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Constraints from high redshift supernovae upon scalar field cosmologies
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Recent observations of high-redshift type Ia supernovae have placed stringent constraints on the cosmologi-
cal constantL. We explore the implications of these SNe observations for cosmological models in which a
classically evolving scalar field currently dominates the energy density of the Universe. Such models have been
shown to share the advantages ofL models: compatibility with the spatial flatness predicted by inflation; a
Universe older than the standard Einstein–de Sitter model; and, combined with cold dark matter, predictions
for large-scale structure formation in good agreement with data from galaxy surveys. Compared to the cos-
mological constant, these scalar field models are consistent with the SNe observations for a lower matter
density,Vm0;0.2, and a higher age,H0t0*1. Combined with the fact that scalar field models imprint a
distinctive signature on the cosmic microwave background anisotropy, they remain currently viable and should
be testable in the near future.@S0556-2821~98!03106-3#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

In recent years, models with a relic cosmological const
L have received considerable attention for a number of
sons. First, dynamical estimates of the mass density on
scales of galaxy clusters suggest thatVm50.260.1 for the
matterm that clusters gravitationally@whereV(t) is the ratio
of the mean mass density of the universe to the crit
Einstein–de Sitter density,V(t)58pGr/3H2# @1#. ~Some
density estimates on larger scales are higher but remain
troversial @2#.! However, if a sufficiently long epoch of in
flation took place during the early universe, the present s
tial curvature should be negligibly small,V tot51. A
cosmological constant, with effective density parame
VL[L/3H0

2512Vm , is one way to resolve the discrep
ancy betweenVm andV tot .

The second motivation for the revival of the cosmologic
constant has been the ‘‘age crisis’’ for spatially flatVm51
models, though the evidence currently is more ambigu
than it was. Estimates of the Hubble expansion param
from a variety of methods are converging
h[(H0/100 km/sec/Mpc)50.760.1 @3#, while determina-
tions of the age of the universe from globular clusters h
typically been in the rangetgc.13– 15 Gyr or higher@4#.
These observations imply a value for the ‘‘expansion ag
H0t05(H0 /70 km/sec/Mpc)(t0/14 Gyr).1.060.2, higher
than that for the standard Einstein–de Sitter model,
which H0t052/3. On the other hand, for models with a co
mological constant,H0t0 can be larger: for example, fo
VL50.75512Vm , one finds H0t051.0. This argument
has recently been called into question, however: revised
terminations oftgc based on the Hipparcos distance scale
lower by approximately 2 Gyr@5#. If confirmed, this would
largely alleviate the age problem.

Third, cosmological constant-dominated models for lar
570556-2821/98/57~8!/4642~9!/$15.00
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scale structure formation with cold dark matter~CDM! and a
nearly scale-invariant spectrum of primordial density pert
bations~as predicted by inflation! provide a better fit to the
observed power spectrum of galaxy clustering than does
‘‘standard’’ Vm51 CDM model@6#. In particular, the shape
of the power spectrum of galaxy surveys is generally con
tent with G5Vmh50.2560.05 @7#.

Despite these successes, cosmological constant mo
face several difficulties of their own. On aesthetic grounds
is difficult to understand why the vacuum energy density
the universe,rL[LmPl

2 /8p, should be of order (1023 eV)4,
as it must be to have a cosmological impact (VL;1). On
dimensional grounds, one would expect it to be many ord
of magnitude larger—of ordermPl

4 or perhapsmSUSY
4 . Since

this is not the case, we might plausibly assume that so
physical mechanism sets the ultimate vacuum energy to z
Why then is it not zero today?

In addition, the cosmological constant now faces stro
observational challenges. InL models, a larger fraction o
distant quasistellar objects~QSOs! would be gravitationally
lensed than in aL50 universe; surveys for lensed QSO
have been used to infer the boundVL,0.66 at 95% C.L.@8#.
Further, while the power spectra ofL models with CDM
have approximately the right shape to fit the galaxy clus
ing data, the Cosmic Background Explorer~COBE! normal-
ized amplitude is too high, requiring galaxies to be anti
ased relative to the mass distribution@9#.

