
PHYSICAL REVIEW D 15 APRIL 1998VOLUME 57, NUMBER 8
Gravitational collapse to toroidal, cylindrical, and planar black holes

JoséP. S. Lemos
Departamento de Astrofı´sica, Observato´rio Nacional-CNPq, Rua General Jose´ Cristino 77, 20921 Rio de Janeiro, Brazil

and Departamento de Fı´sica, Instituto Superior Te´cnico, Avenida Rovisco Pais 1, 1096 Lisboa, Portugal
~Received 4 September 1997; published 18 March 1998!

Gravitational collapse of non-spherical symmetric matter leads inevitably to non-static external spacetimes.
It is shown here that gravitational collapse of matter with toroidal topology in a toroidal anti–de Sitter
background proceeds to form a toroidal black hole. According to the analytical model presented, the collapsing
matter absorbs energy in the form of radiation~be it scalar, neutrinos, electromagnetic, or gravitational! from
the exterior spacetime. Upon decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black membranes, respectively. The results have
implications on the hoop conjecture.@S0556-2821~98!04308-2#

PACS number~s!: 97.60.Lf, 04.20.Jb
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I. INTRODUCTION

Black hole ~BH! solutions in an anti–de Sitter~AdS!
background whose event horizons have planar@1#, cylindri-
cal @2#, and toroidal topology@2,3# have been found recentl
~see also @4#!. Since the importance of the spheric
Schwarzschild BH has come from its role as the final state
complete gravitational collapse of a star, it is useful to inv
tigate if these BHs with different topology may also emer
from gravitational collapse of some matter distribution.

An important feature of spherical collapse onto
Schwarzschild BH is that, due to Birkhoff’s theorem, spa
time is static outside the matter and the collapse proce
without emission of gravitational waves. The same is true
the collapse of spherical matter in an AdS background,
in a spacetime with negative cosmological constant. On
other hand, it is well known that the collapse of cylindric
systems proceeds with emission of gravitational waves@5–8#
which creates additional problems in the modeling of th
collapsing systems. It has also been known for a long t
that collapsing infinite dust cylinders form naked singula
ties @5#, not BHs. This violates the cosmic censorship co
jecture @9# ~which forbids the existence of singularities n
surrounded by a horizon!, but not the hoop conjecture@5#
@which states that BHs form when and only when a massM
gets compacted into a region whose circumference in ev
direction is less than its Scwharzschild circumference 4pM
(G5C51)#. The cosmic censorship is formulated to be a
plied to realistic gravitational collapse, which in princip
does not include cylindrical matter. However, in a certa
sense, cylindrical collapse can simulate the collapse of a
nite spindle@10#; near the central regions of the spindle t
collapse behaves as if the spindle is an infinite cylinder.
sides these possible astrophysical applications, the coll
of infinite cylinders probes and tests the structure of gen
relativity.

In a previous work it has been conjectured by us@3# that,
since there are known cylindrical BH solutions with a neg
tive cosmological constant, collapse of cylindrical matter i
background with negative cosmological constant could fo
a cylindrical BH ~i.e., a black string! rather than a naked
singularity, violating in this way the hoop conjecture but n
the cosmic censorship. In this work we show that inde
570556-2821/98/57~8!/4600~6!/$15.00
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cylindrical BHs ~or black strings! form from gravitational
collapse of a cylindrical matter distribution. As the azimuth
cylindrical coordinate can be decompactified this solut
also shows that planar BHs~or black membranes! can also
form from gravitational collapse of a planar distributio
Moreover, since the ‘‘vertical’’ infinite cylindrical coordi-
nate can, in turn, be compactified, this solution also sho
that toroidal BHs can form from gravitational collaps
Throughout this paper we will work mainly with the toroida
topology in mind, although the results can be modifi
straightforwardly to the other two cases, the main differen
being the topologies themselves and the mass param
which in the planar case is a surface mass density, in
cylindrical case is a linear mass density, and in the toroi
case it is a mass. In brief, we show that black membran
black strings and toroidal BHs form from gravitational co
lapse.

