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Peculiar velocity field in structure formation theories with cosmic strings

Carsten van de Bruck*
Institut für Astrophysik und Extraterrestrische Forschung Auf dem Hu¨gel 71, 53121 Bonn, Germany

~Received 29 October 1997; published 30 March 1998!

We investigate the peculiar velocity field due to long cosmic strings in several cosmological models and
analyze the influence of a nonscaling behavior of the string network, which is expected in open cosmological
models or models with a cosmological constant. It is shown that the deviation of the probability distribution of
the peculiar velocity field from the normal distribution is only weak in all models. It is further argued that one
cannot necessarily obtain the parameterb5V0

0.6/b from density and velocity fields, whereV0 is the density
parameter andb the linear biasing parameter, if cosmic strings are responsible for structure formation in the
universe. An explanation for this finding is given.@S0556-2821~98!06708-3#

PACS number~s!: 98.80.Cq, 11.27.1d, 98.65.2r
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I. INTRODUCTION

To understand the origin and the formation of structure
the universe is one of the most challenging problems in m
ern cosmology. There are two competitive theories which
to explain the origin of the seeds. The first one is inflation
which the universe undergoes an epoch of fast~inflationary!
expansion, triggered by a scalar field, called the inflat
Quantum fluctuations in the inflaton field are stretched
superhorizon scales which are turned into matter fluctuat
at later times. These matter fluctuations represent the s
of the observed structure today@1#. In the other theory topo-
logical defects are responsible for structure formation.
example, cosmic strings might be produced in a phase t
sition in the very early universe. If they are heavy enou
they influence the cosmological fluid and could seed
structure in the universe~see @2,3# for reviews and refer-
ences!.

There are several ways to test these theories. For exam
they make different predictions for the angular fluctuati
spectrum of the cosmic microwave background anisotr
~CMBR! on small scales. The predicted spectra can then
compared with the data, for example of future projects s
as the Microwave Anisotropy Probe~MAP! and PLANCK.
Related to this is the comparison of the predicted ma
power spectrum with the data. Cosmic strings could furt
be tested with ‘‘astrophysical’’ tests, such as the expec
gravitational radiation background from strings, etc. It is
teresting to note that all these tests gave consistent result
the string parameterm, the mass per length on the strin
@2,3#.

Another possibility for testing structure formation theori
was proposed by@4#. The probability distribution of the pe
culiar velocity field should be different in inflationary mod
els and models with topological defects such as cos
strings. However, as emphasized by@5,6#, the probability
distribution of the peculiar velocity field in cosmic strin
theories is Gaussian to high accuracy. This conclusion
based on the assumption that the string network reach
scaling behavior.

*Email address: cvdb@astro.uni-bonn.de
570556-2821/98/57~8!/4663~6!/$15.00
n
d-
y

.
n
s
ds

r
n-
,
e

le,

y
e
h

r
r
d

-
for

ic

as
a

It was shown by several authors that the scaling solut
is only expected in the Einstein–de Sitter model@7,8#; in
open models, in flat models with a cosmological consta
and in closed~loitering! models the behavior of the networ
is different from scaling. Further, the transition to the mat
scaling behavior is much longer than previously estima
@9#. These possible sources of deviation from the string s
ing solution should have interesting consequences. A
step was done in@10# and@11#. Whereas in@10# it was shown
that only a drastic departure from scaling could solve
problems of structure formation with cosmic strings,@11#
have shown that there is only weak dependence of the d
sity parameterV0 in open and flat models with cosmologic
constant on the normalization ofGm from Cosmic Back-
ground Explorer~COBE! data. It might be, that the cosmi
string scenario is successful also in the absence of the sc
behavior, i.e., that it works well in open models or in mode
with a cosmological constant.

In this paper we investigate the influence of cosm
strings on the peculiar velocity field. Earlier investigations
the peculiar velocity field concentrated on the spectrum
the field, i.e., its dependence on the length scaleL, see, e.g.,
@5,12,13#. We are interested in the effects of a departure fr
the scaling behavior. We use an approximation, first int
duced by@5# to calculate the effects of many strings.