Motivated by these theoretical and observational diffic
ties of the cosmological constant, attention has turned
models in which the energy density resides in a dynam
scalar field rather than in a pure vacuum state. Thesedynami-
cal L models@10–13# were proposed in response to the ae
thetic difficulties of cosmological constant models. Th
were found to partially alleviate their observational proble
as well; for example, the statistics of gravitationally lens
QSOs yields a less restrictive upper bound onH0t0 in these
4642 © 1998 The American Physical Society
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57 4643CONSTRAINTS FROM HIGH REDSHIFT SUPERNOVAE . . .
models@13–15#. In addition, for a range of model param
eters, the amplitude of the density power spectrum is redu
relative to that of the cold dark matter model with a cosm
logical constant~LCDM! while its shape is retained@16#.
These models also have a signature in the cosmic microw
background~CMB! temperature anisotropy angular pow
spectrum that is distinctive fromL and Einstein–de Sitte
models@16,17#. Consequently, they should be tested with t
next generation of high-resolution CMB temperature ma
e.g., from the Microwave Anisotropy Probe~MAP! and
Planck satellite missions.

In this paper, we consider another set of observatio
constraints on these cosmological models, arising from h
redshift supernovae. On-going projects to discover type
supernovae at redshiftsz;0.3– 1, coupled with improved
techniques to narrow the dispersion in SNe Ia peak ma
tudes, have renewed the prospects for determining the
mological parameters@19,20#. Based on analysis of an initia
set of 7 high-redshift SNe Ia, Perlmutteret al. obtained the
boundVL,0.51 at 95% C.L.@19# for spatially flat cosmo-
logical constant models. ForL models, this implies
H0t0,0.84 at this limit. These are preliminary results from
new method; the degree to which they are affected by e
lution, absorption, etc., will be determined by the mu
larger samples now being gathered~the world sample of
high-redshift SNe is now roughly a factor of 10 larger th
that used to obtain the bound above!.

We consider constraints on dynamical scalar field mod
arising from high-redshift SNe Ia observations and comp
them with constraints onL models. The SNe Ia implication
for some different but related cosmological models—
which there is an extra component described by an arbit
fixed equation of state—have recently been studied in R
@21#. Here, we focus on three representative models for ‘
tralight’’ scalar fields: pseudo Nambu-Goldstone boso
~PNBGs! @13#, inverse-power-law potentials@11#, and expo-
nential potentials. In Sec. II, we review the motivation f
and cosmic evolution of these models. In Sec. III, we der
the corresponding constraints from the SNe observatio
We conclude in Sec. IV.

II. SCALAR FIELD COSMOLOGICAL MODELS

The classical action for a scalar fieldf has the form

S5
mPl

2

16p E d4xA2gF S 2R1
1

2
gmn]mf]nf2V~f! D1LG ,

~2.1!

wheremPl5G21/2 is the Planck mass,R is the Ricci scalar,
g[detgmn , V(f) is the scalar field potential, andL is the
Lagrangian density of nonrelativistic matter and radiatio
For simplicity, we assumef is minimally coupled to the
curvature, and we work in units in which\5c51. We con-
sider spatially flat, homogenous and isotropic cosmolog
described by the line element

ds25dt22a2~ t !~dx21dy21dz2!, ~2.2!

wherea(t) is the Friedmann-Robertson-Walker~FRW! scale
factor.
ed
-

ve

s,

al
h-
Ia

i-
s-

o-

ls
e

ry
s.
-
s

e
s.

.

s

In this paper, we focus on models in which the scalar fi
is dynamically important only at relatively recent epochs,
redshiftsz&10. Thus, we model the matter content of t
Universe as a two-component system comprising the sc
field f and nonrelativistic matterm. Further, we assume tha
the energy momentum of each component is separately
served, so the matter energy density scales asrm}a23.
~There is no particle production as in some decayingL mod-
els proposed in the literature@10#.!

The Einstein and scalar field equations can be written

dH

dt
1

3

2
H21

2p

mPl
2 S df

dt D
2

2
4p

mPl
2 V~f!50, ~2.3!

d2f

dt2
13H

df

dt
1

dV

df
50 ~2.4!

where the Hubble parameter

H25S 1

a

da

dt D
2

5
8p

3mPl
2 F1

2 S df

dt D
2

1V~f!1rmG . ~2.5!

