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Exponential potentials and cosmological scaling solutions
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We present a phase-plane analysis of cosmologies containing a baryotropic fluid with an equation of state
pg5(g21)rg , plus a scalar fieldf with an exponential potentialV}exp(2lkf) wherek258pG. In addi-
tion to the well-known inflationary solutions forl2,2, there exist scaling solutions whenl2.3g in which the
scalar field energy density tracks that of the baryotropic fluid~which for example might be radiation or dust!.
We show that the scaling solutions are the unique late-time attractors whenever they exist. The fluid-dominated
solutions, whereV(f)/rg→0 at late times, are always unstable~except for the cosmological constant case
g50). The relative energy density of the fluid and scalar field depends on the steepness of the exponential
potential, which is constrained by nucleosynthesis tol2.20. We show that standard inflation models are
unable to solve this ‘‘relic density’’ problem.@S0556-2821~98!05408-3#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Scalar fields have come to play a central role in curr
models of the early universe. The self-interaction poten
energy density of such a field is undiluted by the expans
of the universe and hence can act like an effective cos
logical constant driving a period of inflation. The detaile
evolution is dependent upon the specific form of the poten
V as a function of the scalar field’s expectation valuef.

A common functional form for the self-interaction pote
tial is an exponential dependence upon the scalar field.
to be found in higher-order@1# or higher-dimensional gravity
theories @2#. In string or Kaluza-Klein type models th
moduli fields associated with the geometry of the extra
mensions may have effective exponential potentials due
the curvature of the internal spaces, or the interaction
moduli with form fields on the internal spaces. Exponen
potentials can also arise due to non-perturbative effects s
as gaugino condensation@3#.

The possible cosmological roles of exponential potent
have been investigated before, but almost always as a m
of driving a period of cosmological inflation@4,5#. This re-
quires potentials that are much flatter than those usu
found in particle physics models. The purpose of this pa
is to emphasize that scalar fields with exponential potent
may still have important cosmological consequences eve
they are too steep to drive a period of inflation@6–8#. We
will present a phase-plane analysis to show that scalar fi
with exponential potentials contribute a non-negligible e
ergy density at nucleosynthesis unless they are unusu
steep. This ‘‘relic density’’ problem is not alleviated by sta
dard models of inflation.
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II. AUTONOMOUS PHASE PLANE

We will consider a scalar field with an exponential pote
tial energy densityV5V0exp(2lkf) evolving in a spatially-
flat Friedmann-Robertson-Walker~FRW! universe contain-
ing a fluid with baryotropic equation of statepg5(g
21)rg , whereg is a constant, 0<g<2, such as radiation
(g54/3) or dust (g51). The evolution equations for a
spatially-flat FRW model with Hubble parameterH are

Ḣ52
k2

2
~rg1pg1ḟ2!, ~1!

ṙg523H~rg1pg!, ~2!

f̈523Hḟ2
dV

df
, ~3!

subject to the Friedmann constraint

H25
k2

3 S rg1
1

2
ḟ21VD , ~4!

wherek2[8pG. The total energy density of a homogeneo
scalar field isrf5ḟ2/21V(f).

We define

x[
kḟ

A6H
; y[

kAV

A3H
. ~5!

The evolution equations can then be written as a pla
autonomous system:
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TABLE I. The properties of the critical points.

x y Existence Stability Vf gf

0 0 All l andg Saddle point for 0,g,2 0 Undefined
1 0 All l andg Unstable node forl,A6 1 2

Saddle point forl.A6
-1 0 All l andg Unstable node forl.2A6 1 2

Saddle point forl,2A6
l/A6 @12l2/6#1/2 l2,6 Stable node forl2,3g 1 l2/3

Saddle point for 3g,l2,6
(3/2)1/2g/l @3(22g)g/2l2#1/2 l2.3g Stable node for 3g,l2,24g2/(9g22) 3g/l2 g

Stable spiral forl2.24g2/(9g22)
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x8523x1lA3

2
y21

3

2
x@2x21g~12x22y2!#, ~6!

y852lA3

2
xy1

3

2
y@2x21g~12x22y2!#, ~7!

where a prime denotes a derivative with respect to the lo
rithm of the scale factor,N[ ln(a), and the constraint equa
tion becomes

k2rg

3H2 1x21y251. ~8!

Note that from the constraint equation we have

Vf[
k2rf

3H2 5x21y2. ~9!

