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Pseudoscalar pole terms in the hadronic light-by-light scattering contribution to muong—2
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The pseudoscalar pole contribution is the dominant source of(e’) hadronic light-by-light scattering
effect in muong—2. We have examined this contribution, taking account of the off-shell structure of the
pseudoscalar-photon-photon anomaly vertex deduced from available experimental data. Our work leads to an
improved estimate-79.2 (15.4% 101! for the total hadronic light-by-light scattering contribution to the
muong— 2. [S0556-282(198)06601-9

PACS numbgs): 13.40.Em, 12.39.Fe, 12.40.Vv, 14.60.Ef

I. INTRODUCTION (i) Higher order hadronic vacuum polarization effect
[15]:
A new measurement of the anomalous magnetic moment
of the muon(muon anomalya,, = %(gM—Z) is underway at a,(higher had.v.p.=—101 (6)X 1071 (1.5

Brookhaven National Laboratoryl]. The anticipated level

of precision, 410" *, is more than 20 times higher than (i) Hadronic light-by-light scattering contributidr.6]:
that of the best previous resqi]:

Ne —11
a,(exph=1 165 923(8.5x10 °, (1.1 au( had. h=-52 (18x10 *, 1.8

. ._and a similar result obtained independently in R&f].
where the numerals in parentheses represent the uncertalntles(v) Electroweak contribution of ong48] and two-[19]
in the last digits of the measured value. The primary purpos1‘eOOIO orders:
of the new muorg—2 experiment is to verify the presence
of the electroweak contribution. Other effects of potential

— —11
interest are those of supersymmetric parti¢léd] and lep- a,(weak =151 (4)x10"™ 1.7
toquarks[5,6]. ) ) )
comes mostly from the hadronic contribution. It must be im-
a,(th)=116 591 714(96)x 10 1 (1.2 proved by at least a factor of 2 before we can extract useful

physical information from the new high precision measure-
ment and impose strong constraints on various candidates for
possible extension of the standard model.
The hadronic contribution appears for the first time in the
ordera? as the effect of hadronic vacuum polarizati¢Bee
Fig. 1 of Ref.[9] for the Feynman graphs responsible for
such a contribution.Fortunately, a contribution of this type
(ii) Hadronic vacuum polarization contribution obtained does not require explicib initio calculation based on QCD,
mainly from the measured hadron production cross section igince it is precisely calculable from the measured hadron

e’e” collisions[9-12. We quote here the latest evaluation production cross section ie*e~ collisions [9—11]. Future
that includes additional information obtained from the analy-measurements at VEPP-2M, VEPP-4M, ©ANE, and

This consists of five parts.
(i) Pure QED contributioh

a,(QED)=116 584 705.7(1.9x10 ™. (1.3

sis of hadronic tau decay dajta3,14: BEPS, as well as an analysis of the hadronic tau decay data,
are expected to reduce the uncertainty of this contribution to
a,(had.v.p)=7 011 (94)x10 . (1.4  the level that satisfies our negti2,20).

The contribution of the hadronic light-by-light scattering
subdiagram is much smaller but is potentially a source of a
*Electronic address: hayakawa@theory.kek.jp more serious problem because it has been difficult to express
TElectronic address: tk@hepth.cornell.edu it in terms of experimentally accessible observables. At
!Equation(1.3) is obtained from the measured value of the elec-present it depends entirely on theoretical considerations. This
tron anomalya, [7] minusa small correction ta, due to muon, contribution has been estimated recently by two groups
hadron, and weak interactiofig], plus the terms ofa, dependent within the framework of chiral perturbation theory and the
on the electron and tau masses evaluated using the fine structutédN, expansion16,17. The leading terms arise from three
constant obtained from the electron anom{&y, types of diagrams shown in Fig. & pion-loop contribu-
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% Egs. (1.10 has a nonderivative®p®7* 7~ coupling while
@~ the corresponding term is absent in E¢k8), which is ob-

\ tained from a vector meson dominan@&MD) model with
p hidden local symmetrjy21]. The absence of this term in the
S ®- latter is a direct consequence of the fact that it satisfies the
? Ward-Takahashi identity16] and a soft pion theorem for
(@) V07 scattering amplitud§22].
In Ref.[17] an effective chiral Lagrangian was proposed
which reproduces the earlier VMD result of RE3] in terms
B X of an interaction term consisting of an infinite series of de-
A 8‘0 rivatives of the pseudoscalar meson. These higher derivative
terms are accompanied by a mass sddlg, which, after
® their resummation, becomes just a pole mass corresponding
to a vectorial degree of freedom. Their result will be justified
if that M ¢ can be identified with the vector meson maks.
(b) (c) c _ nass
However, the analysis of the low energy behavior of the
FIG. 1. Leading diagrams in the chiral perturbation anN,1/ P Scattering prevents us from interpreting the above de-
expansion which contribute to the hadronic light-by-light scatteringdree of freedom as being associated with the physical vector
effect on the muon anomalya) pion-loop diagram(b) pseudo- meson[22]. The scaleM¢ will have to be associated with
scalar pole diagram, an(d:) quark-loop diagram_ Solid and wavy another physical degree of freedom, which is heavier than
lines represent muons and photons, respectively. The dotted line iM , . For such aiM ¢ the magnitude of the charged pion-loop
(a) corresponds to the charged pseudoscalar meson while the dottedntribution based on their model will become smaller than
line connecting the two blobs ifb) corresponds to the neutral one. that given in[17]. In this model the relation between the
The closed solid line ir(c) represents the quark loop. These dia- scaleM and the resulting value of the charged pion-loop
grams are typical ones in the respective classes. contributiona, (a)|gpp in (1.10 is not transparent. For this
) o reason we will henceforth choosg,(a)|,ks of Egs.(1.8) as
tion, (b) pseudoscalar pole contribution, atwl quark-loop  the contribution of Fig. (a).

grams are the fact that only the contributions of the? pole andz pole
_ 11 are taken into account in Eqé€L.8) whereas Eqs(1.10 in-
2,(8)[uks= 4.5 (8.)x10°, cludes also the contribution of , which turned out to be not
a (b =575 (11.4x10° 1% negligible[17]. When then’ contribution is added to Egs.
l s (1149 (1.9 (see Sec. Iy, the remaining difference fa,(b) is no
a,(C)|uks=9.7 (11.)x 1012 (1.8 longer large and reflects mainly the ambiguity and difficulty

in carrying out the chiral perturbation theory estimate be-
They add up to Eq(1.6). A small axial-vector contribution yond the momentum range of several hundred MeV.
. - Similarly, the difference betweea, (c) of Egs.(1.8) and
a,( axial-vectoy|,ys=—1.74< 10" (1.9  (1.10 originates from the difficulty in estimating the contri-
bution from large momentum region.
As is seen from Eq91.8) and(1.10, the most important
contribution comes from the diagrams of ty@® in which

was also obtained but not included in Ed.6). [See Eq.
(4.32 of Ref.[16].] The corresponding results obtained in

