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Adiabatic invariants and mixmaster catastrophes
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We present a rigorous analysis of the role and uses of the adiabatic invariant in the mixmaster dynamical
system. We propose a new invariant for the global dynamics which in some respects has an improved behavior
over the commonly used one. We illustrate its behavior in a number of numerical results. We also present a
new formulation of the dynamics via catastrophe theory. We find that the change from one era to the next
corresponds to a fold catastrophe, during the Kasner shifts the potential is an implicit function form whereas,
as the anisotropy dissipates, the mixmaster potential must become a Morse 0-saddle. We compare and contrast
our results to many known works on the mixmaster problem and indicate how extensions could be achieved.
Further exploitation of this formulation may lead to a clearer understanding of the global mixmaster dynamics.
[S0556-282198)04408-7

PACS numbes): 98.80.Hw, 02.30.Hq

I. INTRODUCTION to a sustained interest in the mixmaster dynamics during the
ighties.

Interest in the mixmaster universe suddenly peaked with
he appearance of the first works on numerical experiments
in 1989—199(12]. Those resultsand others which followed
913]) were conflicting in the sense that in most cases the
standard picturg¢4] was challenged to the effect that many
. workers in the field felt that a reexamination of the original
was studied more than any other homogeneous cosmology,,q|sions concerning the existence of chaos in the mix-
(with a probable exception of inflationary issue$he pic-  aster approach to the initial singularity was necessary. At
ture drawn from that body of work was already quite rich e same time other works appeared which either criticized
(the actual system was also integrated numerically by Zardr 4] the use of some essentially coordinate dependent mea-
ecki [6] but some of his results later criticized as incompat-gyres of chaoticity or indicatefL5,16 that some sort of
ible with those of Belinskii, Khalatnikov, and LifshitBKL)  chaotic behavior should be present in the mixmaster dynam-
in [7,8]) and allowed for further generalizations to be con-jcs,
sidered. It was felt necessary17] that perhaps an analytical ap-

Examples of this kind of generalized problems includedproach, known a®ainleve analysiswhich did not share the
Kaluza-Klein extension§9] and the search for complicated “defects” of numerical work could lead to more reliable
mixmaster behavior in other theories of gravitat[d@]. All results concerning the existence or nonexistence of chaotic
these generalizations were motivated mainly by an idea anbdehavior in the mixmaster dynamics. Initial resultkS]
results, first obtained by Barroj¥] almost another decade pointed to the direction of integrability whereas later it was
earlier, that the well-known BKL-Misner oscillatory, mix- realized[19] that the situation was more complex. It is now
master behavior should in fact be viewed as an example ainderstood that this analysis cannot be used to obtain reliable
the manifestation of chaotierratic, unpredictab)estruc-  results concerning the question of chaoticity in this model.
tures in general relativity. It was therefore natural to examine Very recently Cornish and Levif20] using fractal meth-
how common such a behavior could if.was also known ods resolved the long-standing debate concerning the issue
[11] that departures from such an evolutionary scheme couldf chaoticity in the mixmaster universe, showing that the
be obtained with the addition of scalar fields fact, many system is indeed chaotic. Their analysis not only confirms
of those results were quite interesting and contributed mucthe earlier ergodic results of Barrop] but quantifies the

chaotic behavior of the model by calculating a special set of
numbers(topological entropy, multifractal dimension, etc.
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During the past eight years or so interest in the mixmaste?
universe[1] has increased dramatically. There are at leas
two reasons for this noticeable increase. First, there was
ready a considerable amount of background work concernin
the basic dynamical issues of the mof&t5] and it is prob-
ably fair to say that this modd€diagonal Bianchi type IX
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Lrun=12AY4 812+ B5?) —2A "M% *V(B), (1)

whereB, andB_ are related to the shape parameters of the
model, the volume parametef) plays the role of time,
primes denote differentiation with respect@ and A is a
function of Q which evolves according to

A'=—4e *V(p). (2

HereV(R) is the standard, curvature anisotrojoyixmastey
potential given by

V(B)= %e-%— ge-ﬂ+cosh V3p.)

