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Adiabatic invariants and mixmaster catastrophes

S. Cotsakis,* R. L. Lemmer,† and P. G. L. Leach‡

Department of Mathematics, University of the Aegean, Karlovassi 83 200, Samos, Greece
~Received 31 October 1995; revised manuscript received 7 May 1997; published 16 March 1998!

We present a rigorous analysis of the role and uses of the adiabatic invariant in the mixmaster dynamical
system. We propose a new invariant for the global dynamics which in some respects has an improved behavior
over the commonly used one. We illustrate its behavior in a number of numerical results. We also present a
new formulation of the dynamics via catastrophe theory. We find that the change from one era to the next
corresponds to a fold catastrophe, during the Kasner shifts the potential is an implicit function form whereas,
as the anisotropy dissipates, the mixmaster potential must become a Morse 0-saddle. We compare and contrast
our results to many known works on the mixmaster problem and indicate how extensions could be achieved.
Further exploitation of this formulation may lead to a clearer understanding of the global mixmaster dynamics.
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I. INTRODUCTION

During the past eight years or so interest in the mixma
universe@1# has increased dramatically. There are at le
two reasons for this noticeable increase. First, there was
ready a considerable amount of background work concern
the basic dynamical issues of the model@2–5# and it is prob-
ably fair to say that this model~diagonal Bianchi type IX!
was studied more than any other homogeneous cosmo
~with a probable exception of inflationary issues!. The pic-
ture drawn from that body of work was already quite ri
~the actual system was also integrated numerically by Za
ecki @6# but some of his results later criticized as incomp
ible with those of Belinskii, Khalatnikov, and Lifshitz~BKL !
in @7,8#! and allowed for further generalizations to be co
sidered.

Examples of this kind of generalized problems includ
Kaluza-Klein extensions@9# and the search for complicate
mixmaster behavior in other theories of gravitation@10#. All
these generalizations were motivated mainly by an idea
results, first obtained by Barrow@4# almost another decad
earlier, that the well-known BKL-Misner oscillatory, mix
master behavior should in fact be viewed as an exampl
the manifestation of chaotic~erratic, unpredictable! struc-
tures in general relativity. It was therefore natural to exam
how common such a behavior could be.~It was also known
@11# that departures from such an evolutionary scheme co
be obtained with the addition of scalar fields.! In fact, many
of those results were quite interesting and contributed m
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to a sustained interest in the mixmaster dynamics during
eighties.

Interest in the mixmaster universe suddenly peaked w
the appearance of the first works on numerical experime
in 1989–1990@12#. Those results~and others which followed
@13#! were conflicting in the sense that in most cases
standard picture@4# was challenged to the effect that man
workers in the field felt that a reexamination of the origin
conclusions concerning the existence of chaos in the m
master approach to the initial singularity was necessary
the same time other works appeared which either critici
@14# the use of some essentially coordinate dependent m
sures of chaoticity or indicated@15,16# that some sort of
chaotic behavior should be present in the mixmaster dyn
ics.

It was felt necessary@17# that perhaps an analytical ap
proach, known asPainleve analysis, which did not share the
‘‘defects’’ of numerical work could lead to more reliabl
results concerning the existence or nonexistence of cha
behavior in the mixmaster dynamics. Initial results@18#
pointed to the direction of integrability whereas later it w
realized@19# that the situation was more complex. It is no
understood that this analysis cannot be used to obtain reli
results concerning the question of chaoticity in this mode

Very recently Cornish and Levin@20# using fractal meth-
ods resolved the long-standing debate concerning the i
of chaoticity in the mixmaster universe, showing that t
system is indeed chaotic. Their analysis not only confir
the earlier ergodic results of Barrow@4# but quantifies the
chaotic behavior of the model by calculating a special se
numbers~topological entropy, multifractal dimension, etc!
relevant to the true dynamics. It therefore appears that
ambiguities concerning this issue have now disappeared

It is perhaps encouraging that several issues about
mixmaster dynamicsnot connected to the question of cha
have been studied by several authors. It is indeed true
many problems in the dynamics of this model still rema
First, it is still unknown how local the BKL analysis is@21#.
Another problem is borne out of earlier results of Moncr
@22# and is related to the role that the Geroch transformat
plays for the true dynamics. Still another issue has to do w
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the description of the mixmaster universe from the point
view of the dynamical systems theory@23#. We therefore
believe that the rich mixmaster behavior will continue
attract the interest of cosmologists for some time to com

The purpose of this paper is to provide a rigorous analy
of the role and uses of adiabatic invariants in the mixma
problem by carefully examining the adiabatic invariant co
monly used and introducing a new and in a sense impro
invariant for the global mixmaster dynamics. We then ref
mulate the main characteristic of the dynamics via a n
simpler, technique along the lines of catastrophe theory.
believe that further exploitation of this formulation may he
to unravel certain global dynamical properties of the m
master universe.

