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p-brane cosmology and phases of Brans-Dicke theory with matter
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We study the effect of the solitonic degrees of freedom in string cosmology following the line of Rama. The
gas of a solitonicp-brane is treated as a perfect fluid in a Brans-Dicke-type theory. In this paper, we find exact
cosmological solutions for any Brans-Dicke parameterv and for a general parameterg of the equation of state
and classify the cosmology of the solutions on a parameter space ofg andv. @S0556-2821~98!07408-6#

PACS number~s!: 98.80.Cq, 04.50.1h, 11.25.Sq
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I. INTRODUCTION

Recent developments of string theory suggest that i
regime of Planck length curvature, quantum fluctuation
very large so that string coupling becomes large and co
quently the fundamental string degrees of freedom are
weakly coupledgoodones@1#. Instead, solitonic degrees o
freedom such asp-branes orD-p-branes@2# are more impor-
tant. Therefore it is a very interesting question to ask w
effect these new degrees of freedom might have on
space-time structure, and especially whether including th
degrees of freedom resolves the initial singularity, which i
problem in standard general relativity.

For the investigation ofp-brane cosmology, the usua
low-energy effective action coming from theb function of
the string world sheet would not be a good starting point.
there will be a difference from string cosmology@3#. We
need to find the low-energy effective theory that conta
gravity and at the same time reveals the effect of these s
tonic objects. But those are not known. Therefore one
only guess the answer at this moment. The minimum
quirement is that it should be a gravity theory; therefore
must be a generalization of general relativity. Brans-Dic
~BD! theory@4# is a generic deformation of general relativi
allowing variable gravity coupling. In fact a low-energ
theory of the fundamental string contains the Brans-Dic
theory with a fine tuned deformation parameter (v521!.
Moreover Duff, Khuri, and Lu@5# found that the natura
metric that couples to thep-brane is the Einstein metric mu
tiplied by certain power of the dilaton field. In terms of th
new metric, the action that gives thep-brane solution be-
comes a Brans-Dicke action with a definite deformation
rameterv depending onp. Using this action, Rama@6# re-
cently argued that the gas of the solitonicp-brane@5# treated
as a perfect-fluid-type matter in a Brans-Dicke theory c
resolve the initial singularity without any explicit solution. I
a previous paper@7#, we studied this model and found se
eral analytic solutions for a few values of the parameter w
which the coupled dilaton-graviton system could be dec
pled by the simple ‘‘completing the square’’ method. In th
paper, we give exact cosmological solutions for any Bra
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Dicke parameterv and for a general equation of state a
classify the cosmology of the solutions according to t
range of parameters involved.

The rest of this paper is organized as follows. In Sec.
we set up the action for thep-brane cosmology. In Sec. III
we find an analytic solution for the equation of motion a
constraint equation for the general case. In Secs. IV and
we study the cosmology of the solution and classify th
according to their behavior. In Sec. IV,t as a function of the
dilaton timet is studied and the behavior of the scale fac
a with respect to the dilaton timet in the asymptotic region
is studied in Sec. V. In Sec. VI, using the results in Secs.
and V, we classify the cosmology into several phases
investigate the behavior of the scale factora as a function of
the cosmic timet. In Sec. VII, we summarize and conclud
with some discussions.

II. CONSTRUCTION OF THE ACTION
WITH THE SOLITONIC MATTER

We consider the bosonic part of the effective string act
and analyze the evolution of aD-dimensional homogeneou
isotropic universe with the solitonic matter included. T
action is given by

S5E dDxA2ge2f@R2v]mf]mf#1Sm , ~1!

wheref is the dilaton field andSm is the matter part of the
action. In string theory the BD parameterv is fixed as21.
In the high curvature regime, the string coupling is also b
and the solitonicp-brane will be copiously produced sinc
they become light and dominate the universe in that regi
Duff et al. @5# have shown that in terms of metric whic
couples minimally to thep-brane (p5d21), the effective
action can be written as Brans-Dicke theory with the B
parameterv given by

v52
~D21!~d22!2d2

~D22!~d22!2d2
. ~2!

In four dimensions, the BD parameter is given byv52 4
3 for

the 0-brane (p50) andv52 3
2 for the instanton (p521).