The paper is organized as follows. In Sec. II we discu
the influence of cosmic strings on the peculiar velocity fie
Our calculations of the string network are based on the
culations by@8#. Our results for the peculiar velocities ar
presented in Sec. III. In Sec. IV we argue that if cosm
strings seed the structure in the universe then the pec
velocity field and the density field is correlated but one ca
not obtain information on the parameterb5V0

0.6/b, where
V0 is the density parameter andb is a linear bias parameter
In Sec. V we summarize our results and give some con
sions. Throughout the paper we setc51.

II. THE PECULIAR VELOCITY FIELD DUE TO LONG
COSMIC STRINGS

The space-time of a straight cosmic string is similar to
Minkowski space-time, except for a deficit angleDf, given
by @2,3#
4663 © 1998 The American Physical Society
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Df58pGmgsvs . ~2.1!

As a result, the matter gets a kick towards the plane sw
out by the string~vs is the string velocity andgs is the
Lorentz factor!. The velocity kick due to a wiggly string is
given by

us54pGmgsvsf 53.8~Gm!6~gsvs! f km/s, ~2.2!

with

f 511
1

2vs
2gs

2 S 12
T

m D . ~2.3!

The term f corresponds to the small scale structure on
string, wherem is the effective mass per unit length on th
string andT is the string tension.

A. The Zeldovich approximation

To calculate the peculiar velocity field, we use the Z
dovich approximation, in which the physical coordinates o
particle are written by

r ~x,t !5a~ t !@x1c~x,t !#, ~2.4!

wherea(t) is the scale factor,x is the comoving coordinate
andc is the displacement vector due to inhomogeneities
the cosmic fluid, i.e., cosmic strings in our context@14#. The
equation of motion is given by Newton’s law

r̈52¹ rF. ~2.5!

The gravitational field is connected with the matter distrib
tion ~Poisson equation!, which can be obtained from linear
izing Einstein’s field equation:

¹ r
2F54pG~rb1dr!1Lc2. ~2.6!

In this equationrb is the matter density,dr the matter den-
sity fluctuation, andL the cosmological constant. To firs
order one obtains

d[
r2rb

rb
52¹x•c~x,t !, ~2.7!

wherer is the total matter density. This leads to

¹ r
2c54pGrb~12¹x•c!1Lc2. ~2.8!

Integration of this equation and substitution of

r̈5
ä

a
r12ȧċ1ac̈ ~2.9!

and the second Friedmann equation

ä

a
52

4pG

3
rb1

Lc2

3
~2.10!

leads to the evolution equation for the displacementc @14#:

c̈W 12
ȧ

a
ċW 24pGrbcW 50. ~2.11!

For our purposes we have to calculate the peculiar velo
field, which can be obtained from Eq.~2.4!:
pt

e

-
a

n

-

ty

vpec5aċ. ~2.12!

The effect of the cosmological constant on the evolution o
density perturbation is only due to the effect ofL on the
evolution of the scale factora.

B. The influence of cosmic strings

We use an analytical approximation~the so called mul-
tiple impulse approximation!, first introduced by Vachaspat
@5#, which also was successfully applied to calculate
CMBR anisotropies@15#. We divide the time interval from
teq ~at which structures start to form! to t0 in N steps with
t i 1152t i . Betweent i and t i 11 the strings intercommute
form loops, etc., so that~approximately! at t i 11 the ‘‘new
ordered state’’ of the network is uncorrelated with the ‘‘o
state’’ at t i . Again, at this time the network influences th
matter within the horizon~due to scalar field radiation scale
larger than the horizon are not affected!. This is not true in
vacuum dominated epochs. In this case the velocity of
strings decreases and therefore the probability of string in
action decreases. This means that the new state is corre
with the old one. However, in such epochs the number
strings within the Hubble horizon decreases rapidly a
therefore our results are not changed significantly~see be-
low!.

At t15teq each string within the horizon gives the matt
a kick in the direction of the surface swapped out by t
string:

v1,i5usk i ,1 , ~2.13!

wherek i ,1 is a ~random! unit vector in direction of the string
i . The resulting peculiar velocity from all strings att1 is

v15(
i 51

ng,1

usk i ,1 . ~2.14!

The sum is now taken over the numberng,1 of all strings
within the horizon att1 . This peculiar velocity field grows
betweent1 and t2 by a factorA(t1 ,t2) via Eqs.~2.11! and
~2.12!:

A~ t i ,t f !5
a~ t f !uċ~ t f !u

a~ t i !uċ~ t i !u
. ~2.15!