This is bounded, 0<x21y2<1, for a non-negative fluid
density,rg>0, and so the evolution of this system is com
pletely described by trajectories within the unit disc. T
lower half-disc,y,0, corresponds to contracting universe
As the system is symmetric under the reflection (x,y)
→(x,2y) and time reversalt→2t, we only consider the
upper half-disc,y>0 in the following discussion.

The effective equation of state for the scalar field at a
point is given by

gf[
rf1pf

rf
5

ḟ2

V1ḟ2/2
5

2x2

x21y2 . ~10!

Fixed points at finite values ofx and y in the phase-plane
correspond to solutions where the scalar field has a baryo
pic equation of state and the scale factor of the unive
evolves asa}tp wherep52/3gf .

Depending on the values ofg andl, we have up to five
fixed points~critical points! wherex850 andy850 which
are listed in Table I. A full analysis of the stability is given
the Appendix.

Two of the fixed points (x561, y50) correspond to
solutions where the constraint Eq.~4! is dominated by the
a-

.

y

o-
e

kinetic energy of the scalar field with a stiff equation of sta
gf52. As expected these solutions are unstable and are
expected to be relevant at early times.

More surprisingly, however, we find that the baryotrop
fluid dominated solution (x50, y50) whereVf50 is un-
stable for all values ofg.0. We will discuss the critical
case whereg50 later. But for anyg.0, and however steep
the potential~i.e. whatever the value ofl), the energy den-
sity of the scalar fieldnever vanishes with respect to th
other matter in the universe.

We are left with only two possible late-time attractor s
lutions. One of these is the well-known scalar field dom
nated solution (Vf51) which exists for sufficiently flat po-
tentials,l2,6. The scalar field has an effective baryotrop
index gf5l2/3 giving rise to a power-law inflationary ex
pansion@4# (ä.0) for l2,2. Previous phase-plane analys
@5# have shown that a wide class of homogeneous vacu
models approach the spatially-flat FRW model forl2,2.
We have shown that this scalar field dominated solution
late-time attractor in the presence of a baryotropic fluid wh
we havel2,3g.

However forl2.3g we find a different late-time attrac
tor where neither the scalar-field nor the baryotropic flu
entirely dominates the evolution. Instead we have a sca
solution where the energy density of the scalar field rema
proportional to that of the baryotropic fluid withVf
53g/l2. This solution was first found by Wetterich@6# and
shown to be the global attractor solution forl2.3g in Ref.
@7#.

The regions of (g,l) parameter space leading to differe
qualitative evolution are indicated in Fig. 1.

~I! l2,3g. See Fig. 2. Both kinetic-dominated solution
are unstable nodes. The fluid-dominated solution is a sa
point. The scalar field dominated solution is the late-tim
attractor, and is inflationary in parameter region Ia and n
inflationary in region Ib.

~II ! 3g,l2,6. See Fig. 3. Both kinetic-dominated solu
tions are unstable nodes. The fluid-dominated solution
saddle point. The scalar field dominated solution is a sad
point. The scaling solution is a stable node/spiral.

~III ! 6,l2. See Fig. 4. The kinetic-dominated solutio
with lx,0 is an unstable node. The kinetic-dominated s
lution with lx.0 is a saddle point. The fluid-dominate
solution is a saddle point. The scaling solution is a sta
spiral.
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III. COSMOLOGICAL CONSEQUENCES

The possible role of scalar fields with exponential pote
tials with l2,2 in driving an inflationary expansion of th
early universe has already received considerable atten
and so we will not devote much time to discussing this he
However we note that because the scalar field domina
solution is the late-time attractor forl2,3g, the existence
of such a scalar field today is ruled out unless its ene
density has been greatly suppressed relative to the attra
value (Vf51) for most of the ‘‘dust-dominated’’ era wher
g51. Nonetheless such models have been considere
possible ‘‘decaying cosmological constant’’ models@9,8,10#.

The peculiar properties of the scaling solution, which
see is the late-time attractor for exponential potentials w
l2.3g, are sufficiently novel to merit greater investigatio
~See also Refs.@11,8#.!