Let us assume that the gas of solitonicp-brane can be con
sidered as perfect fluid in the Brans-Dicke theory with t
4620 © 1998 The American Physical Society
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57 4621p-BRANE COSMOLOGY AND PHASES OF BRANS-DICKE . . .
equation of statep5gr,g,1. Therefore our starting point i
the equation of BD theory@8,9#:

Rmn2
gmn

2
R5

ef

2
Tmn1vH ]mf]nf2

gmn

2
~]f!2J

1$2]m]nf1]mf]nf1gmnD2f

2gmn~]f!2%,

R22vD2f1v~]f!250, ~3!

wheref is the dilaton andD means a covariant derivative
R is the curvature scalar and cosmological metric is given
the following form:

dsD
252

1

Ndt21e2a~ t !d i j dxidxj ~ i , j 51,2, . . . ,D21!,

~4!

where ea(t)@5a(t)# is the scale factor andN is the ~con-
stant! lapse function. Now, we assume that all variables
the functions of time only. The curvature scalar@10# in D
dimension is given by

R5g00R001gi jRi j ,

g00R005
D21

N @ä1ȧ2#,

gi jRi j 5
D21

N @ä1~D21!ȧ2#, ~5!

whereȧ means the time derivative ofa.
The energy-momentum tensor of the solitonic matter

given by

Tmn5pgmn1~p1r!UmUn , ~6!

whereUm is the fluid velocity. The hydrostatic equilibrium
condition of energy-momentum conservation is

ṙ1~D21!~p1r!ȧ50. ~7!

Using p5gr, we get the solution

r5r0e2~D21!~11g!a. ~8!

The parametersg and v expressed in Eqs.~1! and ~8! are
free parameters. Our goal is to study how the metric v
ables change their behavior for various values ofg andv.

If we consider only the time dependence, the action
be brought to the following form:

S5E dt e~D21!a2fF 1

AN
$2~D22!~D21!ȧ2

12~D21!ȧḟ1vḟ2%2ANr0e2~D21!~11g!a1f G ,

~9!
s

e

s

i-

n

where we eliminatedp andr by Eqs.~7! and~8!. The varia-
tion over the constant lapse function, which is onlyg00,
gives a constraint equation. When we set the lapse func
N to be 1 after varying of the action over the lapse functi
N, this constraint equation is the equation of motion of t
g00 component in Eq.~5!.

III. ANALYTIC SOLUTION

Now, we introduce a new time variablet as

dt5e~D21!a2fdt. ~10!

Then the action becomes

S5E dtF 1

AN
$~D21!kẎ21mẊ2%2ANr0e22XG ,

~11!

where new variables presented in the action are given b

k5~D21!~12g!2~v2vk!,

n52~12g!~v2vn!,

m52
4~D22!

k
~v2v21!,

22X5~D21!~12g!a2f,

Y5a1
n

k
X,

vk52
D22Dg12g

~D21!~12g!2
,

vn52
1

12g
,

v2152
D21

D22
. ~12!

The constraint equation is written as

05~D21!kẎ21mẊ21r0e22X, ~13!

wherer0 is a positive real constant. The equations of moti
are written as

05Ÿ,

05Ẍ2
r0

m
e22X. ~14!

Note thatv21 in Eq. ~12! happens to be the value of th
instanton. Ifv is less thanv21, the kinetic term of the dila-
ton has a negative energy in Einstein frame. So we will c
sider the case wherev is larger thanv21. According to the
sign of k, the types of solutions are very different.

Whenk is negative, an exact solution becomes
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4622 57CHANYONG PARK AND SANG-JIN SIN
X5 lnFq

c
cosh~ct!G ,

Y5At1B, ~15!

wherec, A, B, andq5Ar0 /umu are arbitrary real constants
Using the constraint equation, we determineA in terms of
other variables

A5
c

d
, with d5A2

~D21!k

m

5
uku

2A11v~D22!/~D21!
.

~16!

If k is zero, then we can obtain a solution of the equation
motion, but it does not satisfy the constraint equation. Ifk is
positive, the solution is

X5 lnFq

c
usinh~ct!uG ,

Y5
c

d
t1B. ~17!

IV. COSMOLOGY OF THE SOLUTION

Now, we investigate the relation between the cosmic ti
t and the dilaton timet. Since the solutions of the equation
of motion have different forms, we study the behavior oft as
a function oft case by case.

