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Recent observations of high-redshift type la supernovae have placed stringent constraints on the cosmologi-
cal constantA. We explore the implications of these SNe observations for cosmological models in which a
classically evolving scalar field currently dominates the energy density of the Universe. Such models have been
shown to share the advantages/ofmodels: compatibility with the spatial flatness predicted by inflation; a
Universe older than the standard Einstein—de Sitter model; and, combined with cold dark matter, predictions
for large-scale structure formation in good agreement with data from galaxy surveys. Compared to the cos-
mological constant, these scalar field models are consistent with the SNe observations for a lower matter
density, Q,,0~0.2, and a higher agdisto=1. Combined with the fact that scalar field models imprint a
distinctive signature on the cosmic microwave background anisotropy, they remain currently viable and should
be testable in the near futurfgs0556-282(198)03106-3

PACS numbes): 98.80.Cq

I. INTRODUCTION scale structure formation with cold dark matt@DM) and a
In recent years, models with a relic cosmological constan early scale-invariant spectrum of primordial density pertur-

d e . ations(as predicted by inflationprovide a better fit to the
A have .recelved cgn&dergble attention for a numbgr of redspserved power spectrum of galaxy clustering than does the
sons. First, dynamical estimates of the mass density on the;nqarg” Q,,=1 CDM model[6]. In particular, the shape
scales of galaxy clusters suggest thgt=0.2-0.1 for the  of the power spectrum of galaxy surveys is generally consis-
matterm that clusters gravitationallywvhere()(t) is the ratio  tent with T =Q,,h=0.25+0.05[7].
of the mean mass density of the universe to the critical pespite these successes, cosmological constant models
Einstein—de Sitter density(t)=87Gp/3H?] [1]. (Some  face several difficulties of their own. On aesthetic grounds, it
density estimates on larger scales are higher but remain cof difficult to understand why the vacuum energy density of
troversial[2].) However, if a sufficiently long epoch of in-  the universep,=Am3 /8, should be of order (1T eV)?,
flation took place during the early universe, the present spaas it must be to have a cosmological impaft,(~1). On
tial curvature should be negligibly small,,;=1. A  dimensional grounds, one would expect it to be many orders
cosmological constant, with effective density parameteiof magnitude larger—of ordeny, or perhapsng,s. Since
QAEA/3H§=1—Qm, is one way to resolve the discrep- this is not the case, we might plausibly assume that some

ancy betweer),, and Q;. physical mechanism sets the ultimate vacuum energy to zero.
The second motivation for the revival of the cosmologicalWhy then is it not zero today?
constant has been the “age crisis” for spatially flat,= 1 In addition, the cosmological constant now faces strong

models, though the evidence currently is more ambiguou§bservational challenges. I models, a larger fraction of

than it was. Estimates of the Hubble expansion parametéfistant quasistellar objectQSOg would be gravitationally

from a variety of methods are converging to lensed than in a\fo universe; surveys for lensed QSOs

h=(Ho/L00 km/sec/Mpcy-0.7:0.1 [3], while determina- have been used (o '3235 ;?esgg;?ngogg;;%tgggh

tions of the age of the universe from globular clusters hav '

typically beeng in the rangé.~13— 1596yr or highef4] {uave approximately the right shape to fit the galaxy cluster-
c S .

These observations imply a value for the “expansion age,”Ing data, the Cosmic Background Explof@lOBE) normal-

= . : ized amplitude is too high, requiring galaxies to be antibi-
Hoto=(Ho/70 km/sec/Mpc)(p/14 Gyrj=1.0+0.2,  higher ased relative to the mass distributitn.