Contrary to the spherical case, and as in the usual cy
drical collapse, the metric outside the collapsing toroidal~cy-
lindrical or planar! matter is non-static. However, surpris
ingly, the problem can be solved exactly by using a modifi
Vaidya metric appropriate to the toroidal~cylindrical or pla-
nar! collapse~see Sec. II!. Of course, this metric obeys Ein
stein field equations, and it describes the gravitational fi
associated with a toroidal~cylindrical or planar! flow of un-
polarized scalar, neutrino, electromagnetic or gravitatio
radiation in the geometrical optics approximation. The in
rior solution we use is a modified Friedmann solution a
applicable to toroidal~cylindrical or planar! topology ~Sec.
III !. By making a smooth matching at the interface~Sec. IV!
we find that the flux of waves modeled by the modifi
Vaidya metric is an incoming flux, and consequently that
mass parameter of the collapsing matter grows up to
formation of the BH. By carefully choosing the right amou
of incoming flux one avoids the emission of graviation
waves from the collapsing matter. Finally, one can study
formation from the inside and outside points of view~Sec.
V! and draw some conclusions~Sec. VI!.

II. EXTERIOR RADIATING SOLUTION

As stated in the introduction, the Schwarzschild met
represents the external field of a collapsing spherical s
4600 © 1998 The American Physical Society
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57 4601GRAVITATIONAL COLLAPSE TO TOROIDAL, . . .
implying that in spherical collapse there is no emission
gravitational waves. Another spherically symmetric soluti
of Einstein field equations is the Vaidya metric which d
scribes the gravitational field of an isotropic flow of unpola
ized radiation in the geometrical optics approximation. It
usually employed in the study of imploding radiation she
@11#, as well as in modeling the external field of radiatin
stars@12# and evaporating BHs@13#. In the case of static o
collapsing spherical stars, one can usually neglect the eff
of this radiation and treat the external field as being given
the Schwarzschild metric. However, one should consider
Vaidya metric in the latest stages of the collapse whe
supernova and a neutron star are formed accompanie
copious emission of neutrinos and photons. It is also poss
that a BH forms directly from the collapsing star witho
passing through the strong radiative stage, in which case
Schwarzschild metric gives again an accurate description
the external field. If the star is slightly non-spherical, t
latest stages of such a direct collapse onto a BH prod
some gravitational waves which have to be treated as a
turbation on the Schwarzschild spacetime. The effects
adding a negative cosmological constant do not alter r
cally the description. The main difference would be that
outside spacetime should be described by the Schwarzsc
AdS metric or when relevant by the Vaidya-AdS metric.

The situation changes drastically for a star with no
spherical topology, the reason being that, since there is
analogue of Birkhoff’s theorem, a collapsing non-spheri
symmetric star produces a non-static external spacet
Notwithstanding, as we will show, one can treat the probl
analytically for the gravitational collapse of toroidal~cylin-
drical or planar! configurations.

The Einstein field equations are

Gab1Lgab58pTab , ~1!

whereGab , gab , Tab are the Einstein, the metric and the th
energy-momentum tensors, respectively, andL is the cosmo-
logical constant (G5C51). The equations admit the fol
lowing solution:

ds252S a2r 22
qm~v !

ar Ddv212dvdr1r 2~du21df2!,

~2!

for an energy-momentum tensor given by

Tab5
q

8par 2

dm~v !

dv
kakb ,

ka52da
v , kaka50. ~3!

Here a[A2L/3, v is the advanced time coordinate wi
2`,v,`, r is the radial coordinate with 0,r ,`, and
u,f are the coordinates which describe the two-dimensio
zero-curvature space generated by the two-dimensional c
mutative Lie groupG2 of isometries. The topologies of thi
two-dimensional space can be~i! T25S13S1, the flat torus
model @G25U(1)3U(1)#, ~ii ! R3S1, the cylindrically
symmetric model@G25R3U(1)#, and ~iii ! R2, the planar
model @G25E2#. In the toroidal case we choose 0<u
,2p, 0<f,2p, in the cylindrical case2`,u,`, 0
f
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<f,2p, and in the planar case2`,u,`, 2`,f,`.
The parameterq has different values depending on the t
pology of the two-dimensional space. For the torusq
52a/p andm(v) is a mass, for the cylinderq54 andm(v)
is a mass per unit length, and for the planeq52/a andm(v)
is a mass per unit area.