The plan of this paper is as follows. In Sec. II we intr
duce our new invariant for the mixmaster system which
haves better than the standard adiabatic one and is expl
time-independent in the appropriate coordinates. We a
perform a numerical simulation of the corner-run part~cf.
Fig. 1! of the evolution and we give an interpretation of t
results using Misner’s Hamiltonian picture. In Sec. III w
apply catastrophe theory as a means to gain a better un
standing of the complicated behavior of the model. The m
result of this section is that the passage from one era to
next corresponds, in the language of catastrophe theory,
fold catastrophe which in turn may provide a potentially n
way to view the global evolution. In Sec. IV, we compa
our results to previous work and point out how generali
tions to higher dimensions could be obtained.

II. ADIABATIC ANALYSIS

Subject to a couple of overall approximations the mot
of the ‘‘universe point’’ b5(b1 ,b2) is governed by the
mixmaster Lagrangian

FIG. 1. Contour lines for the potential wellV(b1 ,b2)
5 f ull potential. The well exhibitsC3 symmetry and is almos
an equilateral triangle except at the corners where the contour

move off to infinity. The effective potentialV̄5Ve22v and hence
the ‘‘triangles’’ move outwards with time.
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L f ull51/2L1/2~b18
21b08

2!22L21/2e24VV~b!, ~1!

whereb1 andb2 are related to the shape parameters of
model, the volume parameter,V plays the role of time,
primes denote differentiation with respect toV, andL is a
function of V which evolves according to

L8524e24VV~b!. ~2!

HereV(b) is the standard, curvature anisotropy~mixmaster!
potential given by

V~b!5
1

3
e24b12

4

3
e2b1cosh~A3b2!

1
2

3
e2b1@cosh~2A3b2!21#11. ~3!

There is also the energylike equation

45b18
21b28

214L21e24VV~b!. ~4!

We begin our analysis by reexamining the role and con
quences of the adiabatic invariant used implicitly~or explic-
itly ! in most mixmaster calculations. According to Misn
@3# the most important asymptotic form of the mixmast
potential is whenub2u is small and slowly varying andb1

→1`, that is,V(b);114b2
2 e2b1. In this caseL f ull can be

considered as the Lagrangian for theb2 motion, that is, it
can be supposed approximately that there exists a sys
with one degree of freedom,b1 , depending on the slowly
varying parameterb2 . This reduced system is described b
the Lagrangian,

Lreduced51/2L1/2b28
228L21/2e2b124Vb2

2 ~5!

in which a termO(e24V) has been neglected andL andb1

are again functions ofV through the solutions of~2! and~4!
with the potential as modified. The Lagrangian~5! is that of
a time-dependent oscillator of slowly varying frequen
given by

v254L21/2eb122V. ~6!

Then, for the reduced system, there exists the adiabatic
variant

S5
E2

v2
5

1

8
Le2V2b1~b28

21v2
2 b2

2 !, ~7!

whereE2 are the energy level sets and 2pS represents the
area of appropriate domains bounded by curves pas
through points in ~the two dimensional phase! space
(p2 ,b2). It can be shown, by adapting the methods of@24#,
that this is also an adiabatic invariant of the ‘‘full’’ mixmas
ter system~two degrees of freedom! with b2 slowly varying
~but not necessarily small!. We stress this point since it i
important to remember that the motion of the universe po
described byLreducedis only approximately true and the tru
dynamics in this case should be thought of as that given
L f ull with b2 slowly varying.

The adiabatic invariant~7! ~considered originally by Mis-
ner @3#! is exactly the one proposed by Lorentz at the fi

es
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Solvay Congress in 1911@25,26#. A precise mathematica
statement concerning its range of validity was given
Littlewood @27# in the sixties. Littlewood showed that~in our
notation!

