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Pseudoscalar pole terms in the hadronic light-by-light scattering contribution to muong22

M. Hayakawa*
Division of Theoretical Physics, KEK, Tsukuba, Ibaraki, 305 Japan

T. Kinoshita†

Newman Laboratory, Cornell University, Ithaca, New York 14853
~Received 4 August 1997; published 8 December 1997!

The pseudoscalar pole contribution is the dominant source of theO(a3) hadronic light-by-light scattering
effect in muong22. We have examined this contribution, taking account of the off-shell structure of the
pseudoscalar-photon-photon anomaly vertex deduced from available experimental data. Our work leads to an
improved estimate279.2 (15.4)310211 for the total hadronic light-by-light scattering contribution to the
muong22. @S0556-2821~98!06601-6#

PACS number~s!: 13.40.Em, 12.39.Fe, 12.40.Vv, 14.60.Ef
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I. INTRODUCTION

A new measurement of the anomalous magnetic mom
of the muon~muon anomaly! am5 1

2 (gm22) is underway at
Brookhaven National Laboratory@1#. The anticipated leve
of precision, 40310211, is more than 20 times higher tha
that of the best previous result@2#:

am~expt!51 165 923 ~8.5!31029, ~1.1!

where the numerals in parentheses represent the uncerta
in the last digits of the measured value. The primary purp
of the new muong22 experiment is to verify the presenc
of the electroweak contribution. Other effects of potent
interest are those of supersymmetric particles@3,4# and lep-
toquarks@5,6#.

At present the standard model prediction ofam is

am~ th!5116 591 714~96!310211. ~1.2!

This consists of five parts.
~i! Pure QED contribution1

am~QED!5116 584 705.7~1.9!310211. ~1.3!

~ii ! Hadronic vacuum polarization contribution obtain
mainly from the measured hadron production cross sectio
e1e2 collisions@9–12#. We quote here the latest evaluatio
that includes additional information obtained from the ana
sis of hadronic tau decay data@13,14#:

am~had.v.p.!57 011 ~94!310211. ~1.4!

*Electronic address: hayakawa@theory.kek.jp
†Electronic address: tk@hepth.cornell.edu
1Equation~1.3! is obtained from the measured value of the ele

tron anomalyae @7# minusa small correction toae due to muon,
hadron, and weak interactions@8#, plus the terms ofam dependent
on the electron and tau masses evaluated using the fine stru
constant obtained from the electron anomaly@8#.
570556-2821/97/57~1!/465~13!/$10.00
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~iii ! Higher order hadronic vacuum polarization effe
@15#:

am~higher had.v.p.!52101 ~6!310211. ~1.5!

~iv! Hadronic light-by-light scattering contribution@16#:

am~ had. l-l!5252 ~18!310211, ~1.6!

and a similar result obtained independently in Ref.@17#.
~v! Electroweak contribution of one-@18# and two- @19#

loop orders:

am~weak!5151 ~4!310211. ~1.7!

The current uncertainty in the theoretical value ofam
comes mostly from the hadronic contribution. It must be i
proved by at least a factor of 2 before we can extract us
physical information from the new high precision measu
ment and impose strong constraints on various candidate
possible extension of the standard model.

The hadronic contribution appears for the first time in t
ordera2 as the effect of hadronic vacuum polarization.~See
Fig. 1 of Ref. @9# for the Feynman graphs responsible f
such a contribution.! Fortunately, a contribution of this type
does not require explicitab initio calculation based on QCD
since it is precisely calculable from the measured had
production cross section ine1e2 collisions @9–11#. Future
measurements at VEPP-2M, VEPP-4M, DAFNE, and
BEPS, as well as an analysis of the hadronic tau decay d
are expected to reduce the uncertainty of this contribution
the level that satisfies our need@12,20#.

The contribution of the hadronic light-by-light scatterin
subdiagram is much smaller but is potentially a source o
more serious problem because it has been difficult to exp
it in terms of experimentally accessible observables.
present it depends entirely on theoretical considerations. T
contribution has been estimated recently by two grou
within the framework of chiral perturbation theory and th
1/Nc expansion@16,17#. The leading terms arise from thre
types of diagrams shown in Fig. 1:~a! pion-loop contribu-
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466 57M. HAYAKAWA AND T. KINOSHITA
tion, ~b! pseudoscalar pole contribution, and~c! quark-loop
contribution. The results obtained in Ref.@16# for these dia-
grams are

am~a!uHKS524.5 ~8.1!310211,

am~b!uHKS5257.5 ~11.4!310211,

am~c!uHKS59.7 ~11.1!310211. ~1.8!

They add up to Eq.~1.6!. A small axial-vector contribution

am~ axial-vector!uHKS521.74310211 ~1.9!

was also obtained but not included in Eq.~1.6!. @See Eq.
~4.32! of Ref. @16#.# The corresponding results obtained
@17# were

am~a!uBPP5219 ~13!310211,

am~b!uBPP5285 ~13!310211,

am~c!uBPP521 ~3!310211. ~1.10!

The effects of axial-vector and scalar poles were also c
sidered in Ref.@17#:

am~ axial-vector!uBPP522.5 ~1.0!310211,

am~scalar!uBPP526.8 ~2.0!310211. ~1.11!

Summing up Eqs.~1.10! and ~1.11!, they obtained

am~ had. l-l!uBPP5292 ~32!310211. ~1.12!

The reasons for the difference between Eqs.~1.8! and
~1.10! are as follows: For the pion-loop contributionam(a) it
is due to the fact that the effective Lagrangian responsible

FIG. 1. Leading diagrams in the chiral perturbation and 1/Nc

expansion which contribute to the hadronic light-by-light scatter
effect on the muon anomaly:~a! pion-loop diagram,~b! pseudo-
scalar pole diagram, and~c! quark-loop diagram. Solid and wav
lines represent muons and photons, respectively. The dotted lin
~a! corresponds to the charged pseudoscalar meson while the d
line connecting the two blobs in~b! corresponds to the neutral on
The closed solid line in~c! represents the quark loop. These d
grams are typical ones in the respective classes.
n-

or

Eqs. ~1.10! has a nonderivativer0r0p1p2 coupling while
the corresponding term is absent in Eqs.~1.8!, which is ob-
tained from a vector meson dominance~VMD ! model with
hidden local symmetry@21#. The absence of this term in th
latter is a direct consequence of the fact that it satisfies
Ward-Takahashi identity@16# and a soft pion theorem fo
V0p scattering amplitude@22#.

In Ref. @17# an effective chiral Lagrangian was propos
which reproduces the earlier VMD result of Ref.@9# in terms
of an interaction term consisting of an infinite series of d
rivatives of the pseudoscalar meson. These higher deriva
terms are accompanied by a mass scaleMC , which, after
their resummation, becomes just a pole mass correspon
to a vectorial degree of freedom. Their result will be justifi
if that MC can be identified with the vector meson massM r .
However, the analysis of the low energy behavior of t
r0p1 scattering prevents us from interpreting the above
gree of freedom as being associated with the physical ve
meson@22#. The scaleMC will have to be associated with
another physical degree of freedom, which is heavier th
M r . For such anMC the magnitude of the charged pion-loo
contribution based on their model will become smaller th
that given in @17#. In this model the relation between th
scaleMC and the resulting value of the charged pion-lo
contributionam(a)uBPP in ~1.10! is not transparent. For this
reason we will henceforth chooseam(a)uHKS of Eqs.~1.8! as
the contribution of Fig. 1~a!.