Metric ~2! is a modified Vaidya solution pertinent to to
oidal ~cylindrical or planar! topology. From the energy
momentum tensor given in Eq.~3! one can infer that it de-
scribes the gravitational field of a toroidal~cylindrical or
planar! flow of unpolarized radiation in the geometrical o
tics approximation, and it can be used in modeling the ex
nal fields of matter with toroidal~cylindrical or planar! to-
pology radiating or absorbing energy. Besides model
radiation in the form of neutrinos or electromagnetic wav
Tab in Eq. ~3! can also represent scalar or gravitational
diation in an adequate limit. Now, noting that the ener
density of the radiation ise5(q/8par 2)dm/dv, one sees
that the weak energy condition for the radiation is satisfi
wheneverdm/dv >0; i.e., the radiation is imploding. Fo
m5const one has a vacuum and Eq.~2! describes a static
toroidal ~cylindrical or planar! black hole in ingoing~ad-
vanced time! Eddington-Finkelstein coordinates. The valu
of the parameterq given above were taken from Arnowitt
Deser-Misner~ADM ! masses of the corresponding sta
BHs found in@1–3#.

In these coordinates, lines withv5const represent incom
ing radial null vectors whose generator vectors have the fo
ka5(0,21,0,0), with ka5(21,0,0,0) @see Eq. ~3!#. The
generatorsl a of outgoing null lines do not have this simpl
form. By the conditionsl al a50 and l aka521 one findsl a

5„1,1
2 @a2r 22qm(v)/ar #,0,0…. The equation for outgoing

radial null geodesicsr (v) can easily be found by putting
ds250 in metric ~2!, yielding,

dr

dv
5

1

2 S a2r 22
qm~v !

ar D . ~4!

The exterior solution discussed here is to be matched to
interior metric presented in the following section.

III. INTERIOR MATTER SOLUTION

We now assume that the interior spacetime is made o
homogeneous collapsing dust cloud whose spacetime is
scribed through a flat Friedmann-Robertson-Walker ty
metric given by

ds252dt21a~ t !2@dl21 l 2~du21df2!#, ~5!

wheret and l are comoving coordinates, and again,u,f are
the coordinates which describe the two-dimensional ze
curvature space~torus, cylinder or plane!. Because of the
Einstein field equations~1!, we have to set to zero the usu
Friedmann-Robertson-Walker curvature parameterk50
without loss of generality. For dust the energy-moment
tensor is given by

Tab5ruaub , ~6!

wherer is the energy density of the matter, andua its four-
velocity. The Einstein field equations~1! yield
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1

a2 S da

dt D
2

5
8p

3
r2a2, ~7!

1

a

d2a

dt2
52

1

2a2 S da

dt D
2

2
3a2

2
, ~8!

where againa[A2L/3. Integration of these equation
gives

r5
r0

sin2S 3

2
at D ~9!

and

a5a0 sin2/3S 3

2
at D , ~10!

wherer0 anda0 are constants, withr053a2/8p. Restoring
the constantG one hasr053a2/8pG, which means that the
initial density is independent of the mass and radius of
initial configuration~a similar situation was found in@14# for
gravitational collapse in Lovelock gravity!. This could be
expected, since for very smalla one findsr51/6pGt2, re-
covering the flat model with toroidal topology and~almost!
zero cosmological constant, similar in its time dependenc
the spherical flat Friedmann model. Note also thatra3

5const. Definingt̄ [ 3
2 at, one sees that the solution is val

in the time range 0, t̄ ,p. From 0, t̄ ,p/2 the matter is
expanding, and fromp/2, t̄ ,p the matter is collapsing. A
t̄ 5p/2 there is a moment of time symmetry. We are int
ested in the collapsing part of the solution, and thus we t
p/2< t̄ ,p. The energy density of the matter as well as t
Kretschmann scalar blows up att̄ 5p, indicating the forma-
tion of a spacetime singularity.

IV. MATCHING

To match the interior and exterior spacetimes, across
interface of separationS, we use the junction conditions

ds1
2 ] S5ds2

2 ] S , ~11!