The most striking possibility is that a scalar field with a
exponential potential could comprise a significant fraction
the energy density of our universe today. Because the e
tive baryotropic index of the homogeneous scalar field wo
mimic pressureless dust, its dynamical effect would be
actly like cold dark matter. For instance, ifl53 then we
expect Vf51/3 today. However the inhomogeneous fie
can have a different equation of state modifying the evo
tion of large-scale structure in the universe, as has rece
been investigated elsewhere@8,10#.

The main problem with this scenario is if the scalar fie
has a significant contribution to the energy density, throu
out the present dust-dominated era, then, unlike conventi
cold dark matter, it should also have had a significant eff
during the radiation-dominated era. Forl53 we expect
Vf54/9 whenpg5rg/3.

The tightest constraint on the total energy density of
universe comes from models of nucleosynthesis@6,7#. The
primordial abundances of the light elements place tight c
straints on the expansion rate, and hence the energy den
at the time of nucleosynthesis, whenT;1 MeV. If we re-
quire Vf,Vf

max at the time of nucleosynthesis, then th
implies

l2.
4

Vf
max

. ~11!

The current upper bound onVf at nucleosynthesis is est

FIG. 1. Regions of (g,l) parameter space, as identified in th
text. Solutions to the left of the dotted line are inflationary.
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mated to be in the range 0.13 to 0.2@8#; we will adopt the
higher value to be conservative. Satisfying the nucleosyn
sis bound requiresl2.20.

Thus there is a relic abundance problem for any part
physics theories that predict the existence of scalar fie
with exponential potentials withl2,20 at low energies (T
;1 MeV!. Scalar fields with exponential potentials com
pletely dominate the energy density of the universe at
cleosynthesis forl2,4, and still have an unacceptably hig
energy density at nucleosynthesis for 4,l2,4/Vf

max unless
the initial energy density in the field is extraordinarily low

To quantify exactly how small the initial energy densi
must be to evade the bound Eq.~11!, we expand to first-order
about the fluid-dominated solution to find the rate at wh

FIG. 2. The phase plane forg51, l51. The late-time attractor
is the scalar field dominated solution withx5A1/6, y5A5/6.

FIG. 3. The phase plane forg51, l52. The scalar field domi-
nated solution is a saddle point atx5A2/3, y5A1/3, and the late-
time attractor is the scaling solution withx5y5A3/8.

FIG. 4. The phase plane forg51, l53. The late-time attractor
is the scaling solution withx5y5A1/6.
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Vf grows away from zero—see Appendix. We fin
Vf}a3g, which implies that the scalar field energy dens
remains essentially constant due to the large friction term
the evolution equation Eq.~3! as the baryotropic fluid den
sity redshifts asrg}a23g. Thus the scalar field acts like
cosmological constant untilVf approaches its attracto
value. To have not reached the attractor by some timt f
requires an initial value att i satisfying

Vf~ t i!&
rg~ t f!

rg~ t i!
. ~12!

IV. THE ROLE OF INFLATION

The usual cosmological solution to relic abundance pr
lems is a period of inflation, during which the unwant
relics have their energy density redshifted to a negligi
value relative to the potential energyU of the inflaton field
s.1 If inflation ends at some energy densityrg(t i);M4, then
from Eq. ~12! we require

Vf~ t i!&S 1 MeV

M D 4

~13!

for the scalar field not to have reached the scaling attra
solution by the time of nucleosynthesis. However we w
now show that the expected density of the scalar field
nucleosynthesis is not significantly affected by stand
models of inflation.

During conventional slow-roll inflation the inflaton fiel
s has an effective equation of stateg'2e/3, wheree is the
~non-negative! slow-roll parameter controlling the slope o
the potential@12#. We can treatg as effectively constan
provided the approach to the scaling attractor~determined by
the largest eigenvalue for linear perturbations! is faster than
the movement of that attractor. During slow-roll inflation th
requires

Ue8

e U&2e, ~14!

which is valid for most models, including chaotic inflatio
with U(s)}sn for n*2.

The inflaton-dominated solution whereVf50 is not an
attractor solution unlessg50 and so forl2.2e the attractor
solution is the scaling solution with

Vf'
2e

l2 . ~15!

Unlike ordinary matter the energy density of a scalar fi
with an exponential potentialdoes not vanishrelative to the
inflaton energy density during inflation, even though forl2

.2 the exponential potential would not have an inflationa
equation of state in the absence of the inflaton.