The difference in the evaluation ofam(b) is mainly due to
the fact that only the contributions of thep0 pole andh pole
are taken into account in Eqs.~1.8! whereas Eqs.~1.10! in-
cludes also the contribution ofh8, which turned out to be no
negligible @17#. When theh8 contribution is added to Eqs
~1.8! ~see Sec. IV!, the remaining difference foram(b) is no
longer large and reflects mainly the ambiguity and difficu
in carrying out the chiral perturbation theory estimate b
yond the momentum range of several hundred MeV.

Similarly, the difference betweenam(c) of Eqs.~1.8! and
~1.10! originates from the difficulty in estimating the contr
bution from large momentum region.

As is seen from Eqs.~1.8! and~1.10!, the most important
contribution comes from the diagrams of type~b! in which
neutral pseudoscalar mesonsP (P5p0, h and h8) propa-
gate between twoPgg vertices, as shown in Fig. 2. As i
well known, the chiral anomaly forp0, for instance, can be
expressed by the effective interaction

L52
a

8p f p
p0emnlsFmnFls , ~1.13!

wheref p.93 MeV is the pion decay constant, in the lowe
order of chiral expansion. When applied to the calculation
am(b), however, this Lagrangian leads to an ultraviole
divergent result. This divergence arises from the triangu
photon-photon-muon loop which is obtained by reducing
p0gg vertex, represented by a large shaded blob on the
hand side of Fig. 2~a!, to a point.@Figure 2~b! is convergent
in the same limit.# It is a signal that the local interactio
~1.13! is not applicable to photons and pions far off ma
shell. In fact, such a triangular diagram will have a damp
behavior in the underlying QCD theory, which protects
contribution to the muong22 from diverging.
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57 467PSEUDOSCALAR POLE TERMS IN THE HADRONIC . . .
In Ref. @16#, four models were considered to examine t
effect of various assumptions on the off-shell behavior of
p0gg form factor: (b1) the vector meson dominance~VMD !
model,2 (b2) the quark triangular loop~QTL! model, (b3)
the QTL model combined with the VMD model, and (b4)
the extended Nambu-Jona-Lasinio~ENJL! model @23#. The
contributionam(b;p0) of Fig. 2 evaluated by these model
and given by Eqs.~4.1!, ~4.3!, and~4.4!, and Table V~with
gA50.5, MC51 GeV! of Ref. @16#, are reproduced here:

am~b1 ;p0!5255.60310211,

am~b2 ;p0!5286.90310211,

am~b3 ;p0!5233.76310211,

am~b4 ;p0!5242.84310211. ~1.14!

Similar calculations were carried out in Ref.@16# for the h
resonance, too. The final value ofam(b) reported in Ref.@16#
and quoted in Eqs.~1.8! is based mainly on the model (b4).

After completion of these calculations an experimen
measurement of thePgg* form factor, whereP stands for
p0, h, or h8, came to our attention@24–26#. This is very
important in the sense that it opens up the possibility
evaluatingam(b) utilizing the experimental information in
stead of relying solely on theoretical considerations. T
may enable us to reduce significantly the uncertainty in
evaluation ofam(b).

The purpose of this paper is to amplify the prelimina
discussion in Ref.@16# about the implication of the measure
ments and discuss in full the effect of the measuredPgg*
form factor ~Sec. III! and possible impacts of the yet-to-b
measuredPg* g* form factor on the evaluation ofam(b)
~Sec. IV!. Before going into these sections, we review t

2The VMD model can be justified within the hidden local sym
metry picture of the chiral model@21#.

FIG. 2. Pseudoscalar pole diagrams. The dotted line betwee
two blobs represents the propagation of neutral pseudoscalar
son.
e

l

f
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theoretical aspects of the asymptotic behavior of the fo
factor of our interest in Sec. II. The last section~Sec. V! will
be devoted to a summary and discussion of our results.

II. THEORETICAL OFF-SHELL p0g* g* FORM FACTOR

Let us write the invariantPg* g* amplitude as

M@g* ~p1 ,l1!g* ~p2 ,l2!→P~q!#

5el1

m ~p1!el2

n ~p2! «mnab p1
ap2

b M P~p1
2 , p2

2 , q25mP
2 !,

~2.1!

and define the form factorFP(p1
2 , p2

2 , q2) by

FP~p1
2 ,p2

2 ,q2!5
p f P

a
M P~p1

2 , p2
2 , q2!. ~2.2!

In the chiral limit (q25mP
2 50), this is normalized as

FP~0,0,0!51. ~2.3!

Let us first examine the off-shell behavior of thep0g* g*
form factor in the quark triangular loop~QTL! model. In this
model, we find~ignoring isospin violation!

Fp0
QTL

~p1
2 ,p2

2 ,q2!5I m
u
2~p1

2 ,p2
2 ,q2!

[E @dz#
2mu

2

mu
22z2z3p1

22z3z1p2
22z1z2q2 ,

~2.4!

where @dz#5dz1dz2dz3d(12z12z22z3), and mu;300
MeV is the constituent mass of an up~and down! quark@27#.
For p1

25p2
25q250 this function reduces to Eq.~2.3!. Car-

rying out the integration one can readily find that

Fp0
QTL

~p1
2 ,p2

2 ,0!52
m2

p1
22p2

2F H lnS A4mu
22p1

21A2p1
2

A4mu
22p1

22A2p1
2D J 2

2H lnS A4mu
22p2

21A2p2
2

A4mu
22p2

22A2p2
2D J 2G . ~2.5!

For largep1
2 with p2

250 andq250 this has the asymptotic
behavior of the form

Fp0
QTL

~p1
2 ,0,0!;

mu
2

2p1
2H lnS 2p1

2

mu
2 D J 2

. ~2.6!

For largep1
2;p2

2 andq250 we find

Fp0
QTL

~p1
2 ,p1

2 ,0!;
2mu

2

2p1
2 lnS 2p1

2

mu
2 D . ~2.7!

Note that both Eqs.~2.6! and ~2.7! have the same powe
behavior at large momentum transfer, differing only in t
logarithmic factor.

Let us define the functionFp0 by

he
e-
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468 57M. HAYAKAWA AND T. KINOSHITA
Fp0~Q2!5
1

4pa
uMp0~2Q2,0,0!u5

1

4p2f p

uFp0~2Q2,0,0!u.

~2.8!