[17] were neutral pseudoscalar mesoRs(P=#°, » and »') propa-
a,(a)|gpp=—19 (13)x 10 gate between twd yy vertices, as shown in Fig. 2. As is
m BPP— ) . .
well known, the chiral anomaly fofrg, for instance, can be
a,(b)|gpp=—85 (13)x 101, expressed by the effective interaction
— —11 o
aM(C)|Bpp 21 (3))(10 . (ll@ £:_ WOEMV)\UFMVF)\O., (113)

8rf
The effects of axial-vector and scalar poles were also con- "
sidered in Ref[17]: wheref ,=93 MeV is the pion decay constant, in the lowest
order of chiral expansion. When applied to the calculation of
a,(b), however, this Lagrangian leads to an ultraviolet-
divergent result. This divergence arises from the triangular
photon-photon-muon loop which is obtained by reducing the

a,( axial-vectof|gpp=—2.5 (1.0)x 10,

a,(scalay|gpp= —6.8 (2.0)x 10" (1.1

- - m%yy vertex, represented by a large shaded blob on the left-
Summing up Egs(1.10 and (1.1, they obtained hand side of Fig. @), to a point.[Figure Zb) is convergent
a,( had. I-)|gpp= — 92 (32)x 10~ M, (1.12  in the same limif It is a signal that the local interaction

(1.13 is not applicable to photons and pions far off mass

The reasons for the difference between E@s8 and  shell. In fact, such a triangular diagram will have a damping

(1.10 are as follows: For the pion-loop contributiar(a) it behavior in the underlying QCD theory, which protects its
is due to the fact that the effective Lagrangian responsible foeontribution to the muomg—2 from diverging.
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theoretical aspects of the asymptotic behavior of the form
factor of our interest in Sec. Il. The last secti@ec. VJ will

be devoted to a summary and discussion of our results.

Il. THEORETICAL OFF-SHELL =%y* y* FORM FACTOR

Let us write the invarianP y* y* amplitude as

MLy*(P1,M 1) Y* (P2,A2)—P(q)]
=€l (P €),(P2) &prap piP5 Mp(pi, 3, 4?=m3),
2.1

and define the form factdfp(p?, p3, q°) by

o f
) Fe(p?.p3,09)=—"Mp(pi, p3, 0. (2.2

FIG. 2. Pseudoscalar pole diagrams. The dotted line between the the chiral limit (q>=m2=0), this is normalized as
two blobs represents the propagation of neutral pseudoscalar me-

son. Fr(0,0,0=1. (2.3

In Ref.[16], four models were considered to examine the  Let us first examine the off-shell behavior of th8y* y*
effect of various assumptions on the off-shell behavior of theform factor in the quark triangular looi®TL) model. In this
0y form factor: (p,) the vector meson dominan¢éMD)  model, we find(ignoring isospin violation
model? (b,) the quark triangular loogQTL) model, (b3)
the QTL model combined with the VMD model, ant,j FO'(p2,p3,9%) =12(p?,p3,9?)
the extended Nambu-Jona-LasirieNJL) model [23]. The !
contributionaM(b;wo) of Fig. 2 evaluated by these models,
and given by Eqgs(4.1), (4.3), and(4.4), and Table V(with = f [dz] o—— o2
ga=0.5,Mc=1 GeV) of Ref.[16], are reproduced here: u f273k

2
u

2 21
—Z3Z1P5— Z125q

(2.9

2m

a,(b;;7%)=—-55.60<10",
where [dz]=dzdzdz;6(1—-2,—2,—23), and m,~300

a,(by; m°) = —86.90x 10" 1%, MeV is the constituent mass of an (gnd down quark[27].
For p2=p5=0q?=0 this function reduces to E42.3. Car-
aﬂ(b3;7-r°)= —33.76x10° 11 rying out the integration one can readily find that
2
a,(by; %)= —42.84x 1071 (1.14 FOT 02 02 )= m? . VamZ—p2+ |- p?
W pi-pg] [ VamZ—pi- V-3

Similar calculations were carried out in R¢16] for the 7

resonance, too. The final valueaf(b) reported in Ref[16] JamZ—pa+ - p2 2

and quoted in Eq91.8) is based mainly on the modeb/). —<1In — 5 (2.5
After completion of these calculations an experimental \/4mu_p2_ V- P2

measurement of thByy* form factor, whereP stands for s 5 _ .

7% 7, or »', came to our attentiof24—26. This is very ~For largep; with p;=0 andq“=0 this has the asymptotic

important in the sense that it opens up the possibility ofoehavior of the form

evaluatinga,,(b) utilizing the experimental information in-

stead of relying solely on theoretical considerations. This oTL, 2 m; —pi ?
may enable us to reduce significantly the uncertainty in the F o (p1,0,0~— pi In| — (2.6
evaluation ofa,,(b). !
The purpose of this paper is to amplify the preliminar 2.2 2_ :
discussiF())n Fi)n Ref16] abgufthe implicati%r:yof thepmeasure-y For largeps~p; andg™=0 we find
ments and discuss in full the effect of the measuredy* om? [ —p?
form factor (Sec. Ill) and possible impacts of the yet-to-be- FQOTL(pf,pf,Ob m; In(ﬂ). (2.7
measuredP y* y* form factor on the evaluation od,,(b) i — Pz m?

