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Exponential potentials and cosmological scaling solutions
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We present a phase-plane analysis of cosmologies containing a baryotropic fluid with an equation of state
p,=(y—1)p,, plus a scalar fields with an exponential potentidl=exp(—\«¢) wherex?=87G. In addi-
tion to the well-known inflationary solutions far< 2, there exist scaling solutions wh&A> 3y in which the
scalar field energy density tracks that of the baryotropic fluilich for example might be radiation or dust
We show that the scaling solutions are the unique late-time attractors whenever they exist. The fluid-dominated
solutions, where/(¢)/p,—0 at late times, are always unstalféxcept for the cosmological constant case
y=0). The relative energy density of the fluid and scalar field depends on the steepness of the exponential
potential, which is constrained by nucleosynthesis\fe>20. We show that standard inflation models are
unable to solve this “relic density” probleniS0556-282(98)05408-3

PACS numbes): 98.80.Cq

I. INTRODUCTION Il. AUTONOMOUS PHASE PLANE

We will consider a scalar field with an exponential poten-

Scalar fields have come to play a central role in currential energy densit}/=Vyexp(—\«¢) evolving in a spatially-
models of the early universe. The self-interaction potentiaflat Friedmann-Robertson-WalkéFRW) universe contain-
energy density of such a field is undiluted by the expansioing a fluid with baryotropic equation of statp,=(y
of the universe and hence can act like an effective cosmo=1)p,, wherey is a constant, & y<2, such as radiation
logical constant driving a period of inflation. The detailed (y=4/3) or dust ¢=1). The evolution equations for a
evolution is dependent upon the specific form of the potentiapPatially-flat FRW model with Hubble parameterare
V as a function of the scalar field’'s expectation vatbie 9
~ A common functional form for the self-interaction poten- H=— %(per p,+ ®?), 1)
tial is an exponential dependence upon the scalar field. It is
to be found in higher-orddt] or higher-dimensional gravity _
theories[2]. In string or Kaluza-Klein type models the py=—3H(p,*+p,), 2
moduli fields associated with the geometry of the extra di-
mensions may have effective exponential potentials due to . .
the curvature of the internal spaces, or the interaction of ¢__3H¢_@’ )
moduli with form fields on the internal spaces. Exponential
potentials can also arise due to non-perturbative effects suctubject to the Friedmann constraint
as gaugino condensati¢]. 5

The possible cosmological roles of exponential potentials HZZK_
have been investigated before, but almost always as a means 3
of driving a period of cosmological inflatiop4,5]. This re-
quires potentials that are much flatter than those usuallvherex’=8mG. The total energy density of a homogeneous
found in particle physics models. The purpose of this papescalar field isp ,= &2+ V().
is to emphasize that scalar fields with exponential potentials We define
may still have important cosmological consequences even if

, 4

1'2
p7+5¢ +V

they are too steep to drive a period of inflatig+8]. We K K\/Q
will present a phase-plane analysis to show that scalar fields X= ;Y= . (5)
with exponential potentials contribute a non-negligible en- \/EH \/EH

ergy density at nucleosynthesis unless they are unusually
steep. This “relic density” problem is not alleviated by stan- The evolution equations can then be written as a plane-
dard models of inflation. autonomous system:
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TABLE |. The properties of the critical points.

X y Existence Stability Q4 Yo

0 0 All X andy Saddle point for &< y<2 0 Undefined

1 0 All A and y Unstable node fok <6 1 2

Saddle point fol > /6
-1 0 All \ and y Unstable node foh>— /6 1 2
Saddle point fon< — /6
N6 [1-A%/6]12 \2<6 Stable node for2<37y 1 \23
Saddle point for 3<A?<6
(3/2)Y2yI\ [3(2— y) y2\2]Y? A?>3y Stable node for 3<\2<24y?/(9y—2) 3y/A2 y
Stable spiral fon2>24y%/(9y—2)
3 3 kinetic energy of the scalar field with a stiff equation of state,
X'=—=3x+\ §y2+ EX[2X2+ y(1-x*—y*)], (6)  y,=2.As expected these solutions are unstable and are only

3 3
y'= =N\ Xy Sy[23+ y(1-x*=y?)], (7)
where a prime denotes a derivative with respect to the log
rithm of the scale factolN=In(a), and the constraint equa-
tion becomes

2
K°p,

3—H7+X2+y2:1.