tha_n that for the standard Einstein—de Sitter model, for Motivated by these theoretical and observational difficul-
which Hoto=2/3. On the other hand, for models with & COS- a5 of the cosmological constant, attention has turned to
mological constantHtg can be larger: for _example, for models in which the energy density resides in a dynamical
1,=0.75=1-Qp,, one findsHoto=1.0. This argument gca|ar field rather than in a pure vacuum state. Thigsami-
has recently been called into question, however: revised dea| A models[10—13 were proposed in response to the aes-
terminations ot . based on the Hipparcos distance scale arehetic difficulties of cosmological constant models. They
lower by approximately 2 Gyf5]. If confirmed, this would  were found to partially alleviate their observational problems
largely alleviate the age problem. as well; for example, the statistics of gravitationally lensed
Third, cosmological constant-dominated models for large-QSOs yields a less restrictive upper boundHyi, in these
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models[13-15. In addition, for a range of model param- In this paper, we focus on models in which the scalar field
eters, the amplitude of the density power spectrum is reduceid dynamically important only at relatively recent epochs, at
relative to that of the cold dark matter model with a cosmo-redshiftsz<10. Thus, we model the matter content of the
logical constantfACDM) while its shape is retainefl6].  Universe as a two-component system comprising the scalar
These models also have a signature in the cosmic microwavéeld ¢ and nonrelativistic mattem. Further, we assume that
background(CMB) temperature anisotropy angular power the energy momentum of each component is separately con-
spectrum that is distinctive fromA and Einstein—de Sitter served, so the matter energy density scalespgsa >.
models[16,17. Consequently, they should be tested with the(There is no particle production as in some decayingiod-

next generation of high-resolution CMB temperature mapsels proposed in the literatufé0].)

e.g., from the Microwave Anisotropy Prob@MAP) and The Einstein and scalar field equations can be written as
Planck satellite missions.

In this paper, we consider another set of observational d_H § 2, 2_77 d_¢ 2_ 4_7TV ~0 23
constraints on these cosmological models, arising from high- dt = 2 m3, | dt ma, (=0, (23
redshift supernovae. On-going projects to discover type la
supernovae at redshifts~0.3—1, coupled with improved d?¢ d¢ dVv
techniques to narrow the dispersion in SNe la peak magni- g Hgt %20 (2.4
tudes, have renewed the prospects for determining the cos-
mological parameterd9,20. Based on analysis of an initial where the Hubble parameter
set of 7 high-redshift SNe la, Perlmuttet al. obtained the
bound() ,<0.51 at 95% C.L[19] for spatially flat cosmo- , [lda 2 8m [1/d¢)\?
logical constant models. ForA models, this implies “\adt) T3mg |2\ at V() +pm|- (2.9

Hotp<<0.84 at this limit. These are preliminary results from a

new method; the degree to which they are affected by evomn what follows, it will also be useful to characterize the
lution, absorption, etc., will be determined by the muchinstantaneous equation of state of the scalar field by defining
larger samples now being gatheréithe world sample of its effective adiabatic index,

high-redshift SNe is now roughly a factor of 10 larger than

that used to obtain the bound abave de)\?
We consider constraints on dynamical scalar field models Ps 2 dt
arising from high-redshift SNe la observations and compare Yo()=1+—= Tagz (2.6)
them with constraints oA models. The SNe la implications ¢ (_ +2V(¢)
for some different but related cosmological models—in dt

which there is an extra component described by an arbitrar - . .
fixed equation of state—have recently been studied in RefsﬁOr a_Stgt'\fv;'i?;df’oforrrssssl?rg?égg gzja_czismologmal constant
[21]. Here, we focus on three representative models for “ul-"™ VA=Y P =1

P - A number of models with a dynamical have been dis-
tralight” scalar fields: pseudo Nambu-Goldstone bosons . . ;
(PN%GS) [13] inverse-porz/ver-law potentia[d 1], and expo- cussed in the literaturel0—13. We consider three represen-

nential potentials. In Sec. II, we review the motivation forFat'Ve scalar field potentials that give rise to effective decay-

and cosmic evolution of these models. In Sec. Ill, we derivemg A models.

the corresponding constraints from the SNe observations.