(Sec. V). Before going into these sections, we review the
Note that both Eqgs(2.6) and (2.7) have the same power
behavior at large momentum transfer, differing only in the
°The VMD model can be justified within the hidden local sym- logarithmic factor.
metry picture of the chiral mod¢R1]. Let us define the functiotF o by
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| = L 27, [29] (2.11
/////// - NC _ pi . .
04 | T .
% //// b, The asymptotic behavior d¥ .o(p?,p3,0) for largep3=p3
S, o :__': Ez . has also been studied nonperturbativiels]:
Na /// 3
Loar - 1 2722
> 4 R U im Foo(p2,p2, 0)=— ——7.  (2.12
| G 2 NC _pl
pi—®
Referencd29] states in addition that E¢2.11) holds for all

0.0 20 40 60 8.0 values ofp3 including p2~ p?.
@ [GeV] Different asymptotic behaviors of Eg&.9), (2.10, and
(2.1) presumably reflect different physical assumptions.
Equation(2.9) is obtained by appealing to the parton picture
in the infinite momentum frame. The leading momentum
power dependence there comes from the scaling behavior of
the pion wave function. However, the coefficient depends on
the long distance aspect of the pion, which is vulnerable to
theoretical prejudices. According to the literat(ig$,30,31
) 1 ) 1 ) the ansatz adopted by Brodsky and Lepage for the pion wave
Fao(Q*)=7—[Mo(~Q ,0,0)|=4 > [Fno(=Q%0,0[.  function is not badly in conflict with the experiment.
Tl 2.9 Equation(2.10 was obtained using the operator product
' expansionOPE) technique, within the approximation of the
dominance of operators of lowest dimension and th2st.
Figure 3 shows the momentum dependence&éf,o(Q?) The reliability of the OPE and truncation of operators depend
for the casesl(;), (b,), and (b3) together with the experi- on the detailed prescription of how the large momentum
mental data reported by the CLEO Collaboratj@8]. This limit is taken. In its application to the current issue the form
shows that the VMD modelly) fits the experimental data factor is expanded inQ?*=—(p;+p,)%4 and w=(p}
particularly well. The modellf,) gives slower damping for —p3)/Q?. The leading power and its coefficient can be de-
higher momenta. This is because of the ekirg—p?)]* fac-  termined including long distance effects only when the ab-
tor found in Eq.(2.6) which compensates for the leading solute magnitude ofv is small. This is the case for large
damping 1p2 to some extent. The modebg), on the other  pi~ p3 but not for largep? with p3 fixed to 0. In the latter
hand, predicts a rapid decrease due to the stronger dampiggse the estimate based on the OPE is not trustworthy since
factor [ In(—p3)1%/p5. o will not be restricted to small values and the long distance
A nonperturbative analysis of asymptotic behavior of thecontributions associated with a higher powerwofnight be-
exact form factorF ,o(p?,p3,q°) has also been carried out come as significant as the leading tefra7]. _
by several method®27-29. Various corrections to the result  The derivation of Eq.(2.11) relies on the Bjorken-
of [28] have also been considered: Referefg@ discusses Johnson-Low theorerfB5]. This theorem is usually used to
the effect of the parton transverse momentum. Referenc@efinethe commutator of operators by postulating an appro-
[31] considers the gluonic radiative correctiong30]. Ref-  Priate asymptotic behavior for some correlation function.
erence[32] derived an asymptotic formula applying the The asymptotic behavior in E¢2.11), on the other hand, is
QCD sum rulg[33]. These corrections have been comparedderived from the Bjorken-Johnson-LowBJL) limit of the
with the data if{26]. Here, we concentrate on the methods ofMmatrix element of the commutator of the electromagnetic

Refs. [27-29 since they are more directly related to the currentg29]. The use of an equal-time commutation relation
consideration of this paper. of the quark fields turns this commutator into the axial cur-

For p2=q2=0 all three method§27—29 predict the rent. This enabled them to express the relevant matrix ele-
ment in terms of the pion decay constdnt However, this
approach may not be reliable because the canonical equal-
time commutation relation does not necessarily lead to the
correct anomaly relatiof36]. Whether this caution is also

FIG. 3. Comparison of various theoretical form factors of
I'(#°— yy*) with the experimental data. The solid line corre-
sponds to the VMD modelk;) while the dashed lineh)) and
dot-dashed linesk(;) correspond to the QTL model and the QTL
model supplemented by the VMD model, respectively.

same leading power of momentum for Iargie But the co-
efficients found are different:

3 222 relevant for the evaluation of the commutator of the electro-
lim F,o(p?,0,00=— - [28], (2.9  magnetic currents or not will not be pursued here. Irrespec-
—p2 e Ne —P1 tive of the validity of derivation of Eq(2.11) in [29], we

note that the asymptotic behavior @fyy* in the timelike
region will differ significantly from that measured in the
2 2m2f2 spacelike region. At present we cannot find reason to support
=— T [27] (2.10  the possibility that such a nontrivial continuation occurs be-
N 2 ' ;
c — P tween the two regions.
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0.20 T T T T T T T T TABLE I. #° contribution to muorg—2 in the VMD, model.
016 . I'(7°=yy) [eV] K y(7°) a,(m°)/(alm)®
N 7.22 —-0.01 —0.041 87(2)
% " ] 7.22 0.12 —0.043 56(2)
N% 0.08 T 7.22 0.27 —0.045 28(2)
004 _ 7.78 —0.07 —0.044 03(2)
7.78 0.04 —0.045 80(2)
%00 . s 7.78 0.16 —0.047 54(2)

Q [(GeV)]

8.34 -0.12 —0.046 17(2)

FIG. 4. Comparison of the various theoretical asymptotic behav-
ior of form factors of I'(w°— yy*) with the experimental data. 8.34 —0.03 —0.047 95(2)
Three straight lines, from the above, are the Brodsky-Le[Bge, 8.3

.34 0.08 —0.049 76(2
OPE, and the Gerard-Lahn&L) predictions, respectively. The @
curve representing the Brodsky-Lepage interpolation formula

(2.13 is also shown for comparison.
) 647 I'(P—1yy) 1
. P Fp(Q )= 23 2 A2\ (3.2
In order to compare the theoretical predictions of the (4dma)mp 1+ (QAR)

w%yy* form factor with experiment, it is necessary to inter-

polate them from the asymptotic regiond=0, where they  for p= n and 7', with the choice ofA,=0.77 GeV and
are fixed by the anomaly condition. Referei28] proposed A ~0.85 GeV. Here, to take account of the nonzero mass

a one-parameter interpolation formula of the meson properly, we have modified E2.8) as
Foo(Q?)= ! (2.13 1 2
m 4m2f, 1+ Q¥ (872f2)’ ' Fe(Q?%)=7—|Mp(—- Q% 0,mg)|. 3.3

whereQ?= —p32. The formula(2.13 has the sam&? de-
pendence as Ed3.1) if we choose 8-2f2=M?2. Thus this
interpolation reproduces tf@? dependence very well. How-
ever, this also fixes the value @f.0(0) which differs from
the observed value by a factor ef 1.2. In this sense Eg. B. Effect of the Pyy* form factor on muon g—2
(2'13? does not fully reproduce the _experlmental data._ Inter- Let us now evaluate the pseudoscalar pole contribution to
polafuons' of Eqs(2.10 and(2.11) will be even more diffi- the muong— 2, assuming that all virtual photons are modi-
cult in this respect. fied by thePy* y* form factor in accordance with the VMD
model. We consider two models. The first model (Vi\)D

ll. Pyy* FORM FACTOR assumes that the vector meson dominance is realized in

terms of thep and ¢ mesons of the form

The lifetimes chosen ar&'(7— yy)=0.46 (4) keV, and
(5 —yy)=4.26 (19) keV[37].