Kab
1 ] S5Kab

2 ] S , ~12!

whereKab is the extrinsic curvature,

Kab
6 52ne

6
]2x6

e

]ja]jb 2ne
6Gcd

e
]x6

c

]ja

]x6
d

]jb , ~13!

andne
6 are the components of the unit normal vector toS in

the coordinatesx6 , andj represents the intrinsic coordinate
in S. The subscripts6 represent the quantities taken in th
exterior and interior spacetimes. Both the metrics and
extrinsic curvatures in Eqs.~11! and~12! are evaluated atS.
It is useful to define a metric intrinsic toS as

dsS
2 52dt21R2~t!~du21df2!, ~14!

wheret is the proper time onS.
e

to

-
e

e

n

e

We analyze first the surfaceS as viewed from the exterio
spacetime. To match the exterior metric with the metric onS
we use the junction condition~11! and metrics~2!, ~14!, to
obtain

r ~v !] S5R~t! ~15!

and

a2r 22
qm~v !

ar
22

dr

dvG
S

5
1

~dv/dt!2G
S

, ~16!

where both equations are evaluated onS. The unit normal to
S in the exterior spacetime is

ne
15

1

A22
drS

dv
1a2r S

2 2
qm~v !

ar S

S 2
drS

dv
,1,0,0D .

~17!

Using Eq. ~16! and dr/dv5(dr/dt)/(dv/dt) we can put
Eq. ~17! in the form

ne
15S 2

drS

dt
,
dvS

dt
,0,0D . ~18!

From now on, we will usually omit the subscriptS to denote
evaluation at the interface. From Eq.~13! we then get the
Kab

1 component of interest:

Kuu
1 52r

dr

dt
1r

dv
dt S a2r 22

qm~v !

ar D , ~19!

valid on S, of course.
We now analyze the surfaceS as viewed from the interior

spacetime. To match the interior metric with the metric onS
we use the junction condition~11! and metrics~5!, ~14!, to
obtain

l Sa~ t !5R~t! ~20!

and

dt

dt
51, ~21!

valid onS. The unit normal toS in the interior spacetime is

ne
25~0,a~ t !,0,0!. ~22!

From Eq.~13! we then have

Kuu
2 5 l Sa~ t !5R~t!. ~23!

In order to have a smooth matching one imposes that
extrinsic curvatures~19! and ~23! must be equal,Kuu

1

5Kuu
2 , yielding

2r
dr

dt
1r

dv
dt S a2r 22

qm~v !

ar D5R~t!, ~24!

an equation valid onS. Using Eqs.~24! and ~16! we find
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57 4603GRAVITATIONAL COLLAPSE TO TOROIDAL, . . .
dv
dt

5
1

12dR/dt
, ~25!

on S. Using now Eqs.~24!, ~16!, ~25! and ~7! we have

m~v !5
a

q S 8p

3
rR32R~t! D . ~26!

Recalling from Eqs.~9! and ~10! that rR35r0R0
3 with

R5a(t) l S @see Eq.~20!#, and using Eq.~15! we find, from
Eq. ~26!,

m~v !5
a

q S 8p

3
r0R0

32r S~v ! D , ~27!

which gives the evolution of the mass with the external ti
v. Equation~27! is the most important result of the sectio
By Eq. ~20!, we knowR(t)5 l Sa(t), and from Eq.~10! we
have the evolution of the radius of the surface of the star w
time t ~or t, since dt5dt!. Then from Eq.~25! one gets
v5v(t), or its inverse t5t(v). Since from Eq. ~15!
r S(v)5R(t), we find thatr S(v) is a known function ofv.
Unfortunately, integration of Eq.~25! to find v(t) cannot be
performed analytically. However, since for collapsedR/dt
,0, we find thatv increases monotonically witht or t.
Thus, as the collapse proceedsr S decreases from its maxi
mum valuer S0

[r S(v0)5R0 , wherev0 denotes the time a
the onset of the collapse. Therefore, we have obtained
result that the mass of the cloudm(v) increases during the
collapse due to the incoming flux of the high frequency
diation, be it in the form of scalar, neutrinos, electromagne
or gravitational waves.

It is convenient to define an initial massm0 in terms ofr0
and r S0

5R0 through the equation

qm0

a
5

8p

3
r0r S

0
32r S0

. ~28!

Then Eq.~27! can be written as

m~v !5m01
a

q
@r S0

2r S~v !#. ~29!

This equation will be used in the next section.

V. BLACK HOLE FORMATION

To study BH formation we distinguish two situations, th
inside and outside points of view.