Figure 3 shows the momentum dependence ofQ2Fp0(Q2)
for the cases (b1), (b2), and (b3) together with the experi-
mental data reported by the CLEO Collaboration@26#. This
shows that the VMD model (b1) fits the experimental data
particularly well. The model (b2) gives slower damping for
higher momenta. This is because of the extra@ ln(2p1

2)#2 fac-
tor found in Eq. ~2.6! which compensates for the leadin
damping 1/p1

2 to some extent. The model (b3), on the other
hand, predicts a rapid decrease due to the stronger dam
factor @ ln(2p1

2)#2/p1
4.

A nonperturbative analysis of asymptotic behavior of t
exact form factorFp0(p1

2 ,p2
2 ,q2) has also been carried ou

by several methods@27–29#. Various corrections to the resu
of @28# have also been considered: Reference@30# discusses
the effect of the parton transverse momentum. Refere
@31# considers the gluonic radiative corrections to@30#. Ref-
erence @32# derived an asymptotic formula applying th
QCD sum rule@33#. These corrections have been compa
with the data in@26#. Here, we concentrate on the methods
Refs. @27–29# since they are more directly related to th
consideration of this paper.

For p2
25q250 all three methods@27–29# predict the

same leading power of momentum for largep1
2. But the co-

efficients found are different:

lim
2p1

2→`

Fp0~p1
2 ,0,0!5

3

Nc

2p2f p
2

2p1
2 @28#, ~2.9!

5
2

Nc

2p2f p
2

2p1
2 @27#, ~2.10!

FIG. 3. Comparison of various theoretical form factors
G(p0→gg* ) with the experimental data. The solid line corr
sponds to the VMD model (b1) while the dashed line (b2) and
dot-dashed lines (b3) correspond to the QTL model and the QT
model supplemented by the VMD model, respectively.
ing

ce

d
f

5
1

Nc

2p2f p
2

2p1
2 @29#. ~2.11!

The asymptotic behavior ofFp0(p1
2 ,p2

2 ,0) for largep1
25p2

2

has also been studied nonperturbatively@34#:

lim
2p1

2→`

Fp0~p1
2 ,p1

2 , 0!5
1

Nc

2p2f p
2

2p1
2

. ~2.12!

Reference@29# states in addition that Eq.~2.11! holds for all
values ofp2

2 including p2
2;p1

2.
Different asymptotic behaviors of Eqs.~2.9!, ~2.10!, and

~2.11! presumably reflect different physical assumption
Equation~2.9! is obtained by appealing to the parton pictu
in the infinite momentum frame. The leading momentu
power dependence there comes from the scaling behavio
the pion wave function. However, the coefficient depends
the long distance aspect of the pion, which is vulnerable
theoretical prejudices. According to the literature@26,30,31#
the ansatz adopted by Brodsky and Lepage for the pion w
function is not badly in conflict with the experiment.

Equation~2.10! was obtained using the operator produ
expansion~OPE! technique, within the approximation of th
dominance of operators of lowest dimension and twist@27#.
The reliability of the OPE and truncation of operators depe
on the detailed prescription of how the large moment
limit is taken. In its application to the current issue the for
factor is expanded inQ252(p11p2)2/4 and v5(p1

2

2p2
2)/Q2. The leading power and its coefficient can be d

termined including long distance effects only when the a
solute magnitude ofv is small. This is the case for larg
p1

2;p2
2 but not for largep1

2 with p2
2 fixed to 0. In the latter

case the estimate based on the OPE is not trustworthy s
v will not be restricted to small values and the long distan
contributions associated with a higher power ofv might be-
come as significant as the leading term@27#.

The derivation of Eq.~2.11! relies on the Bjorken-
Johnson-Low theorem@35#. This theorem is usually used t
definethe commutator of operators by postulating an app
priate asymptotic behavior for some correlation functio
The asymptotic behavior in Eq.~2.11!, on the other hand, is
derived from the Bjorken-Johnson-Low~BJL! limit of the
matrix element of the commutator of the electromagne
currents@29#. The use of an equal-time commutation relati
of the quark fields turns this commutator into the axial c
rent. This enabled them to express the relevant matrix
ment in terms of the pion decay constantf p . However, this
approach may not be reliable because the canonical eq
time commutation relation does not necessarily lead to
correct anomaly relation@36#. Whether this caution is also
relevant for the evaluation of the commutator of the elect
magnetic currents or not will not be pursued here. Irresp
tive of the validity of derivation of Eq.~2.11! in @29#, we
note that the asymptotic behavior ofp0gg* in the timelike
region will differ significantly from that measured in th
spacelike region. At present we cannot find reason to sup
the possibility that such a nontrivial continuation occurs b
tween the two regions.
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57 469PSEUDOSCALAR POLE TERMS IN THE HADRONIC . . .
In order to compare the theoretical predictions of t
p0gg* form factor with experiment, it is necessary to inte
polate them from the asymptotic region top1

250, where they
are fixed by the anomaly condition. Reference@28# proposed
a one-parameter interpolation formula

Fp0~Q2!5
1

4p2f p

1

11Q2/~8p2f p
2 !

, ~2.13!

whereQ252p1
2 . The formula~2.13! has the sameQ2 de-

pendence as Eq.~3.1! if we choose 8p2f p
2 5M2. Thus this

interpolation reproduces theQ2 dependence very well. How
ever, this also fixes the value ofFp0(0) which differs from
the observed value by a factor of; 1.2. In this sense Eq
~2.13! does not fully reproduce the experimental data. Int
polations of Eqs.~2.10! and ~2.11! will be even more diffi-
cult in this respect.

III. Pgg* FORM FACTOR

A. Experimental results

Depicted in Fig. 4 are the functionQ2Fp0(Q2), corre-
sponding to the asymptotic form factors~2.9!, ~2.10!, and
~2.11!, and the interpolation function~2.13!, together with
the observedp0gg* form factor provided by the recen
CLEO data@26#. It is seen that none of the asymptotic b
haviors shown there is fully consistent with the new d
provided by CLEO forf p593 MeV.

On the other hand, it was noted@25# that the experimenta
data can be represented very well by the empirical formu

Fp0~Q2!5A64p G~p0→gg!

~4pa!2mp0
3

1

11~Q2/Lp0
2

!
, ~3.1!

if one choosesLp0.0.77 GeV andG(p0→gg) 5 7.78~56!
eV. The uncertainty inG is about67% @37#. Note that this
Lp0 is nearly identical to the physicalr mass.

Similarly, the experimental data for theh and h8 form
factors can be represented well by

FIG. 4. Comparison of the various theoretical asymptotic beh
ior of form factors ofG(p0→gg* ) with the experimental data
Three straight lines, from the above, are the Brodsky-Lepage~BL!,
OPE, and the Gerard-Lahna~GL! predictions, respectively. The
curve representing the Brodsky-Lepage interpolation form
~ 2.13! is also shown for comparison.
-

a

FP~Q2!5A64p G~P→gg!

~4pa!2mP
3

1

11~Q2/LP
2 !

, ~3.2!

for P5h and h8, with the choice ofLh.0.77 GeV and
Lh8.0.85 GeV. Here, to take account of the nonzero m
of the meson properly, we have modified Eq.~2.8! as

FP~Q2!5
1

4pa
uM P~2Q2, 0,mP

2 !u. ~3.3!