A. Experimental results

Depicted in Fig. 4 are the functio®*F,0(Q?), corre- TABLE Il. 7 contribution to muorg—2 in the VMD, model.
sponding to the asymptotic form facto¢2.9), (2.10, and
(2.11, and the interpolation functiof2.13, together with  (5—yy) [keV] e) a,(n)(alm)?
the observedn®yy* form factor provided by the recent
CLEO data[26]. It is seen that none of the asymptotic be- 0.42 0.04 —0.009 646(4)
haviors shown there is fully consistent with the new data 0.42 0.19 ~0.010 235()
provided by CLEO forf =93 MeV.
On the other hand, it was notg®5] that the experimental 0.42 0.38 —0.010 843(4)
data can be represented very well by the empirical formula 0.46 .04 0,009 910(4)
2y _ (B4 I(m —yy) 1 0.46 0.07 ~0.010 726(4)
T Q=N Gramm®, 14(QuAZ)" =Y
0 0 0.46 0.22 —0.011 349(4)
if one choosed\ ,0=0.77 GeV and’(7°— yy) = 7.78(56) 0.50 —-0.10 —0.010 594(4)
eV. The uncertainty il is about+ 7% [37]. Note that this 0.50 o001 0011 211(4)

A 0 is nearly identical to the physical mass.
Similarly, the experimental data for the and »’ form 0.50 0.13 —0.011 921(5)
factors can be represented well by
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TABLE lll. 7" contribution to muorg—2 in the VMD, model. TABLE V. 7 contribution to muorg—2 in the VMDg model.

(9" —vyy) [keV] ky(7') au(n')/(alm)? L(n—vy) [keV] A, [GeV] a,(n)/(alm)®
4.07 0.25 —0.008 584(4) 0.42 0.78 —0.009 645(4)
4.07 0.48 —0.009 190(4) 0.42 0.81 —0.010 291(4)
4.07 0.82 —0.009 818(5) 0.42 0.84 —0.010 940(4)
4.26 0.19 —0.008 766(4) 0.46 0.76 —0.010 066(4)
4.26 0.39 —0.009 380(4) 0.46 0.79 —0.010 742(4)
4.26 0.67 —0.010 013(5) 0.46 0.81 —0.011 419(5)
4.45 0.13 —0.008 947(4) 0.50 0.74 —0.010 467(4)
4.45 0.31 —0.009 562(4) 0.50 0.77 —0.011 171(4)
4.45 0.55 —0.010 205(5) 0.50 0.79 —0.011 876(5)

1 «a which follows from Eq.(3.3) and

Mp(p3, p3, 02 =——{FM°(pZ, p3, ¢?)

3

fp o mp 2
L(P—yy) =g IMp(0, 0,m3)|2. (3.7

+k4(PYFYP(pZ, p3, o)},

(3.4 Note that a fitting of Eq(3.4) with data does not involvéy .
The value off itself will be determined once we fix ,(P)

with from the experiment for a giveh(P— yv) through the re-
M2 M2 lation
\% \%
FVMP(p?, p§,q2)=M2_ sz (39 m3 -
v~ P1 My—pP; I'P— yy)=%||\/|p(0,0mp)|
for V=p and ¢, while «,(P) is treated as an adjustable 3 )
parameter. Here we have adopted the approximation :iﬂ « |FYMP(0,0m2)
M,=M,. Note thatf, appearing in Eq(3.4) is not the f2 64w \ 7 P P
usual decay constant. Rather it should be regarded as an VD )
“effective” decay constant. When we fit E43.4) with the +xg(P)FRP(0,0mp)|2 (3.9

experimental data we use the expression
The second model (VMP) assumes that the vector me-

- _ A2 2 son dominance is realized in terms of the experimental pole
F.o(Q?%)= 1 /6477 r'P ’y‘y)x|Mp( Q% 0.mp)| , massA p obtained in[25]. We varyAp within its error bars.
(4ma)®m} IMp(0, 0,m3)| In the model VMDD, (or VMDyg) the parametek 4(P) (or

(3.60  Ap) is determined by fitting to the experimental dg28] for

each pseudoscalar mesBrand a fixed value of (P— y7y)
TABLE IV. 7° contribution to muorg—2 in the VMD; model.  using the CERN library routineinuIT. Here the confidence
level of 1o is imposed to extract the uncertainty associated

L (7%= ) [eV] Aqo [GeV] a,(m°)(alm)® with the parametek ,(P) or Ap. We then examine the ef-
792 0.77 ~0.041 86(2) fect of pseudoscalar poles on the muon anomaly based on
this confidence level and the valueslofP— yy) given in
7.22 0.80 —0.043 78(2) [37].
The results of our calculation are summarized in Tables
.22 0.82 —0.045 67(9) I-VI. They have all been obtained by the integration routine
7.78 0.75 —0.043 83(2) VEGAS with 800 000 sampling points per iteration and iter-
ated 15 times. From the explicit calculation, the dependence
7.78 0.78 —0.045 85(2) on I'(P—yy) and x4(P) (or Ap) is found to be rather
778 0.80 ~0.047 83(2) simple, as can be partly inferred from those tables. To obtain
the most likely value and the error af,(P) we follow the
8.34 0.73 —0.045 75(2) procedure described below for the VMDnodel. First we
take the average &, (P) for I'(P— v¥) max» K4(P)cente)
834 0.76 —0047 86(2) and that fOl‘(F(PH'ylfy)min, K $(P) cente) and dedﬁjce the er-
8.34 0.79 —0.049 93(2) rors associated with'(P— yvy) as the maximally allowed

deviation from their mean value. Likewise the uncertainty
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TABLE VI. %' contribution to muorg—2 in the VMDg model.