In what follows, it will also be useful to characterize th
instantaneous equation of state of the scalar field by defin
its effective adiabatic index,

gf~ t !511
pf

rf
5

2S df

dt D
2

S df

dt D
2

12V~f!

. ~2.6!

For a static field, corresponding to a cosmological const
L, gL50, while for pressureless dust,g51.

A number of models with a dynamicalL have been dis-
cussed in the literature@10–13#. We consider three represen
tative scalar field potentials that give rise to effective dec
ing L models.

A. The PNGB model

Consider the properties that a massive scalar field m
satisfy in order to act approximately like a cosmological co
stant at recent epochs. Vacuum energy is stored in the po
tial energy densityV(f);M4, whereM sets the character
istic height of the potential, and we setV(fm)50 at the
minimum of the potential by the assumption that the fund
mental vacuum energy of the Universe is zero~for reasons
not yet understood!. In order to generate a nonzeroL at the
present epoch,f must initially be displaced from the mini
mum ~f iÞfm as an initial condition!, and its kinetic energy
must be relatively small compared to its potential ener
This implies that the motion of the field is still~nearly! over-
damped, so the scalar mass must be extremely sm
mf[AuV9(f i)u&3H055310233h eV. In addition, for
Vf;1, the potential energy density should be of order
critical density,M4;3H0

2mPl
2 /8p, or M.331023h1/2 eV.

Thus, the characteristic height and curvature of the poten
are strongly constrained for a classical model of the cosm
logical constant.

In quantum field theory, such ultra-low-mass scalars
not genericallynatural: radiative corrections generate lar
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4644 57JOSHUA A. FRIEMAN AND IOAV WAGA
mass renormalizations at each order of perturbation the
To incorporate ultralight scalars into particle physics, th
small masses should be at least ‘‘technically’’ natural, that
protected by symmetries, such that when the small ma
are set to zero, they cannot be generated in any orde
perturbation theory, owing to the restrictive symmetry.

From the viewpoint of quantum field theory, pseu
Nambu-Goldstone bosons~PNGBs! are the simplest way to
have naturally ultralow mass, spin-0 particles. PNGB mod
are characterized by two mass scales, a spontaneous sy
try breaking scalef ~at which the effective Lagrangian sti
retains the symmetry! and an explicit breaking scaleM ~at
which the effective Lagrangian contains the explicit symm
try breaking term!. The PNGB mass is thenmf;M2/ f .
Thus, the two dynamical conditions onmf and M above
essentially fix these two mass scales to beM;1023 eV,
interestingly close to the neutrino mass scale for
Mikheyey-Smirnov-Wolfenstein~MSW! solution to the solar
neutrino problem, andf ;mPl.1019 GeV, the Planck scale
Since these scales have a plausible origin in particle phy
models, we may have an explanation for the ‘‘coincidenc
that the vacuum energy is dynamically important at
present epoch@13,22,23#. Moreover, the small massmf is
technically natural.

The effective scalar field potential in PNGB models
approximated by

V~f!5M4
„11cos~f/ f !…. ~2.7!

Constraints on thef 2M parameter space from gravitation
lensing were analyzed in@13#; the large-scale power spec
trum and CMB anisotropy for these models were studied
@16–18#.

To numerically integrate the field equations, we defi
dimensionless variables

u5
1

H0f

df

dt
, v5

H

H0
and w5

f

f
. ~2.8!

With these definitions, we can rewrite the equations of m
tion in first order form:

ẇ5u, ~2.9!

u̇13uv2
M4

H0
2f 2 sin w50, ~2.10!

v̇1
3

2
v21

2p f 2

mPl
2 u22

4pM4

mPl
2 H0

2 ~11cosw!50. ~2.11!

Here the overdot denotes (1/H0)d/dt. We numerically solve
the above equations assuming thatu(t i)50 and that
v(t i)@1 ~so the universe is initially matter-dominated!.