At the time t2 the peculiar velocity field is given by

v25A~ t1 ,t2!v11us(
j 51

ng,2

k2,j5usF(
i 51

2

(
j 51

ng,i

A~ t2 ,t i !k i , j G .

~2.16!

Here we have used thatA(t i ,t j )A(t j ,t l)5A(t i ,t l) and that
the velocity of the strings is the same in every epoch. For
purposes this is a good approximation, because when
strings slow down the number of strings within the horiz
also decreases.

Iteration leads to the peculiar velocity field at the pres
time on a scaleL:

v0~L !5usF(
i 51

NL

(
j 51

ng,i

A~ t0 ,t i !k i , j G . ~2.17!
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57 4665PECULIAR VELOCITY FIELD IN STRUCTURE . . .
In this equationNL is the number of Hubble time steps du
ing which a volume of comoving sizeL3 experiences string
impulses,ng,i is the number of strings within the horizon
the timet i . We assume that the vectorsk i , j are random, that
is,

^k i , j•k l ,m&5d i l d jm . ~2.18!

From these equations we calculate the rms velocity num
cally on a scaleL(teq). On scales smaller thanL(teq) the
peculiar velocity field depends only weakly onL whereas on
scales larger thanL(teq) the predicted velocity field scales a
L21 @12#.

C. Network parameter

We use the calculation from@8# for the statistical proper-
ties of the string network. We set the number of strin
within the horizonH21 by

ns511~j•H !21, ~2.19!

wherej is the characteristic length scale of the string n
work, defined by

r`5
m

j2 , ~2.20!

FIG. 1. The probability distribution of the peculiar velocity fie
at a scale corresponding toteq in the EdS model with ideal scaling
The solid curve is the normal distribution. The mean value
upec/us is given by 325 and the standard deviation by 150.

TABLE I. The four representative cosmological models.K is
the curvature parameter,V0 is the matter density parameter,l0 is
the cosmological term,H0 is the Hubble parameter~in
km s21 Mpc21!. Neq is the number of Hubble steps betweenteq and
t0 .

Model K V0 l0 H0 Neq

1 11 0.014 1.08 90 13
2 0 1.0 0.0 60 20
3 21 0.1 0.0 60 14
4 0 0.1 0.9 60 15
ri-

s

-

wherer` is the density of the long strings. In the radiatio
dominated epochns is about 10, in the~late! matter domi-
nated epoch~with scaling! this number is about 3. In more
general cosmological models this number is a function
time @8#. Later we will discuss the influence of the ansa
~2.19!.

III. RESULTS

We calculate the peculiar velocity field for four represe
tative models, shown in Table I. For the Einstein–de Sit
~EdS! model we discuss the influence of the long transiti
between the radiation and matter scaling solution@9#. As a
test, we include the case for an ideal scaling in the E
model. The propability distributions of the peculiar veloci
fields at a scaleL(teq) for the models are shown in Figs
1–5. Each plot was obtained after 50 000 realizations. Fo
exact scaling behavior in the EdS model this distribution w
shown to be Gaussian@5,6#. We obtain the same result~see
Fig. 1!. In the case of the long transition between the rad
tion and matter scaling behavior the distribution rema
nearly Gaussian. However, the distribution becomes broa

f

FIG. 2. The probability distribution of the peculiar velocity fiel
at a scale corresponding toteq in the EdS model with nonidea
scaling. The solid curve is the normal distribution. The mean va
of vpec/us is given by 460 and the standard deviation by 200.

FIG. 3. The probability distribution of the peculiar velocity fiel
at a scale corresponding toteq in the closed model. The solid curv
is the normal distribution. The mean value ofvpec/us is given by
123 and the standard deviation by 55.
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4666 57CARSTEN VAN DE BRUCK
and the peculiar velocity increases~Fig. 2!. The Gaussian
character of the probability distribution can be found in t
other models, too. There is only a slight deviation at la
and small velocities.

In the models, we obtain a peculiar velocity at a sc
corresponding toL(teq) given by @the length scales are ca
culated withH05100 km/~s Mpc!#

vpec~Leq'70 Mpc!closed5~4606200!~Gm!6~gsvs! f km/s,
~3.1!

vpec~Leq'1 Mpc!EdS,ni5~17406760!~Gm!6~gsvs! f km/s,
~3.2!

vpec~Leq'1 Mpc!EdS,id5~12406570!~Gm!6~gsvs! f km/s,
~3.3!

vpec~Leq'10 Mpc!l,flat5~2806120!~Gm!6~gsvs! f km/s,
~3.4!

vpec~Leq'10 Mpc!open5~80635!~Gm!6~gsvs! f km/s.
~3.5!