A. k<0 case

In this region,v,vk . g is always less than 1. We fin
the relation betweent andt using Eq.~10!

t2t05E
t0

t

dt8expF ~D21!gc

d
t8

2S 21
~D21!gn

k D lnH q

c
cosh~ct8!J 1~D21!gB G ,

~18!

where (D21)gB is a constant. This constant can be ignor
in the limit t→6`. Becausedt/dt is always positive defi-
nite, t is a monotonic function oft. The behavior ofa(t) as
a function of t depends crucially on the relation betweent
andt. Whent goes to6`, t is reduced to

t2t0'
1

T6
~eT6t2eT6t0!, ~19!

where

T65
2c

uku F ~D21!gA11v
D22

D21

6$k1~D21!g@11v~12g!#%G . ~20!

We define a new concept for our purpose:t is the super-
monotonic function oft if it is monotonic andt runs the
f

e

d

entire real line whent does. Whent is a supermonotonic
function of t, the universe evolves from infinite past to infi
nite future. Otherwise the scale factora(t) has a starting
~ending! point at a finite cosmic timet i (t f) which corre-
sponds to initial~final! singularity. As a mapping,t maps the
real line oft to

~2`,`! if T2,0,T1 ,

~2`,t f ! if T2,0 and T1,0,

~ t i ,`! if T2.0 and T1.0,

~ t i ,t f ! if T1,0,T2 .

In the limit t→6`, the conditionT6,0 is expressed as

~D21!gA11v
D22

D21
,7@k1~D21!g$11v~12g!%#.

~21!

This inequality is divided into two cases according to t
sign of g. In each case we obtain the different region ofv
satisfying the conditionT6,0.

1. g>0 case

Because we have considered only the casev.v21, the
left-hand side in Eq.~21! is positive definite. To satisfy the
inequalityT2,0, the conditions

k1~D21!g$11v~12g!%.0

and

S ~D21!gA11v
D22

D21D 2

,@k1~D21!g$11v~12g!%#2, ~22!

must be satisfied. If they do not, we know thatT2 is positive.
The first inequality in Eq.~22! is reduced to the following
inequality:

v.v2` :52
D2~D21!g

~D21!~12g!
. ~23!

It is remarkable that the second inequality in Eq.~22! is
written as

~v2v0!~v2vk!.0, ~24!

wherevk appeared in the definition ofk and

v052
D

D21
~25!

is the value ofv for the 0-brane, see Eq.~2!.
As shown in Fig. 1,vk,v0 (vk.v0) in the region 0

,g,2/D (g.2/D). Therefore the solution of Eq.~24! be-
comes
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v21,v,vk for 0,g,
2

D
,

v21,v,v0 for g.
2

D
. ~26!

Combining Eqs.~23! and ~26!, we find the region ofv sat-
isfying the conditionT2,0 as the following:

v21,v,vk for
1

D21
,g,

2

D
,

v21,v,v0 for g.
2

D
. ~27!

The conditionT1,0 is

~D21!gA11v
D22

D21
,2@k1~D21!g$11v~12g!%#.

~28!

For this, two conditions,

k1~D21!g$11v~12g!%,0

and

S ~D21!gA11v
D22

D21D 2

,„2@k1~D21!g$11v~12g!%#…2, ~29!

must be satisfied at the same time. In Eq.~29!, the first in-
equality gives

v,v2` ~30!

and the second inequality gives Eq.~24! again. Therefore
using Eqs.~26! and ~30!, we find the region ofv satisfying
T1,0:

v21,v,vk for 0,g,
1

D21
. ~31!

FIG. 1. In four dimensions (D54), all functions
(vk ,vh , . . . ), defined by the relation betweent and t, are pre-
sented on a parameter space ofg andv.
2. g<0 case

In this case, the conditionT2,0 is written as

~D21!uguA11v
D22

D21

.2@k1~D21!g$11v~12g!%#. ~32!

For this, we need

k1~D21!g$11v~12g!%.0

or

S ~D21!gA11v
D22

D21D 2

.„2@k1~D21!g$11v~12g!%#…2. ~33!

Equation~33! can be simplified as

v2`,v or v0,v,vk . ~34!