We conclude in Sec. IV. A. The PNGB model
Consider the properties that a massive scalar field must
Il. SCALAR FIELD COSMOLOGICAL MODELS satisfy in order to act approximately like a cosmological con-
stant at recent epochs. Vacuum energy is stored in the poten-
The classical action for a scalar fle'%jhas the form tial energy densitW( ¢)~ M4’ whereM sets the character-

istic height of the potential, and we s¥f¢,)=0 at the
minimum of the potential by the assumption that the funda-
+L, mental vacuum energy of the Universe is zéfar reasons
(2.1)  not yet understood In order to generate a nonzefoat the
present epochg must initially be displaced from the mini-
wheremp, =G~ 2 s the Planck mas® is the Ricci scalar, mum(¢;# ¢, as an initial conditiopy and its kinetic energy
g=detg,,, V(¢) is the scalar field potential, and is the ~ must be relatively small compared to its potential energy.
Lagrangian density of nonrelativistic matter and radiation.This implies that the motion of the field is stithearly over-
For simplicity, we assumep is minimally coupled to the damped, so the scalar mass must be extremely small,
curvature, and we work in units in whigh=c=1. We con- m,=+[V"(¢;)|<3H,=5x10"*h eV. In addition, for
sider spatially flat, homogenous and isotropic cosmologie$) ,~1, the potential energy density should be of order the

1
~R+50"0,¢d,4=V(¢)

m%,fd4\/_
5 1er ) 97O

described by the line element critical density,M*~3H3m3 /8, or M=3x10 %h2 eV.
Thus, the characteristic height and curvature of the potential
ds?=dt?—a?(t)(dx®+dy*+dz), (2.2 are strongly constrained for a classical model of the cosmo-
logical constant.
wherea(t) is the Friedmann-Robertson-Walk@iRW) scale In quantum field theory, such ultra-low-mass scalars are

factor. not generically natural: radiative corrections generate large
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mass renormalizations at each order of perturbation theory. 3 T L LA
To incorporate ultralight scalars into particle physics, their
small masses should be at least “technically” natural, that is, L d
protected by symmetries, such that when the small masses | v
are set to zero, they cannot be generated in any order of w
perturbation theory, owing to the restrictive symmetry.

From the viewpoint of quantum field theory, pseudo e ]
Nambu-Goldstone bosof®NGBS9 are the simplest way to - 1
have naturally ultralow mass, spin-0 particles. PNGB models .
are characterized by two mass scales, a spontaneous symme- | i
try breaking scald (at which the effective Lagrangian still
retains the symmetjyand an explicit breaking scalM (at
which the effective Lagrangian contains the explicit symme-
try breaking term The PNGB mass is them,~M?/f. I Q
Thus, the two dynamical conditions an, and M above
essentially fix these two mass scales to Me-10 2 eV, - Hgt 1
interestingly close to the neutrino mass scale for the . Ve g
Mikheyey-Smirnov-WolfensteifiMSW) solution to the solar o e
neutrino problem, andi~mp,=10'° GeV, the Planck scale. 3 R.5 2 1.5 1
Since these scales have a plausible origin in particle physics 1+z
models, we may have an e_xplanatlo_n for the coincidence FIG. 1. The quantitiesi, v, w, ©0,,, Hot, andy, as a function
that the vacuum energy is dynamically important a}t theos redshift for the PNGB model withf = 2.07x 10 GeV and
present epocli13,22,23. Moreover, the small massi; is  \=0.00s 2 V. The initial field conditions are chosen to be
technically natural. W= ¢; /f=1.5, u;=0.

The effective scalar field potential in PNGB models is
approximated by

r u

age isHyt;=0.84) The u andw curves indicate that the
V(¢)=M*(1+cog ¢/f)). (2.77  field is just beginning to decelerate at redskift0.1, as it
nears the potential minimumv,,= 7) for the first time. At
Constraints on thé—M parameter space from gravitational high redshift, when the field is nearly static, the adiabatic
lensing were analyzed ifl3]; the large-scale power spec- index v4=0, and the field acts as a pure cosmological con-
trum and CMB anisotropy for these models were studied irstant; at late times, when the field kinetic energy becomes
[16-18. appreciable,y rises above unity. In the future, the field
To numerically integrate the field equations, we definewould undergo damped oscillations around the minimum at
dimensionless variables w= 1, andy would settle down to unity, the value for pres-
sureless dust.
1 dé¢ H ¢ In Figs. 2 and 3, we plot contours 6F ,, andHt, as a

With these definitions, we can rewrite the equations of mo- 3
tion in first order form:

w=u, 2.9

25
4

u+3uv — =55 Sinw=0, (2.10
H2f

.+3 2+2m°2 ) 47M*
v =0 u=—
2 M) M Hp

(1+cosw)=0. (2.11)

f/1018 GeV

Here the overdot denotes Hy)d/dt. We numerically solve 15
the above equations assuming thaft))=0 and that I
v(t;)>1 (so the universe is initially matter-dominajed