For the interior of the star we use metric~5! and study
collapse in the rangep/2< t̄ ,p ( t̄ [ 3

2 at). At the onset of
the collapse, at timet̄ 5p/2, there are no singularities. Th
singularity forms att̄ 5p where the curvature scalars an
the density blow up@see Eq.~10!#. The appearance of a
apparent horizon~AH! indicates the formation of a BH
Here, the apparent horizon is defined as the boundar
trapped two-tori~two-cylinders or two-planes! in spacetime.
To find this boundary we look for two-tori~two-cylinders or
two-planes! Y[a(t) l 5const whose outward normals a
e

h

he

-
c

of

null, i.e.,¹Y•¹Y50, yielding l AH521/(da/dt). Using Eq.
~10! this is

l AH

l S
52S 3

8pr0R0
3a D 1/3sin1/3

3

2
at

cos
3

2
at

. ~30!

The apparent horizon first forms at the surface of the s
l AH5 l S . Thus, for a givenr0 ,R0 anda one can find from
Eq. ~30! the timet at which the apparent horizon first form

For outside observers the description is different as t
should use metric~2!. If one looks for trapped two-tori~two-
cylinders or two-planes! whose outwards normals are nu
¹r •¹r 50, one now obtains the condition

a3r AH
3 5qm~v !. ~31!

Differentiating Eq.~31! and puting it back in the metric~2!
gives

ds25
2q

3a3r 2

dm~v !

dv
dv21r 2~du21df2!.

The sign ofdm(v)/dv decides on the character of the AH
Here dm(v)/dv.0. Thus, the apparent horizon is an u
physical spacelike surface, interior to the surface of the m
ter where the metric~2! is not valid. Equation~31! is only
valid at v5vAH , the time at which the apparent horizo
forms.

We have a dynamic situation. As the matter collapses,
mass of the toroidal star increases. To find the radius
which the apparent horizon forms we equate Eqs.~31!–~29!
to obtain a cubic equation forr AH :

a3r AH
3 1ar AH2~qm01ar S0

!50. ~32!

This equation has one real root. DefiningC, A, andB as

C5qm01ar S0
, ~33!

A51/3AC

2
1AC2

4
1

1

27
, ~34!

and

B51/3AC

2
2AC2

4
1

1

27
, ~35!

the solution forr AH can be written as

ar AH5A1B. ~36!

One can check that both procedures~the inside and out-
side points of view! give the same timet ~and v! for the
formation of the apparent horizon. As an example we cho
r S0

51/2, r055/p, a52/3, qm057/9. Then putting

l AH5 l S in Eq. ~30! gives t52.51. On the other hand, on
gets from Eq.~36! r AH51.09, which upon using Eq.~10!
suitably gives againt52.51.
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There is an interesting situation in toroidal collapse. T
initial configuration can collapse from a negative mass
rameterm0 into a BH with positive mass. To find the min
mum possible mass that yields a BH we set

m~vAH![mAH50. ~37!

Putting this condition back in Eq.~29! implies

r AH[r ~vAH!5r S0
1

q

a
m0 . ~38!

Equations~38! and ~32! then give r AH50. Thus,mAH50
implies r AH50. In addition, Eq.~38! gives that the initial
mass should obey

m0>2
a

q
r S0

. ~39!

Below this value ofm0 the collapsing matter forms a nake
singularity rather than a BH.

To deal with the cubic equation~32! one can study two
limiting situations. First, assumeC5qm01ar S0

!1 with

ar S0
@qm0 . Then the solution is

ar AH5ar S0S 12a2r S
0
21

qm0

ar S0
D . ~40!

In order that there is no black hole at the onset of the c
lapse one hasa2r S

0
2.qm0 /ar S0

, which implies r AH,r S0

always.
Second, if we assumeC5qm01ar S0

@1 with a3r S0

.C, then the solution for the apparent horizon is

ar AH5~qm01ar S0
!1/32

1

3~qm01ar S0
!1/3, ~41!

where againr AH,r S0
, as it should.

We still have to check that the collapsing star fades fr
sight to external observers. A null geodesic emerging fo
the surface of the starr S at a timev arrives at an observer a
point r at timevobs given by

vobs5v1E
r S

r dv
dr

dr. ~42!