I(n'—v7) [keV] A, [GeV] a,(n")l(alm)®
4.07 0.82 —0.008 655(4)
4.07 0.85 —0.009 295(4)
4.07 0.88 —0.009 942(5)
4.26 0.81 —0.008 823(4)
4.26 0.84 —0.009 475(4)
4.26 0.87 —0.010 135(5)
4.45 0.80 —0.008 986(4)
4.45 0.83 —0.009 651(5)
4.45 0.86 —0.010 323(5)

associated withk4(P) can be found froma,(P) for

(T'(P— v7) centen K(f)( P)mad and that for(I'(P— y¥) centen
k4(P)min). The central value oh,(P) is set equal to the

mean value of the above two averages. The total uncertain
is obtained by taking the square root of the sum of the
squares of the two errors, assuming that the errors associat
with I'(P—yy) and x4(P) are independently distributed.

The same procedure also applies to the \ividodel with
(T'(P—yy), A(P)) instead of(I'(P— yy), «4(P)).
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3
a,(b, VMDg)=—0.066 0 (31)X

o
ko

=-82.7 (3.9 x10 %, (3.12

where the errors above were deduced assuming that the un-
certainties associated with distinct mesons are normally dis-
tributed. These results are rather insensitive to the difference
between the two models, both of which are already strongly
constrained by the experiment.

Let us comment here on the pion decay constant. Note
that every postulated form factor used in the previous analy-
sis is proportional to X implementing the PCAC. Thus the
contribution toa,, from each pseudoscalar meson propaga-
tion becomes proportional to f§. In the previous analysis
[9,16], f ,=93 MeV was used. This is the decay constant of
the charged pion. That of the neutral pion is quoted as
f0~84 (3) MeV in[37]. Correspondingly the values af,
predicted by all the above form factors receive an enhance-
ment factor of 1.22 if the latter value is used. But this implies
that too much isospin breakiri@bout 10% shows up in the
ion decay constants resulting from the mass difference of
p and down quarks and electromagnetic corrections. Those
galues found in Ref424,25 for 7° were extracted from the
use of pole-type form factdi8.1) corresponding to the VMD
picture together With/\7270=8772f7270. This relation must not

be trusted once we treB{(P— yvy) andA as two indepen-

From the results listed in Tables I-IIl we find that the dent parameters. Its application might lead to a fictitiously

contributions to the muon anomaly from®, 7°, and 7’
propagation in the VMR model are given by

3
a, (7%, VMD,)=—0.045 8 (29)X

w

3
a,(7, VMDa)=—-0.010 6 (9)x|—] ,
o 3
a,(7', VMD)=—0.009 4 (7)X|— (3.9
For the VMD; model we find similarly
o 3
a,(7°, VMDg)=—0.045 8 (29)X|—| ,
o
3
a,(7, VMDg)=—-0.010 7 (8)x|—| ,
a 3
a,(n', VMDg)=-0.009 5 (7)X = (3.10

The total contribution to muog—2 from the pseudoscalar
pole effect becomes

3

a,(b, VMDA)=—0.065 8 (32)x

o
T
=-825 (4.1)x10 % (3.11)

and

large isospin violation in the pion decay constant. In our
analysis throughout this paper, the decay constants are not
the direct input, because its determination primarily depends
on the form factor assumed. Instead, we use the partial decay
width I'(P— y+v) given in[37], and determine the effective
decay constant according to an equation such as(&§.

This provides a phenomenological and totally self-contained
algorithm.

IV. EFFECT OF THE Py*y* FORM FACTOR
ON MUON g-2

For a full evaluation of the muon anomad,(b), we
need information on the form factor for all valuesmwf and
p,. In other words, we need information not only for Iar@%e
with p3=0 or largep3 with p7=0 but also for the case
where bothp? andp3 are large simultaneously. In the VMD
model (b,) the off-shell 7y* y* form factor for largep?
andp3 takes the form

1
Fﬁo(pi,pi,o)oc? for pf,p3= p> (4.2)

On the other hand, the QTL moddi) or a nonperturbative
estimate shows much slower behavior 1/p?) as is seen
from Eqgs.(2.7) and(2.12.

This suggests that the®y* y* form factor may have hard
components for Iargpi and p%. Taking the asymptotic form
(2.12 into account, we may, for instance, choose the func-
tion
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TABLE VII. Values of k, and 8 in the extended modél) for TABLE IX. Values of k4 and 8 in the extended modél) for

a0 for the various values dfly andT'(7°— 7). The error accom-  7’. The meaning of numbers is the same as in Table VII.

panying each parameter is obtained with the other parameter fixed

to the best fitted value and at ther onfidence level. My [GeV] I'(n'—yy) [keV] kg(n') B(n")

My [GeV] T(n°—yy) [eV]  «y(n) B(7°) M, 4.07 0.30°5%  0.0159%
M, 7.22 012318 —0.0003 2021 M, 4.26 022335 0.016°5518
M, 778 002912 0003559294 M, 4.45 015317  0.017°39:2
M, 8.34 —0.06"2%  0.0065 20124 2.0 4.07 02537  0.015°05;
20 792 012915 —0.0005 310 2.0 4.26 0.17'3%2  0.016 303
20 778 0.02:912 00024 00143 2.0 4.45 0.11°31,  0.016 3913
20 8.34 ~0.06'01  0.0055 90138 4.0 4.07 025732 0.012°951%
4.0 7.22 012918 —0.0004'0%12! 4.0 4.26 017575  0.012°3515
4.0 778 002918 0,00200911 4.0 4.45 01131,  0.01330:19
4.0 8.34 ~0.06'9%  0.0040 0011 6.0 4.07 0.27°33  0.010'39%
6.0 7.22 012704 —0.0003 $%4 6.0 4.26 0197515 0.010°g56
6.0 778 002912 000189918 6.0 4.45 013313  0.011°39%
6.0 8.34 —0.06'33%  0.0036 55104

model since the difference between the VMihodel and

VMD 5, model is small. Let us introduce a parameggy to

describe the deviation from the VMDmodel. The best value

, 4.2 of Bp depends on the speci®of pseudoscalar meson. To
be more specific, we write the scalar part of the invariant
amplitude(2.1) as

as a candidate of the hard component. Another possibility is

MZ | MX

+
Mi—p: Mi—p3

F (2 p9)=5

to use Eq.(2.7) itself. With this in mind we consider two 2 2 o L g 5 o,

models:(l) linear combination of the VMR model and the Mp(P1.P2.0 )_ﬁ ;[Fpp(pl,pz,q )

function (4.2), (II) linear combination of the VMR model fo 2 o

and the QTL model if,). We will not discuss the VMP +r4(PYFP(PT,P3.05)], (43

TABLE VIII. Values of x, and in the extended modél) for where, for the extended modé),
7. The meaning of numbers is the same as in Table VII.
FoP(p2.p3.0%) = (1— Bp) FYMP(p2,pd)