In Fig. 1 we show the quantities, v, w, (4, Hot, and
Y4 as a function of redshift, +z=a,/a(t), for the param-
etersf=2.07x 108 GeV andM =0.00/'? eV. The initial 0o, L
conditions for the field were taken to be=¢;/f=1.5, 0.002 0.004 0.008 0.008
u;=0. For this choice of parameters and initial conditions, M (hi/? eV)
Q40=0.78 andHyt,=0.89. (For comparison, for & model
with ,=0.78, we would haveHyt,=1.05; in an open FIG. 2. Contours of constarfd 4, in the f—M plane for the
model with the same value 61,,=0.22, the corresponding PNGB model, withw;=1.5.
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M (hi/2 ev) FIG. 4. Evolution of the variables, v, w, Q 4, andHt, for a

FIG. 3. Contours of constargt, in the f—M plane for the power-law potential with=5, w(t;) =3, and(mo=0.2.

PNGB model, withw;=1.5. - . . . .
these models it is possible to satisfy the lensing constraints

[8] even for low values of) o (see Ref[14]). As we shall
see in the next section, similar statements apply for the high
redshift supernovae constraints.

By defining dimensionless variables,

function of the parameterfsandM, also forw;= ¢;/f=1.5.
(For different choices ofv;, the contour levels would shift
around in thef—M plane; for comparison, segl3,16.)
These figures show that there is a range of model parameters
which give rise to acceptable values @f,; andHyty. We

also note that, in the region of paramettér space studied here, u= ﬁ d_d) v= i and w= 4\/;¢, (2.13
the linear transfer function for the growth of large-scale Homp, dt Ho Mp)
structure has an effective shape parameter given b
'=(1-Q4o)h, but the perturbation amplitude can differ
from that in the corresponding model[16].

%/he field equations can be rewritten as

w=u, (2.14
B. Power-law potentials 2
_ . . a kmp, (atD)
For these models the scalar field potential has the form of u+3uv— 2 R2 w =0, (2.19
an inverse power-law, 0
2 2
K m @ .3, ut lkmp
- 4 Pl vt svit -5 w™*=0. (2.16

. . We numerically evolve the fields using the initial conditions
where k>0 and >0 are dimensionless constants. Scalaru(ti)zo, v(t;)>1 as before. For fixed values of the model

potentials of this form arise, e.g., in dynamically broken SU-parametersy andk, the choice of the initial field values(t;)

persymmetry theories in which flat directions are lifted by yatermines the cosmological paramet@rs, andHoto. Al-

nonperturbative effect24]. However, for such a field to be ternatively, we can keepr and w(t) fixed §n°d use
) I

dynamically relevant today requirds~ 10" 2% this is just Qumo=1— 4o rather thark as our free parameter; we shall
another statement of the cosmological constant problem. ¢, 16w this approach below.

Cosmological consequences of scalar fields with such a As an example, Fig. 4 shows the evolution far=5
potgntial were investigated [11,12,14. For «—0, the sca- w(t)=3, andQ, ,=0.2. For this modeHgt,=0.92, larger
lar field energy-momentum tensor approaches that of a conp o ihe valueH ot =0.85 obtained in an open model with

ventional cosmological constant, i.e., p,=constant; inthe o same value o, . In the next section, we shall see that

opposite limita—c, the scalar field égefgy density scales ihis choice of parameters and initial conditions is consistent
like that of nonrelativistic matter ,<a™ . More generally, with the highz SNe la constraints

in the matter-dominated era &1, whenp ,<p,, the sca-
lar field energy density scales agxa3*/(**2). Thus, for
fixed € 40, the angular diameter distance to a fixed redshift,
and thus the optical depth for gravitational lensing, decreases In this case the scalar field potential has the functional
asa increases. Unlike the case of a cosmological constant, iform

