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p-brane cosmology and phases of Brans-Dicke theory with matter
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We study the effect of the solitonic degrees of freedom in string cosmology following the line of Rama. The
gas of a solitonip-brane is treated as a perfect fluid in a Brans-Dicke-type theory. In this paper, we find exact
cosmological solutions for any Brans-Dicke parameteand for a general parametgrof the equation of state
and classify the cosmology of the solutions on a parameter spageantl w. [S0556-282(98)07408-6

PACS numbd(s): 98.80.Cq, 04.50:h, 11.25.Sq

I. INTRODUCTION Dicke parametew and for a general equation of state and
classify the cosmology of the solutions according to the
Recent developments of string theory suggest that in #&nge of parameters involved.
regime of Planck length curvature, quantum fluctuation is The rest of this paper is organized as follows. In Sec. II,
very large so that string coupling becomes large and conséve set up the action for the-brane cosmology. In Sec. lll,
quently the fundamental string degrees of freedom are nd¥e find an analytic solution for the equation of motion and
weakly coupledgood ones[1]. Instead, solitonic degrees of constraint equation for the general case. In Secs. IV and V,
freedom such ap-branes oD-p-braneg2] are more impor- We study the cosmology of the solution and classify them
tant. Therefore it is a very interesting question to ask whafccording to their behavior. In Sec. IVas a function of the
effect these new degrees of freedom might have on thgllaqon timer is studleq and the b_ehawor of the s_cale f_actor
space-time structure, and especially whether including thesd With respect to the dilaton time in the asymptotic region

degrees of freedom resolves the initial singularity, which is ds studied in Sec._ V. In Sec. VI, using the results in Secs. IV
problem in standard general relativity. and V, we classify the cosmology into several phases and

For the investigation ofp-brane cosmolo the usual investigate the behavior of the scale facioas a function of
'9 . . gy, the cosmic time. In Sec. VII, we summarize and conclude
low-energy effective action coming from th@ function of : . :
; ) . with some discussions.
the string world sheet would not be a good starting point. So
there will be a difference from string cosmolog8]. We
need to find the low-energy effective theory that contains ll. CONSTRUCTION OF THE ACTION
gravity and at the same time reveals the effect of these soli- WITH THE SOLITONIC MATTER

tonic objects. But those are not known. Therefore one can we consider the bosonic part of the effective string action
only guess the answer at this moment. The minimum reand analyze the evolution of @-dimensional homogeneous

quirement is that it should be a gravity theory; therefore itisotropic universe with the solitonic matter included. The
must be a generalization of general relativity. Brans-Dickeaction is given by

(BD) theory[4] is a generic deformation of general relativity

allowing variable gravity coupling. In fact a low-energy

theory of the fundamental string contains the Brans-Dicke Szf d°xy—ge [R—wd,di* $]+ Sy, (1)
theory with a fine tuned deformation parametar=(—1).

Moreover Duff, Khuri, and Lu[5] found that the natural yhere ¢ is the dilaton field and,, is the matter part of the
metric that couples to the-brane is the Einstein metric mul-  5ction. In string theory the BD parameteris fixed as—1.
tiplied by certain power of the dilaton field. In terms of this |, the high curvature regime, the string coupling is also big

new metric, the action that gives thebrane solution be- 5 the solitonigp-brane will be copiously produced since
comes a Brans-Dicke action with a definite deformation paey pecome light and dominate the universe in that regime.
rametero depending orp. Using this action, Ramgb] re-  pyf et al. [5] have shown that in terms of metric which
cently argued that the gas of the solitopidrane[5] treated couples minimally to thep-brane p=d—1), the effective

as a perfect-fluid-type matter in a Brans-Dicke theory Camyction can be written as Brans-Dicke theory with the BD
resolve the initial singularity without any explicit solution. In parameter given by

a previous papel7], we studied this model and found sev-
eral analytic solutions for a few values of the parameter with (D—1)(d—2)—d?
which the coupled dilaton-graviton system could be decou- w=— ) 2
pled by the simple “completing the square” method. In this (D—2)(d—2)—d?
paper, we give exact cosmological solutions for any Brans-
In four dimensions, the BD parameter is givendy: — 3 for
the 0-brane f=0) andw= — 3 for the instanton = —1).
*Email address: chanyong@hepth.hanyang.ac.kr Let us assume that the gas of solitopidrane can be con-
"Email address: sjs@dirac.hanyang.ac.kr sidered as perfect fluid in the Brans-Dicke theory with the
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equation of stat@= yp, y<1. Therefore our starting pointis where we eliminategh andp by Egs.(7) and(8). The varia-
the equation of BD theori8,9]: tion over the constant lapse function, which is omyy,
gives a constraint equation. When we set the lapse function