~i! S5c1O(«);

~ii ! S̄5c1O(«2) (S̄ is the average ofS over the local
period 2p/v2);

~iii ! there is no improvement over~i! or ~ii !;
~iv! S(`)2S(2`)5O(«n) for some specificn;

providedv2 satisfied certain assumptions which give a m
sure,«, to the expression ‘‘slowly varying.’’ These assum
tions are

v2.b0 , v2
~n!5

dnv2

dtn
→0 as t→6`~n>1!

uv2
~n!u,bn«n~n>1!, E

2`

`

uv2
~n!udt,bn218 «n21, ~8!

where theb’s are constants.~The notationb8 is used to in-
dicate that there need be no specific relationship between
two constants.! A consequence is that, since

uv2~t2!2v2~t1!u<E
t1

t2
uv̇2udt→0,

where the overdot denotes differentiation with respect to
variable,t, ast1, t2→2`, 1` respectively, we have

v2~2`!5v2~1`!.

Strictly we need not go as far as6`, but the in-channel time
is supposed to be long.

Following Arnol’d @28# a function I (q,p;«t) is an adia-
batic invariant of a Hamiltonian system

ṗ52
]H

]q
, q̇5

]H

]p
, H5H~q,p;«t ! ~9!

if ;k.0'«0 such that, if«,«0 and 0,t,1/«0,

uI „q~ t !,p~ t !;«t…2I „q~0!,p~0!;0…u,k. ~10!

The action variable of the corresponding autonomous pr
lem is always an adiabatic invariant and it is for this reas
that ~7! can be selected as the adiabatic invariant.

However, the perpetuality~cf. @24#! must be calculated
and verified. Previous works provide no information abo
the behavior ofv2 and certainly no measure of«. Fortu-
nately it is a fairly straightforward matter to test the validi
of the use of the adiabatic invariant~7!. We can simply in-
tegrate the equations of motion numerically and substi
the numbers into~7! to observe the variation ofS with V.

In the channel regime the equations governing the mo
of the system point are

L85216e2b124Vb2
2 , ~11!

b18 56S 42~b28 !22
16

L
e2b124Vb2

2 D 1/2

, ~12!
y

-

he

e

b-
n

t

te

n

b29 2
8

L
e2b124Vb2

2 b28 1
16

L
e2b124Vb250. ~13!

The positive sign in~12! applies until the expression unde
the square root sign becomes zero. Equations~11!–~13! are
those of Misner@3# except thatb0 has not been introduced
We take initial conditions consistent with the assumptio
governing motion in the channel. We integrate the syst
~11!–~13! numerically using an implementation of th
Runge-Kutta scheme@29#. The results are illustrated in Fig
2. It is quite evident that these computations do not supp
the use of the adiabatic invariant over the whole time sp
inside the channel.

Let us now consider some consequences of the ab
analysis. Upon the introduction of a relative coordinate,

b05b122V, ~14!

and with the help of Eqs.~6! and ~7!, Eq. ~4! becomes

05b08
214b081

Sv2
2

2
e2b0. ~15!

On the assumption thatb08 is small,b08
2 is neglected and~15!

gives immediately

b05 log~V02V!1const ~16!

which leads tob0→2` asV approaches the critical valu
V0. This means@3# that the particle leaves the channel a
returns bouncing in the triangular region.

Consider now the assumption that is usually ma
namely thatb80

2 may be neglected. We claim that this a
sumption leads to a solution which is only asymptotica
correct. To see this notice that it follows easily that the s
lution of ~15! is given implicitly by

FIG. 2. A variation of the adiabatic invariant againstv in res-
caled coordinates. Note that the adiabatic invariant varies from
initial value of 61.0231024 up to as much as 5.931024 and as
low as effectively zero.
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V02V5
1

4
$a21e1/2b01Aa22eb021%2

1

2
log$a21e1/2b0

1Aa22eb021%, ~17!

where

a25
v2

2 S

8
, ~18!

is assumed constant. Misner’s original solution~16! is, in a
sense, asymptotic to~17! and our assertion follows.

Of more interest, however, is the actual equation forb08 ,
which follows immediately from~15!, viz.,

b0852262A12a2e2b0. ~19!

~The upper sign applies for the initial motion in the chann
sinceub18 u,2.! Equation~19! is valid only if

eb0>a2. ~20!

Inserting this into Eq.~17! we find that

V<V02
1

4
or b0>20.601const. ~21!