Myx [GeV] I'(n—vy) [keV] K o(7) B(m) LN 2 2

0.11 0.022 +'3PFMX(P)(p1,p2) “-4

M, 0.42 —0.12"55s  0.059 0055
and, for the extended modél),
M, 0.46 -0.19°992  0.060" 3328 a)
Bpr a2 2 2N 4 VMD, .2 .2
M, 0.50 —-0.25°3%0  0.061°33% FUV (P1.P2,0%)=(1-Bp)Fy" (P1.P2)
2.0 0.42 -0.19°%%  0.053°39% +BpFYTH(PL.P3.9%). (45
2.0 0.46 —0.25008  0.0540%1%  Here FYMP(p? p2) is the form factor(3.5) in the VMD,
LN (2 2\ ic (i ; : ;
20 0.50 —029°0% 00540014 modeI,FMX(pl,_pz) |_s _glven by Eq.(4.2) in which My(P) is
assumed, for simplicity, to take the same valuedand ¢,
4.0 0.42 —-0.16°039  0.040° 3313 and
4.0 0.46 —0. 0.08 ) 0.012
0 23to_06 0 04¢o_012 FQTL( _ 2) |mu(p§,p§’q2) for V=p,
_ 0.06 +0.011 b5, =

4.0 0.50 0.27°308  0.041°3911 v (P1.P2.Q lms(pf,piyqz) for V=,
6.0 0.42 ~0.15'339  0.035"99%2 (4.6
6.0 0.46 —0.2179%8  0.035 391 I m, is defined in Eq(2.4). |,,_takes account of the fact that
6.0 0.50 ~0.26'3%  0.036"J 01 the ¢ meson is dominated by thes state. Again the “ef-

fective” decay constanfp in Eq. (4.3) does not have the
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TABLE X. 70 pole contribution to muog— 2 in the extended
model(l). The four numerals corresponding to one set 8f £ ;)
are the values ofa,/[10 %(a/m)?] for the central value of
I'(7°— yy) and, from the above, foMly = M, 2.0, 4.0, and 6.0
GeV respectively. The errors accompanying them are inferred from

the uncertainty il (7°— yy).
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B( 770) min

B( 770) center

B( 770) max

~4301 428
~a.4023%

0
K¢(7T ) min —4 407F8.§§g
—4.411°95%
~4.498 317 —4559°0%8  —4.621 0%
o ~4.442°33%  —4570032 4701542
s Temer 47838 -45760%  —4.736'0%
—4.40010305 —4579°033  — 476105
—4.731°3%%;
~4.74235%
K¢(7To)max

44853
~arsrig
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TABLE XIl. %' contribution to muong—2 in the extended
model(l). The numbers corresponding to one set®f k) have a
meaning similar to those of Table X.

B(7" ) min B(7") center B(7") max
~0.842 831
o ~085938%}
o7
s ~0872 53]
~087938%:
-088783l  -08973%R 0908 RE]
.. OSTEEN 00wl —09a2g%
K
FTT —osergdl 0929388 0965083
-08843%8  ~00308EE 097738

09533
096233
~0.975°3%

0.023
—-0.98 0.023

K¢(77l)max

be regarded as an empirical formula designed to fit the ex-
perimental data and applicable only up to the largest momen-
tum transfer of the experimental data. We use it nevertheless

usual meaning and is determined in the same way as in Sefecause of simplicity and because its effect on the mgion

Il B. In the extended modadlll), for instance, for each me-
sonP and a given value of (P— yy), the direct fit to the
experimental data determines the parameggraind « ,(P),
which give the least value gf? according to Eq(3.6). Once
the values of'(P— yv), x4(P), andBp are fixed, a relation

similar to Eq.(3.8) leads tofp.

Note that the extended mod@) of Eq. (4.4) has an in-
correct asymptotic behavior for finigg or p5. Thus it must

TABLE XI. 7 contribution to muorg— 2 in the extended model
(I). The numbers corresponding to one set®f ;) have a mean-

ing similar to those of Table X.

B(7) min

B(7) center

B(7) max

—0.995' 563
—1.119°5,655

K¢( 7) min —1.154+0085

. 0.086

—1.1745%7
~0.990°3%  —1.0319%%  -1.074 357}
n —-1.067°5972 —1.146'5%8  —1.229°95%
B s L
—-11040¢07% —1.202G08  —1.3087Q1%

—1.069'3 06

-1.17339%8

K«b( 7) max

—1.210°5.657
~1.230 5058

—2 is small as far agp is small. The extended modgl) is

also not very satisfactory since the QTL part has a logarith-
mic growth which distorts the form factor even for moder-
ately large momentum transfers. Thus both must be treated
with some caution.

A. Extended model(l)

The extended modél) involves one additional parameter
My, and the best fitting values af,(P) and 8p change as
My changes even for the same value IofP— yy). To
avoid time-consuming and excessive analysis, we first per-
form two-parameter fitting for fixedMy andT'(P— yvy) to
determine a seiBp, «,4(P)) that gives the best?. Next we
determine the range af,, allowed at the & confidence level
with Bp fixed to the best value obtained above, arnde
versa The result of such a fitting is summarized in Tables
VII-IX. They show thatBp is small in general and thus does
not favor strong presence of hard component. Note that a
large My implies nearg independence of the term:

TABLE XIIl. B andx 4 in the extended modéll) for 7° for the
various values of'(7°— yy). The error accompanying each pa-
rameter is obtained with the other parameter fixed to the best fitted
value and at the & confidence level.

I(n%—yy) [eV] iey(m%) A(m)
7.22 0.13"318 —0.004" 3542
7.78 0.07°0%2 0.011°9043
8.34 -0.09°55% 0.0285 044
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TABLE XIV. B andk, in the extended modéll) for ». The
meaning of numbers is the same as in Table XIII.

TABLE XVI. 7 pole contribution toa, /(10" *(a/)?) in the
extended modadlll). The errors accompanied with them are inferred
from the uncertainty il (7%— yv).