8

Note that from the constraint equation we have

K2p¢

Q(ﬁEW:XZ‘FyZ. (9)

This is bounded, &x?+y?<1, for a non-negative fluid

expected to be relevant at early times.

More surprisingly, however, we find that the baryotropic
fluid dominated solutionX=0, y=0) where(} ,=0 is un-
stable for all values of y>0. We will discuss the critical
case wherey=0 later. But for anyy>0, and however steep
Jhe potentiali.e. whatever the value of), the energy den-
sity of the scalar fieldnever vanishes with respect to the
other matter in the universe.

We are left with only two possible late-time attractor so-
lutions. One of these is the well-known scalar field domi-
nated solution {0 ,= 1) which exists for sufficiently flat po-
tentials,\><6. The scalar field has an effective baryotropic
index y¢=)\2/3 giving rise to a power-law inflationary ex-
pansion4] (a>0) for A\?<2. Previous phase-plane analyses
[5] have shown that a wide class of homogeneous vacuum
models approach the spatially-flat FRW model for<2.

We have shown that this scalar field dominated solution is a
late-time attractor in the presence of a baryotropic fluid when
we haven?<3y.

However forn?>3y we find a different late-time attrac-

density,p,=0, and so the evolution of this system is com-tor where neither the scalar-field nor the baryotropic fluid
pletely described by trajectories within the unit disc. Theentirely dominates the evolution. Instead we have a scaling
lower half-disc,y<<0, corresponds to contracting universes.splution where the energy density of the scalar field remains
As the system is symmetric under the reflectiony]  proportional to that of the baryotropic fluid witif,,
—(X,—y) and time reversat— —t, we only consider the =3,/)\2, This solution was first found by Wetteri¢h] and
upper half-discy=0 in the following discussion. shown to be the global attractor solution fiof>37y in Ref.

The effective equation of state for the scalar field at any7].
point is given by The regions of §,\) parameter space leading to different
qualitative evolution are indicated in Fig. 1.

(1) \?<3y. See Fig. 2. Both kinetic-dominated solutions
are unstable nodes. The fluid-dominated solution is a saddle
point. The scalar field dominated solution is the late-time
attractor, and is inflationary in parameter region la and non-
Fixed points at finite values of andy in the phase-plane inflationary in region Ib.
correspond to solutions where the scalar field has a baryotro- (Il) 3y<\?<6. See Fig. 3. Both kinetic-dominated solu-
pic equation of state and the scale factor of the universéions are unstable nodes. The fluid-dominated solution is a
evolves asa=t? wherep=2/3y,. saddle point. The scalar field dominated solution is a saddle

Depending on the values of and A, we have up to five point. The scaling solution is a stable node/spiral.
fixed points(critical pointg wherex’=0 andy’=0 which (1) 6<\?. See Fig. 4. The kinetic-dominated solution
are listed in Table I. A full analysis of the stability is given in with Ax<<0 is an unstable node. The kinetic-dominated so-
the Appendix. lution with Ax>0 is a saddle point. The fluid-dominated

Two of the fixed points X==1, y=0) correspond to solution is a saddle point. The scaling solution is a stable
solutions where the constraint E@l) is dominated by the spiral.
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FIG. 1. Regions of §,\) parameter space, as identified in the  FIG. 2. The phase plane for=1, \=1. The late-time attractor
text. Solutions to the left of the dotted line are inflationary. is the scalar field dominated solution wikh= \/1/6, y= /5/6.

Ill. COSMOLOGICAL CONSEQUENCES

The possible role of scalar fields with exponential poten-
tials with A2<2 in driving an inflationary expansion of the
early universe has already received considerable attention
and so we will not devote much time to discussing this here. y3F T
However we note that because the scalar field dominated
solution is the late-time attractor for?<3y, the existence
of such a scalar field today is ruled out unless its energy
density has been greatly suppressed relative to the attractor o | . ) 4
value (2 ,=1) for most of the “dust-dominated” era where -1 -0.5 0 0.5
y=1. Nonetheless such models have been considered as X
possible “decaying cosmological constant” modgds8,10.