¢ . . .
v, € G 2 N'to be 1 after varying of the action over the lapse function
R 2 R_7TMV+“’ Iupdvd 7(‘9‘75) N, this constraint equation is the equation of motion of the
Ooo COMponent in Eq(5).
2
+{=0,0,0+3,¢9,6+9,,D°¢
_gw(o—,d])Z}, IIl. ANALYTIC SOLUTION
5 ) Now, we introduce a new time variableas
R—2wD*¢p+ w(dp)“=0, €)

. . . L dt=eP~Daéqr, (10)
where ¢ is the dilaton andD means a covariant derivative.

‘R is the curvature scalar and cosmological metric is given aghen the action becomes
the following form:

1 N iy
dsp?=— LAt +e2U5;dxidx  (i,j=12,...p-1), T
(4)

wheree*®@[=a(t)] is the scale factor and/ is the (con-

%{(D—l)x\'{zwxz}— J/T/poe”],

(11)

where new variables presented in the action are given by

stan) lapse function. Now, we assume that all variables are k=(D-1)(1- ) (w—w,),
the functions of time only. The curvature scald0] in D
dimension is given by r=2(1-y)(0—w,),
R=9"Roo+ 0" R, 4(D-2)
p=— (0= w_y),
D-1 . .
9%°Ro0= N [a+a?],
—2X=(D-1)(1-y)a—¢,
ij b-1. 2 v
g Rij:T[a+(D_1)a 1, 5 Y=a+—X,
K
wherea means the time derivative af. D—2Dy+2y
The energy-momentum tensor of the solitonic matter is W=,
given by (D-1)(1-vy)
T,,=Pg,,+(p+p)U,U,, (6) oo
v 1_ ,yv
whereU , is the fluid velocity. The hydrostatic equilibrium
condition of energy-momentum conservation is D—-1
w_1=— m (12)
p+(D=1)(p+p)a=0. (7)
The constraint equation is written as
Using p= yp, we get the solution
0=(D—1)kY?+ uX2+ pge~ 2%, (13

p=poe” PTHEFYe, ®
wherepg is a positive real constant. The equations of motion
The parametery and o expressed in Eqg1) and (8) are  are written as
free parameters. Our goal is to study how the metric vari-
ables change their behavior for various valuegyaind w. 0=Y,
If we consider only the time dependence, the action can
be brought to the following form:

Po _
0o -2x

0=X— (14)

S=| dtelP~Ya-¢ .
Note thatw_4 in Eq. (12) happens to be the value of the

instanton. Ifw is less tharw _ 4, the kinetic term of the dila-
.. . ton has a negative energy in Einstein frame. So we will con-
+2(D-1)ag+wd?t—Npee (P~ VEE et | sider the case where is larger thanw_ ;. According to the
sign of «, the types of solutions are very different.
9 When k is negative, an exact solution becomes

i{—(D—2)<D—1>'2
\/Kf o
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X=In

’

gcosth)
Y=Ar+B, (15)

wherec, A, B, andq=+/po/|u| are arbitrary real constants.
Using the constraint equation, we determifsdn terms of

other variables
C ) (D-1)x
—=, with §=/———
o M

||

B 2J1+w(D-2)/(D-1)
(16)

A=

If k is zero, then we can obtain a solution of the equations of

motion, but it does not satisfy the constraint equation i§
positive, the solution is

X=In

glsinr(cT)|
Y= ¢ +B 1
—E’T . ( 7)

IV. COSMOLOGY OF THE SOLUTION

Now, we investigate the relation between the cosmic tim<—i‘ef
t and the dilaton time-. Since the solutions of the equations .

of motion have different forms, we study the behaviot af
a function ofr case by case.