To evade the nucleosynthesis bound onl and satisfy Eq.
~13! requires an extremely small value ofe. In slow-roll

1Note that we are assuming that the fields is unrelated to the field
f which we have been discussing up until now.
in

-

e

or
l
t

d

y

inflation e must be smaller than unity, but is not usually ve
small. For instance in chaotic inflation with a potenti
U(s)5m2s2/2, e.0.01 when perturbations on the curre
horizon scale were generated, and increases to unity a
end of inflation before the inflaton starts oscillating about
minimum of its potential. Thus the energy density of a sca
field with an exponential potential is not significantly r
duced during chaotic inflation, and can rapidly attain its
tractor solution when the radiation-dominated era begins

Models such as hybrid inflation@13# or thermal inflation
@14# are distinctive in thate can remain very small during th
final stages of inflation and thusVf may be very small at the
attractor scaling solution. However in this case the condit
Eq. ~14! for quasi-constantg is violated and the attracto
value forVf approaches zero faster than the actual soluti
We effectively haveg→0, which corresponds to the critica
case where the scaling solution tends to the fluid-domina
solution withx5y50.

For g50 the largest eigenvalue for linear perturbatio
vanishes~see Appendix! and we must consider higher-orde
perturbations about the critical point to determine its sta
ity. We find thatx5y50 is a stable attractor, but that tra
jectories only approach this as the logarithm of the sc
factor,N. The late-time evolution is given by

y25
A6

l
x'

1

l2N
. ~16!

Thus even the extreme case of a cosmological constan~or
constant false-vacuum energy density! only dilutes the en-
ergy density of the scalar field as the logarithm of the sc
factor, Vf}1/N. Thus a model such as thermal inflatio
which is so effective at diluting the abundance of re
moduli particles@14#, has a negligible effect on the reli
density of the scalar fieldf as it only lasts for a small num
ber ofe-foldings ~typically about 15! and the scalar field can
rapidly return to its scaling solution after inflation. Even
the case of hybrid inflation the relic density after inflatio
may be significant unless we have an extremely large n
ber of e-foldings during inflation. To satisfy Eq.~13! re-
quires

N*
1

l2S M

1 MeVD 4

~17!

which could be of order 1060 e-foldings for a typical hybrid
inflation model. Requiring so much expansion would be
significant constraint on the model.

V. CONCLUSIONS

We have presented a phase-plane analysis of the evolu
of a spatially flat FRW universe containing a baryotrop
fluid plus a scalar field with an exponential potentialV(f)
5V0exp(2lkf). We have shown that the energy density
the scalar field dominates at late times forl2,3g. For l2

.3g we find that the baryotropic fluid does not complete
dominate and the energy density of the scalar field remai
fixed fraction of the total density at late times.

This leads to a relic density problem at nucleosynthesi
such models ifl2&20 . Standard models of inflation do no
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significantly dilute the initial density of the exponential p
tential and do not alleviate this bound. Only inflation mod
with effectively constant energy density and an exponenti
large number ofe-foldings ~such as some models of hybr
inflation! would be able to weaken this bound, unless
radiation-dominated era only begins shortly before nucl
synthesis, e.g. Ref.@15#.

We emphasize that we have assumed that there is n
rect coupling between the exponential potential and ot
matter. The only interaction is gravitational.
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APPENDIX: STABILITY OF THE CRITICAL POINTS

In order to study the stability of the critical points (xc ,yc)
we expand about these points

x5xc1u, y5yc1v, ~A1!

which when substituted into Eqs.~6! and ~7! yield, to first-
order in the perturbations, equations of motion,

S u8

v8
D 5MS u

v D . ~A2!
s
y

e
-

di-
r

l
d
i-

The general solution for the evolution of linear perturbatio
can be written as

u5u1exp~m1N!1u2exp~m2N!, ~A3!

v5v1exp~m1N!1v2exp~m2N!, ~A4!

where m6 are the eigenvalues of the matrixM. Thus for
stability we require the real part of both eigenvalues to
negative.

For the critical points listed in Table I we find:

Fluid-dominated solution:

m252
3~22g!

2
, m15

3g

2
. ~A5!

Kinetic-dominated solutions(xc561, yc50):

m25A3

2
~A67l!, m153~22g!. ~A6!

Scalar field dominated solution:

m25
l226

2
, m15l223g. ~A7!

Scaling solution:

m652
3~22g!

4 F16A12
8g~l223g!

l2~22g!
G . ~A8!
ys.
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