FIG. 4. The probability distribution of the peculiar velocity fie
at a scale corresponding toteq in the flat model with cosmologica
constant. The solid curve is the normal distribution. The mean va
of vpec/us is given by 73 and the standard deviation by 33.

FIG. 5. The probability distribution of the peculiar velocity fie
at a scale corresponding toteq in the open model. The solid curve i
the normal distribution. The mean value ofvpec/us is given by 22
and the standard deviation by 9.8.
e

e

The length scale corresponding to the timeteq is set to be
0.1H(teq)

21 @5#:

Leq'1.1
1

V0
h0

22 Mpc. ~3.6!

Note, that in@5# the length scale was set to be 0.7teq . There-
fore, we assume a somewhat pessimistic view when str
could significantly influence the volume atteq . In our pic-
ture, the volume must be within the typical length scale b
tween all strings. However, the volume is influenced by
strings outside the volume and therefore we somewhat
derestimate the peculiar velocities. However, this can
taken into account with including a parameterz, which
modifies our ansatz~2.19! @see below, Eq.~3.8!#.

Within this length the peculiar velocity remains near
constant, because a smaller length corresponds to timt
,teq in which perturbation grow only weakly. This woul
imply that for the closed model we would expect nearly co
stant bulk flows on scales smaller than 70 Mpc, which
indeed observed. The situation in the other models is no
clear, because for scales larger thanLeq the velocity de-
creases asL increases (v}L21).

It is interesting to note that in all models the standa
deviation is related to the mean value by

s'0.45vmean. ~3.7!

For our calculations we have used the ansatz~2.19! for
the number of strings within the horizon. Although th
should be a good approximation we could setns5z@1
1(j•H)21#. The frequency distribution remains Gaussia
however, now the rms velocity and the standard deviatio
given by

vpec,z5Azvpec,z51 ~3.8!

and

sz5Azsz51. ~3.9!

Here,vpec,z51 andsz51 is given by Eqs.~3.1!–~3.5! for the
cosmological models. The peculiar velocities therefore
pend on the parameter

a5Azm6~vsgs! f . ~3.10!

To conclude, the fluctuation of the number of strings do
not change the shape of the probability distribution of t
peculiar velocities and the amplitude depends on the s
set of parameters~3.10! as in the case for an ideal scalin
behavior of the string network. However, the effective nu
ber of strings and the maximum length on which coher
bulk flows are expected, depends on the cosmological
rametersVm,0 , l0 , andH0 .

IV. MATTER DISTRIBUTION, BULK FLOWS,
AND BIASING

The results presented in the last section imply that
parameterb5Vm,0

0.6 /b could not be obtained from velocity
density reconstruction methods such as POTENT. To
this, we remember that the fundamental equation, on wh

e
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these kinds of reconstruction methods are based, is give
@16,17#

¹•v52bHd. ~4.1!

Here,d is the density fluctuation. On the other side, the co
tinuity equation holds:

¹•v52 ḋ. ~4.2!

In fact, in linear approximation Eq.~4.1! can be obtained
from Eq. ~4.2!. The important point is that if the ratioḋ/d is
independent of space, an arbitrary application of Eq.~4.1!
can lead to an underestimation or overestimation ofb if one
applies Eq.~4.1! arbitrarily to the data. This was shown b
@18# in the context of the explosion scenario. To demonstr
this point we repeat their short analytical example.

Let us consider an empty universe withV050, filled with
massless particles. At some timet i , the matter gets a kick
due to a cosmic string~in the paper by Babulet al., the case
of the explosion scenario was considered, but in the cas
cosmic strings the analysis is identical!. The linear Euler
equation reads

]v

]t
12H~ t !v5vstringd~T2t i !. ~4.3!

The density contrast evolves according to

]2d

]t2 12H~ t !
]d

]t
50. ~4.4!

This equation can be solved with the boundary condition
the time t i , which are d(x,t i)50 and ḋ(x,t i)5z(x,t i)
52¹x•vstring(x,t i). The solution of the equation~4.4! is
given by @a(t i)51#

d~x,t !5z~x,t i !t i@a~ t !21#/a~ t !, ~4.5!

t ḋ~x,t !5z~x,t i !t i /a~ t !. ~4.6!