The lifetimes chosen areG(h→gg)50.46 (4) keV, and
G(h8→gg)54.26 (19) keV@37#.

B. Effect of the Pgg* form factor on muon g22

Let us now evaluate the pseudoscalar pole contributio
the muong22, assuming that all virtual photons are mod
fied by thePg* g* form factor in accordance with the VMD
model. We consider two models. The first model (VMDA)
assumes that the vector meson dominance is realize
terms of ther andf mesons of the form

TABLE I. p0 contribution to muong22 in the VMDA model.

G(p0→gg) @eV# kf(p0) am(p0)/(a/p)3

7.22 20.01 20.041 87 ~2!

7.22 0.12 20.043 56 ~2!

7.22 0.27 20.045 28 ~2!

7.78 20.07 20.044 03 ~2!

7.78 0.04 20.045 80 ~2!

7.78 0.16 20.047 54 ~2!

8.34 20.12 20.046 17 ~2!

8.34 20.03 20.047 95 ~2!

8.34 0.08 20.049 76 ~2!

TABLE II. h contribution to muong22 in the VMDA model.

G(h→gg) @keV# kf(h) am(h)/(a/p)3

0.42 0.04 20.009 646~4!

0.42 0.19 20.010 235~4!

0.42 0.38 20.010 843~4!

0.46 20.04 20.009 910~4!

0.46 0.07 20.010 726~4!

0.46 0.22 20.011 349~4!

0.50 20.10 20.010 594~4!

0.50 20.01 20.011 211~4!

0.50 0.13 20.011 921~5!

-
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470 57M. HAYAKAWA AND T. KINOSHITA
M P~p1
2 , p2

2 , q2!5
1

f P

a

p
$Fr

VMD~p1
2 , p2

2 , q2!

1kf~P!Ff
VMD~p1

2 , p2
2 , q2!%,

~3.4!

with

FV
VMD~p1

2 , p2
2 , q2!5

MV
2

MV
22p1

2

MV
2

MV
22p2

2
, ~3.5!

for V5r and f, while kf(P) is treated as an adjustab
parameter. Here we have adopted the approxima
M r.Mv . Note that f P appearing in Eq.~3.4! is not the
usual decay constant. Rather it should be regarded a
‘‘effective’’ decay constant. When we fit Eq.~3.4! with the
experimental data we use the expression

Fp0~Q2!5A64p G~P→gg!

~4pa!2mP
3

3
uM P~2Q2, 0,mP

2 !u

uM P~0, 0,mP
2 !u

,

~3.6!

TABLE III. h8 contribution to muong22 in the VMDA model.

G(h8→gg) @keV# kf(h8) am(h8)/(a/p)3

4.07 0.25 20.008 584~4!

4.07 0.48 20.009 190~4!

4.07 0.82 20.009 818~5!

4.26 0.19 20.008 766~4!

4.26 0.39 20.009 380~4!

4.26 0.67 20.010 013~5!

4.45 0.13 20.008 947~4!

4.45 0.31 20.009 562~4!

4.45 0.55 20.010 205~5!

TABLE IV. p0 contribution to muong22 in the VMDB model.

G(p0→gg) @eV# Lp0 @GeV# am(p0)/(a/p)3

7.22 0.77 20.041 86 ~2!

7.22 0.80 20.043 78 ~2!

7.22 0.82 20.045 67 ~2!

7.78 0.75 20.043 83 ~2!

7.78 0.78 20.045 85 ~2!

7.78 0.80 20.047 83 ~2!

8.34 0.73 20.045 75 ~2!

8.34 0.76 20.047 86 ~2!

8.34 0.79 20.049 93 ~2!
n

an

which follows from Eq.~3.3! and

G~P→gg!5
mP

3

64p
uM P~0, 0,mP

2 !u2. ~3.7!

Note that a fitting of Eq.~3.4! with data does not involvef P .
The value off P itself will be determined once we fixkf(P)
from the experiment for a givenG(P→gg) through the re-
lation

G~P→gg!5
mP

3

64p
uM P~0,0,mP

2 !u2

5
1

f P
2

mP
3

64p S a

p D 2

uFr
VMD~0,0,mP

2 !

1kf~P!Ff
VMD~0,0,mP

2 !u2. ~3.8!

The second model (VMDB) assumes that the vector me
son dominance is realized in terms of the experimental p
massLP obtained in@25#. We varyLP within its error bars.

In the model VMDA ~or VMDB) the parameterkf(P) ~or
LP) is determined by fitting to the experimental data@26# for
each pseudoscalar mesonP and a fixed value ofG(P→gg)
using the CERN library routineMINUIT . Here the confidence
level of 1s is imposed to extract the uncertainty associa
with the parameterkf(P) or LP . We then examine the ef
fect of pseudoscalar poles on the muon anomaly based
this confidence level and the values ofG(P→gg) given in
@37#.

The results of our calculation are summarized in Tab
I–VI. They have all been obtained by the integration routi
VEGAS with 800 000 sampling points per iteration and ite
ated 15 times. From the explicit calculation, the depende
on G(P→gg) and kf(P) ~or LP) is found to be rather
simple, as can be partly inferred from those tables. To ob
the most likely value and the error ofam(P) we follow the
procedure described below for the VMDA model. First we
take the average ofam(P) for „G(P→gg)max, kf(P)center…

and that for„G(P→gg)min , kf(P)center… and deduce the er
rors associated withG(P→gg) as the maximally allowed
deviation from their mean value. Likewise the uncertain

TABLE V. h contribution to muong22 in the VMDB model.

G(h→gg) @keV# Lh @GeV# am(h)/(a/p)3

0.42 0.78 20.009 645~4!

0.42 0.81 20.010 291~4!

0.42 0.84 20.010 940~4!

0.46 0.76 20.010 066~4!

0.46 0.79 20.010 742~4!

0.46 0.81 20.011 419~5!

0.50 0.74 20.010 467~4!

0.50 0.77 20.011 171~4!

0.50 0.79 20.011 876~5!
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associated withkf(P) can be found fromam(P) for
„G(P→gg)center, kf(P)max… and that for„G(P→gg)center,
kf(P)min…. The central value ofam(P) is set equal to the
mean value of the above two averages. The total uncerta
is obtained by taking the square root of the sum of
squares of the two errors, assuming that the errors assoc
with G(P→gg) and kf(P) are independently distributed
The same procedure also applies to the VMDB model with
„G(P→gg), L(P)… instead of„G(P→gg), kf(P)….

From the results listed in Tables I–III we find that th
contributions to the muon anomaly fromp0, h0, and h8
propagation in the VMDA model are given by

am~p0, VMDA!520.045 8 ~29!3S a

p D 3

,

am~h, VMDA!520.010 6 ~9!3S a

p D 3

,

am~h8, VMDA!520.009 4 ~7!3S a

p D 3

. ~3.9!