In Fig. 1 we show the quantitiesu, v, w, Vf , H0t, and
gf as a function of redshift, 11z5a0 /a(t), for the param-
eters f 52.0731018 GeV andM50.004h1/2 eV. The initial
conditions for the field were taken to bewi5f i / f 51.5,
ui50. For this choice of parameters and initial condition
Vf050.78 andH0t050.89. ~For comparison, for aL model
with VL50.78, we would haveH0t051.05; in an open
model with the same value ofVm050.22, the corresponding
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age isH0t050.84.! The u and w curves indicate that the
field is just beginning to decelerate at redshiftz.0.1, as it
nears the potential minimum (wm5p) for the first time. At
high redshift, when the field is nearly static, the adiaba
index gf.0, and the field acts as a pure cosmological co
stant; at late times, when the field kinetic energy becom
appreciable,g rises above unity. In the future, the fiel
would undergo damped oscillations around the minimum
w5p, andg would settle down to unity, the value for pres
sureless dust.

In Figs. 2 and 3, we plot contours ofVf0 andH0t0 as a

FIG. 1. The quantitiesu, v, w, Vf , H0t, andgf as a function
of redshift for the PNGB model withf 52.0731018 GeV and
M50.004h1/2 eV. The initial field conditions are chosen to b
wi5f i / f 51.5, ui50.

FIG. 2. Contours of constantVf0 in the f 2M plane for the
PNGB model, withwi51.5.
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57 4645CONSTRAINTS FROM HIGH REDSHIFT SUPERNOVAE . . .
function of the parametersf andM , also forwi5f i / f 51.5.
~For different choices ofwi , the contour levels would shif
around in thef 2M plane; for comparison, see@13,16#.!
These figures show that there is a range of model param
which give rise to acceptable values ofVf0 andH0t0 . We
also note that, in the region of parameter space studied h
the linear transfer function for the growth of large-sca
structure has an effective shape parameter given
G5(12Vf0)h, but the perturbation amplitude can diffe
from that in the correspondingL model @16#.

B. Power-law potentials

For these models the scalar field potential has the form
an inverse power-law,

V~f!5
k

32p
mPl

4 S mPl

A16pf
D a

, ~2.12!

where k.0 and a.0 are dimensionless constants. Sca
potentials of this form arise, e.g., in dynamically broken s
persymmetry theories in which flat directions are lifted
nonperturbative effects@24#. However, for such a field to be
dynamically relevant today requiresk;102120; this is just
another statement of the cosmological constant problem

Cosmological consequences of scalar fields with suc
potential were investigated in@11,12,14#. For a→0, the sca-
lar field energy-momentum tensor approaches that of a c
ventional cosmological constantL, i.e.,rf5constant; in the
opposite limita→`, the scalar field energy density scal
like that of nonrelativistic matter,rf}a23. More generally,
in the matter-dominated era atz@1, whenrf!rm , the sca-
lar field energy density scales asrf}a23a/(a12). Thus, for
fixed Vf0 , the angular diameter distance to a fixed redsh
and thus the optical depth for gravitational lensing, decrea
asa increases. Unlike the case of a cosmological constan

FIG. 3. Contours of constantH0t0 in the f 2M plane for the
PNGB model, withwi51.5.
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these models it is possible to satisfy the lensing constra
@8# even for low values ofVm0 ~see Ref.@14#!. As we shall
see in the next section, similar statements apply for the h
redshift supernovae constraints.

By defining dimensionless variables,

u5
4Ap

H0mPl

df

dt
, v5

H

H0
, and w5

4Apf

mPl
, ~2.13!

the field equations can be rewritten as

ẇ5u, ~2.14!

u̇13uv2
a

2

kmPl
2

H0
2 w2~a11!50, ~2.15!

v̇1
3

2
v21

u2

8
2

1

8

kmPl
2

H0
2 w2a50. ~2.16!

We numerically evolve the fields using the initial conditio
u(t i)50, v(t i)@1 as before. For fixed values of the mod
parametersa andk, the choice of the initial field valuew(t i)
determines the cosmological parametersVf0 andH0t0 . Al-
ternatively, we can keepa and w(t i) fixed and use
Vm0512Vf0 rather thank as our free parameter; we sha
follow this approach below.

As an example, Fig. 4 shows the evolution fora55,
w(t i)53, andVm050.2. For this modelH0t050.92, larger
than the valueH0t050.85 obtained in an open model wit
the same value ofVm0 . In the next section, we shall see th
this choice of parameters and initial conditions is consist
with the high-z SNe Ia constraints.