F(n—vy) [keV] K (7) B(7) ; ; ;
0.42 —0.28J:8:8§ 0-3@%83 B(T) min B(7T") center B(T) max
K 7TO i _ 4.3860'193
046 “oavgE  oargy AT
0 —4.457°318 45590138  —4.662 013
0.50 ~0.32°0% 0.24° 997 K o(T") center 0.189 0.188 0.187
K¢(7To)max _4-73&8:281
2
. X s—1  for M{—o withfixedg®  (4.7) )3
Mx=4 a,(7', ()=-0009 0 (6)x|=|, (48

This means that the formuld.4) tends to a constaigp and

hence gives rise to a divergence of the mygpn2 propor-  where the uncertainties are estimated assuming that the error

tional to INMy.. A larger M also leads to a larger minimum
of x2. Thus we restricM to the values below 6 GeV, and
examine the effect of this term on the mugn 2.

The computation of muog—2 has been performed for
several sets of &, ), in which eitherg or «,, is its best

distribution associated with'(P— yy), Bp, and x4(P) is
normal and independent. The result obtained assuriing
= 2 GeV is nearly identical with Eqg4.8). The result for
larger values oMy deviates only slightly from Eqs4.9),
except for the considerableMy dependence seen in

fitted value for giverMx andI"(P— yy). The results listed a, (7, (1)).
in Tables X-XII for the extended modél) have been ob-

tained by integration with 800 000 sampling points per itera-

tion which is iterated 15 times. The errors generated by the B. Extended model(ll)

numerical integration itself are not explicitly stated since The trial form factor for the extended modgl) is the
they are all under 0.05%, far below the errors arising fromVMD , model augmented slightly by a QTL term. The addi-

the uncertainty il (P— yvy).
Let us first focus our attention on the ca¥lg =M, in
Tables X-XII, which is the lowest value of the scaléy

tional term receives a strong constraint from the experimen-
tal data as is shown in Tables XIlI-XV. This is anticipated
because the logarithmic factor in Eg.7) of the QTL model

characterizing the modification of the high energy behavioiis quite visible even in the moderately large momentum re-
in the present model. To deal with these data we adopt thgion, and hence receives a strong constraint from experi-
same procedure as in the case of the VMD model. For inment. Tables XVI-XVIII show the prediction for the muon
stance the uncertainty associated with the variation off—2 from the trial form factor(4.5) for each pseudoscalar

I'(P— vyvy) can be read off frona,(P) for (I'(P— ¥¥) max:
B(P)centen K¢>(P)cente) and that for (I'(P— y¥)min,

meson under the constraint of the parameters in Tables XllI—
XV, in which all the results have been obtained by the inte-

B(P)centen K4(P)cented- The uncertainty associated with the gration with 500 000 sampling points per iteration which is

variation of 8(P) and «4(P) will be found similarly. We

iterated 25 times. In the manner similar to that of Sec. IV A,

take the average of three tentative central values to obtain tHBe contributions to the muon anomaly from?, »°, and »’

central value ofa,(P) given below. The combined error is

obtained by taking the square root of the sum of squares of

the errors. The contributions to the muon anomaly fraf
7°, andz’ propagation in the extended modBlcan then be
written as

3
a,(7° (1))=—-0.045 6 (28)X

k

3

a,(n, (1)=-0.010 3 (9)x

v

TABLE XV. B andk, in the extended modéll) for 5'. The
meaning of numbers is the same as in Table XIIlI.

propagation in the extended moddl) are estimated to be

3

3

a, (7 (I1))=-0.045 6 (28)X

o
w

3

a,(n, (I))=-0.006 4 (9)X

a
ko

3

4.9

a,(n’, (1))=-0.008 7 (7)X

TABLE XVII. 7 pole contribution toa,, /[10”%(a/ )] in the
extended mode(ll).

I(n'—~77) [keV] ko(7') B(n') B(M)min B0 cener B(7) max
4.07 —~0.31553 0.20°5.63 Ko min —0.582 8
4.26 ~0.30%53 0.19°53 Ko(Meemer  —0-677505; 0638055  —0.60050s7
4.45 —0.28'053 0.17:503 k() max —0.697 5051
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TABLE XVIIl. 7’ pole contribution toa, /[10™*(a/ )] in somewhat smaller overall uncertainties than the results

the extended modéll). (3.11) and(3.12 of the VMD, and VMDg models. This may
be due to better flexibility of the extended models.
B(7" ) min B(7') center B(7' ) max Inspection of Eqs(4.8) and (4.9) shows that the contri-
K s(7 ) —0.824°0042 bution of thew®y* y* form factor is nearly identical for both
o7 Tmin 0035 models while the contribution of theyy* y* form factor
Ko7 Veenter ~ —0.8440028  —0.8723%5% —0.893 533 shows considerable dependence on the assumed structure of

the hard component. This may not be surprising since the
effect of the hard component will be stronger fgithan for
0. Better agreement of the’ y* y* cases may just be a

It is seen that the QTL modification to the VMD results of Matter of coincidence. The’ contribution in Eqs(4.8) is
Sec. Il is larger compared with the case of extended modefoMewhat smaller than that gf in contrast to the results of
(). In particular, then contribution is reduced in magnitude the EN‘]L model and the extended modé}, both of which
compared to that obtained in the other scheme. ComparisdrPntain the QTL form factor at least partly.
of Egs. (4.9 with (4.8) shows that the additional term in case  NOte that either Eqd4.8) or (4.9) cannot be taken as our
(Il leads to a bettey?. Moreover, the signs ot for 7 and best estimate based on the experimental data only since they

7' tend to become negative in the present case compared fPend on a theoretical assumption about the hard compo-
the VMD, model, as can be seen from Tables II, ll, XIV, nent. Instead t_hey must be regarded as providing a measure
and XV. The opposite signs of the and ¢ contributions of t*he*uncertamty ina,, due to the unknown effec_t of the
result in a decrease of the absolute magnitudes of;thad Py” y* form factor. Our calculation shows that th'i“ﬂcer'
7' contributions. This relative minus sign is required to fit to 2Nty comes mainly from the contribution of they™ y

the experimental data once the form factor contains a QT form factor. For the reasons dlgcussed in Sec. IV B, we be-
component which enhances the contribution of the large mo*Ve thata,,(», (II)) is Iesssrellable tham,,(», (1)). But
mentum region. In the sense that this region is beyond corfhelr dlfferencg 0'0039‘(/7) may be regarded as a mea-
trol of the experimental data and the logarithmic enhanceSUre of theoretical uncertainty.

ment may be an artifact of perturbation theory, however, the Based on these considerations, we adopt(&4.2 as our

result(4.9) must be treated with some caution, and should b est estimate and choose as its uncertainty the statistical
accorded less weight than the extended m(ﬁt:iel combination of the error in Eq3.12), which comes from the