The peculiar properties of the scaling solution, which we
see is the late-time attractor for exponential potentials wit
A2>3y, are sufficiently novel to merit greater investigation.
(See also Refd11,8].)

The most striking possibility is that a scalar field with an
exponential potential could comprise a significant fraction of T T
the energy density of our universe today. Because the effec-
tive baryotropic index of the homogeneous scalar field would
mimic pressureless dust, its dynamical effect would be ex-
actly like cold dark matter. For instance, Xf=3 then we QL .
expect(),=1/3 today. However the inhomogeneous field
can have a different equation of state modifying the evolu-
tion of large-scale structure in the universe, as has recently
been investigated elsewhdi® 10]. °

The main problem with this scenario is if the scalar field - o5 : o
has a significant contribution to the energy density, through- X
out the present dust-dominated era, then, unlike conventional _
cold dark matter, it should also have had a significant effect FIG. 4. The phase plane for=1, A =3. The late-time attractor
during the radiation-dominated era. Far=3 we expect S the scaling solution witx=y= 1/6.

O 4=4/9 whenp,=p,/3.

-

FIG. 3. The phase plane far=1, A =2. The scalar field domi-
nated solution is a saddle pointyat \2/3, y=/1/3, and the late-
ime attractor is the scaling solution wit=y=/3/8.

-

mated to be in the range 0.13 to 0&); we will adopt the

The tightest constraint on the total energy density of then. : o
. ; igher value to be conservative. Satisfying the nucleosynthe-
universe comes from models of nucleosynthg&ig]. The sis bound requirex?> 20.

primordial abundances of the light elements place tight con- Thus there is a relic abundance problem for any particle

zir?r']rgsﬂ%ltgf ﬁ:&ig??ﬂggﬁ; avr:/(;l]étlneunlceMtg\? el??l\r/gyrg_ens%lhysics theories that predict the existence of scalar fields
Y ! ' with exponential potentials with?<20 at low energiesT

quire Q‘/’<Q$ax at the time of nucleosynthesis, then this ~1 MeV). Scalar fields with exponential potentials com-
implies pletely dominate the energy density of the universe at nu-
cleosynthesis fok?<4, and still have an unacceptably high
) energy density at nucleosynthesis for )42<4/Q;';"‘X unless
A >Qma><' (1) the initial energy density in the field is extraordinarily low.
4 To quantify exactly how small the initial energy density
must be to evade the bound Ed1), we expand to first-order
The current upper bound ofl, at nucleosynthesis is esti- about the fluid-dominated solution to find the rate at which
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Q, grows away from zero—see Appendix. We find inflation e must be smaller than unity, but is not usually very
Q¢oca37, which implies that the scalar field energy densitysmall. For instance in chaotic inflation with a potential
remains essentially constant due to the large friction term it (o) =m?0%/2, e=0.01 when perturbations on the current
the evolution equation Eq3) as the baryotropic fluid den- horizon scale were generated, and increases to unity at the
sity redshifts agp = a 37, Thus the scalar field acts like a end of inflation before the inflaton starts oscillating about the
cosmological constant until), approaches its attractor minimum of its potential. Thus the energy density of a scalar
value. To have not reached the attractor by some time field with an exponential potential is not significantly re-
requires an initial value &t satisfying duced during chaotic inflation, and can rapidly attain its at-
tractor solution when the radiation-dominated era begins.

Models such as hybrid inflatiofiL3] or thermal inflation
[14] are distinctive in that can remain very small during the
final stages of inflation and thu3 , may be very small at the
attractor scaling solution. However in this case the condition
Eq. (14) for quasi-constanty is violated and the attractor

The usual cosmological solution to relic abundance probvalue for(}, approaches zero faster than the actual solution.
lems is a period of inflation, during which the unwanted We effectively havey— 0, which corresponds to the critical
relics have their energy density redshifted to a negligiblecase where the scaling solution tends to the fluid-dominated
value relative to the potential energy of the inflaton field  solution withx=y=0.