+§e2ﬁ+[cosr(2\/§,8_)—1]+1- ()

There is also the energylike equation

4=pB'2+ B2+ 4Nt 4OV(B). 4
FIG. 1. Contour lines for the potential welN/ (B, ,8-)
=full potential. The well exhibitsC; symmetry and is almost We begin our analysis by reexamining the role and conse-
an equilateral triangle except at the corners where the contour lineguences of the adiabatic invariant used implicitly explic-
move off to infinity. The effective potentiaé=Ve 2 and hence itly) in most mixmaster calculations. According to Misner
the “triangles” move outwards with time. [3] the most important asymptotic form of the mixmaster
potential is wheri8_| is small and slowly varying ang
the description of the mixmaster universe from the point of— +, that is,V(8) ~ 1+ 4% €?#+. In this case ¢, can be
view of the dynamical systems theof23]. We therefore considered as the Lagrangian for tBe motion, that is, it
believe that the rich mixmaster behavior will continue tocan be supposed approximately that there exists a system
attract the interest of cosmologists for some time to come. with one degree of freedong. , depending on the slowly
The purpose of this paper is to provide a rigorous analysigarying paramete_ . This reduced system is described by
of the role and uses of adiabatic invariants in the mixmastethe Lagrangian,
problem by carefully examining the adiabatic invariant com-
monly used and introducing a new and in a sense improved Lreduced= 1/2A 1282 — 8N~ H2e2P+ 40 g2 5
invariant for the global mixmaster dynamics. We then refor-, . _40
mulate the main characteristic of the dynamics via a new!n Which a termO(e~"") has been neglected andand 3.,

simpler, technique along the lines of catastrophe theory. W&'€ again functions df} through the solutions d?) and (4)
believe that further exploitation of this formulation may help With the potential as modified. The Lagrangii is that of
to unravel certain global dynamical properties of the mix-& fime-dependent oscillator of slowly varying frequency
master universe. given by

The plan of this paper is as follows. In Sec. Il we intro- o = A\~ 12B:—20 ©6)
duce our new invariant for the mixmaster system which be- - '
haves better than the standard adiabatic one and is explicitlyhen' for the reduced system, there exists the adiabatic in-
time-independent in the appropriate coordinates. We alsQgyiant
perform a numerical simulation of the corner-run pat
Fig. 1) of the evolution and we give an interpretation of the -1 L o o
results using Misner's Hamiltonian picture. In Sec. lll we 2=_—=gAhe Pr(Bl+w?p2), )
apply catastrophe theory as a means to gain a better under- -
standing of the complicated behavior of the model. The maifyhereE_ are the energy level sets ana3 represents the
result of this section is that the passage from one era to thgrea of appropriate domains bounded by curves passing
next corresponds, in the language of catastrophe theory, totgrough points in (the two dimensional phasespace
fold catastrophe which in turn may provide a potentially new(,_ g_). It can be shown, by adapting the method$2,
way to view the global evolution. In Sec. IV, we compare that this is also an adiabatic invariant of the “full” mixmas-
our results to previous work and point out how generalizater systemtwo degrees of freedonwith B_ slowly varying

tions to higher dimensions could be obtained. (but not necessarily smallWe stress this point since it is
important to remember that the motion of the universe point
Il. ADIABATIC ANALYSIS described by .quceqiS ONly approximately true and the true

dynamics in this case should be thought of as that given by
Subject to a couple of overall approximations the motionL;,, with 8_ slowly varying.
of the “universe point” 8=(B.,B_) is governed by the The adiabatic invarianf7) (considered originally by Mis-
mixmaster Lagrangian ner [3]) is exactly the one proposed by Lorentz at the first



57 ADIABATIC INVARIANTS AND MIXMASTER CATASTROPHES 4693

Solvay Congress in 191[125,26. A precise mathematical 5.0x10~ 4
statement concerning its range of validity was given by
Littlewood [27] in the sixties. Littlewood showed théh our
notation