A. k<0 case

In this region,w<w,. 7y is always less than 1. We find
the relation betweeh and = using Eq.(10)

T D—-1)yc
t—t0=J' dr’exp{—( )y T’
70 6

— ( 2+ W) In[ gCOSI’(CT')

+(D—1)yB},

(18

where © —1)vyB is a constant. This constant can be ignored

in the limit 7— * . Becausat/dr is always positive defi-
nite, t is a monotonic function of. The behavior of(t) as
a function oft depends crucially on the relation betweten
and 7. Whenr goes to+ «, t is reduced to

1
t—to~—(e'="—e'="0), (19
where
_ZC / D-2
Ti—m (D-1)y 1+wm
H{k+(D-1)y[1+w(1-y)]}|. (20

We define a new concept for our purposes the super-
monotonic function ofr if it is monotonic andt runs the
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entire real line whernr does. Whent is a supermonotonic
function of 7, the universe evolves from infinite past to infi-
nite future. Otherwise the scale factaft) has a starting
(ending point at a finite cosmic time; (t;) which corre-
sponds to initialfinal) singularity. As a mapping, maps the
real line of 7 to

(=) if T_<0<T,,
(—oo,ty) if T_-<O0 and T,<O0,
(tj,») if T_>0 and T,>0,
(t,t) if T,<0<T_.

In the limit 7— * o, the conditionT <0 is expressed as

(D=1)y\/ 1+w§<1[x+(D—l)y{l+w(l—7)}].

(21)

This inequality is divided into two cases according to the
sign of . In each case we obtain the different regionaof
satisfying the conditiom .. <0.

1. y>0 case

Because we have considered only the casew 4, the
t-hand side in Eq(21) is positive definite. To satisfy the
inequality T_<0, the conditions

k+(D—-1)y{l+w(l-y)}>0

e
(D-1)y 1+wm

<[k+(D-1)y{1l+ (1=}

and

(22

must be satisfied. If they do not, we know tfat is positive.
The first inequality in Eq(22) is reduced to the following
inequality:

~ D-(D-1)y
(D-DH)(1-y)

W>W_op. =

(23

It is remarkable that the second inequality in E82) is
written as

(0= wo)(0—w,)>0, (24)
wherew, appeared in the definition of and
D
®o=~p5T7 (29

is the value ofw for the O-brane, see E¢R).

As shown in Fig. 1w, <wg (w,>wg) in the region 0
<y<2/D (y>2/D). Therefore the solution of Eq24) be-
comes
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w ©, 2. y<0 case
—05 0 1/3 09 /2/3 y In this case, the conditioi_ <0 is written as
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FIG. 1. In four dimensions =4), all functions

(0g,@,,...), defined by the relation betwednand 7, are pre-
sented on a parameter spaceyodnd w.

w_1<w<w, for 0<y<

51

w_1<w<wg for y>—. (26)

D

Combining Egs(23) and (26), we find the region of» sat-
isfying the conditionT _<0 as the following:

<w< fi ! < <2
O_ <0<, or m Y 5,
2
w_1<w<wy for 'y>6. (27

The conditionT <0 is

(D=1)y\/ l+w%<—[K+(D—l)y{l+w(l—y)}].

(28)
For this, two conditions,
k+(D-1)y{1+w(l-7y)}<0
and
[ D-2\?
((D—l)y 1tz
<(=[k+(D-DHl+w(1-y}D? (29

must be satisfied at the same time. In E2P), the first in-
equality gives

O<w_, (30
and the second inequality gives E@4) again. Therefore
using Egs(26) and(30), we find the region ofv satisfying
T,<0:

1
for O<y<——.

D—1 (31)

w_1<o<w,

D-1)[y]\/1 D-2
O-DHhyl\iteg=

>—[k+(D-1)y{l+w(l-p)}]. (32
For this, we need

k+(D-1)y{1+w(1-y)}>0

( / D-2
(D-1)y 1+wm

>(=[k+ (D= 1)1+ w(1- )}

or

2

(33
Equation(33) can be simplified as
(34

W_<w OFf wg<w<w,.

