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Peculiar velocity field in structure formation theories with cosmic strings
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We investigate the peculiar velocity field due to long cosmic strings in several cosmological models and
analyze the influence of a nonscaling behavior of the string network, which is expected in open cosmological
models or models with a cosmological constant. It is shown that the deviation of the probability distribution of
the peculiar velocity field from the normal distribution is only weak in all models. It is further argued that one
cannot necessarily obtain the paramq(ienrﬂg"s/b from density and velocity fields, wheK@ is the density
parameter antb the linear biasing parameter, if cosmic strings are responsible for structure formation in the
universe. An explanation for this finding is givei$0556-282(198)06708-3

PACS numbdis): 98.80.Cq, 11.27%d, 98.65--r

I. INTRODUCTION It was shown by several authors that the scaling solution
is only expected in the Einstein—de Sitter mogi@Jg]; in

To understand the origin and the formation of structure inopen models, in flat models with a cosmological constant,
the universe is one of the most challenging problems in modand in closedloitering) models the behavior of the network
ern Cosmo|0gy_ There are two Competitive theories which try'S different from scaling. Further, the transition to the matter
to explain the origin of the seeds. The first one is inflation, inscaling behavior is much longer than previously estimated
which the universe undergoes an epoch of astationary) [9]. These possible sources of deviation from the string scal-
expansion, triggered by a scalar field, called the inflatoning solution should have interesting consequences. A first
Quantum fluctuations in the inflaton field are stretched orftep was done ifl0] and[11]. Whereas ir{10] it was shown
superhorizon scales which are turned into matter fluctuationthat only a drastic departure from scaling could solve the
at later times. These matter fluctuations represent the see@&oblems of structure formation with cosmic string4}]
of the observed structure tod&y]. In the other theory topo- have shown that there is only weak dependence of the den-
logical defects are responsible for structure formation. Fosity parametefl, in open and flat models with cosmological
example, cosmic strings might be produced in a phase trarffonstant on the normalization @ from Cosmic Back-
sition in the very early universe. If they are heavy enoughground ExplorefCOBE) data. It might be, that the cosmic
they influence the cosmological fluid and could seed thestring scenario is successful also in the absence of the scaling
structure in the universésee[2,3] for reviews and refer- behavior, i.e., that it works well in open models or in models
ences. with a cosmological constant.

There are several ways to test these theories. For example, In this paper we investigate the influence of cosmic
they make different predictions for the angular fluctuationstrings on the peculiar velocity field. Earlier investigations of
spectrum of the cosmic microwave background anisotropyhe peculiar velocity field concentrated on the spectrum of
(CMBR) on small scales. The predicted spectra can then bthe field, i.e., its dependence on the length staleee, e.g.,
compared with the data, for example of future projects sucl5,12,13. We are interested in the effects of a departure from
as the Microwave Anisotropy Prod®AP) and PLANCK. the scaling behavior. We use an approximation, first intro-
Related to this is the comparison of the predicted mattefluced by[5] to calculate the effects of many strings.
power spectrum with the data. Cosmic strings could further The paper is organized as follows. In Sec. Il we discuss
be tested with “astrophysical” tests, such as the expectedhe influence of cosmic strings on the peculiar velocity field.
gravitational radiation background from strings, etc. It is in-Our calculations of the string network are based on the cal-
teresting to note that all these tests gave consistent results fewlations by[8]. Our results for the peculiar velocities are
the string parameter, the mass per length on the string presented in Sec. Ill. In Sec. IV we argue that if cosmic
[2,3]. strings seed the structure in the universe then the peculiar

Another possibility for testing structure formation theories velocity field and the density field is correlated but one can-
was proposed bj4]. The probability distribution of the pe- not obtain information on the parametge=Q5%b, where
culiar velocity field should be different in inflationary mod- (), is the density parameter aibdis a linear bias parameter.
els and models with topological defects such as cosmitn Sec. V we summarize our results and give some conclu-
strings. However, as emphasized [,6], the probability sions. Throughout the paper we set 1.
distribution of the peculiar velocity field in cosmic string
theories is Gaussian to high accuracy. This conclusion was Il. THE PECULIAR VELOCITY FIELD DUE TO LONG
based on the_assumptlon that the string network reaches a COSMIC STRINGS
scaling behavior.