(i) X=c+0(e);

(i) T=c+0(e?) (E_is the average ok over the local
period 2m/w_);
(iii ) there is no improvement ovér) or (ii);

(iv) 2 () =32 (—»)=0(e") for some specifin; 4

3.3x10 7 F

invariant

providedw _ satisfied certain assumptions which give a mea-
sure,e, to the expression “slowly varying.” These assump-
tions are

d"o_
dt"

—0 as t—*owo(n=1)

(1)7>b0, (l)(n):

7.0x107°> ! .
" 1.0x1074 1.5x10% 3.0x10
loM|<b,e"(n=1), f loM|dt<b! _,e"" L, (8 t
o FIG. 2. A variation of the adiabatic invariant againstin res-

. . . led coordinates. Note that the adiabatic invariant varies from its
where theb’s are constantsThe notationb’ is used to in- 2~
% %ltlal value of =1.0— X 10 * up to as much as 5:910 % and as

dicate that there need be no specific relationship between t :
. . ow as effectively zero.
two constantg.A consequence is that, since

2 - " 8 - ' 16 -
|w_(7'2)—w_(71)|$f 2|w_|dt—>0, ﬁf_KeZ'B-'— 4()’B27B7+Xe2B+ 4QB7=0- (13)
71
where the overdot denotes differentiation with respect to thd he positive sign in12) applies until the expression under
variable,t, asr;, 7,— —, 4+ respectively, we have the square root sign becomes zero. Equatidis—(13) are
those of Misnel{3] except that3, has not been introduced.
w_(—®)=w_(+2). We take initial conditions consistent with the assumptions

_ ) ) governing motion in the channel. We integrate the system
Strictly we need not go as far asx, but the in-channel time  (11)—(13) numerically using an implementation of the

is supposed to be long. . . ~ Runge-Kutta schemg29]. The results are illustrated in Fig.
Following Arnol'd [28] a functionl(q,p;st) is an adia- 2. |t is quite evident that these computations do not support
batic invariant of a Hamiltonian system the use of the adiabatic invariant over the whole time spent
inside the channel.
: :_ﬁ : :ﬁ H=H . 9 Let us now consider some consequences of the above
p 9 , (a,p;et) 9 . . . : ,
aq ap analysis. Upon the introduction of a relative coordinate,
if Vx>03¢gq such that, ife<ey and 0<t<1/eq, Bo=PB+—2Q, (14)
[1@(t),p(t);e)=1(a(0),p(0);0)[<k. (10 414 with the help of Eqs6) and(7), Eq. (4) becomes
The action variable of the corresponding autonomous prob- S 0?2
lem is always an adiabatic invariant and it is for this reason 0=B/2+48"+ w- e Bo 15
that (7) can be selected as the adiabatic invariant. Bo™*4bo+ ' (19

However, the perpetualitycf. [24]) must be calculated
and verified. Previous works provide no information aboutOn the assumption thi, is smaII,B(’)2 is neglected andlL5)
the behavior ofw_ and certainly no measure ef Fortu- gives immediately
nately it is a fairly straightforward matter to test the validity

of the use of the adiabatic invaria€if). We can simply in- Bo=log(Qy— Q)+ const (16
tegrate the equations of motion numerically and substitute
the numbers int@7) to observe the variation & with Q. which leads toB,— — as{) approaches the critical value
In the channel regime the equations governing the motioif),. This meang3] that the particle leaves the channel and
of the system point are returns bouncing in the triangular region.
. 40 2 Consider now the assumption that is usually made,
A'=—16e*P+"40p2, (1D namely thatg’2 may be neglected. We claim that this as-

sumption leads to a solution which is only asymptotically
correct. To see this notice that it follows easily that the so-
lution of (15) is given implicitly by