In other wordsV never reaches the critical valueV0 andb0
cannot go to2` which is what is necessary for the partic
to return to the triangle from the channel.@Of course, in
practice, it is only sufficient to haveb0 large and negative
for the particle to resume bouncing with the wall in the t
angular box as soon as it leaves the channel, but even for
to happen the bound in Eq.~21! seems too stringent.#

We are now ready to introduce a new invariant which
many ways behaves better thanS. It is a well-known fact
that the time-dependent oscillator described by the Ham
tonian

H5
1

2
„p21v2~ t !q2

… ~22!

possesses the first integral

I 5
1

2 S ~rp2 ṙq!21S q

r D 2D , ~23!

which is known as the Ermakov-Lewis invariant@30#, pro-
vided that the auxiliary variable,r, is a solution of

r̈1v2~ t !r5
1

r3
. ~24!

Furthermore the solution of~24! has been given by Pinne
@31# in terms of the linearly independent solutions of

v̈1v2~ t !v50. ~25!

The Lagrangian~5! gives directly the Hamiltonian

Hreduced5
1

2
L21/2P2

2 18L21/2e2b124Vb2
2 , ~26!
l

his

l-

where

P25L1/2b28 . ~27!

The reduced Hamiltonian~26! is not precisely of the form of
~22! since the coefficient ofP2

2 is not constant and we hav
the equivalent of an harmonic oscillator of variable ma
However, following the procedure detailed by Leach@32#,
for the treatment of a Hamiltonian of the form of~26! we
introduce a change of time scale

T5E L21/2~V!dV ~28!

so that the mixmaster system in this regime is described

H̃reduced5
1

2
P2

2 1
1

2
v2~T!b2

2 ~29!

in which T is now the independent variable and

v2
„T~V!…516e2b1~V!24V. ~30!

Under the generalized canonical transformation@33#

Q5
b2

r
, P5rp2 ṙq, t5E r22~T!dT, ~31!

Eq. ~29! is transformed to

H̄5
1

2
~P21Q2! ~32!

provided thatr(T) is a solution of~24! @with v2(T) from
~30! instead of thev2(t)#. H̄ is the Ermakov-Lewis invarian
in the canonical variables in which it becomes free of e
plicit dependence on time.

It is H̄ which should be used instead of the adiaba
invariant used by Misner. However, there is a problem.
the new variables the evolution of the oscillator is eas
described, but that ofb1 becomes unmanageable as t
Ermakov-Lewis invariant does not lead to a significant si
plification of ~12!. We must resort to numerical computatio
and this may as well be performed in the original variabl

Over the interval 0,v,30000,b1 increases essentiall
linearly with v ~see Fig. 3!. There is no indication that it
approaches2` and, as the deviation from strict linearity i
so small, it can only be expected to take a long time
approach zero. In the meantime the potential well proce
outwards as is evident from Fig. 4 at which the contour
that corresponding to the energy of the motion. We see
the wall outmarches theb1 value of the universe point. Ove
this period, as depicted in Fig. 5, the amplitude of theb2

motion increases in a strictly monotonic fashion with a ra
of increase increasing with time.

It is clear from these results that, as the particle mo
along the channel, the potential walls are receding. Initia
this does not present a problem as theb1 velocity of the
particle is sufficiently large. However, there is a critical tim
V0, when the walls ‘‘leave the particle behind.’’ Hence th
particle finds itself in the triangular region again and
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57 4695ADIABATIC INVARIANTS AND MIXMASTER CATASTROPHES
longer in the channel. Note that, asb1 is never less than
zero, the particle does not ‘‘turn around’’ in the sense tha
sometimes described.

III. A CATASTROPHE DESCRIPTION

In what follows we present a novel way to describe t
qualitative differences of the main stages in the evolution
the mixmaster universe. As we shall see, the standard in
pretation can be reached quite naturally and independe
by this line of thought. This approach is established by
application of singularity theory@34# and in particular by that
branch of singularity theory known as catastrophe the
@35#. Catastrophe theory studies changes in the equilibria
potentials as the control parameters of the system cha
The local properties of the potential in a gradient or a d
namical system are determined by a sequence of theo
such as the implicit function theorem of advanced calcu
the Morse lemma@36# and the Thom theorem@37#.

