANALYSIS
(i=1,...,4)coincide only because in each case the point-

like source is located at the center of the basic g&#H0. |
This is so because although all these three-spaces are locally; > : : .
t)], where the functionQ(t) is the solution of the
homogeneous, the three-spad®s 73, and 7, are not glo- Q ( ’ _ ) . .
bally homogeneous, thus the corresponding Green functior%d'at'on reaction equation corresponding to each flat mani-

- . . Id we have discussed in the previous section. Without loss
of [J for x"#0 are more involved and do not depend simply P

the relai ition bet th d the ob generality in the integration of the radiation reaction equa-
on the refative position between the source and the 0bSEIVe{, s anq in the plotting of the energy function we have taken
Regarding the simply connected flat three-dimension

: X ; 3 : pecific values for the constants. We have also assumed the
Riemannian manifold R® (t=const section of the

Minkowski space-timg the Green function for the wave op- .co.r.1t|nU|ty of Q and Q and chosen suitable \{alues for the
eratorJ is equal to the first termr;=n,=nz=0) of G initial dataQ(t,) andQ(to). For a neat comparison between

appearing in Eq(3.2). Thus the radiation reaction equation the simply and multiply connected cases we have chosen
I'=1, Q?=30, the lengtha=1, and for the heights of the

hexagonal prism and three-torus we have takerD.4 and
T L _ 1. As a matter of fact, our three-tords was obtained from
This is so because each three-manifold is obtained by formin

; ; N ra2(n.2
the quotientM;=R3T; (i=1,...,4), where for each casg, is a % p?rallezlep;plelg with Edg_ea'a'h’ so a(n)=[a%(ny
different discrete group of isometries of the covering sp@% T N2°)+h“ng"]"* was used in Eq(3.4). Further, we have
acting properly discontinuously, without fixed poirf&. also chosen as initial datg=0, [Q(0),Q(0)]=(+/2/2,0),

(3.9

In this section we shall discuss the time behavior of
energy of the harmonic oscillatdE(t) =3[ Q2(t)+
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Hexagonal prism
(a=h=1)

fhree-torus
{a=h=1)

Euclidean space
e

2 2.5 3 3.5 4 0.5 1 1.5 2 2.5 3 3.5 4

time time

0.5

-
=
o

FIG. 2. Behavior of the energy of the harmonic oscillator for ~ FIG. 4. The time evolution of the energy of the harmonic oscil-
I'=1 andQ?=30 in static flat FRW space-times with, space lator for flat, static FRW space-times with different topologies for
slices. There are a few relative maxima followed by a growth ofthe spaceliket=const sections:R3, 7;, and H; (both with
E(t). Two different ratiosh/a are consideredh(is the height ana a=h=1). Different degree of connectedness implies different pat-
is the side of the square basis of the basic)cell terns ofE(t). Here againl’=1 and(?=30.

which means that the initial energy of the source has beefiaking into account the above choices of values and using

normalized, i.e.E(0)=1. the computer algebra systemgATHEMATICA [38] and
Figures 2, 3, and 4 correspond to the static cas&APLE [39] the numerical integrations of the radiation reac-

A(t)=const=A,, which we have normalized to 1A(=1), tion equations as well as the corresponding graphs for the

while dynamic situationA(t) + 0] are considered in Fig. 5. €nergy function were obtaingdee Figs. 2-5 '
Figure 2 shows the behavior of the energy with the time

e

o
ol
IS

a=h=1

Square root

f Linear
0 0.5 T 1.5 2 2.5 3 3.5 4 . Inflptionary

time 0.5 1 1.5 2 2.5 3 3.5 4

time
FIG. 3. Behavior of the energl(t) of the harmonic oscillator ) ) ) )
for T=1 andQ2=30 in static flat FRW space-times with three- FIG. 5. The time evolution of the energy of the harmonic oscil-

spacel,. There are a few relative maxima followed by a growth of 1ator in FRW expanding space-times with three-spdge (for.
E(t). It shows the energys. time curves for distinct ratio/a (h ~ @=N=1). Three types of dynamic expansion are shown: linear