/ 12 162/3 —4Q 2 12
Bl=x|a—(B)P-e# 02 (12
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where
Qy— Q= %{a‘le”zﬂwr Ja 2efo—1}— %Iog{a‘le”zﬁ0
_=AY28", (27)
Ja—2aBo—
taTe- 1) @n The reduced Hamiltonia(26) is not precisely of the form of
where (22) since the coefficient off? is not constant and we have
) the equivalent of an harmonic oscillator of variable mass.
5 w3 However, following the procedure detailed by Led@g],
a™= g (18) for the treatment of a Hamiltonian of the form (16) we

introduce a change of time scale
is assumed constant. Misner’s original solutid®) is, in a
sense, asymptotic td7) and our assertion follows.
Of more interest, however, is the actual equationggr
which follows immediately fron(15), viz.,

Bo=—2+2\1—a’e P, (19

(The upper sign applies for the initial motion in the channel
since|B’.|<2.) Equation(19) is valid only if

Tzf A~ YHQ)dQ (28

so that the mixmaster system in this regime is described by

1 1
Hreduced:§H2—+ EwZ(T)BZ— (29

in which T is now the independent variable and
eho=a?, (20)
2 T(Q =1662ﬁ+(m_49. 30
Inserting this into Eq(17) we find that w*(T()) (30)

1 Under the generalized canonical transformafigg]

Q$QO—Z or By=—0.60+const. (21

Q= = P=pp—pq, T:f pA(TdT, (3D
In other words() never reaches the critical valdk, and 3, p
cannot go to—« which is what is necessary for the particle
to return to the triangle from the channg@Df course, in

practice, it is only sufficient to havg, large and negative o
for the particle to resume bouncing with the wall in the tri- H=

angular box as soon as it leaves the channel, but even for this

to happen the bound in E1) seems 100 stringent. h inprovided thatp(T) is a solution of(24) [with w?(T) from

We are now ready to introduce a new invariant whic _ 5 _ o
many ways behaves better than It is a well-known fact (30) instead of thav“(t)]. H is the Ermakov-Lewis invariant

that the time-dependent oscillator described by the Hamill" the canonical variables in which it becomes free of ex-
plicit dependence on time.

Eq. (29) is transformed to

(P?+Q?) (32

N| =

tonian pe
It is H which should be used instead of the adiabatic

L, invariant used by Misner. However, there is a problem. In

H=5(P"+ o ()a") (220 the new variables the evolution of the oscillator is easily

described, but that of3, becomes unmanageable as the

possesses the first integral Ermakov-Lewis invariant does not lead to a significant sim-

plification of (12). We must resort to numerical computation
and this may as well be performed in the original variables.
Over the interval 82 w<<30000,8, increases essentially
linearly with w (see Fig. 3 There is no indication that it
which is known as the Ermakov-Lewis invarigf@0], pro-  approaches-= and, as the deviation from strict linearity is
vided that the auxiliary variable, is a solution of so small, it can only be expected to take a long time to
approach zero. In the meantime the potential well proceeds
outwards as is evident from Fig. 4 at which the contour is
that corresponding to the energy of the motion. We see that
the wall outmarches thg, value of the universe point. Over

Furthermore the solution d4) has been given by Pinney this period, as depicted in Fig. 5, the amplitude of e

1 : q
_ - _ 2
|—2((pp pq)-+ p

2
) , (23)

., :i
ptw(t)p Pk (24

[31] in terms of the linearly independent solutions of motion increases in a strictly monotonic fashion with a rate
of increase increasing with time.
v+ w?(t)v=0. (25) It is clear from these results that, as the particle moves
along the channel, the potential walls are receding. Initially
The Lagrangiar(5) gives directly the Hamiltonian this does not present a problem as e velocity of the

particle is sufficiently large. However, there is a critical time,
Q,, when the walls “leave the particle behind.” Hence the

1
_ A1 2 —1/2,2B3, —4Q 2
Hreduced=5 A T +8A7 % B~ (26 particle finds itself in the triangular region again and no