- py(tf)

< (12)

Q4(t)

IV. THE ROLE OF INFLATION

o.! If inflation ends at some energy dens,jty(ti)~M4, then For y=0 the largest eigenvalue for linear perturbations
from Eq. (12) we require vanishegsee Appendixand we must consider higher-order
perturbations about the critical point to determine its stabil-
1 MeV\* ity. We find thatx=y=0 is a stable attractor, but that tra-
Q)= ) 13 jectories only approach this as the logarithm of the scale

factor,N. The late-time evolution is given by
for the scalar field not to have reached the scaling attractor

solution by the time of nucleosynthesis. However we will ) J6 1

now show that the expected density of the scalar field at Y =N (16)
nucleosynthesis is not significantly affected by standard

models of inflation. Thus even the extreme case of a cosmological congtant

During conventional slow-roll inflation the inflaton field constant false-vacuum energy dengionly dilutes the en-
o has an effective equation of stafe=2¢/3, wheree is the  ergy density of the scalar field as the logarithm of the scale
(non-negative slow-roll parameter controlling the slope of factor, Q4%1N. Thus a model such as thermal inflation,
the potential[12]. We can treaty as effectively constant which is so effective at diluting the abundance of relic
provided the approach to the scaling attra¢ttstermined by  moduli particles[14], has a negligible effect on the relic
the largest eigenvalue for linear perturbatipissfaster than  density of the scalar fielgh as it only lasts for a small num-
the movement of that attractor. During slow-roll inflation this per of e-foldings (typically about 15 and the scalar field can

requires rapidly return to its scaling solution after inflation. Even in
, the case of hybrid inflation the relic density after inflation
€ =2¢ (14) may be significant unless we have an extremely large num-
€ ' ber of e-foldings during inflation. To satisfy Eq13) re-
uires
which is valid for most models, including chaotic inflation a
with U(o)xo" for n=2. 1/ M \4
The inflaton-dominated solution whefe,=0 is not an sz(m) (17)
attractor solution unlesg=0 and so foi2>2e¢ the attractor
solution is the scaling solution with which could be of order 18 e-foldings for a typical hybrid
inflation model. Requiring so much expansion would be a
_2e significant constraint on the model.
QO ,~ 2 (15

. . . . V. CONCLUSIONS
Unlike ordinary matter the energy density of a scalar field

with an exponential potentialoes not vanishelative to the We have presented a phase-plane analysis of the evolution
inflaton energy density during inflation, even though X3r  of a spatially flat FRW universe containing a baryotropic
>2 the exponential potential would not have an inflationaryfluid plus a scalar field with an exponential potentigle)
equation of state in the absence of the inflaton. =Voexp(—Ak¢d). We have shown that the energy density of
To evade the nucleosynthesis bound\oand satisfy Eq.  the scalar field dominates at late times fot<37y. For A2
(13) requires an extremely small value ef In slow-roll >3y we find that the baryotropic fluid does not completely
dominate and the energy density of the scalar field remains a
fixed fraction of the total density at late times.
!Note that we are assuming that the fields unrelated to the field This leads to a relic density problem at nucleosynthesis in
¢ which we have been discussing up until now. such models ii\2<20 . Standard models of inflation do not
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significantly dilute the initial density of the exponential po- The general solution for the evolution of linear perturbations
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tential and do not alleviate this bound. Only inflation modelscan be written as
with effectively constant energy density and an exponentially

large number ok-foldings (such as some models of hybrid

u=u,expm,.N)+u_exp(m_N), (A3)

inflation) would be able to weaken this bound, unless the

radiation-dominated era only begins shortly before nucleo-

synthesis, e.g. Refl15].

v=v,expm,.N)+v_expgm_N), (A4)

wherem.. are the eigenvalues of the matrixt. Thus for

We emphasize that we have assumed that there is no diyapijity we require the real part of both eigenvalues to be

rect coupling between the exponential potential and othey,

matter. The only interaction is gravitational.

egative.
For the critical points listed in Table | we find:

Fluid-dominated solution
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APPENDIX: STABILITY OF THE CRITICAL POINTS

In order to study the stability of the critical points.(,y.)
we expand about these points

X=XctU, Yy=Yyc.+v, (A1)

which when substituted into Eqé6) and (7) yield, to first-
order in the perturbations, equations of motion,

u
) . (A2)

Kinetic-dominated solutiongx,= =1, y.=0):

3
m_= \[E(Jén), m,=3(2—1y).

(AB)
Scalar field dominated solution
A\2—6 )
m_= > m,=A“—3vy. (A7)
Scaling solution
3(2-y) 8y(\*—3y)
= —_ — -+ —
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