For the VMDB model we find similarly

am~p0, VMDB!520.045 8 ~29!3S a

p D 3

,

am~h, VMDB!520.010 7 ~8!3S a

p D 3

,

am~h8, VMDB!520.009 5 ~7!3S a

p D 3

. ~3.10!

The total contribution to muong22 from the pseudoscala
pole effect becomes

am~b, VMDA!520.065 8 ~32!3S a

p D 3

5282.5 ~4.1!310211 ~3.11!

and

TABLE VI. h8 contribution to muong22 in the VMDB model.

G(h8→gg) @keV# Lh8 @GeV# am(h8)/(a/p)3

4.07 0.82 20.008 655~4!

4.07 0.85 20.009 295~4!

4.07 0.88 20.009 942~5!

4.26 0.81 20.008 823~4!

4.26 0.84 20.009 475~4!

4.26 0.87 20.010 135~5!

4.45 0.80 20.008 986~4!

4.45 0.83 20.009 651~5!

4.45 0.86 20.010 323~5!
ty
e
ted

am~b, VMDB!520.066 0 ~31!3S a

p D 3

5282.7 ~3.9!310211, ~3.12!

where the errors above were deduced assuming that the
certainties associated with distinct mesons are normally
tributed. These results are rather insensitive to the differe
between the two models, both of which are already stron
constrained by the experiment.

Let us comment here on the pion decay constant. N
that every postulated form factor used in the previous an
sis is proportional to 1/f P implementing the PCAC. Thus th
contribution toam from each pseudoscalar meson propa
tion becomes proportional to 1/f P

2 . In the previous analysis
@9,16#, f p593 MeV was used. This is the decay constant
the charged pion. That of the neutral pion is quoted
f p0;84 (3) MeV in @37#. Correspondingly the values ofam
predicted by all the above form factors receive an enhan
ment factor of 1.22 if the latter value is used. But this impli
that too much isospin breaking~about 10%! shows up in the
pion decay constants resulting from the mass difference
up and down quarks and electromagnetic corrections. Th
values found in Refs.@24,25# for p0 were extracted from the
use of pole-type form factor~3.1! corresponding to the VMD
picture together withLp0

2
58p2f p0

2 . This relation must not
be trusted once we treatG(P→gg) andLP as two indepen-
dent parameters. Its application might lead to a fictitiou
large isospin violation in the pion decay constant. In o
analysis throughout this paper, the decay constants are
the direct input, because its determination primarily depe
on the form factor assumed. Instead, we use the partial de
width G(P→gg) given in @37#, and determine the effective
decay constant according to an equation such as Eq.~3.8!.
This provides a phenomenological and totally self-contain
algorithm.

IV. EFFECT OF THE Pg* g* FORM FACTOR
ON MUON g22

For a full evaluation of the muon anomalyam(b), we
need information on the form factor for all values ofp1 and
p2. In other words, we need information not only for largep1

2

with p2
250 or large p2

2 with p1
250 but also for the case

where bothp1
2 andp2

2 are large simultaneously. In the VMD
model (b1) the off-shellp0g* g* form factor for largep1

2

andp2
2 takes the form

Fp0~p1
2 ,p2

2,0!}
1

p4 for p1
2 ,p2

2. p2. ~4.1!

On the other hand, the QTL model (b2) or a nonperturbative
estimate shows much slower behavior (;1/p2) as is seen
from Eqs.~2.7! and ~2.12!.

This suggests that thep0g* g* form factor may have hard
components for largep1

2 andp2
2. Taking the asymptotic form

~2.12! into account, we may, for instance, choose the fu
tion
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FMX

LN ~p1
2 ,p2

2!5
1

2 S MX
2

MX
22p1

2
1

MX
2

MX
22p2

2D , ~4.2!

as a candidate of the hard component. Another possibilit
to use Eq.~2.7! itself. With this in mind we consider two
models:~I! linear combination of the VMDA model and the
function ~4.2!, ~II ! linear combination of the VMDA model
and the QTL model (b2). We will not discuss the VMDB

TABLE VII. Values of kf andb in the extended model~I! for
p0 for the various values ofMX andG(p0→gg). The error accom-
panying each parameter is obtained with the other parameter
to the best fitted value and at the 1s confidence level.

MX @GeV# G(p0→gg) @eV# kf(p0) b(p0)

M r 7.22 0.1220.12
10.16 20.000320.0218

10.0215

M r 7.78 0.0220.10
10.12 0.003520.0204

10.0204

M r 8.34 20.0621.35
11.01 0.006520.0194

10.0194

2.0 7.22 0.1220.12
10.15 20.000520.0150

10.0150

2.0 7.78 0.0220.10
10.12 0.002420.0143

10.0143

2.0 8.34 20.0620.08
10.10 0.005520.0137

10.0136

4.0 7.22 0.1220.12
10.16 20.000420.0121

10.0121

4.0 7.78 0.0220.10
10.10 0.002020.0116

10.0115

4.0 8.34 20.0620.08
10.12 0.004020.0111

10.0111

6.0 7.22 0.1220.12
10.16 20.000320.0114

10.0114

6.0 7.78 0.0220.10
10.12 0.001820.0108

10.0108

6.0 8.34 20.0620.08
10.10 0.003620.0104

10.0104

TABLE VIII. Values of kf andb in the extended model~I! for
h. The meaning of numbers is the same as in Table VII.

MX @GeV# G(h→gg) @keV# kf(h) b(h)

M r 0.42 20.1220.09
10.11 0.05920.022

10.022

M r 0.46 20.1920.07
10.09 0.06020.020

10.020

M r 0.50 20.2520.06
10.07 0.06120.019

10.019

2.0 0.42 20.1920.07
10.09 0.05320.015

10.015

2.0 0.46 20.2520.06
10.07 0.05420.014

10.014

2.0 0.50 20.2920.05
20.06 0.05420.014

10.014

4.0 0.42 20.1620.08
10.10 0.04020.013

10.013

4.0 0.46 20.2320.06
10.08 0.04020.012

10.012

4.0 0.50 20.2720.05
10.06 0.04120.011

10.011

6.0 0.42 20.1520.08
10.10 0.03520.012

10.012

6.0 0.46 20.2120.07
10.08 0.03520.011

10.011

6.0 0.50 20.2620.06
10.07 0.03620.011

10.011
is

model since the difference between the VMDB model and
VMDA model is small. Let us introduce a parameterbP to
describe the deviation from the VMDA model. The best value
of bP depends on the speciesP of pseudoscalar meson. T
be more specific, we write the scalar part of the invaria
amplitude~2.1! as

M P~p1
2 ,p2

2 ,q2!5
1

f P

a

p
@Fr

bP~p1
2 ,p2

2 ,q2!

1kf~P!Ff
bP~p1

2 ,p2
2 ,q2!#, ~4.3!

where, for the extended model~I!,

FV
bP~p1

2 ,p2
2 ,q2!5~12bP!FV

VMD~p1
2 ,p2

2!

1bPFMX~P!
LN ~p1

2 ,p2
2! ~4.4!

and, for the extended model~II !,

FV
bP~p1

2 ,p2
2 ,q2!5~12bP!FV

VMD~p1
2 ,p2

2!