is the height of the hexagonal prism aadis shortest distance [A(t)=1], square root [A(t)=t"?, and inflationary
between two opposite sides of the regular hexagon [A(t)=ae™, a 1=22] Here agail’ =1 andQ?=30.
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for the flat FRW space-times, in which the const sections €xhibits an exponential decay with the time — the radiation
are any of the orientable compact multiply connected threedamping[ E(t)—0 whent—=] takes place, as one could
manifolds 73, 7, 73, and 7, for different ratiosh/a. Note ~ have expected in agreement wWi20—26. For the manifolds
thath is the height of the parallelepiped of square basis of71, 72, 73, and7, as well as for the manifold/; and?, the
side a. The curves exhibit basically the same patternbehavior of the energy with the time exhibits basically the
namely, relative minima and maxima followed by a predomi-Same pattern: relative minima and maxima occur at different
nant growth of the energy with the tinjé&(t)—~ whent times for distinct ratiod/a (distinct tessellationsdepending
—o]. These extrema are related to the contribution of theon the degree of connectedness of each three-manifold, and
discrete retarded termghe right-hand side of the radiation are followed by a growth oE(t).
reaction equationdemanded by the compactness and the This asymptotical divergent behavior &f{t) for these
corresponding connectedness of these manifolds. The fagpmpact manifolds contrasts with the radiation damping of
that the relative extrema occur at different times and are othe energy we have found fdR3. There is a quite simple
different amplitudes(intensitie$ for distinct tessellations heuristic argument which supports our numerical results,
(different ratiosh/a) of the covering manifold, basically re- though. If onead hocassumes an exponential asymptotical
veals the differences in their degree of connectediiess behavior forQ, i.e., Q(t)=y exp(8t) with g and y real
turning rays take different times to return to the orjgifihis  constants, then for the static cagégt)=1], and for each of
growth of the energy is discussed in the next section. the above compact manifolds, in the limit- Eq. (3.4)
Regarding the behavior of the energy function for thereduces to
cases in which thé=const sections aré{; andH,, shown "
in Fig. 3, we again note that due to the compactness and B2+2FB+QZ_ E Cm
connectedness we have relative minima and maxima with 2T - a—mexp(—Bam),
distinct intensities, which take place at different instants for
distinct ratiosh/a. The curves again display an eventual wherec,, is the number of images of the pointlike source at
growth of the energy with the time for these manifolds. a distancen,, in the infinite grid picture. To attain our goal,
Figure 4 compares the variation of the eneEgwvith the  we will show that Eq(5.1) has only one real solution fgs,
time for the cases where the const sectiong\{; areR®, 7;  which is positive. Indeed, left(8) be the right-hand side of
(with a=h=1), andH; (also witha=h=1). This figure Eq. (5.1, which is a positive monotone decreasing function
shows for the Minkowski space-time, as expected, an exposf 8, and such that
nential decay of the energy with the time, whereas for the
manifolds7; and, it shows basically the same pattern, i.e., lim f(B)=c0
relative minima and maxima occurring at different times, p=0
depending on the degree of connectedness, followed by 2nd
growth of the energy with time.
Although the net role played by the degree of connected- lim f(8)=0. (5.2
ness as well as compactness can be singled out in the static B—oe
casedA(t) =constEA, for the sake of completeness we have
examined three instances where dynamic expansion takdwusf(g) lies entirely in the first quadrant of the plane and
place. Figure 5 corresponds to the plot of the energy functiogrosses it from the top left to the bottom right. Now, since
for the 7; manifold (with a=h=1) in the dynamic expand- I'>0 then for a given pairl(,(}) the left-hand side of Eq.
ing cases(i) linear expansiom\(t)=t+0.7, (ii) square root (5.1 is a parabola curved upwards with vertex@t —1I".
expansion A(t)=0.8yt+0.4, (ii) inflationary expansion Therefore, it always intersects the curve f¢p) in just one
A(t)=e"? that is, an expansion with future event horizon. Point, which is in the first quadrant. In other words, there is
Although for casdiii ) one clearly has radiation damping, ©nly one realg solution to Eq.(5.1), which is positive.
we have not been able to find out so far a closed formal proof The unexpectedunphysical P growth of the energy with
of the asymptotical behavior for the other two cases. Wdhe time for the above compact flat three-manifolds cases
emphasize, nevertheless, that the net role played by the cofilustrates that nontrivial topologies can induce rather impor-
nectedness and compactness can be better singled out in f@@t dynamic changes in the behavior of a physical system.
static cases, where the dynamical degrees of freedom afdlis type of sensitivity has been referred totapological
frozen. The study of that role for the static cases is in fact théragility and can occur without violation of any local physi-