Thus the solution, which is the sum of two regions in Eq.
(34), is reduced to
wo<w<w, for y<O. (35

This solution includes the region of the first inequality of Eq.
(34).
Similarly, the conditionT , <O is written as

(D—-1)|y| \/l+wB:i>K+(D—1)y{l+w(l—7)},

(36)
which gives
k+(D—1)y{l+w(l-y)}<0
or
((D—l)'y\/1+wD—_2>2
D-1
>[k+(D-L)ltw(l-y}% (37
The solution of these can be written a<w_,, 0Or wg
<w<w,. From these, the region satisfyifig. <O is
w_1<w<w, for y<O. (39
B. k>0 case
Now we consider positiv, which means
0> o,. (39

Since the solutioiX(7) has a singularity at=0, we have to
treat carefully the behavior df near7=0. The relation be-
tweent and 7 is given by
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o
—(2+ W)In{gbinﬂcfﬂ]

. (40

T D-1)yc
t—t0=j dT’eX[{—( )y T’
70

+(D-1)yB

In the limit 7— 0, the above equation is reduced to
—7a(D-1)yB

1-9_ 1-9
e (L O L !

t—to~sgr(r) (41)

wherenp=2+ (D —1)yv/k and, andt, are real constants.
In case ofp>1,t has a singularity at—0. In the other
case,t has no singularity. So we consider two casgs 1
and n>1.

1. »<1 case

In this caset has no singularity at=0, so we investigate
the behavior ot at 7— * only.
(i) y>0 case. In the case>0, Eq.(40) is reduced to

1
t-to= g (e77—e’=), (42
where
_20 / D-2
Tt—m (D-1)y 1+wm
F{e+(D-D)y[1+w(l-y)]}|. (43

The conditionT_<0 is written as Eq(28) and gives the
solution

wo<w_, and w>wg for 0<'y<5,
2
w<w_, and w>w, for 'y>5, (44)

where we usew>w,. As shown Fig. 1,0g>w_., for 0
<y<2D andw,>w_., for y>2/D. Therefore there is no
solution satisfying the conditioff _<<0. HenceT_ is posi-
tive.

Now we investigate the behavior efat 7— +o. The
conditionT , <O is written as in Eq(22). Applying a similar
method used in the above analysis, the region shtisfying
T, <0 is summarized as the following:

we<w for 0<y<

51

2
y>—=.

w.<w for D (45)
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FIG. 2. In four dimensions =4), the parameter space is clas-
sified by the relation betweenand 7.

(i) y<0 case. Through the same calculation, we can
show thatT _ is positive andT , is negative for all negative

Y-

2. p>1 case

In this case, the behavior ¢fis singular atr=0. 7, and
t, can be ignored due to the divergencd @t~ 7. From Egs.
(40) or (41), we know thatdt/dr is always positive definite
except a singular point=0. The conditionp>1 is reduced
to

D
>—m.—(x)n. (46)

Under this condition, the region of is divided into —«
<7<0 and <7<, Near7=0, we obtain the behavior of
t characterized by the sign of When 7 goes to zero from
below,t in Eq. (41) is written as

q—ﬂe(D—l)vB 1

CTOED ot “n

When 7 goes to zero from above,is reduced as the follow-
ing:
q7 ﬂe(Dfl)'}’B 1

R Y

— (48)

Thust—+®» as 7——0 butt——«~ as 7—+0. We also
have to examine the behaviors pfat 7— *. However,
these were already described when we discussed thercase
<1.

To describe the behavior dfas a function ofr at 7—
+o and 7—0, we classify the parameter spaceyofind w
using all results obtained in this section. These are shown in
Fig. 2.

The behavior of the as a function ofr in Fig. 2 is
summarized as the following.

(1) In region I, T_>0 and T, <0 (w<w,). t evolves
from finite initial time t; to finite final timet; as 7 runs
(— oo, + oo),

(2) In region II, T_<0 andT, <0 (w<w,). t evolves
from negative infinity to finite final time; as = runs (— o,
+0).



(3 In region Ill, T_->0 and T, <0 (w>w, and w
>w,). In this region, becausthas a singular behavior at
7=0, the region ofr divided into —<7<0 and <7
<. Thereforet has two branches for any given values)of
andw. For —o<7<0,t evolves from finite initial time; to
positive infinity. For 0<7<<e, t evolves from negative in-
finity to finite final timet;.