1bPFV
QTL~p1

2 ,p2
2 ,q2!. ~4.5!

Here FV
VMD(p1

2 ,p2
2) is the form factor~3.5! in the VMDA

model,FMX

LN (p1
2 ,p2

2) is given by Eq.~4.2! in which MX(P) is

assumed, for simplicity, to take the same value forr andf,
and

FV
QTL~p1

2 ,p2
2 ,q2!5H I mu

~p1
2 ,p2

2 ,q2! for V5r,

I ms
~p1

2 ,p2
2 ,q2! for V5f.

~4.6!

I mu
is defined in Eq.~2.4!. I ms

takes account of the fact tha

the f meson is dominated by thes s̄ state. Again the ‘‘ef-
fective’’ decay constantf P in Eq. ~4.3! does not have the

ed

TABLE IX. Values of kf andb in the extended model~I! for
h8. The meaning of numbers is the same as in Table VII.

MX @GeV# G(h8→gg) @keV# kf(h8) b(h8)

M r 4.07 0.3020.18
10.25 0.01520.017

10.017

M r 4.26 0.2220.16
10.22 0.01620.016

10.016

M r 4.45 0.1520.14
10.19 0.01720.016

10.016

2.0 4.07 0.2520.17
10.23 0.01520.013

10.013

2.0 4.26 0.1720.15
10.20 0.01620.013

10.013

2.0 4.45 0.1120.13
10.17 0.01620.012

10.012

4.0 4.07 0.2520.17
10.23 0.01220.010

10.010

4.0 4.26 0.1720.15
10.20 0.01220.010

10.010

4.0 4.45 0.1120.14
10.17 0.01320.010

10.010

6.0 4.07 0.2720.17
10.24 0.01020.009

10.009

6.0 4.26 0.1920.15
10.20 0.01020.009

10.009

6.0 4.45 0.1320.13
10.18 0.01120.009

10.009



S
-

ex-
en-
less
n

ith-
r-
ted

r

er-

es
s
t a

ro

l

-
tted

57 473PSEUDOSCALAR POLE TERMS IN THE HADRONIC . . .
usual meaning and is determined in the same way as in
III B. In the extended model~II !, for instance, for each me
son P and a given value ofG(P→gg), the direct fit to the
experimental data determines the parametersbP andkf(P),
which give the least value ofx2 according to Eq.~3.6!. Once
the values ofG(P→gg), kf(P), andbP are fixed, a relation
similar to Eq.~3.8! leads tof P .

Note that the extended model~I! of Eq. ~4.4! has an in-
correct asymptotic behavior for finitep1

2 or p2
2. Thus it must

TABLE X. p0 pole contribution to muong22 in the extended
model ~I!. The four numerals corresponding to one set of (b, kf)
are the values ofam /@1022(a/p)3# for the central value of
G(p0→gg) and, from the above, forMX 5 M r , 2.0, 4.0, and 6.0
GeV respectively. The errors accompanying them are inferred f
the uncertainty inG(p0→gg).

b(p0)min b(p0)center b(p0)max

kf(p0)min

24.39120.207
10.203

24.40220.220
10.214

24.40720.226
10.220

24.41120.225
10.225

kf(p0)center

24.49820.185
10.177

24.44220.192
10.186

24.41720.199
10.191

24.40020.202
10.193

24.55920.208
10.206

24.57020.219
10.212

24.57620.224
10.216

24.57920.229
10.223

24.62120.231
10.227

24.70120.245
10.240

24.73620.252
10.246

24.76120.257
10.253

kf(p0)max

24.73120.208
10.201

24.74220.216
10.211

24.74820.223
10.218

24.75120.228
10.221

TABLE XI. h contribution to muong22 in the extended mode
~I!. The numbers corresponding to one set of (b, kf) have a mean-
ing similar to those of Table X.

b(h)min b(h)center b(h)max

kf(h)min

20.99520.062
10.063

21.11920.083
10.082

21.15420.086
10.085

21.17420.087
10.087

kf(h)center

20.99020.056
10.055

21.06720.073
10.072

21.09020.075
10.074

21.10420.076
10.075

21.03120.062
10.063

21.14620.083
10.083

21.18220.085
10.086

21.20220.088
10.087

21.07420.070
10.071

21.22920.094
10.094

21.27820.098
10.098

21.30820.100
10.101

kf(h)max

21.06920.064
10.064

21.17320.084
10.083

21.21020.087
10.086

21.23020.088
10.088
ec.

be regarded as an empirical formula designed to fit the
perimental data and applicable only up to the largest mom
tum transfer of the experimental data. We use it neverthe
because of simplicity and because its effect on the muog
22 is small as far asbP is small. The extended model~II ! is
also not very satisfactory since the QTL part has a logar
mic growth which distorts the form factor even for mode
ately large momentum transfers. Thus both must be trea
with some caution.

A. Extended model„I …

The extended model~I! involves one additional paramete
MX , and the best fitting values ofkf(P) andbP change as
MX changes even for the same value ofG(P→gg). To
avoid time-consuming and excessive analysis, we first p
form two-parameter fitting for fixedMX and G(P→gg) to
determine a set„bP , kf(P)… that gives the bestx2. Next we
determine the range ofkf allowed at the 1s confidence level
with bP fixed to the best value obtained above, andvice
versa. The result of such a fitting is summarized in Tabl
VII–IX. They show thatbP is small in general and thus doe
not favor strong presence of hard component. Note tha
largeMX implies nearq independence of the term:

m

TABLE XII. h8 contribution to muong22 in the extended
model~I!. The numbers corresponding to one set of (b, kf) have a
meaning similar to those of Table X.

b(h8)min b(h8)center b(h8)max

kf(h8)min

20.84220.018
10.018

20.85920.021
10.021

20.87220.021
10.021

20.87920.022
10.022

kf(h8)center

20.88720.016
10.016

20.87820.017
10.017

20.88120.018
10.018

20.88420.018
10.018

20.89720.018
10.018

20.91020.021
10.021

20.92320.022
10.022

20.93020.022
10.022

20.90620.021
10.021

20.94220.025
10.025

20.96520.026
10.026

20.97720.027
10.027

kf(h8)max

20.95320.019
10.019

20.96220.021
10.021

20.97520.022
10.022

20.98220.023
10.023

TABLE XIII. b andkf in the extended model~II ! for p0 for the
various values ofG(p0→gg). The error accompanying each pa
rameter is obtained with the other parameter fixed to the best fi
value and at the 1s confidence level.

G(p0→gg) @eV# kf(p0) b(p0)

7.22 0.1320.12
10.16 20.00420.043

10.042

7.78 0.0720.10
10.12 0.01120.043

10.043

8.34 20.0920.08
10.09 0.02820.044

10.047
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MX
2

MX
22q2

→1 for MX
2→` with fixedq2. ~4.7!