57 ADIABATIC INVARIANTS AND MIXMASTER CATASTROPHES 4695

3.0x10% | 1.956 |
4]
3 E
o 15x0%t 1 £ o028 I
= [}
T B
iat @
-5
10.0%10 I . ~1.900 !
1.0x10™% 1.5x10% 3.0x10 1.0x10~ % 1.5%10% 3.0x107

t t

FIG. 3. Variation of3, with o in rescaled coordinates over a  FIG. 5. Variation of 8_ over time. The amplitude increases
time interval(time is numerically equal t@) from zero to 30 000  strictly monotonically. The plot was made at every 500th value of
(there is a variation of one in 30 000 B, from linearity over the  and hence understates the frequency of oscillation. A plot of all the
full interval). points fills the region between the upper and lower envelope.

longer in the channel. Note that, @, is never less than We consider the mixmaster universe as a gradient system

zero, the particle does not “turn around” in the sense that isdescribed by the potenti@B). We choose as a control pa-

sometimes described. rameter the volume(time) parameter ). We set V
=(dldB, ,dl9B_) and denote the Hessian matrix by

Ill. A CATASTROPHE DESCRIPTION

Y Vv
In what follows we present a novel way to describe the Py 9B, 0B
qualitative differences of the main stages in the evolution of o B e (33
the mixmaster universe. As we shall see, the standard inter- ! IV 2V |
retation can be reached quite naturally and independentl
p K J by the, BB ap?

by this line of thought. This approach is established by the
application of singularity theor34] and in particular by that
branch of singularity theory known as catastrophe theor
[35]. Catastrophe theory studies changes in the equilibria of
potentials as the control parameters of the system change. 1

The local properties of the potential in a gradient or a dy- Bi——», V(B)~ e 8F+ (34)
namical system are determined by a sequence of theorems 3

such as the implicit function theorem of advanced calculus,
the Morse lemm436] and the Thom theoref87]. w

);I'hen, for the Kasner-to-Kasner evolution described by the
otential

e find
8
; VV=( - §e—8ﬁ+,o) #0. (35

This means that during an era the implicit function theorem
applies and there are no critical poinfFhis also implies
that there is a smooth change of coordinates which makes the
potential (3) depend on only one of the variables, say .

We see that the form of the potenti@4) can be deduced
from the general form3) by using this argument without

1 resorting to any sort of approximatiois.

Secondly, we examine the structure of the potential in the
ost neighborhood of the isotropy poi®,0) given by

., a RS R\ (B+.B)~(0,0, V(B)~16B5+p%). (36

26 50 7% 100 126 150

FIG. 4. Movement of the potential barrier as a functiopBafat ~ After some straightforward manipulations we find that
successive time interval§The large horizontal scale makes the
potential walls appear vertical. Vv=0. (37)
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We see that the conditions for the validity of the implicit rameter space between functions of two qualitatively differ-
function theorem are no longer satisfied. Equatid@ im-  ent types(no critical points and two critical poinks

plies that near the isotropic point (0,0) the mixmaster uni- Our interpretation of the above results usesdhky con-
verse is in a stable equilibrium state. To see this we deteventionof catastrophe theorgsee for instancg¢35]). Since,
mine the stability properties of this state by finding theas we have shown, during the bounces of the point with the
eigenvalues of the Hessian matrix, . First after a tedious walls in the triangular box there are no critical points, we

calculation we find imagine that when the point enters the channel &&as0.
Then, as it moves inside the channel, the degenerate point
de V--=E5¢O 39) a=0 is reached(the stable minimum disappears into the
tooVij =73~ 70. degenerate critical pointAt this instant3_ is no longer

small, there are no critical points and the system jumps to the
Also the eigenvalues of;; areh;=\,=16. This means that |owest of the two minimdthe stable attractpof «>0. This
due to the Morse theorefi36] there is a smooth change of produces dpoint) shock wave which is the simplest elemen-
variables so that the potential in this case takes the form tary catastrophéfold). This, in turn, means that the system
(point) has found itself bouncing again inside tlipow