Note that the flavor S(®) relation implies x 4(7)= experimental uncertainty in tHeéyy* measurement, and the
—0.28 andk4(5')=0.29 for 6=—10.1° [37]. While the effect described above due to possible presence of hard com-
sigﬁs Of iy 774)) and Kd;(ﬂ') in the extended hode(l) are  bonentin thePy* y* form factor. We thus arrive at the total

consistent with the S(3) relation, those in the extended PSeudoscalar pole contribution

model (II) are not. Of course, this does not mean that one

model is more appropriate than the other. In the first place, it a,(m+n+n')=—-827 (6.4x10 (5.2
is obscure whether the $8)-breaking effect due to the

strange quark mass is substantial or not. Second, we do N¢he uncertainty here has been reduced to one-half of the
know the relevance of the U(,_;)anomaly(Q_CD anomaly previous result1.8). That the resulf1.10 from Ref.[17] is
contribution to theno— yy [ is the SU3) singlet compo-  close to our resulf5.1) is not surprising since the modified
nenf vertex. These questions have been examined foENJL model of[17] contains an adjustable free parameter.
P—yy in [38], and for another decay channel i89], in  The crucial difference between the old resulfis8) and
which the subtlety that the presence of a QCD anomaly1 10) and the new resul5.1) is that the latter is much less

raises is explored in identifying the decay constant invarianjependent on the theoretical ambiguity, being determined by
under the renormalization group, inducing a nonperturbativghe experimental data to a large extent.

ambiguity associated with each decay channel. We shall not The theoretical uncertainty in Eq5.1) reflects the ab-
these effects can be incorporated in a few constants pararfpwever, that it is possible to gain some insight into the
pseudoscalar production cross section through the twoyf 0 ,e*e~ andy—u* u~ decays, both of which involve

photon procesf24-24. the Py* y* form factor. The measured branching ratjid§]

(7" ) max —0.91570.0%

V. SUMMARY AND DISCUSSION -

F(p—p p)

- - Bmead 7—p p )=——————=1.4 (0.2 X10 °
In this paper we reexamined the pseudoscalar meson pole Zmeas 77K [t )= " 5,70y = & :

contributions to the muog—2 taking account of the mea- (5.2

suredPyy* form factor and of possible effect of the postu-

lated Py* y* form factor. Insofar as we demand that these, g

form factors respect the measured strengtR ¢f* for large

momentum ¢ several GeY with one photon on the mass F(mdmete)

shell, the form factor cannot deviate from the VMD model 0 4.y lm—ee g

Lo =———5—— =73 (19X
substantially. Bread 7 —€7€") I'(7°— yy) 73 (1.9x10°7

The results(4.8) and (4.9) of the extended models have (5.3
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where the latter is a weighted average of the data from Rethe pion-loop contributiora,(a) and the quark-loop contri-
[41], are in good agreement with the theoretical values basedution a,(c) may be regarded as representing the effect of
on the VMD model[42],3 the continuum spectrum. A previous analygi$,17] shows
thata,(a) anda,(c) have sizable contributions from the
region of higher momentum transfer where neither chiral
perturbation theory nor the NIf expansion may provide re-
liable guidance. Even the mutual independence of the three
types of diagrams of Fig. 1 might not be valid there. For the

C(p—p"p”)

=(1.14'339)x 1075,
Tg—yy %o

Bump(7— " )=

I'(7%—e’e)

Bymp(7’—ete )= ——(5—-=6.41 (0.19x10 & lack of a better argument, however, we choo_se the sum of
F(m—=yy) a,(a) anda,(c) as a crude estimate of the entire continuum
(54 contribution. The scalar pole contribution may be regarded

, as included in this estimate.
The differences between these values are presumably due to Finally, collectinga,(a) anda,(c) from Eq. (1.8), the

the effect of thePy* y* form factor. It appears to be no pseudoscalar meson pole contribution from E8.1), and
greater than 15%. In principle, such information can lead tqncjuding Eq.(1.9), we present
a completely model-independent evaluation of the pseudo-
scalar pole contribution to the muagn-2. Further improve- (5.9
ment in these measurements will thus be of great interest. . - .

Unlike the pseudoscalar pole contribution discussed 1S our best estimate of the total hadronic light-by-light scat-

this paper, the other contributions of hadronic Iight—by—lightte,rlng _con;npungnf to thﬁ muon arfloma_lly. Here the uncer-
scattering type from Fig. 1 remain vulnerable to various the-ta'nty IS obtaine  from t € errors ot various componentg as-
oretical ambiguities. The axial-vector pole contribution SUMiNg normal distribution. If the uncertainties are combined

(1.11 was obtained entirely based on the ENJL model2dditively, one would obtain- =30x 10, .

which is certainly not satisfactory in the sense that it does not Further Progress in theory would .have to _wa|t for.the
lead to the correct asymptotic behavior for theyy* vertex Iattlpe QCD calculation of the _hadromc_four-pomt functpn.

[17]. Based on the estimaté’.9) and(1.11) the axial-vector !n wew_of the recent progress in the lattice QCD. and rapidly
pole contribution seems to be relatively minor compare ncreasing computing power, such a calculation may no

with the effect(5.1) of the pseudoscalar pole propagation. onger be a farfetched dr?""m- AS. of now, the theoretical
Since nothing better is available at present and since it i¥alue of the muorg—2, which consists of Eqs1.3), (1.4),
very small, we choose Eq1.9) as our best estimate of the 15) and(l.?),_and our new ?‘”a!ys's of the hadronic light-
axial-vector contribution assigning an uncertainty as large aly-light scattering effects.9), is given by

the value(1..9) itself. The axial—vgctor meson contribution a,(th)=116 591 687(96)x 10711,
may be estimated more reliably if the off-shell structure of
the Ayy vertex is available from the experiment as was theThe largest source of theoretical uncertainty remains to be
case for theP yy vertex. the hadronic vacuuum polarization effe¢dt4). Better mea-

Another possible pole effect, the scalar resonance inferresiurements of this effect are urgently needed.

within the ENJL model, has not been observed convincingly.
It may not be surprising if an “exact” QCD calculation leads
only to a continuum spectrum instead of producing a broad

resonance in the scalar channel of the corresponding energy-ior Research Organization, where part of this work was
scale (0.6 s=1.5 GeV). _ _ carried out. We thank V. Savinov for informing us of the
In the absence of any resonance in the low energy regiojpgated result from CLEO and for useful discussions.
(below several hundred Me\in the 7-7 andqq channels, Thanks are due to B. N. Taylor, P. J. Mohr, and B. L. Rob-
erts for helpful comments. T.K.'s work is supported in part
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