One can see, that the ratioḋ/d is independent of space.We
can use the continuity equation~4.2! and Eq.~4.1! to get

beff5
1

a~ t !21
. ~4.7!

Although the true value is zero, an observer, applying
~4.1! to the data, will get a value that is different from th
true one. Only at late timesbeff will approach the valueb
50.

We expect similar results for the models in Table I. T
cosmological model changes the time dependence ofd and
ḋ, but in general, if there were only one velocity kick on t
matter, the ratioḋ/d would be independent of space.

We have seen, that in cosmic string models of struct
formation the observed peculiar velocity field is a vector s
of many contributions of strings. We write the general so
tions of ḋ andd, which arise from one kick as

d i , j~x,t i !5z~x,t i ! i , jB~ t,t i !, ~4.8!
by

-

te

of

at

.

e

-

ḋ i , j~x,t i !5z~x,t i ! i , jC~ t,t i !. ~4.9!

The fieldsḋ andd, which arise from all strings in the past ar
given by

ḋ~x,t !5(
i 51

N

(
j 51

ng,i

ḋ i , j~x,l !, ~4.10!

d~x,t !5(
i 51

N

(
j 51

ng,i

d i , j~x,t !. ~4.11!

If we now replacez i , j by d i , j /B, we can write

ḋ5(
i 51

N

(
j 51

ng,i

d i , j~x,t i !
C~ t,t i !

B~ t,t i !
. ~4.12!

If we compare this with Eq.~4.8! we see that there is a
relation between the velocity field and the density field, b
not of the same form as in Eq.~4.1!. For cosmic strings we
could write

¹•vW 52(
i 51

N

(
j 51

ng,i

d i , j~x,t i !
C~ t,t i !

B~ t,t i !
. ~4.13!

If we compare Eq.~4.13! with Eq. ~4.1!, we find that

beff5
1

H0

S i , jd i , jCi , j /Bi , j

S i , jd i , j
, ~4.14!

whereB and C are the solutions of the perturbation equ
tions. This equation can be interpreted as follows: each k
gives an effectivebeff,i,j5Ci , j /Bi , jH0 . Therefore, Eq.~4.14!
is the weighted mean of thebeff,i,j :

beff5
S i , jd i , jbeff,i , j

S i , jd i , j
. ~4.15!

This represents a measure of the departure of an exact
tion between the velocity and density field. Its value w
depend on the length scale and onV0 andl0 .

V. DISCUSSION AND CONCLUSIONS

In this paper we have considered the properties of
peculiar velocity field of galaxies in structure formatio
theories with cosmic strings. We considered the fact that
string network might not have developed a scaling behav
~as is the case in open models or models with a cosmolog
constant! and showed that the probability distribution of th
peculiar velocities is nearly Gaussian. The rms peculiar
locity depends on the~effective! number of strings within the
horizon and on the string parameterGm. The length, within
the peculiar velocity is nearly independent of the scale,
pends on the cosmological parameterV0 , l0 , andH0 .

Open models have more problems with the amplitude
the peculiar velocity field. Only an unplausible high value
f could solve the problems (f '5). The situation might be
better in flat models with a cosmological constant. Howev
on scales larger thanLeq the peculiar velocity drops with
L21, that is on a scale of about 60 Mpc we expect in t
model four peculiar velocities of 50–100 km/s. This is not
agreement with the observed value of 350–450 km/s. T
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4668 57CARSTEN VAN DE BRUCK
situation is very good in the closed model. On scales sma
than Leq the velocity increases only weakly asL decreases
@5,12,13# and remains nearly constant at 460 km/s~for Gm
51026 and f gsvs'1! up to scales of about 200 Mpc. Not
that these conclusions depend on the value ofGm.

The results imply that if cosmic strings seed the struct
in the universe, one cannot necessarily obtain the den
parameter from the data. Comparison of density fields
velocity fields lead to an effective value, which is a meas
of the deviation of an exact relation between the velocity a
s-

r
e,

A.
er

e
ity
d
e
d

density field. Further work should be done on structure f
mation with cosmic strings in order to investigate the effe
on a nonscaling behavior of the cosmic string network.
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