C. Exponential potentials
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FIG. 5. Evolution of the variables, v, w, Q,4, andHgt with FIG. 6. Contours of constarfd o (dashed curvgsand Hotg
redshift in the exponential potential model with(t;)=1 and (solid) in the In 8—w(t;)) parameter space for exponential potentials.
In B=1.

p curveg andHyt, (solid) in the InB—w(t;)) parameter space.
V(¢)=Vee ", (217 From the point of view of both large scale structure and age
constraints, the most interesting region of the parameter

with positive constant¥, andf. Scalar fields with an expo- pace would seem to be the bottom right-hand portion of the

nential potential have been investigated in the context of: igure, the locus of highest ot for fixed () However, as

oto mo -
power-law |nflat|on.ary quels§25] Co_smologmal CONSE- \ve shall see in the next section, the SNe la constraints prac-
guences of scalar fields with exponential potentials dommatt cally exclude this region. We will show that for values of
ing the dynamics of the Universe at late times were analyze e mass parameter Bi=—2, the SNe constraints imply

in [A%Z .26]. troducing di ionl iabl w(t;)=3; for these values of the parameters, however,
gain introducing dimensionless variables Q,0=0.6 andH,t,=0.8.
1 d¢ H & Vo
UHofat YT H, and w=+— '”(RM_Hg) , Ill. CONSTRAINTS FROM HIGH-REDSHIFT TYPE IA
(2.18 SUPERNOVAE
the field equations become A. The SNe observations
] There are now two major ongoing programs to systemati-
w=u, (2.19 cally discover high-redshift supernovae. In a recent report
Perimutteret al. [19] analyzed a first set of seven type la
u+3uv—8wBe =0, (2.20 SNe with redshiftz=0.35—-0.46 and obtained constraints on
the cosmological parameters. Their preliminary result,
3 u? w_ 0,<0.51 at the 95% confidence level, strongly constrains
v+ Pk 2+ g5 —4me =0, (22D models with a cosmological constant. In this section we use

4
b these data to constrain the scalar field cosmological models

where 8=m3,/8wf2. We numerically evolve the fields with described in the preceding section.
the initial conditionsu(t;)=0, v(t;)>1. The mass parameter ~ The essential idea behind the technique is to apply the
B and the initial field valuev(t;) determine the cosmological classical redshift-magnitude test to SNe la as standard
parameter€), andHyt,. We note thal/, is not a funda- candles. For a source of absolute magnititiethe apparent
mental constant: as E(R.18 shows, changiny, is equiva-  bolometric magnituden(z) can be expressed as
lent to rescaling the scalar field.

In Fig. 5, we show the evolution of the quantitiesv, w, m(z)=M+5logd,, 3.1
Q4(t), and Hot with redshift z for the parameter choice . o . . ) 1
B=2.72 and the initial conditiom(t;) = 1. For this case, we Whered, is the luminosity distance in units ¢4,
obtain Q,,0=0.21 andHyt;=0.94; by comparison, in an
open model with the same value 6f,,, we would have di(2)= c(l+z)f

Hotp=0.84. In the next section we show that this choice of

model parameters is consistent with the SNe la data.

In Fig. 6 we show contours of constafi,, (dashed and

(@) (3.2
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M=M-5logHy+25 (3.3 3

is the “zero point” magnitudglor Hubble intercept magni- 2.8
tudeg), estimated from observations of low-redshif<{(0.1)
SNe la. The nearby supernovae data set usg¢ddhto de-
termine M comprised those 18 SNe la discovered in the
Calan/Tololo Supernovae Searf@¥] for which the first ob-
servations were made no later than 5 days after maximum.
Arising from the explosion of accreting white dwarfs,
SNe la do not constitute a completely homogeneous class:s
there is significant dispersion in their absolute magnitudes at
maximum light. However, it has been shown that SN la peak
absolute magnitude is correlated with the rate at which the
light curve subsequently declinga8]: brighter SNe la fade
more slowly. The rate of decline can be quantified, e.g., by 68.
Amys, the B-magnitude decline in the first 15 days after :1.¢
maximum. For the Calan/Tololo sample, correction of the
observedB-magnitudes using\m,s reduced the dispersion
in peak absolute magnitude fron‘MB'COH=0.26 to 0.17. A 0-003 0-004 A 0008 0-907

M [h'2 ev]
similar procedure applied to the Perlmutteral. sample o
FIG. 7. Limits on thef —M parameter space of PNGB models

achieved comparable results, reducing from 0.27 to 0.19 _ _ _ e
mag. The width-luminosity correlation has been further deTom the first set of high-redshift SNe la, for(t;) = 1.5; the lowest

veloped with the light-curve shape meth28] and refined ~2"d highest contours are 1- andrdimits.
with the use of multiple pass banf0]; these methods have
recently been applied to 3 recent high-redshift SNe by Gar
navichet al. [31].