Using Eq.~4! this gives

vobs5v1
2

a

1

@qm~v !#1/3F1

6
ln$ar 2@qm~v !#1/3%2

2
1

6
ln$a2r 21ar @qm~v !#1/31@qm~v !#2/3% ~43!
e
-

l-

1
1

)
tan21

2ar 1@qm~v !#1/3

)@qm~v !#1/3 G
r S

r

. ~44!

Then vobs→` as the surface of the star approaches the
parent horizon,r S→qm(vAH)/a. As seen by outside observ
ers the collapse to a BH takes an infinite time. One can a
check that the redshiftz of the light diverges as the appare
horizon is approached,z}2drS /dt@r S2(qm)1/3#, implying
that light from star gets ever dimmed. The solution~2! will
then tend to the static BH solutions found in@1–3#.

VI. CONCLUSIONS

We have found collapsing solutions of toroidal~cylindri-
cal, or planar! matter onto toroidal~cylindrical, or planar!
BHs. In the model used there is a flux of high frequen
radiation towards the star. This incoming radiation has to
chosen with the right flux@see Eq.~27!# in order to avoid the
emission of gravitational waves. If there is no such precis
chosen incoming flux, the toroidal~cylindrical or planar!
configuration will presumably collapse to form a BH wit
emission of large amounts of gravitational waves.

For external observers, the solution tends asymptotic
with time to static BH solutions. The maximally analytic
extension of these static BH solutions shows unphysical
gions, such as the white hole region behind the past ev
horizon, which also appear in the Schwarzschild soluti
When one performs complete gravitational collapse of so
matter configuration in an approprite background, this par
the solution will cover the unphysical regions of the ma
mally extended black hole. In the corresponding Penrose
gram, each point representing a torus, a cylinder or a pla
depending on the topology chosen, one visualizes collap
solutions of toroidal, cylindrical or planar matter onto bla
holes, black strings or black membranes, respectively. C
lapse to BH solutions with pseudospherical horizons h
also been recently studied@15#.

A further extension of this paper could be the inclusion
the Teichmuller complex parameter, which specifies conf
mally equivalent classes of the torus, into the metric of
toroidal BH @16# and see if it produces significant change

The Vaidya metric is also used to study the formation
naked singularities in spherical gravitational collapse@11#. In
a preliminary study@17# we have found that collapse of tor
oidal ~cylindrical or planar! radiation using the modified
Vaidya metric of Sec. II does not yield naked singularitie
strengthening the claim made in the Introduction that n
spherical collapse in a negative cosmological constant ba
ground may violate the hoop but not the cosmic censors
conjecture.
@1# J. P. S. Lemos, Class. Quantum Grav.12, 1081~1995!.
@2# J. P. S. Lemos, Phys. Lett. B352, 46 ~1995!.
@3# J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D54, 3840

~1996!.
@4# C. G. Huang and C. B. Liang, Phys. Lett. A201, 27 ~1995!; R.
G. Cai and Y. Z. Zhang, Phys. Rev. D54, 4891~1996!; D. R.
Brill, J. Louko, and P. Pelda´n, ibid. 56, 3600~1997!.

@5# K. S. Thorne, inMagic without Magic, edited by J. R. Klauder



d

y

s.

ar
jec-

57 4605GRAVITATIONAL COLLAPSE TO TOROIDAL, . . .
~Freeman, San Francisco, 1972!, p. 231.
@6# T. Piran, Phys. Rev. Lett.41, 1085 ~1978!; F. Echeverria,

Phys. Rev. D47, 2271~1993!.
@7# T. A. Apostolatos and K. S. Thorne, Phys. Rev. D46, 2435

~1992!.
@8# K. Nakamura and H. Ishihara, ‘‘Cylindrical Domain Walls an

Gravitational Waves,’’ gr-qc/9710078.
@9# R. Penrose, Riv. Nuovo Cimento1, 252 ~1969!.

@10# S. L. Shapiro and S. A. Teukolsky, Phys. Rev. Lett.66, 994
~1991!.

@11# P. S. Joshi,Global Aspects in Gravitation and Cosmolog
~Clarendon, Oxford, 1993!.
@12# R. W. Lindquist, R. A. Schwartz, and C. W. Misner, Phy
Rev.137, B1364~1965!.

@13# J. W. York, in Quantum Gravity, edited by S. Christensen
~Hilger, London, 1983!.

@14# A. Ilha and J. P. S. Lemos, Phys. Rev. D55, 1788~1997!.
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