C. Exponential potentials

In this case the scalar field potential has the functio
form

FIG. 4. Evolution of the variablesu, v, w, Vf , andH0t0 for a
power-law potential witha55, w(t i)53, andVm050.2.
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4646 57JOSHUA A. FRIEMAN AND IOAV WAGA
V~f!5V0e2f/ f , ~2.17!

with positive constantsV0 and f . Scalar fields with an expo
nential potential have been investigated in the context
power-law inflationary models@25#. Cosmological conse
quences of scalar fields with exponential potentials domin
ing the dynamics of the Universe at late times were analy
in @12,26#.

Again introducing dimensionless variables

u5
1

H0f

df

dt
, v5

H

H0
and w5

f

f
2 lnS V0

mPl
2 H0

2D ,

~2.18!

the field equations become

ẇ5u, ~2.19!

u̇13uv28pbe2w50, ~2.20!

v̇1
3

2
v21

u2

4b
24pe2w50, ~2.21!

whereb5mPl
2 /8p f 2. We numerically evolve the fields with

the initial conditionsu(t i)50, v(t i)@1. The mass paramete
b and the initial field valuew(t i) determine the cosmologica
parametersVm0 andH0t0 . We note thatV0 is not a funda-
mental constant: as Eq.~2.18! shows, changingV0 is equiva-
lent to rescaling the scalar fieldf.

In Fig. 5, we show the evolution of the quantitiesu, v, w,
Vf(t), and H0t with redshift z for the parameter choice
b52.72 and the initial conditionw(t i)51. For this case, we
obtain Vm050.21 andH0t050.94; by comparison, in an
open model with the same value ofVm0 , we would have
H0t050.84. In the next section we show that this choice
model parameters is consistent with the SNe Ia data.

In Fig. 6 we show contours of constantVm0 ~dashed

FIG. 5. Evolution of the variablesu, v, w, Vf , andH0t with
redshift in the exponential potential model withw(t i)51 and
ln b51.
f

t-
d

f

curves! andH0t0 ~solid! in the lnb2w(ti) parameter space
From the point of view of both large scale structure and a
constraints, the most interesting region of the parame
space would seem to be the bottom right-hand portion of
figure, the locus of highestH0t0 for fixed Vm0 . However, as
we shall see in the next section, the SNe Ia constraints p
tically exclude this region. We will show that for values o
the mass parameter lnb&22, the SNe constraints imply
w(t i)*3; for these values of the parameters, howev
Vm0*0.6 andH0t0&0.8.

III. CONSTRAINTS FROM HIGH-REDSHIFT TYPE IA
SUPERNOVAE

A. The SNe observations

There are now two major ongoing programs to system
cally discover high-redshift supernovae. In a recent rep
Perlmutteret al. @19# analyzed a first set of seven type
SNe with redshiftsz50.35– 0.46 and obtained constraints
the cosmological parameters. Their preliminary res
VL,0.51 at the 95% confidence level, strongly constra
models with a cosmological constant. In this section we
these data to constrain the scalar field cosmological mo
described in the preceding section.

The essential idea behind the technique is to apply
classical redshift-magnitude test to SNe Ia as stand
candles. For a source of absolute magnitudeM , the apparent
bolometric magnitudem(z) can be expressed as

m~z!5M15 log dl , ~3.1!

wheredl is the luminosity distance in units ofH0
21,

dl~z!5c~11z!E
0

z dz8

v~z8!
, ~3.2!

and

FIG. 6. Contours of constantVm0 ~dashed curves! and H0t0

~solid! in the lnb2w(ti) parameter space for exponential potentia
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57 4647CONSTRAINTS FROM HIGH REDSHIFT SUPERNOVAE . . .
M5M25 log H0125 ~3.3!

is the ‘‘zero point’’ magnitude~or Hubble intercept magni
tude!, estimated from observations of low-redshift (z,0.1)
SNe Ia. The nearby supernovae data set used in@19# to de-
termineM comprised those 18 SNe Ia discovered in t
Calan/Tololo Supernovae Search@27# for which the first ob-
servations were made no later than 5 days after maximu