This means that the formula~4.4! tends to a constantbP and
hence gives rise to a divergence of the muong22 propor-
tional to lnMX . A largerMX also leads to a larger minimum
of x2. Thus we restrictMX to the values below 6 GeV, an
examine the effect of this term on the muong22.

The computation of muong22 has been performed fo
several sets of (b, kf), in which eitherb or kf is its best
fitted value for givenMX andG(P→gg). The results listed
in Tables X–XII for the extended model~I! have been ob-
tained by integration with 800 000 sampling points per ite
tion which is iterated 15 times. The errors generated by
numerical integration itself are not explicitly stated sin
they are all under 0.05%, far below the errors arising fr
the uncertainty inG(P→gg).

Let us first focus our attention on the caseMX5M r in
Tables X–XII, which is the lowest value of the scaleMX
characterizing the modification of the high energy behav
in the present model. To deal with these data we adopt
same procedure as in the case of the VMD model. For
stance the uncertainty associated with the variation
G(P→gg) can be read off fromam(P) for „G(P→gg)max,
b(P)center, kf(P)center… and that for „G(P→gg)min ,
b(P)center, kf(P)center…. The uncertainty associated with th
variation of b(P) and kf(P) will be found similarly. We
take the average of three tentative central values to obtain
central value ofam(P) given below. The combined error i
obtained by taking the square root of the sum of square
the errors. The contributions to the muon anomaly fromp0,
h0, andh8 propagation in the extended model~I! can then be
written as

am„p0, ~ I!…520.045 6 ~28!3S a

p D 3

,

am„h, ~ I!…520.010 3 ~9!3S a

p D 3

,

TABLE XIV. b andkf in the extended model~II ! for h. The
meaning of numbers is the same as in Table XIII.

G(h→gg) @keV# kf(h) b(h)

0.42 20.2820.05
10.06 0.3020.07

10.08

0.46 20.3020.05
10.05 0.2720.07

10.08

0.50 20.3220.04
10.05 0.2420.06

10.07

TABLE XV. b andkf in the extended model~II ! for h8. The
meaning of numbers is the same as in Table XIII.

G(h8→gg) @keV# kf(h8) b(h8)

4.07 20.3120.05
10.05 0.2020.03

10.03

4.26 20.3020.05
10.05 0.1920.03

10.03

4.45 20.2820.05
10.05 0.1720.03

10.03
-
e

r
e
-
f

he

of

am„h8, ~ I!…520.009 0 ~6!3S a

p D 3

, ~4.8!

where the uncertainties are estimated assuming that the
distribution associated withG(P→gg), bP , and kf(P) is
normal and independent. The result obtained assumingMX
5 2 GeV is nearly identical with Eqs.~4.8!. The result for
larger values ofMX deviates only slightly from Eqs.~4.8!,
except for the considerableMX dependence seen i
am„h, (I)….

B. Extended model„II …

The trial form factor for the extended model~II ! is the
VMDA model augmented slightly by a QTL term. The add
tional term receives a strong constraint from the experim
tal data as is shown in Tables XIII–XV. This is anticipate
because the logarithmic factor in Eq.~2.7! of the QTL model
is quite visible even in the moderately large momentum
gion, and hence receives a strong constraint from exp
ment. Tables XVI–XVIII show the prediction for the muo
g22 from the trial form factor~4.5! for each pseudoscala
meson under the constraint of the parameters in Tables X
XV, in which all the results have been obtained by the in
gration with 500 000 sampling points per iteration which
iterated 25 times. In the manner similar to that of Sec. IV
the contributions to the muon anomaly fromp0, h0, andh8
propagation in the extended model~II ! are estimated to be

am„p0, ~ II !…520.045 6 ~28!3S a

p D 3

,

am„h, ~ II !…520.006 4 ~9!3S a

p D 3

,

am„h8, ~ II !…520.008 7 ~7!3S a

p D 3

. ~4.9!

TABLE XVI. p0 pole contribution toam /(1022(a/p)3) in the
extended model~II !. The errors accompanied with them are inferr
from the uncertainty inG(p0→gg).

b(p0)min b(p0)center b(p0)max

kf(p0)min 24.38620.183
10.193

kf(p0)center 24.45720.189
10.186 24.55920.188

10.196 24.66220.187
10.196

kf(p0)max 24.73620.191
10.201

TABLE XVII. h pole contribution toam /@1022(a/p)3# in the
extended model~II !.

b(h)min b(h)center b(h)max

kf(h)min 20.58220.048
10.047

kf(h)center 20.67720.052
10.053 20.63820.050

10.049 20.60020.047
10.046

kf(h)max 20.69720.051
10.051



of
d
e
is
e

d
,

to
T

m
o
ce
th
b

d
n

e,

n

f

a
an
tiv
n

th
ra
e
w

po
-
u-
se

s
e

e

ults

re of
the

f

r
they
po-

sure

r-

be-

a-

tical

e
om-
l

the

d
er.

s
by

he
ts

57 475PSEUDOSCALAR POLE TERMS IN THE HADRONIC . . .
It is seen that the QTL modification to the VMD results
Sec. III is larger compared with the case of extended mo
~I!. In particular, theh contribution is reduced in magnitud
compared to that obtained in the other scheme. Compar
of Eqs.~4.9! with ~4.8! shows that the additional term in cas
~II ! leads to a betterx2. Moreover, the signs ofkf for h and
h8 tend to become negative in the present case compare
the VMDA model, as can be seen from Tables II, III, XIV
and XV. The opposite signs of ther and f contributions
result in a decrease of the absolute magnitudes of theh and
h8 contributions. This relative minus sign is required to fit
the experimental data once the form factor contains a Q
component which enhances the contribution of the large
mentum region. In the sense that this region is beyond c
trol of the experimental data and the logarithmic enhan
ment may be an artifact of perturbation theory, however,
result~4.9! must be treated with some caution, and should
accorded less weight than the extended model~I!.

Note that the flavor SU~3! relation implies kf(h).
20.28 andkf(h8).0.29 for u.210.1° @37#. While the
signs ofkf(h) and kf(h8) in the extended model~I! are
consistent with the SU~3! relation, those in the extende
model ~II ! are not. Of course, this does not mean that o
model is more appropriate than the other. In the first plac
is obscure whether the SU~3!-breaking effect due to the
strange quark mass is substantial or not. Second, we do
know the relevance of the U(1)A anomaly~QCD anomaly!
contribution to theh0→gg @h0 is the SU~3! singlet compo-
nent# vertex. These questions have been examined
P→gg in @38#, and for another decay channel in@39#, in
which the subtlety that the presence of a QCD anom
raises is explored in identifying the decay constant invari
under the renormalization group, inducing a nonperturba
ambiguity associated with each decay channel. We shall
discuss its relevance quantitatively here. We believe
these effects can be incorporated in a few constants pa
etrizing the form factor we chose, by fitting to the observ
pseudoscalar production cross section through the t
photon process@24–26#.