The space-time of a straight cosmic string is similar to the
Minkowski space-time, except for a deficit andgl@, given
*Email address: cvdb@astro.uni-bonn.de by [2,3]
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Ap=8mGuyws. 2.0 Vpec= A (2.12

As a result, the matter gets a kick towards the plane swepthe effect of the cosmological constant on the evolution of a
out by the string(vg is the string velocity andyg is the

density perturbation is only due to the effect &fon the

Lorentz factof. The velocity kick due to a wiggly string is  evolution of the scale facta.

given by

Us=47Guyvsf=3.8Gu)e(ysvs)f kmis, (2.2

with
T

1
f=1+—(1——). 2.3

2052\ 7w

B. The influence of cosmic strings

We use an analytical approximatidthe so called mul-
tiple impulse approximation first introduced by Vachaspati
[5], which also was successfully applied to calculate the
CMBR anisotropie§15]. We divide the time interval from
teq (at which structures start to fopnto t, in N steps with

The termf corresponds to the small scale structure on thdi+1=2ti. Betweent; andt;,, the strings intercommute,
string, whereu is the effective mass per unit length on the form 100ps, etc., so thatapproximately at t;; the “new

string andT is the string tension.

A. The Zeldovich approximation

ordered state” of the network is uncorrelated with the “old
state” att;. Again, at this time the network influences the
matter within the horizoridue to scalar field radiation scales
larger than the horizon are not affectedhis is not true in

To calculate the peculiar velocity field, we use the Zel-y3cyum dominated epochs. In this case the velocity of the
dovich approximation, in which the physical coordinates of agyings decreases and therefore the probability of string inter-

particle are written by

r(x,t)y=a(t)[x+ ¢(x,t)], (2.9

action decreases. This means that the new state is correlated
with the old one. However, in such epochs the number of
strings within the Hubble horizon decreases rapidly and

wherea(t) is the scale factor is the comoving coordinate, therefore our results are not changed significalsge be-
and ¢ is the displacement vector due to inhomogeneities ilow).

the cosmic fluid, i.e., cosmic strings in our contgkdl]. The

equation of motion is given by Newton’s law

f=—V,®. (2.5

The gravitational field is connected with the matter distribu-

At t; =t €ach string within the horizon gives the matter
a kick in the direction of the surface swapped out by the
string:

(2.13

V1i=UgK; 1,

tion (Poisson equatignwhich can be obtained from linear- wherek; ; is a(random unit vector in direction of the string

izing Einstein’s field equation:

V2®D=47G(py+ Sp)+Ac?. (2.6)

In this equatiorp, is the matter densitydp the matter den-
sity fluctuation, andA the cosmological constant. To first

order one obtains

650 Po_
Pb

Vx'l//(x,t), (27)

wherep is the total matter density. This leads to
V2y=4mwGpp(1— V- )+ Ac? (2.9

Integration of this equation and substitution of
_a . .
r= a r+2ay+ay (2.9

and the second Friedmann equation

a 4G Ac?

a3 Mg 219

leads to the evolution equation for the displacemgni4]:

= a -
1//—1—25 y—A4mGp,L=0. (2.11

For our purposes we have to calculate the peculiar velocity

field, which can be obtained from E.4):

i. The resulting peculiar velocity from all strings fatis

Ng,1

Vl: 21 uSki,l'

(2.19

The sum is now taken over the numbgy, of all strings
within the horizon at;. This peculiar velocity field grows
betweent, andt, by a factorA(t,,t,) via Egs.(2.11) and
(2.12:

a(to) | t)|
at)|g(ty)|

At the timet, the peculiar velocity field is given by

2

A(tl ,tf): (215)

ngyz n

Vo=A(ty,to)vi+ Uszl kpj=Us
=

9,

A(tz,ti)ki’j:| .
(2.19

Here we have used that(t; ,t;) A(t; ,t;)) = A(t; ,t)) and that
the velocity of the strings is the same in every epoch. For our
purposes this is a good approximation, because when the
strings slow down the number of strings within the horizon
also decreases.