FIG. 3. Variation ofb1 with v in rescaled coordinates over
time interval~time is numerically equal tov) from zero to 30 000
~there is a variation of one in 30 000 inb1 from linearity over the
full interval!.

FIG. 4. Movement of the potential barrier as a function ofb1 at
successive time intervals.~The large horizontal scale makes th
potential walls appear vertical.!
s
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e
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ms
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We consider the mixmaster universe as a gradient sys
described by the potential~3!. We choose as a control pa
rameter the volume~time! parameter V. We set ¹
5(]/]b1 ,]/]b2) and denote the Hessian matrix by

Vi j 5S ]2V

]b1
2

]2V

]b1]b2

]2V

]b1]b2

]2V

]b2
2

D . ~33!

Then, for the Kasner-to-Kasner evolution described by
potential

b1→2`, V~b!;
1

3
e28b1, ~34!

we find

¹V5S 2
8

3
e28b1,0DÞ0. ~35!

This means that during an era the implicit function theor
applies and there are no critical points.@This also implies
that there is a smooth change of coordinates which makes
potential~3! depend on only one of the variables, sayb1 .
We see that the form of the potential~34! can be deduced
from the general form~3! by using this argument withou
resorting to any sort of approximations.#

Secondly, we examine the structure of the potential in
neighborhood of the isotropy point~0,0! given by

~b1 ,b2!;~0,0!, V~b!;16~b1
2 1b2

2 !. ~36!

After some straightforward manipulations we find that

¹V50. ~37!

FIG. 5. Variation of b2 over time. The amplitude increase
strictly monotonically. The plot was made at every 500th value ot
and hence understates the frequency of oscillation. A plot of all
points fills the region between the upper and lower envelope.
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We see that the conditions for the validity of the implic
function theorem are no longer satisfied. Equation~37! im-
plies that near the isotropic point (0,0) the mixmaster u
verse is in a stable equilibrium state. To see this we de
mine the stability properties of this state by finding t
eigenvalues of the Hessian matrix,Vi j . First after a tedious
calculation we find

det~0,0!Vi j 5
256

3
Þ0. ~38!

Also the eigenvalues ofVi j arel15l2516. This means tha
due to the Morse theorem@36# there is a smooth change o
variables so that the potential in this case takes the form

V5M0
25l1

21l2
2516~b1

2 1b2
2 !. ~39!

Not surprisingly this is exactly the form of the potential th
Misner found in this case.M0

2 stands for the Morse 0-sadd
which is the only i-saddle that is stable for two-dimension
gradient systems~cf. @35#!. Thus the point~0,0! is a Morse
critical point ~isolated, nondegenerate!. In particular, the po-
tential in this case is structurally stable.

Lastly we examine the corner-run evolution which tur
out to be the most interesting from the point of view
catastrophe theory. In this case we find

¹V50 ~40!

and

detVi j 528172b2
2 e8b1. ~41!

It is clear that for all points on theb1-axis (b250) we have

det~b1,0!Vi j 50. ~42!

This implies that in the channel region all points which lie
theb1 axis are non-Morse critical points. In this case we c
cast the potential in a canonical form by adopting a pro
dure known as the Thom splitting lemma@38#. We split the
potential into a Morse part and a non-Morse part accord
to the number of the vanishing eigenvalues of the Hess
matrix for this case. These are found to be

l150, l2532e4b1, ~43!

which due to a theorem of Thom@37# guarantees that there
a smooth change of variables that puts the potential~in the
channel! in the decomposed form

V~b!5b1
3 1ab1132b2

2 , ~44!

with aÞ0. The first two terms in this potential~the non-
Morse part! form what is known as the fold catastrophe (A2)
and it is the simplest of the seven elementary catastrop
first discussed by Thom in@37#. The Morse part of the abov
decomposition is unaffected by perturbations so it is o
necessary to study how the qualitative properties of the
tastrophe functionA25b1

3 1ab1 are changed as the contr
parameter changes. Whena.0 there are no critical points
whereas a,0 gives two critical points namely,b65
6A2a. The casea50 is the separatrix in the control pa
i-
r-

l

n
-

g
n

es

y
a-

rameter space between functions of two qualitatively diff
ent types~no critical points and two critical points!.