(4) In region IV, T_>0 and T,>0 (0>, and w
<w,). In this region, becausehas no singularityt evolves
from finite initial time t; to positive infinity as7 runs
(—oc,—i—oo)_

(5) In region V, T_>0 and T,>0 (w>w, and o
>w,). For the same reason as explained in region till,
evolves from finite initial timet; to positive infinity for
—o<7<0 andt evolves from negative infinity to positive
infinity for 0 <7<<eo.

(6) In region VI, T_<0 andT, >0 (w<w,). t evolves
from negative infinity to positive infinity as runs (— o,
+00),

(7) In region VI, T_>0 andT, >0 (v<w,).t evolves
from finite initial time t; to positive infinity as7 runs
(—oc'—l—oo)_

V. THE BEHAVIOR OF THE SCALE FACTOR
Now we study the behavior of the scale factras a
function of 7.

A. k<0 case

We consider the exponent of the scale faet¢r). Using
Eq. (10), a(7) is given by

2 /1+ D-2
m a)—D_1CT

+{l+w(l- y)}ln[gcosr(m-)

a(7)=

+B. (49

In the limit 7— *+, the scale factoa(7) =e*(? is rewritten
as

a(r)~eH=", (50)

whereH.. is defined as
2c
H+ =

[ D-2
=T 1+wmi{1+w(l—)’)}}. (51)

Just ast(7), the behavior ofa(7) at 7— * = is determined
by the sign ofH.. . Using this and the sign of .., we can
read the behavior of the scale fac&qt) as a function of in
the asymptotic regions.

For negativex (w<w,), H_>0 can be written as

\/1 D72 i iwa
+wm> +w(l-").

1+ w(l-7y)<O0

(52

This means
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FIG. 3. In four dimensions =4), all functions
(we,@,,...), defined by the relation betweea(r) and 7, are

presented on a parameter spaceyaind w.

or
(\/1+w5)2>[1+w(1—y)]2. (53
D-1
The first inequality in Eq(53) is equivalent to
w<w,, (54)

wherew, was written in Eq(12). As one can see in Fig. 3,
o <w,if y<1/(D-1) andw,>w, if y>1/(D—-1). To-
gether withw<w,, the first inequality condition gives the
region of w satisfyingH_>0

w_<w<w, for ’y<m (55)
The second inequality in E@53) is rewritten as
w(w—w,)<0. (56)

Notice that w,<0 if y<D/2(D—-1) and w,>0 if y
>D/2(D-1). Sincew<w, , we can rewrite Eq(56) as

D
Y= 5

for 20=1)°

O<w<w,

(57)

As a result, Eqs(55) and(57) are the regions ob satisfying
the conditionH _>0.
Now we consider the conditioH ., >0:

/ D-2
1+wm>—[1+w(l—7)].

Like the caseH _>0, this inequality is divided into two
inequalities

(58)

1+ w(l—7y)>0

g |
1+wm >[1+w(l-7y)]°.

The first inequality gives the region of satisfying the con-
dition H,>0:

or

(59
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. (60)

w>w

Usingw>w_4, andx<0, Eq.(60) is rewritten as the follow-
ing:

1
w_1<o<w, for ’y>m (61)

The second inequality in E459) has the same region af
that appeared in Eq57). Because the region ab in Eq.
(61) contains the region ob in Eq. (57), Eq. (61) is the
solution satisfying the conditiorl , >0.

B. k>0 case

The exponent of the scale factaf ) is given by

2 D-2
a/(T)Zm 1+meT

—{1+w(1- y)}ln(%|sinr(07)| +B. (62

1. »<1 case

In this case, the scale factaf 7) has no singular behav-
ior. So we investigate the behavior afat 7— * .
In the limit 7— *«, a(7) is given by

a(r)~eH=7, (63

whereH.. is defined as

2c D-2
H. 1+wm1{1+w(l—y)}}.