Arising from the explosion of accreting white dwarf
SNe Ia do not constitute a completely homogeneous cl
there is significant dispersion in their absolute magnitude
maximum light. However, it has been shown that SN Ia pe
absolute magnitude is correlated with the rate at which
light curve subsequently declines@28#: brighter SNe Ia fade
more slowly. The rate of decline can be quantified, e.g.,
Dm15, the B-magnitude decline in the first 15 days af
maximum. For the Calan/Tololo sample, correction of t
observedB-magnitudes usingDm15 reduced the dispersio
in peak absolute magnitude fromsMB ,corr50.26 to 0.17. A
similar procedure applied to the Perlmutteret al. sample
achieved comparable results, reducingsM from 0.27 to 0.19
mag. The width-luminosity correlation has been further d
veloped with the light-curve shape method@29# and refined
with the use of multiple pass bands@30#; these methods hav
recently been applied to 3 recent high-redshift SNe by G
navichet al. @31#.

In our computations we follow@19# and use the correcte
B-magnitude intercept at Dm1551.1 mag, MB,corr

$1.1%

523.3260.05. Of the 7 SNe Ia in the high-redshift samp
we consider only those 5 that satisfy 0.8,Dm15,1.5, cor-
responding to the range of values covered by the calibra
set of 18 low-redshift supernovae. To construct thex2 val-
ues, we used the outer error bars of the Ref.@19# data points,
obtained by adding in quadrature the error bars ofmB,corr
~the apparent B-magnitudes after width-luminosity corr
tion! to sMB ,corr .

B. Results

1. The PNGB model

We calculate the apparent magnitude-redshift relation
a grid of PNGB models in thef 2M parameter space an
compare with the high-redshift SNe Ia observations. In Fig
we show the corresponding 95%, 90%, and 68% confide
level bounds on the parametersf andM . As for Figs. 2 and
3, these limits apply to models with the initial conditio
w(t i)51.5; for other choices, the bounding contours wou
shift by small amounts in thef 2M plane.

Note the existence of two excluded regions of parame
space, one at the left and the other in the right portion of
figure. To understand the meaning of these regions, cons
three cases with fixedf 5331018 GeV and varying
M50.003, 0.0045, and 0.006 eV. The first and third choi
are excluded by the SNe data while the second is allow
With increasingM , the corresponding values ofVf0 and
H0t0 are ~0.83, 1.07!, ~0.96, 1.11!, and ~0.80, 0.93!. In all
three cases, the Universe isf-dominated (Vf@Vm) for
z&1, but the evolution differs markedly between them.
see this, in Fig. 8 we show the effective adiabatic index
.
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the scalar field,gf(t), as a function of redshift for the thre
cases.

For the first case,M50.003 eV,gf remains close to zero
throughout the evolution; in this case, the low value ofM
implies that the effective scalar massmf&3H0 , and the
nearly static scalar field behaves approximately like a c
mological constant until the present epoch. As a result,
redshift-magnitude relation for this case will be similar
that of aL model withVL.0.83, which is excluded by the
SNe Ia data. In the second case,M50.0045 eV, the evolu-
tion of gf is more pronounced, increasing fromg;0.3 at
z51 to g;1.2 atz50. At the moderate redshifts probed b

FIG. 7. Limits on thef 2M parameter space of PNGB mode
from the first set of high-redshift SNe Ia, forw(t i)51.5; the lowest
and highest contours are 1- and 2-s limits.

FIG. 8. Evolution of the equation of state parametergf with
redshift for three PNGB models withf 5331018 GeV and
w(t i)51.5: M50.003 eV ~solid!, M50.0045 ~dotted!, and
M50.006 eV~dashed!.
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the current SNe observations,z&0.4, the effective equation
of state in this case does not differ drastically from that of th
Einstein–de Sitter model (g51), which is consistent with
the SNe data. In the third case, withM50.006 eV, g in-
creases to large values at recent epochs, again producin
distance-redshift relation appreciably different from that
the Einstein–de Sitter model.

FIG. 9. Apparent magnitude vs redshift relation is shown for th
3 PNGB models corresponding to Fig. 8:M50.003 eV~top solid
line!; 0.0045 eV ~middle dotted line!; 0.006 eV ~bottom dashed
line!. For comparison, we also show the prediction for the standa
Vm51 Einstein–de Sitter model~middle solid line!, and for theL
model at the 95% C.L. limit,VL50.51~top short dashed line!. The
data points are the light curve-corrected data for the 5 high-z SNe
Ia.