(5.9

major aim of the present work. cal law[18]. A rigorousnon-numericalanalysis of the rea-
sons for this surprising divergent behavior B{t) when
V. CONCLUSIONS AND EINAL REMARKS compact flat FRW space-times are considered has been car-

ried out, and we hope to publish our results shortly else-
In this work we have studied the role played by the topo-where. We anticipate, however, that the causes for such a
logical compactness and connectedness in the time evolutidrehavior lie in the compactness of the manifold in at least
of the energy of an harmonic oscillator in flat FRW space-one direction, on the one hand, and in the type of coupling
time manifolds, whosé= const sections ar@) the orientable betweenQ and ¢, on the other hand.

simply connected noncompact three-spaee and (i) six A possible physical measure of the degree of connected-
possible flat orientable multiply connected compact threeness in theseompactthree-manifolds can be made through
manifolds given in Table I. the study of the number of emitted rays that return to the

For the R® case we found that the energy functiBit) origin within a given lapse of time. According to this concept
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of degree of connectedness one learns from Figs. 2, 3, andtfe discontinuities ofE(t) take place, and the number of
that the greater is the degree of connectedness the earlierjiiages at a given distance through the magnitude of the
the occurrence of the first relative minimum in the energycorresponding discontinuities. So, one can probe the topol-
function. |nC|denta”y, note that the extension of this Concepbgy of the three-spaces at least in a few cases. It is not yet
of degree of connectedness to noncompact three-manifoldgear whether an algorithm for solving the inverse problem
implies thatR> has a null degree of connectedness. This, ofor the most generalEuclidean setting can be found,
course, is indicated in Fig. 4, which shows a net exponentiafhough. As far as we are awaf8] this is the first work in
decay of the energy with the time; no relative minima andwhich a physical consequence of adopting the flat hexagonal

maxima come about, which means that no ray returns to thgrisms#, and*, has been studied.

origin.
A simple inspection of the graphs f&(t) clearly shows
that the derivativee=Q(Q+ Q2Q) of the energy function is

It is of worth emphasizing that when the expansion of the
universe is considered the degree of connectedness is less
than the ones for the static cases. For the manifgldhis

discontinuous at a few points. Indeed, for the static case, fofan be seen by comparing Fig[&atic caseA(t)=0] and

example, using Eq3.4) one obtains

1
23

ny.nz.nz a(n

O[t—a(n)]

E(t)=2FQ(t){

x@[t—a(rT)]—Q(t)]. (5.3

Fig. 5[monotone expansions(t)>0].

Before closing this article we would like to stress that our
study does not cover all possible spatially compact orientable
flat FRW manifolds. Thus, for example, we have not consid-
ered that for the three-manifold§ and 7; the basis of the
basic cell need not be a square, it can be a parallelogram. The
restriction we have made, however, does not seem to be de-
cisive for the patterns of the behavior of the energy with the

From this equation one sees that the discontinuities occur dime we have found. To conclude we remark that the study
t=a(n), that is, they come about each time a new termOf radiation damping in elliptic =1) FRW manifolds in

Q[t—a(n)]/a(n) is taken into account in the right-hand side
of Eg. (3.4. A question which naturally arises here is

which thet=const sections are endowed with differéati-
entable compattopologies is being carried out.

whether the inverse problem, i.e., that of determining the

basic cell(topology corresponding to the spacelike const
sections from the graphs of the energft), can be solved.

Regarding this problem it is clear that one can find the dis-
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