In our computations we folloy19] and use the corrected
B-magnitude intercept at Am;s=1.1 mag, ME‘%H
= —3.32+0.05. Of the 7 SNe la in the high-redshift sample,
we consider only those 5 that satisfy €.8m,5<1.5, cor-
responding to the range of values covered by the calibratin
set of 18 low-redshift supernovae. To construct jtfeval-

2.4

0% Gev

2.2

the scalar field;y,(t), as a function of redshift for the three
cases.

For the first caseM =0.003 eV, y,, remains close to zero
throughout the evolution; in this case, the low valuehbf
implies that the effective scalar mass,<3H,, and the
nearly static scalar field behaves approximately like a cos-
mological constant until the present epoch. As a result, the
gedshift—magnitude relation for this case will be similar to

. that of aA model withQ , =0.83, which is excluded by the
ues, we used the outer error bars of the RES] data points, SNe la data. In the second casé=0.0045 eV, the evolu-

obtained by adding in quadrature the error barsmafcor tion of y, is more pronounced, increasing frog~0.3 at

t(itgr?) sz[;arent B-magnitudes after width-luminosity correc-, _ 4 o y~1.2 atz=0. At the moderate redshifts probed by
Mg ,corr *

2 1 T Tt [ r T T T [ T T T T [ T T T T

B. Results L r 4
1. The PNGB model -

We calculate the apparent magnitude-redshift relation for 15 [~ T
a grid of PNGB models in thé—M parameter space and /
compare with the high-redshift SNe la observations. In Fig. 7 L / _
we show the corresponding 95%, 90%, and 68% confidence - ! A
level bounds on the parametdrandM. As for Figs. 2 and y 1r- / A
3, these limits apply to models with the initial condition .
w(t;)=1.5; for other choices, the bounding contours would | ,
shift by small amounts in thé—M plane. L - i

Note the existence of two excluded regions of parameter 0.5 - - i
space, one at the left and the other in the right portion of the - - e -
figure. To understand the meaning of these regions, consider [ e T
three cases with fixedf=3x10'®GeV and varying [
M =0.003, 0.0045, and 0.006 eV. The first and third choices 0 :

are excluded by the SNe data while the second is allowed. 3 2.5 2 1.5 1
With increasingM, the corresponding values &1 ,, and 14z
Hoto are (0.83, 1.07, (0.96, 1.1}, and (0.80, 0.93. In all FIG. 8. Evolution of the equation of state paramejgy with

three cases, the Universe #-dominated (),>Q) for  redshift for three PNGB models withf=3x10'"®GeV and
z=1, but the evolution differs markedly between them. Tow(t;)=1.5: M=0.003 eV (solid, M=0.0045 (dotted, and
see this, in Fig. 8 we show the effective adiabatic index ofvi=0.006 eV(dashedl



4648 JOSHUA A. FRIEMAN AND IOAV WAGA 57

23

22.75

2.5

ln B

2

21.75

5.02 5.04 5.06 5.08 5.1 5.12 5.14
log cz

0.5 1 1.5 2 2.5 3
wlts]

FIG. 9. Apparent magnitude vs redshift relation is shown for the ~F1G- 11. SNe Ia constraints on the parameter space of exponen-
3 PNGB models corresponding to Fig. I8:=0.003 eV/(top solid  tial potential models.
line); 0.0045 eV (middle dotted ling 0.006 eV (bottom dashed
line). For comparison, we also show the prediction for the standard In Fig. 9 we display the apparent magnitude-redshift rela-
Q=1 Einstein—de Sitter modéiiddle solid ling, and for theA  tion for these three cases along with the corrected magni-
model at the 95% C.L. limit{2, = 0.51(top short dashed lineThe  tudes for the five high-redshift SNe la used in this analysis.
data points are the light curve-corrected data for the 5 hiGiNe  For comparison we also show the prediction of the
la. Einstein—de Sitter model and the model at the 95% C.L.