Our interpretation of the above results uses thedelay con-
ventionof catastrophe theory~see for instance@35#!. Since,
as we have shown, during the bounces of the point with
walls in the triangular box there are no critical points, w
imagine that when the point enters the channel hasa,0.
Then, as it moves inside the channel, the degenerate p
a50 is reached~the stable minimum disappears into th
degenerate critical point!. At this instantb2 is no longer
small, there are no critical points and the system jumps to
lowest of the two minima~the stable attractor! of a.0. This
produces a~point! shock wave which is the simplest eleme
tary catastrophe~fold!. This, in turn, means that the syste
~point! has found itself bouncing again inside the~now
larger! triangular box.

IV. CONCLUSIONS

Our adiabatic analysis relates to the well-known issue
the so-called ‘‘anomalous’’ behavior discussed previou
analytically by Berger in Ref.@13# and numerically in Refs.
@39# and @40#. Physically, this in-channel behavior appea
only when the initial value of the so-called BKL parameteru
is sufficiently large~a BKL ‘‘long era’’ !. However, the re-
quired value ofu becomes larger~and therefore less prob
able! as the singularity is approached. This in turn means t
the in-channel behavior becomes less probable as the
master singularity is approached.

The recent demonstration of chaoticity by Cornish a
Levin @20# via the existence of a mixmaster fractal stran
repellor may be seen in the light of the nonadiabatic mixm
ter evolution discussed here. It is interesting to point out t
the problem of the existence of an adiabatic invariant
higher dimensional generalizations of the mixmaster u
verse@9# or in higher derivate extensions@10# ~wherein cha-
otic behavior may be absent! is a nontrivial one and one
expects that the usual difficulties@24# present in dynamica
systems with more than two degrees of freedom exist in
problem too.

Our numerical results parallel those given in@39,40# in
the following respects: In those references, figures equiva
to our Fig. 5 are given, but the variablesb6 /V are plotted
there ~mixing bounces! rather than our variablesb6 . We
stress that no confusion must arise in this respect since
the former variables the trajectory associated with a sin
era appears to move outwards along a corner and then
wards again while here the motion is strictly outward. Fu
ther, as is clearly emphasized by Berger in@40#, the angle of
the minisuperspace trajectory becomes ever closer to the
pendicular to the ray down the corner as the era progre
towards the singularity. A change of era occurs when
trajectory points inwards rather than outwards with respec
this perpendicular direction.

We hope that our reformulation of the problem in terms
catastrophe theory in Sec. III may be further used to exam
questions of current interest such as, for instance, issues
nected with the occurrence of chaotic behavior. In so
sense, our catastrophe results correspond to just mixma
statics. Further dynamical issues could be addressed if
considers the mixmaster system as a gradient system
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usual in catastrophe discussions of dynamical systems.
Another issue that is raised by our formulation is the

fluence of changing the time parameter on the characte
the catastrophe. It is well known that there exist differe
time parametrizations for the description of the mixmas
dynamics~see, for instance,@40#!. It is therefore appropriate
to ask how the catastrophe profile of the mixmaster dynam
is affected by different choices of time. Although the answ
to this question is uncertain at present, we believe tha
physically relevant formulation should be unaffected by d
ferent time choices.
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A

.

@30# V. P. Ermakov, Univ. Izv. Kiev. Ser. III9, 1 ~1880!; H. R.
Lewis, Phys. Rev. Lett.18, 510 ~1967!; Phys. Rev.172, 1313
~1968!.

@31# E. Pinney, Proc. Am. Math. Soc.1, 681 ~1950!.
@32# P. G. L. Leach, J. Phys. A16, 3261~1983!.
@33# H. R. Lewis and P. G. L. Leach, J. Math. Phys.23, 165~1982!;

A. Munier, J-R. Burgan, M. Feix, and E. Fijalkow,ibid. 22,
1219 ~1981!.

@34# Y. ChenLu,Singularity Theory and an Introduction to Catas
trophe Theory~Springer-Verlag, New York, 1976!.

@35# R. Gillmore,Catastrophe Theory for Scientists and Enginee
~Dover, New York, 1981!.

@36# M. Morse, Trans. Am. Math. Soc.33, 72 ~1931!.
@37# R. Thom,Structural Stability and Morphogenesis~Benjamin,

Reading, MA, 1975!.
@38# D. Grommol and W. Meyer, Topology8, 361 ~1969!.
@39# A. R. Moseret al., Ann. Phys.~N.Y.! 79, 558 ~1970!.
@40# Berger@1#.