=k

The conditionH _>0 is exactly equal to Eq58) due to
the sign ofx. When we solve Eq(58) under the condition
x>0, o>, instead ofo<w, must be applied to the solu-
tion. Then we obtain the region af satisfying the condition
H_>0:

w>w, for all v (64)

The conditionH >0 described by Eq(52) and o>,
gives the region ofv:

w,.<w<0 for (65)

Y<2b-1)°

2. p>1 case

In this case, we need to investigate the behavi@(ae) at
7—0 because(r) has a singular behavior at=0. In the
limit 7— 0, a(7) is written as

a(r)~e®(ql )21, (66)
For w>w,, where—(1- y)(w— w,) is negativea(r) goes
to infinite at 7—0. And for w<w,,, a(7) goes to zero at
—0. The behavior o&(7) at 7— *o was described already
when we discussed the cagell.

From these studies, we classify the behavioaff) on
the parameter space gfand w. This is shown in Fig. 4.
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FIG. 4. In four dimensionsd =4), the parameter space is clas-
sified by the behavior o&(7).

As shown in Fig. 4, we summarize the behavioragf)
as the following.

(2) In region I,H_>0 andH, <0 (w<w,). In the limit
7— =+, a(7) goes to a zero size.

(2) Inregion Il,H_<0 andH , >0 (w<w,). In the limit
7— =+, a(7) goes to an infinite size.

(3) In region Ill, H_.>0 andH ;>0 (w<w,). In the
limit 7— —o0, a(7) goes to a zero size. And in the limit
—o, a(7) goes to an infinite size.

(4) In region IV, H_.>0 andH,>0 (0>w, and o
<w,). In this region, the behavior dfis not singular, so we
need not consider the behaviorafr) at 7=0. In the limit
7— —o, a(7) goes to a zero size. And in the limit—oo,
a(7) goes to an infinite size.

(5) Inregion V,H_>0 andH , >0 (¢>w,, o> w0, and
w<w,). In this region, becausehas a singular behavior at
7=0, we interpret the behavior af( 7) as the following: For
—o<7<0, a(7) goes to a zero size at—»—o and 7—0.
For 0<7<x, a(7) goes to a zero size at—~0 and goes to
an infinite size at— .

(6) In region VI, H_.>0 andH,>0 (0> w,, 0>w,
and w>w,). For —o<7<0, a(7) goes to a zero size at
— —o and goes to an infinite size at-0. For 0< 7<<oo,
a(7) goes to an infinite size at—0 and at7— .

(7) In region VII, H_>0 andH, <0 (0> w0,, 0>w,
and w>w,). For —o<7<0, a(7) goes to a zero size at
— —o and goes to an infinite size at-0. For 0<7<<oo,
a(7) goes to an infinite size at—0 and goes to a zero size
at 7— oo,

VI. THE PHASES OF COSMOLOGY

Using all the results obtained from Secs. IV and V, we
now classify the parameter space pfand o into several
phases and find the behavioraft). These phases are char-
acterized according to the behaviorafft).

Using Egs.(19) and (50) in the limit 7— *o0, a(t) is
written as

a()~[T-(t—t;)]"-"T-

T— =

a()~[T.(t=t)]"+'T+ at e, (67)
wheret; andt;, which were defined in Sec. IV, are real

constant. Notice that (t;) becomes the starting poifithe
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FIG. 5. In four dimensionsd =4), the parameter space is clas-
sified by the behavior cé(t).

ending pointin the casel_ >0 (T, <0) and that; (t;) can
be neglected in the cage <0 (T, >0) becaus¢— *x~ as
T— X0,

Now, we describe two examplegi) For T_<0 and
H_/T_>0, T_(t—t;) is positive anda(t) goes to positive
infinite att— —co; (ii) for T_>0 andH_/T_>0,t can be
defined in the regiom>t; only. Sot—t; is positive anda(t)

goes to zero at—t;. Other cases can be analyzed using the?

same method.

In the regionw>w, and »>1, we must investigate the
behavior ofa(t) at ~—0. From Eqs.(47), (48), and (66),
a(t) is obtained as

a(t)~Ex [t|2A- Nle-e)/(n= Dl (69)

where

E=[q(7— 1)]2(1*y)(w*wu)/(7ifl)lkl

x @Bl1=2(D-1)y(1=-y)(0=-w,)/(n=1D]«|]

is a positive value becauspand (1- y) are positive in the
previous definitiona(t) goes to zero at— *+o (7— *=0) in
the casew<w, anda(t) goes to infinite at— * o in the
casew>w,.