Iteration leads to the peculiar velocity field at the present
time on a scalé.:

i
i=1

(2.17

Vo(L)=ug

A(tO!ti)ki,j:|'



57 PECULIAR VELOCITY FIELD IN STRUCTURE . .. 4665

TABLE I. The four representative cosmological moddfs.is
the curvature parametet), is the matter density parametevr; is
the cosmological term,H, is the Hubble parameter(in
km s Mpc™1). Ngg is the number of Hubble steps betwegpand

Model K Qp N\o Ho Negq g
H
1 +1 0.014 1.08 90 13 .
2 0 1.0 0.0 60 20
3 -1 0.1 0.0 60 14
4 0 0.1 0.9 60 15
In this equatiorN, is the number of Hubble time steps dur- ’ o o s o o e

ing which a volume of comoving size® experiences string 1 5 o probability distribution of the peculiar velocity field
Impu_lses,ng]i is the number of strings within the horizon at at a scale corresponding tg, in the EdS model with nonideal
the timet; . We assume that the vectdes; are random, that  g.iing. The solid curve is the normal distribution. The mean value
IS, of vpec/Us i given by 460 and the standard deviation by 200.

(Ki - Kim) =8 6jm - (2.18  wherep,, is the density of the long strings. In the radiation
dominated epocim is about 10, in thglate) matter domi-

From these equations we calculate the rms velocity numeripated epochiwith scaling this number is about 3. In more
cally on a scald_(tey). On scales smaller than(te) the general cosmologlcgl m_odels this number is a function of
peculiar velocity field depends only weakly rwhereas on  time [8]. Later we will discuss the influence of the ansatz
scales larger thah(teg) the predicted velocity field scales as (2.19.
L~t[12].

Ill. RESULTS

C. Network parameter We calculate the peculiar velocity field for four represen-
We use the calculation frorﬁs] for the statistical proper- tative mOdeIS, ShO-Wn in Tabl-e |. For the Einstein—de S|tter
ties of the string network. We set the number of strings(EdS model we discuss the influence of the long transition
within the horizonH 1 by between the radiation and matter scaling solufi®h As a
test, we include the case for an ideal scaling in the EdS
ng=1+(&-H)™ L, (2.19 model. The propability distributions of the peculiar velocity
fields at a scale (teq) for the models are shown in Figs.
where ¢ is the characteristic length scale of the string net-1—5. Each plot was obtained after 50 000 realizations. For an
exact scaling behavior in the EdS model this distribution was
shown to be Gaussid®,6]. We obtain the same resukee
Fig. 1. In the case of the long transition between the radia-
(2.2 tion and matter scaling behavior the distribution remains
nearly Gaussian. However, the distribution becomes broader

work, defined by

450 T T T T T

400

350

300

250

Frequency

200

Frequency

150
100

50

0 it : s . X o

0 100 200 300 400 500 600 700 ) 80 900 [} 50 100 150 200 250 300
vius vius

FIG. 1. The probability distribution of the peculiar velocity field FIG. 3. The probability distribution of the peculiar velocity field
at a scale corresponding tg, in the EdS model with ideal scaling. at a scale corresponding tg, in the closed model. The solid curve
The solid curve is the normal distribution. The mean value ofis the normal distribution. The mean value wf../us is given by
Upec/Us is given by 325 and the standard deviation by 150. 123 and the standard deviation by 55.
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o0 ' ; ' The Iength1 scale corresponding to the timg is set to be
ol @g@; | 0.1H(teq)  [5I:
%;;& 0%‘@0\% 1 -2
500 | g?z’ o‘:\g g Leq% 119—0 hO MpC. (36)
¢ 5
g I 1 &‘%@ | Note, that in[5] the length scale was set to be Q4. There-
£ Wl ’,s%;& ‘ﬁ% i fore, we assume a somewhat pessimistic view when strings
Fe «;? could significantly influence the volume &f,. In our pic-
200 | # e, . ture, the volume must be within the typical length scale be-
e N tween all strings. However, the volume is influenced by the
100 @& “\f?‘f‘%%«i% . strings outside the volume and therefore we somewhat un-
i ‘\3?@%% derestimate the peculiar velocities. However, this can be
i s w00 w 200 taken into account with including a paramet&r which

vius

modifies our ansat®2.19 [see below, Eq(3.9)].