FIG. 10. Contours for the 1-s, 90% C.L., and 2-s SNe Ia limits
in the a2Vm0 parameter space for power-law potentials. Als
shown are contours of constantH0t050.85, 0.9, and 0.95.
e

g a
f

In Fig. 9 we display the apparent magnitude-redshift re
tion for these three cases along with the corrected ma
tudes for the five high-redshift SNe Ia used in this analys
For comparison we also show the prediction of t
Einstein–de Sitter model and theL model at the 95% C.L.
limit. The M50.003 eV case is ruled out because, as in
L model, SNe at fixed redshift should be brighter than o
served; in theM50.006 eV case, sources are too faint.

Thus, the behavior of the effective scalar equation of st
provides a qualitative understanding of the topology of
exclusion regions in Fig. 7. By comparing Fig. 7 with Figs.
and 3, we see that the allowed region of parameter sp
includes models with lowVm0 and a relatively high value o
H0t0 ~as compared with open models with the sameVm0!.
For example, forf 52.031018 GeV andM50.0035 eV, pa-
rameter values consistent with the SNe data, we h
Vm050.25 andH0t050.92. An open model with the sam
value ofVm0 would correspond toH0t050.83. A particular
interesting region of parameter space is the area aro
f 51.831027 eV andM50.003 eV, in the protuberance o
Fig. 3. For these parameter values, the age is relatively h
H0t050.87, the magnitude-redshift relation is consiste
with the SNe data, and the present matter density
Vm050.38. With CDM and normalized to COBE, thi
model predicts a large-scale power spectrum consistent
the galaxy clustering data as well@16#.

2. Power-law potentials

As noted above, for fixedw(t i), the model parameters fo
the power-law potentials can be taken to beVm0 and a. In
Fig. 10 we show the 95%, 90%, and 68% C.L. limits fro
the SNe Ia data on the parameter space for these model
in Fig. 4, we have fixedw(t i)53. We also display the con
tours of constantH0t0 . For Vm050.2, 0.3, and 0.4, the
12s SNe limits area>4.45, 4.07, and 3.6, respectively
and the corresponding upper limits onH0t0 are 0.95, 0.91,
and 0.86.

e

rd

FIG. 11. SNe Ia constraints on the parameter space of expo
tial potential models.
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3. Exponential potentials

In Fig. 11 we show the 95.4%, 90%, and 68% C.L. SNe
limits on the lnb2w(ti) parameter space for the exponent
potential models. As noted in the discussion of Fig. 6,
region in the bottom right portion of the figure is not cosm
logically interesting: forw(t i)*2.9, as required at 12s by
the SNe data, Fig. 6 indicates thatVm0*0.55, substantially
larger than that observed on cluster scales. Of more inte
is a region at the upper left of Figs. 6 and 11, whe
w(t i)&1.5 and 0.9& ln b&1.8. This region is allowed by the
SNe data, yieldsH0t0;0.960.1, and corresponds t
Vm0.0.3– 0.4.

IV. CONCLUSIONS

We have studied the observational implications of cosm
logical models in which a classical scalar field dominates
energy density of the Universe at recent epochs. The m
vation for introducing these fields was to provide a dynam
cal model for the cosmological constant, which is favored
observations but whose origin remains obscure. These t
examples were chosen from the literature in order to ill
trate the range of expected behavior in scalar field mod
To date, the most stringent observational constraint on
cosmological constant comes from recent observations
distant type Ia supernovae,VL,0.51 at 22s. We have ex-
,
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e

of

tended this constraint to the scalar field ‘‘dynamical’’L
models. Since the effective equation of state of an evolv
scalar field differs from that of a conventional cosmologic
constant, there are regions of parameter space for which
model predictions are consistent with the SNe observatio
even at relatively high values ofVf . In particular, there are
viable scalar field models withVm0.0.2– 0.3, consisten
with cluster observations, and which are spatially flat, co
sistent with the predictions of inflation. We close by stre
ing that the high-redshift SNe results are preliminary, ba
on a new technique applied to a very small sample. T
on-going SNe searches are continuing to discover SNe Ia
the sample grows and the systematic effects become b
studied, the constraints on cosmological parameters, an
the kinds of cosmological models studied here, should
come more robust.
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