V. SUMMARY AND DISCUSSION

In this paper we reexamined the pseudoscalar meson
contributions to the muong22 taking account of the mea
suredPgg* form factor and of possible effect of the post
lated Pg* g* form factor. Insofar as we demand that the
form factors respect the measured strength ofPgg* for large
momentum (; several GeV! with one photon on the mas
shell, the form factor cannot deviate from the VMD mod
substantially.

The results~4.8! and ~4.9! of the extended models hav

TABLE XVIII. h8 pole contribution toam /@1022(a/p)3# in
the extended model~II !.

b(h8)min b(h8)center b(h8)max

kf(h8)min 20.82420.035
10.042

kf(h8)center 20.84420.016
10.028 20.87220.033

10.038 20.89320.038
10.045

kf(h8)max 20.91520.032
10.036
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somewhat smaller overall uncertainties than the res
~3.11! and~3.12! of the VMDA and VMDB models. This may
be due to better flexibility of the extended models.

Inspection of Eqs.~4.8! and ~4.9! shows that the contri-
bution of thep0g* g* form factor is nearly identical for both
models while the contribution of thehg* g* form factor
shows considerable dependence on the assumed structu
the hard component. This may not be surprising since
effect of the hard component will be stronger forh than for
p0. Better agreement of theh8g* g* cases may just be a
matter of coincidence. Theh8 contribution in Eqs.~4.8! is
somewhat smaller than that ofh, in contrast to the results o
the ENJL model and the extended model~II !, both of which
contain the QTL form factor at least partly.

Note that either Eqs.~4.8! or ~4.9! cannot be taken as ou
best estimate based on the experimental data only since
depend on a theoretical assumption about the hard com
nent. Instead they must be regarded as providing a mea
of the uncertainty inam due to the unknown effect of the
Pg* g* form factor. Our calculation shows that this unce
tainty comes mainly from the contribution of thehg* g*
form factor. For the reasons discussed in Sec. IV B, we
lieve that am„h, (II) … is less reliable thanam„h, (I)…. But
their difference 0.0039 (a/p)3 may be regarded as a me
sure of theoretical uncertainty.

Based on these considerations, we adopt Eq.~3.12! as our
best estimate and choose as its uncertainty the statis
combination of the error in Eq.~3.12!, which comes from the
experimental uncertainty in thePgg* measurement, and th
effect described above due to possible presence of hard c
ponent in thePg* g* form factor. We thus arrive at the tota
pseudoscalar pole contribution

am~p1h1h8!5282.7 ~6.4!310211. ~5.1!

The uncertainty here has been reduced to one-half of
previous result~1.8!. That the result~1.10! from Ref. @17# is
close to our result~5.1! is not surprising since the modifie
ENJL model of@17# contains an adjustable free paramet
The crucial difference between the old results~1.8! and
~1.10! and the new result~5.1! is that the latter is much les
dependent on the theoretical ambiguity, being determined
the experimental data to a large extent.

The theoretical uncertainty in Eq.~5.1! reflects the ab-
sence of data on thePg* g* form factor. It is useful to note,
however, that it is possible to gain some insight into t
effect of thePg* g* form factor based on the measuremen
of p0→e1e2 andh→m1m2 decays, both of which involve
the Pg* g* form factor. The measured branching ratios@40#

Bmeas~h→m1m2![
G~h→m1m2!

G~h→gg!
51.4 ~0.2!31025

~5.2!

and

Bmeas~p0→e1e2![
G~p0→e1e2!

G~p0→gg!
57.3 ~1.9!31028,

~5.3!
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where the latter is a weighted average of the data from R
@41#, are in good agreement with the theoretical values ba
on the VMD model@42#,3

BVMD~h→m1m2![
G~h→m1m2!

G~h→gg!
5~1.1420.03

10.07!31025,

BVMD~p0→e1e2![
G~p0→e1e2!

G~p0→gg!
56.41 ~0.19!31028.

~5.4!

The differences between these values are presumably d
the effect of thePg* g* form factor. It appears to be n
greater than 15%. In principle, such information can lead
a completely model-independent evaluation of the pseu
scalar pole contribution to the muong22. Further improve-
ment in these measurements will thus be of great interes

Unlike the pseudoscalar pole contribution discussed
this paper, the other contributions of hadronic light-by-lig
scattering type from Fig. 1 remain vulnerable to various t
oretical ambiguities. The axial-vector pole contributio
~1.11! was obtained entirely based on the ENJL mod
which is certainly not satisfactory in the sense that it does
lead to the correct asymptotic behavior for thep0gg* vertex
@17#. Based on the estimates~1.9! and~1.11! the axial-vector
pole contribution seems to be relatively minor compa
with the effect~5.1! of the pseudoscalar pole propagatio
Since nothing better is available at present and since
very small, we choose Eq.~1.9! as our best estimate of th
axial-vector contribution assigning an uncertainty as large
the value~1.9! itself. The axial-vector meson contributio
may be estimated more reliably if the off-shell structure
the Agg vertex is available from the experiment as was
case for thePgg vertex.

Another possible pole effect, the scalar resonance infe
within the ENJL model, has not been observed convincing
It may not be surprising if an ‘‘exact’’ QCD calculation lead
only to a continuum spectrum instead of producing a bro
resonance in the scalar channel of the corresponding en
scale (0.6&As&1.5 GeV!.

In the absence of any resonance in the low energy reg
~below several hundred MeV! in the p-p andq q̄ channels,

3We thank J. F. Donoghue for calling our attention to this ref
ence.
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the pion-loop contributionam(a) and the quark-loop contri-
bution am(c) may be regarded as representing the effect
the continuum spectrum. A previous analysis@16,17# shows
that am(a) and am(c) have sizable contributions from th
region of higher momentum transfer where neither ch
perturbation theory nor the 1/Nc expansion may provide re
liable guidance. Even the mutual independence of the th
types of diagrams of Fig. 1 might not be valid there. For t
lack of a better argument, however, we choose the sum
am(a) andam(c) as a crude estimate of the entire continuu
contribution. The scalar pole contribution may be regard
as included in this estimate.

Finally, collectingam(a) and am(c) from Eq. ~1.8!, the
pseudoscalar meson pole contribution from Eq.~5.1!, and
including Eq.~1.9!, we present

am~ had. l-l!5279.2 ~15.4!310211 ~5.5!

as our best estimate of the total hadronic light-by-light sc
tering contribution to the muon anomaly. Here the unc
tainty is obtained from the errors of various components
suming normal distribution. If the uncertainties are combin
additively, one would obtain;630310211.

Further progress in theory would have to wait for t
lattice QCD calculation of the hadronic four-point functio
In view of the recent progress in the lattice QCD and rapi
increasing computing power, such a calculation may
longer be a farfetched dream. As of now, the theoreti
value of the muong22, which consists of Eqs.~1.3!, ~1.4!,
~1.5!, and~1.7!, and our new analysis of the hadronic ligh
by-light scattering effect~5.5!, is given by

am~ th!5116 591 687~96!310211. ~5.6!

The largest source of theoretical uncertainty remains to
the hadronic vacuuum polarization effect~1.4!. Better mea-
surements of this effect are urgently needed.
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