limit. The M=0.003 eV case is ruled out because, as in the

the current SNe observatiorss 0.4, the effective equation A model, SNe at fixed redshift should be brighter than ob-
of state in this case does not differ drastically from that of theserved; in theM =0.006 eV case, sources are too faint.
Einstein—de Sitter modely=1), which is consistent with Thus, the behavior of the effective scalar equation of state
the SNe data. In the third case, wiM=0.006 eV, y in-  provides a qualitative understanding of the topology of the
creases to large values at recent epochs, again producinge¥clusion regions in Fig. 7. By comparing Fig. 7 with Figs. 2

distance-redshift relation appreciably different from that ofand 3, we see that the allowed region of parameter space
the Einstein—de Sitter model. includes models with low o and a relatively high value of

Hoto (as compared with open models with the safhg,).

For example, fof =2.0x 10'® GeV andM =0.0035 eV, pa-
rameter values consistent with the SNe data, we have
0,,0=0.25 andH4t;=0.92. An open model with the same
value of ), would correspond télyty=0.83. A particular
interesting region of parameter space is the area around
f=1.8x10°" eV andM =0.003 eV, in the protuberance of
Fig. 3. For these parameter values, the age is relatively high,
Hoto=0.87, the magnitude-redshift relation is consistent
with the SNe data, and the present matter density is
0,0=0.38. With CDM and normalized to COBE, this
model predicts a large-scale power spectrum consistent with
the galaxy clustering data as wgll6).

2. Power-law potentials

As noted above, for fixed/(t;), the model parameters for
the power-law potentials can be taken to®g, anda. In
Fig. 10 we show the 95%, 90%, and 68% C.L. limits from
the SNe la data on the parameter space for these models. As
in Fig. 4, we have fixedv(t;)=3. We also display the con-
tours of constantHgty. For Q,,,=0.2, 0.3, and 0.4, the
FIG. 10. Contours for the & 90% C.L., and 2r SNe la limits ~1—o SNe limits area=4.45, 4.07, and 3.6, respectively,
in the a— Q.o parameter space for power-law potentials. Also and the corresponding upper limits étyty are 0.95, 0.91,
shown are contours of constafgt,=0.85, 0.9, and 0.95. and 0.86.




57 CONSTRAINTS FROM HIGH REDSHIFT SUPERNOMA. . . 4649

3. Exponential potentials tended this constraint to the scalar field “dynamicak’

In Fig. 11 we show the 95.4%, 90%, and 68% C.L. SNe lamodels. Since the effective equation of state of an evolving
limits on the InB—w(t;) parameter space for the exponential Scalar field differs from that of a conventional cosmological
potential models. As noted in the discussion of Fig. 6, theconstant, there are regions of parameter space for which the
region in the bottom right portion of the figure is not cosmo-model predictions are consistent with the SNe observations,
logically interesting: fow(t;)=2.9, as required att o by even at relatively high values @1, . In particular, there are
the SNe data, Fig. 6 indicates th@f,,=0.55, substantially Viable scalar field models witlf),=0.2—-0.3, consistent
larger than that observed on cluster scales. Of more interestith cluster observations, and which are spatially flat, con-
is a region at the upper left of Figs. 6 and 11, wheresistent with the predictions of inflation. We close by stress-
w(t;)=1.5 and 0.%In 8=<1.8. This region is allowed by the ing that the high-redshift SNe results are preliminary, based
SNe data, yieldsHgty~0.9+0.1, and corresponds to on a new technique applied to a very small sample. The
010=0.3-0.4. on-going SNe searches are continuing to discover SNe la; as

the sample grows and the systematic effects become better
V. CONCLUSIONS studied, the constraints on cosmological parameters, and on

) . S the kinds of cosmological models studied here, should be-
We have studied the observational implications of cOSMoggme more robust.

logical models in which a classical scalar field dominates the

energy density of the Universe at recent epochs. The moti-
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