Thus the solution, which is the sum of two regions in E
~34!, is reduced to

v0,v,vk for g,0. ~35!

This solution includes the region of the first inequality of E
~34!.

Similarly, the conditionT1,0 is written as

~D21!uguA11v
D22

D21
.k1~D21!g$11v~12g!%,

~36!

which gives

k1~D21!g$11v~12g!%,0

or

S ~D21!gA11v
D22

D21D 2

.@k1~D21!g$11v~12g!%#2. ~37!

The solution of these can be written asv,v2` or v0
,v,vk . From these, the region satisfyingT1,0 is

v21,v,vk for g,0. ~38!

B. k>0 case

Now we consider positivek, which means

v.vk . ~39!

Since the solutionX(t) has a singularity att50, we have to
treat carefully the behavior oft neart50. The relation be-
tweent andt is given by
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t2t05E
t0

t

dt8expF ~D21!gc

d
t8

2S 21
~D21!gn

k D lnH q

c
usinh~ct8!uJ

1~D21!gB G . ~40!

In the limit t→0, the above equation is reduced to

t2t0'sgn~t!
q2he~D21!gB

12h
@ utu12h2ut0u12h#, ~41!

whereh521(D21)gn/k andt0 andt0 are real constants
In case ofh.1, t has a singularity att→0. In the other
case,t has no singularity. So we consider two casesh,1
andh.1.

1. h<1 case

In this case,t has no singularity att50, so we investigate
the behavior oft at t→6` only.

~i! g.0 case. In the casek.0, Eq. ~40! is reduced to

t2t0'
1

T6
~eT6t2eT6t0!, ~42!

where

T65
2c

ukuF ~D21!gA11v
D22

D21

7$k1~D21!g@11v~12g!#%G . ~43!

The conditionT2,0 is written as Eq.~28! and gives the
solution

v,v2` and v.v0 for 0,g,
2

D
,

v,v2` and v.vk for g.
2

D
, ~44!

where we usev.vk . As shown Fig. 1,v0.v2` for 0
,g,2/D and vk.v2` for g.2/D. Therefore there is no
solution satisfying the conditionT2,0. HenceT2 is posi-
tive.

Now we investigate the behavior oft at t→1`. The
conditionT1,0 is written as in Eq.~22!. Applying a similar
method used in the above analysis, the region ofv satisfying
T1,0 is summarized as the following:

v0,v for 0,g,
2

D
,

vk,v for g.
2

D
. ~45!
~ii ! g,0 case. Through the same calculation, we c
show thatT2 is positive andT1 is negative for all negative
g.

2. h>1 case

In this case, the behavior oft is singular att50. t0 and
t0 can be ignored due to the divergence ofutu12h. From Eqs.
~40! or ~41!, we know thatdt/dt is always positive definite
except a singular pointt50. The conditionh.1 is reduced
to

v.2
D

~D21!~12g2!
:5vh . ~46!

Under this condition, the region oft is divided into 2`
,t,0 and 0,t,`. Neart50, we obtain the behavior o
t characterized by the sign oft. Whent goes to zero from
below, t in Eq. ~41! is written as

t'
q2he~D21!gB

~h21!

1

~2t!h21
. ~47!

Whent goes to zero from above,t is reduced as the follow-
ing:

t'2
q2he~D21!gB

~h21!

1

th21
. ~48!

Thus t→1` as t→20 but t→2` as t→10. We also
have to examine the behaviors oft at t→6`. However,
these were already described when we discussed the cah
,1.

To describe the behavior oft as a function oft at t→
6` andt→0, we classify the parameter space ofg andv
using all results obtained in this section. These are show
Fig. 2.

The behavior of thet as a function oft in Fig. 2 is
summarized as the following.

~1! In region I, T2.0 and T1,0 (v,vk). t evolves
from finite initial time t i to finite final time t f as t runs
(2`,1`).

~2! In region II, T2,0 andT1,0 (v,vk). t evolves
from negative infinity to finite final timet f ast runs (2`,
1`).

FIG. 2. In four dimensions (D54), the parameter space is cla
sified by the relation betweent andt.
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~3! In region III, T2.0 and T1,0 (v.vk and v
.vh). In this region, becauset has a singular behavior a
t50, the region oft divided into 2`,t,0 and 0,t
,`. Thereforet has two branches for any given values ofg
andv. For 2`,t,0, t evolves from finite initial timet i to
positive infinity. For 0,t,`, t evolves from negative in-
finity to finite final time t f .