V=MG=\T+\5=16(87 +B2). (B9 Jargen triangular box.
Not surprisingly this is exactly the form of the potential that
Misner found in this caseM3 stands for the Morse 0-saddle IV. CONCLUSIONS
whic_h Is the only i-saddle that is stablg for twp-dimensional Our adiabatic analysis relates to the well-known issue of
gradient systemgcf. [35]). Thus the poin{0,0) is a Morse y

the so-called “anomalous” behavior discussed previously

tential in this case is structurally stable. analytically by Berger in Re_1[1_3] and numericall)_/ in Refs.

Lastly we examine the corner-run evolution which turns[39] and [40]. I_Dhyswally, this in-channel behavior appears
out to be the most interesting from the point of view of ONlY When the initial value of the so-called BKL parameter
catastrophe theory. In this case we find is §uff|C|entIy large(a BKL “long era”). However, the re-
quired value ofu becomes largetand therefore less prob-

critical point (isolated, nondegeneratén particular, the po-

vV=0 (40) ablg as the singularity is approached. This in turn means that
the in-channel behavior becomes less probable as the mix-
and master singularity is approached.
The recent demonstration of chaoticity by Cornish and
detv;; = —81728% €%+ (41)  Levin [20] via the existence of a mixmaster fractal strange

repellor may be seen in the light of the nonadiabatic mixmas-
ter evolution discussed here. It is interesting to point out that
the problem of the existence of an adiabatic invariant for
higher dimensional generalizations of the mixmaster uni-

o . . . A verse[9] or in higher derivate extensiofi$0] (wherein cha-
This implies that in the channel region all points which lie ON Jvic behavior may be absénis a nontrivial one and one

the 8, axis are non-hMorse Cr'F'CaI paints. In this case we Canexpects that the usual difficulti¢24] present in dynamical
cast the potential in a canonical form by adopting a proce-

dure known as the Thom splitting lemrfigg]. We split the systems with more than two degrees of freedom exist in this
potential into a Morse part and a non-Morse part accordin roblem too.

to the number of the vanishing eigenvalues of the Hessial Our numerical results parallel those given[B9,40) in
. : g €9 the following respects: In those references, figures equivalent
matrix for this case. These are found to be

to our Fig. 5 are given, but the variablgs /() are plotted

A;=0, \,=32e%+, (43  there(mixing bounces rather than our variableg... We
stress that no confusion must arise in this respect since, in
which due to a theorem of Thof87] guarantees that there is the former variables the trajectory associated with a single
a smooth change of variables that puts the potefitiathe  era appears to move outwards along a corner and then in-

It is clear that for all points on thg_ -axis (8_=0) we have

detg, 0)Vij=0. (42)

channel in the decomposed form wards again while here the motion is strictly outward. Fur-
ther, as is clearly emphasized by Bergef40)], the angle of
V(B)= ,81 +aB,+328°%, (44)  the minisuperspace trajectory becomes ever closer to the per-

pendicular to the ray down the corner as the era progresses
with a#0. The first two terms in this potentigthe non-  towards the singularity. A change of era occurs when the
Morse part form what is known as the fold catastrop®}  trajectory points inwards rather than outwards with respect to
and it is the simplest of the seven elementary catastrophefis perpendicular direction.
first discussed by Thom i{87]. The Morse part of the above  We hope that our reformulation of the problem in terms of
decomposition is unaffected by perturbations so it is onlycatastrophe theory in Sec. Ill may be further used to examine
necessary to study how the qualitative properties of the caguestions of current interest such as, for instance, issues con-
tastrophe functiom,= 8% + a3, are changed as the control nected with the occurrence of chaotic behavior. In some
parameter changes. Whert>0 there are no critical points sense, our catastrophe results correspond to just mixmaster
whereas <0 gives two critical points namely8.= statics Further dynamical issues could be addressed if one
+—a. The casen=0 is the separatrix in the control pa- considers the mixmaster system as a gradient system as is
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