As shown in Fig. 5, using the sign @f. andH .. with the
consideration of the behavior ef(t) at 7—0, the behavior
of a(t) in each region is characterized as the following.

(1) Inregion I, T_>0,T,<0,H_>0, andH, <0. The
universe evolves from a zero size at finite initial tilpe¢o a
zero size at finite final time; .

(2) Inregion I, T_<0,T,<0,H_>0, andH_, <0. The

universe evolves from a zero size at negative infinity to a

zero size at finite final time; .

(3) In region Ill, T_>0, T,>0, H_>0, andH_,>0.
The universe evolves from a zero size at finite initial titne
to an infinite size at positive infinity.

(4) In region IV, T_<0, T,>0, H_<0, andH, >0.

The universe evolves from an infinite size at negative infinity9

to an infinite size at positive infinity.

(5) Inregion V,T_>0,T,>0,H_<0, andH,>0. The
universe evolves from an infinite size at finite initial time
to an infinite size at positive infinity.

(6) In region VI, T_>0, T,>0, H_>0, andH, >0.
The universe evolves from a zero size at finite initial titne
to an infinite size at positive infinity.
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From (7) to (11) below, we consider the casg>1 and
> w, in whicht has a singular behavior at-0. In these
cases, we can divide the region ointo —~<7<0 and 0
<7<, Therefore we obtain two branches aft) having
different behaviors in each region of

(7) Inregion VI, T_>0,T,>0,H_>0, andH ,>0. In
the region— o< 7<0, the universe evolves from a zero size
at finite initial timet; to a zero size at positive infinity. In the
region 0<7<«, the universe evolves from a zero size at
negative infinity to an infinite size at positive infinity.

(8) In region VIII, T_>0, T,.<0,H_>0, andH __>0.

In the region—»<7<0, the universe evolves from a zero
size at finite initial timet; to a zero size at positive infinity.
In the region B< 7<<o0, the universe evolves from a zero size
at negative infinity to an infinite size at finite final tinbg.

(9) In region IX,T_>0,T,>0,H_>0, andH_>0. In
the region—o < 7<0, the universe evolves from a zero size
at finite initial timet; to an infinite size at positive infinity. In
the region B<7<0, the universe evolves from an infinite
size at negative infinity to an infinite size at positive infinity.

(10) In region X,T_>0,T,.<0,H_>0, andH,>0. In
the region— o< 7<0, the universe evolves from a zero size
t finite initial timet; to an infinite size at positive infinity. In
the region B<7<x, the universe evolves from an infinite
size at negative infinity to an infinite size at finite final time
t

f .

(11) Inregion XI,T_>0,T,<0,H_>0, andH . <0. In
the region— o< 7<0, the universe evolves from a zero size
at finite initial timet; to an infinite size at positive infinity. In
the region B< <<, the universe evolves from an infinite
size at negative infinity to a zero size at finite final titpe

VII. DISCUSSION AND CONCLUSION

In this paper we studied the effect of the gas of a solitonic
p-brane by treating them as a perfect fluid in the Brans-
Dicke theory. We found exact cosmological solutions for any
Brans-Dicke parametes®» and for general constang and
classified the cosmology of the solutions according to the
parameters involved. We assumed that the universe is domi-
nated by one kind gp-brane and they are treated as a perfect
fluid. We found the analytic solution which is singularity
free for somey andw. It is very interesting thaa(t) has no
initial and final singularities at finite initial and final cosmic
time in regions IV and Vlla(t) has also an inflation behav-
ior in region VII. So we need to study more intensively the
behavior ofa(t) in these regions.

Presumably the value of as well asw should be fixed
oncep is fixed. Without knowing the value of for a given

p, the classification was the best thing we could do. It would
be very interesting to determine the paramejefor the
given p. Also we need more rigorous justification of our
basis for thep-brane cosmology. If what we took as basis
oes wrong, then what we have done is just Brans-Dicke
cosmology in the presence of some perfect fluid type matter.
We wish that more study of the effect of the solitons in the
string cosmology be done in the future.
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