~4! In region IV, T2.0 and T1.0 (v.vk and v
,vh). In this region, becauset has no singularity,t evolves
from finite initial time t i to positive infinity ast runs
(2`,1`).

~5! In region V, T2.0 and T1.0 (v.vk and v
.vh). For the same reason as explained in region IIIt
evolves from finite initial timet i to positive infinity for
2`,t,0 and t evolves from negative infinity to positive
infinity for 0,t,`.

~6! In region VI, T2,0 andT1.0 (v,vk). t evolves
from negative infinity to positive infinity ast runs (2`,
1`).

~7! In region VII, T2.0 andT1.0 (v,vk). t evolves
from finite initial time t i to positive infinity ast runs
(2`,1`).

V. THE BEHAVIOR OF THE SCALE FACTOR

Now we study the behavior of the scale factora as a
function of t.

A. k<0 case

We consider the exponent of the scale factora(t). Using
Eq. ~10!, a(t) is given by

a~t!5
2

ukuFA11v
D22

D21
ct

1$11v~12g!% lnH q

c
cosh~ct!J G1B. ~49!

In the limit t→6`, the scale factora(t)5ea(t) is rewritten
as

a~t!'eH6t, ~50!

whereH6 is defined as

H65
2c

ukuFA11v
D22

D21
6$11v~12g!%G . ~51!

Just ast(t), the behavior ofa(t) at t→6` is determined
by the sign ofH6 . Using this and the sign ofT6 , we can
read the behavior of the scale factora(t) as a function oft in
the asymptotic regions.

For negativek (v,vk), H2.0 can be written as

A11v
D22

D21
.11v~12g!. ~52!

This means

11v~12g!,0
or

SA11v
D22

D21D 2

.@11v~12g!#2. ~53!

The first inequality in Eq.~53! is equivalent to

v,vn , ~54!

wherevn was written in Eq.~12!. As one can see in Fig. 3
vk,vn if g,1/(D21) andvk.vn if g.1/(D21). To-
gether withv,vk , the first inequality condition gives the
region ofv satisfyingH2.0

v21,v,vk for g,
1

~D21!
. ~55!

The second inequality in Eq.~53! is rewritten as

v~v2vk!,0. ~56!

Notice that vk,0 if g,D/2(D21) and vk.0 if g
.D/2(D21). Sincev,vk , we can rewrite Eq.~56! as

0,v,vk for g.
D

2~D21!
. ~57!

As a result, Eqs.~55! and~57! are the regions ofv satisfying
the conditionH2.0.

Now we consider the conditionH1.0:

A11v
D22

D21
.2@11v~12g!#. ~58!

Like the caseH2.0, this inequality is divided into two
inequalities

11v~12g!.0

or

SA11v
D22

D21D 2

.@11v~12g!#2. ~59!

The first inequality gives the region ofv satisfying the con-
dition H1.0:

FIG. 3. In four dimensions (D54), all functions
(vk ,vn , . . . ), defined by the relation betweena(t) and t, are
presented on a parameter space ofg andv.
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v.vn . ~60!

Usingv.v21 andk,0, Eq.~60! is rewritten as the follow-
ing:

v21,v,vk for g.
1

D21
. ~61!

The second inequality in Eq.~59! has the same region ofv
that appeared in Eq.~57!. Because the region ofv in Eq.
~61! contains the region ofv in Eq. ~57!, Eq. ~61! is the
solution satisfying the conditionH1.0.

B. k>0 case

The exponent of the scale factora(t) is given by

a~t!5
2

ukuFA11v
D22

D21
ct

2$11v~12g!% lnH q

c
usinh~ct!uJ G1B. ~62!

1. h<1 case

In this case, the scale factora(t) has no singular behav
ior. So we investigate the behavior ofa at t→6`.

In the limit t→6`, a(t) is given by

a~t!'eH6t, ~63!

whereH6 is defined as

H65
2c

ukuFA11v
D22

D21
7$11v~12g!%G .