FIG. 4. The probability distribution of the peculiar velocity field ~ Within this length the peculiar velocity remains nearly
at a scale corresponding tg, in the flat model with cosmological constant, because a smaller length corresponds to times
constant. The solid curve is the normal distribution. The mean value<t,, in which perturbation grow only weakly. This would
of vec/Us is given by 73 and the standard deviation by 33. imply that for the closed model we would expect nearly con-

stant bulk flows on scales smaller than 70 Mpc, which is
and the peculiar velocity increaséBig. 2). The Gaussian indeed observed. The situation in the other models is not so
character of the probability distribution can be found in theclear, because for scales larger thiag, the velocity de-
other models, too. There is only a slight deviation at largecreases ak increasesg><L 1).
and small velocities. It is interesting to note that in all models the standard

In the models, we obtain a peculiar velocity at a scaledeviation is related to the mean value by
corresponding td.(t.,) given by[the length scales are cal-
culated withHy= 100 km{s Mp0)] 0~0.4 nean (3.7

0o ALa~70 MpC = (460+200)(G vof kmis, For our calculations we have used the angati9 for
ped g POsiosed= HGalel oo (3.) the number of strings within the horizon. Although this

should be a good approximation we could set={[1

Vped Leg=1 MpO)ggsn=(1740+760)(Gu)g( ysvo)f kmis, +(&-H)71]. The frequency distribution remains Gaussian,
(3.2  however, now the rms velocity and the standard deviation is

given by
Vped Leq=1 MPO)eqs i (1240=570)(Gu)g( ysvs)f kmis,
pec -eq EdS,id— 6l VsUs (3.3) U pecs= \/vaecgzl (3.8)
d
Dped Leq=10 MPpO) = (280 120/(Gu)o( ysvs)f kmis, A"
Uped Leq™=10 MpQ)oper= (80+35)(Gu)e(ysvs)f km/s. Here,vpec;—1 ando,_; is given by Eqgs(3.1)—(3.5) for the

3.9 cosmological models. The peculiar velocities therefore de-
pend on the parameter

a=\{pe(vsysf. (3.10

To conclude, the fluctuation of the number of strings does
not change the shape of the probability distribution of the
peculiar velocities and the amplitude depends on the same
set of parameter£3.10 as in the case for an ideal scaling
behavior of the string network. However, the effective num-
ber of strings and the maximum length on which coherent
bulk flows are expected, depends on the cosmological pa-
rameters(), o, Ao, andHy.

2500
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0 10 20 30 2 50 60 AND BIASING

vius

FIG. 5. The probability distribution of the peculiar velocity field ~ The results E)gesented in the last section imply that the
at a scale corresponding tg, in the open model. The solid curve is Parameter3={ /b could not be obtained from velocity-
the normal distribution. The mean value wf../us is given by 22 density reconstruction methods such as POTENT. To see
and the standard deviation by 9.8. this, we remember that the fundamental equation, on which
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these kinds of reconstruction methods are based, is given by 5, (X)) =206t L), (4.9
[16’1ﬂ - , 1 H , 1
The fieldsé and 6, which arise from all strings in the past are
V.v=—8HJ. (4.1 given by
Here, d is the density fluctuation. On the other side, the con- ) N ng;
tinuity equation holds: S(xt)=2 > & ;(x), (4.10
i=1i=1

V.v=—3. 4.2 N g,

In fact, in linear approximation Eq4.1) can be obtained 5(X’t):§1 = 5i,j (1) (41D

from Eq.(4.2). The important point is that if the ratié/ 5 is

independent of space, an arbitrary application of &ql)  If we now replace; ; by &; ;/B, we can write
can lead to an underestimation or overestimatiog dfone
applies Eq.(4.1) arbitrarily to the data. This was shown by 5= X 5 (Xt C(tt)
[18] in the context of the explosion scenario. To demonstrate S s Y B(L)
this point we repeat their short analytical example.