The conditionH2.0 is exactly equal to Eq.~58! due to
the sign ofk. When we solve Eq.~58! under the condition
k.0, v.vk instead ofv,vk must be applied to the solu
tion. Then we obtain the region ofv satisfying the condition
H2.0:

v.vk for all g. ~64!

The conditionH1.0 described by Eq.~52! and v.vk
gives the region ofv:

vk,v,0 for g,
D

2~D21!
. ~65!

2. h>1 case

In this case, we need to investigate the behavior ofa(t) at
t→0 becausea(t) has a singular behavior att50. In the
limit t→0, a(t) is written as

a~t!'eB~qutu!22~12g!~v2vn!/uku. ~66!

For v.vn , where2(12g)(v2vn) is negative,a(t) goes
to infinite att→0. And for v,vn , a(t) goes to zero att
→0. The behavior ofa(t) at t→6` was described alread
when we discussed the caseh,1.

From these studies, we classify the behavior ofa(t) on
the parameter space ofg andv. This is shown in Fig. 4.
As shown in Fig. 4, we summarize the behavior ofa(t)
as the following.

~1! In region I,H2.0 andH1,0 (v,vk). In the limit
t→6`, a(t) goes to a zero size.

~2! In region II,H2,0 andH1.0 (v,vk). In the limit
t→6`, a(t) goes to an infinite size.

~3! In region III, H2.0 and H1.0 (v,vk). In the
limit t→2`, a(t) goes to a zero size. And in the limitt
→`, a(t) goes to an infinite size.

~4! In region IV, H2.0 and H1.0 (v.vk and v
,vh). In this region, the behavior oft is not singular, so we
need not consider the behavior ofa(t) at t50. In the limit
t→2`, a(t) goes to a zero size. And in the limitt→`,
a(t) goes to an infinite size.

~5! In region V,H2.0 andH1.0 (v.vk , v.vh and
v,vn). In this region, becauset has a singular behavior a
t50, we interpret the behavior ofa(t) as the following: For
2`,t,0, a(t) goes to a zero size att→2` and t→0.
For 0,t,`, a(t) goes to a zero size att→0 and goes to
an infinite size att→`.

~6! In region VI, H2.0 and H1.0 (v.vk , v.vh
andv.vn). For 2`,t,0, a(t) goes to a zero size att
→2` and goes to an infinite size att→0. For 0,t,`,
a(t) goes to an infinite size att→0 and att→`.

~7! In region VII, H2.0 andH1,0 (v.vk , v.vh
andv.vn). For 2`,t,0, a(t) goes to a zero size att
→2` and goes to an infinite size att→0. For 0,t,`,
a(t) goes to an infinite size att→0 and goes to a zero siz
at t→`.

VI. THE PHASES OF COSMOLOGY

Using all the results obtained from Secs. IV and V, w
now classify the parameter space ofg and v into several
phases and find the behavior ofa(t). These phases are cha
acterized according to the behavior ofa(t).

Using Eqs.~19! and ~50! in the limit t→6`, a(t) is
written as

a~ t !'@T2~ t2t i !#
H2 /T2 at t→2`,

a~ t !'@T1~ t2t f !#
H1 /T1 at t→`, ~67!

where t i and t f , which were defined in Sec. IV, are rea
constant. Notice thatt i (t f) becomes the starting point~the

FIG. 4. In four dimensions (D54), the parameter space is cla
sified by the behavior ofa(t).
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ending point! in the caseT2.0 (T1,0) and thatt i (t f) can
be neglected in the caseT2,0 (T1.0) becauset→6` as
t→6`.

Now, we describe two examples:~i! For T2,0 and
H2 /T2.0, T2(t2t i) is positive anda(t) goes to positive
infinite at t→2`; ~ii ! for T2.0 andH2 /T2.0, t can be
defined in the regiont.t i only. Sot2t i is positive anda(t)
goes to zero att→t i . Other cases can be analyzed using
same method.

In the regionv.vk and h.1, we must investigate the
behavior ofa(t) at t→0. From Eqs.~47!, ~48!, and ~66!,
a(t) is obtained as

a~ t !'E3utu2~12g!~v2vn!/~h21!uku, ~68!

where

E5@q~h21!#2~12g!~v2vn!/~h21!uku

3eB[122~D21!g~12g!~v2vn!/~h21!uku]

is a positive value becauseq and (12g) are positive in the
previous definition.a(t) goes to zero att→6` (t→60) in
the casev,vn and a(t) goes to infinite att→6` in the
casev.vn .