Let us consider an empty universe with=0, filled with  If we compare this with Eq(4.8) we see that there is a
massless partides_ At some t|me the matter gets a kick relation between the Velocity field and the density field, but
due to a cosmic stringn the paper by Babust al, the case not of the same form as in E¢4.1). For cosmic strings we
of the explosion scenario was considered, but in the case éould write

cosmic strings the analysis is identicalhe linear Euler

(4.12

equation reads . Ny C(t,t)
V'U:_E 2 6i j(X,ti) . (413
1= B(t,t;)
ov
E"'ZH(t)V:Vstringé(T_ti)- (4.3 If we compare Eq(4.13 with Eq. (4.1), we find that
The density contrast evolves according to Beﬁ:i 2ii8Gii 1Bij , (4.14
2
(;_t25+2|_|(t) 2_?:0_ (4.4 where B and C are the solutions of the perturbation equa-

tions. This equation can be interpreted as follows: each kick

ives an effectiv i=C; 1B, ;Hy. Therefore, Eq(4.1
This equation can be solved with the boundary conditions ali the weighted r?]%g'r'ij of {r{e ﬁ'j‘_ 0 a(4.14
" e,l,] *

the time t;, which are 6(x,t;))=0 and &(x,t;) ={(X,t;)

=~V Verind X:ti). The solution of the equatiof4.4) is 2§65 Bt 11
given by[a(t;) =1] Pe= % 16, (419
S(x,t)=¢(xt)t[a(t)—1]/a(t), (4.5  This represents a measure of the departure of an exact rela-
tion between the velocity and density field. Its value will
t;;(xyt): Z(x, 1)t /at). (4.6) depend on the length scale and Qg and X\ .
One can see, that the ratds is independent of spackVe V. DISCUSSION AND CONCLUSIONS

can use the continuity equatidd.2) and Eq.(4.1) to get In this paper we have considered the properties of the

peculiar velocity field of galaxies in structure formation
(4.7  theories with cosmic strings. We considered the fact that the

string network might not have developed a scaling behavior
_ ) (as is the case in open models or models with a cosmological
Although the true value is zero, an observer, applying Eqconstant and showed that the probability distribution of the
(4.1 to the data, will get a value that is different from the peculiar velocities is nearly Gaussian. The rms peculiar ve-
true one. Only at late timege will approach the valuegs  |ocity depends on théeffective number of strings within the
=0. o . horizon and on the string parametgj.. The length, within

We expect similar results for the models in Table I. Thethe peculiar velocity is nearly independent of the scale, de-

cosmological model changes the time dependencé arfid pends on the cosmological paramegg, o, andH,.

o, but in general, if there were only one velocity kick on the  Open models have more problems with the amplitude of
matter, the ratias/ § would be independent of space. the peculiar velocity field. Only an unplausible high value of
We have seen, that in cosmic string models of structuré could solve the problemsf &5). The situation might be
formation the observed peculiar velocity field is a vector sunbetter in flat models with a cosmological constant. However,

of many contributions of strings. We write the general solu-on scales larger thah. the peculiar velocity drops with
tions of 8 and &, which arise from one kick as L~1, that is on a scale of about 60 Mpc we expect in the
model four peculiar velocities of 50—100 km/s. This is not in
8 j(x,t) = (X)) jB(t,t), (4.8 agreement with the observed value of 350—-450 km/s. The

1
ﬁeff_ a(t) -1
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situation is very good in the closed model. On scales smalledensity field. Further work should be done on structure for-
thanLq the velocity increases only weakly asdecreases mation with cosmic strings in order to investigate the effects
[5,12,13 and remains nearly constant at 460 krfft®e G on a nonscaling behavior of the cosmic string network.
=10 andfyws~1) up to scales of about 200 Mpc. Note
that these conclusions depend on the valu& pf

The results imply that if cosmic strings seed the structure ACKNOWLEDGMENTS
in the universe, one cannot necessarily obtain the density
parameter from the data. Comparison of density fields and | thank Matthias Soika and Harald Giersche for discus-
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