As shown in Fig. 5, using the sign ofT6 andH6 with the
consideration of the behavior ofa(t) at t→0, the behavior
of a(t) in each region is characterized as the following.

~1! In region I,T2.0, T1,0, H2.0, andH1,0. The
universe evolves from a zero size at finite initial timet i to a
zero size at finite final timet f .

~2! In region II,T2,0, T1,0, H2.0, andH1,0. The
universe evolves from a zero size at negative infinity to
zero size at finite final timet f .

~3! In region III, T2.0, T1.0, H2.0, and H1.0.
The universe evolves from a zero size at finite initial timet i
to an infinite size at positive infinity.

~4! In region IV, T2,0, T1.0, H2,0, and H1.0.
The universe evolves from an infinite size at negative infin
to an infinite size at positive infinity.

~5! In region V,T2.0, T1.0, H2,0, andH1.0. The
universe evolves from an infinite size at finite initial timet i
to an infinite size at positive infinity.

~6! In region VI, T2.0, T1.0, H2.0, and H1.0.
The universe evolves from a zero size at finite initial timet i
to an infinite size at positive infinity.

FIG. 5. In four dimensions (D54), the parameter space is cla
sified by the behavior ofa(t).
e

a

y

From ~7! to ~11! below, we consider the caseh.1 and
v.vk in which t has a singular behavior att→0. In these
cases, we can divide the region oft into 2`,t,0 and 0
,t,`. Therefore we obtain two branches ofa(t) having
different behaviors in each region oft.

~7! In region VII, T2.0, T1.0, H2.0, andH1.0. In
the region2`,t,0, the universe evolves from a zero siz
at finite initial timet i to a zero size at positive infinity. In the
region 0,t,`, the universe evolves from a zero size
negative infinity to an infinite size at positive infinity.

~8! In region VIII, T2.0, T1,0, H2.0, andH1.0.
In the region2`,t,0, the universe evolves from a zer
size at finite initial timet i to a zero size at positive infinity
In the region 0,t,`, the universe evolves from a zero siz
at negative infinity to an infinite size at finite final timet f .

~9! In region IX, T2.0, T1.0, H2.0, andH1.0. In
the region2`,t,0, the universe evolves from a zero siz
at finite initial timet i to an infinite size at positive infinity. In
the region 0,t,`, the universe evolves from an infinit
size at negative infinity to an infinite size at positive infinit

~10! In region X,T2.0, T1,0, H2.0, andH1.0. In
the region2`,t,0, the universe evolves from a zero siz
at finite initial timet i to an infinite size at positive infinity. In
the region 0,t,`, the universe evolves from an infinit
size at negative infinity to an infinite size at finite final tim
t f .

~11! In region XI,T2.0, T1,0, H2.0, andH1,0. In
the region2`,t,0, the universe evolves from a zero siz
at finite initial timet i to an infinite size at positive infinity. In
the region 0,t,`, the universe evolves from an infinit
size at negative infinity to a zero size at finite final timet f .

VII. DISCUSSION AND CONCLUSION

In this paper we studied the effect of the gas of a solito
p-brane by treating them as a perfect fluid in the Bra
Dicke theory. We found exact cosmological solutions for a
Brans-Dicke parameterv and for general constantg and
classified the cosmology of the solutions according to
parameters involved. We assumed that the universe is do
nated by one kind ofp-brane and they are treated as a perf
fluid. We found the analytic solution which is singularit
free for someg andv. It is very interesting thata(t) has no
initial and final singularities at finite initial and final cosm
time in regions IV and VII.a(t) has also an inflation behav
ior in region VII. So we need to study more intensively th
behavior ofa(t) in these regions.

Presumably the value ofg as well asv should be fixed
oncep is fixed. Without knowing the value ofg for a given
p, the classification was the best thing we could do. It wo
be very interesting to determine the parameterg for the
given p. Also we need more rigorous justification of ou
basis for thep-brane cosmology. If what we took as bas
goes wrong, then what we have done is just Brans-Di
cosmology in the presence of some perfect fluid type mat
We wish that more study of the effect of the solitons in t
string cosmology be done in the future.
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