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Gravitational collapse to toroidal, cylindrical, and planar black holes
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Gravitational collapse of non-spherical symmetric matter leads inevitably to non-static external spacetimes.
It is shown here that gravitational collapse of matter with toroidal topology in a toroidal anti—de Sitter
background proceeds to form a toroidal black hole. According to the analytical model presented, the collapsing
matter absorbs energy in the form of radiatite it scalar, neutrinos, electromagnetic, or gravitatipfram
the exterior spacetime. Upon decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black membranes, respectively. The results have
implications on the hoop conjectuS0556-282198)04308-2

PACS numbsgs): 97.60.Lf, 04.20.Jb

I. INTRODUCTION cylindrical BHs (or black stringgs form from gravitational
collapse of a cylindrical matter distribution. As the azimuthal
Black hole (BH) solutions in an anti—de SittefAdS) cylindrical coordinate can be decompactified this solution
background whose event horizons have pldiarcylindri-  also shows that planar BH®r black membrangscan also
cal[2], and toroidal topology2,3] have been found recently form from gravitational collapse of a planar distribution.
(see also[4]). Since the importance of the spherical Moreover, since the “vertical” infinite cylindrical coordi-
Schwarzschild BH has come from its role as the final state ofi@te can, in turn, be compactified, this solution also shows
complete gravitational collapse of a star, it is useful to inves{hat toroidal BHs can form from gravitational collapse.

tigate if these BHs with different topology may also emergeThroughout this paper we will work mainly with the toroidal

from gravitational collapse of some matter distribution. topqlogy in mind, although the results can _be .modmed
An important feature of spherical collapse onto astralghtforwardlytothe other two cases, the main differences

Schwarzschild BH is that, due to Birkhoff's theorem, space-be'.ng Fhe topologies themselves and the mass 'pargmeter
hich in the planar case is a surface mass density, in the

t'r.?ﬁ 'St stafuc _out3|fde th.? :_nattelr and th_?hcollapse_ ptrocefed(lzgylindrical case is a linear mass density, and in the toroidal
m ou”em|55|?n Oh gr_awl a |otrt1a \_NavesAdSebsarl?e IS rge_ Olcase it is a mass. In brief, we show that black membranes,
the collapse of spherical matter in an A ackground, 1.8y, ok strings and toroidal BHs form from gravitational col-
in a spacetime with negative cosmological constant. On th pse

other hand, it is well known that the collapse of cylindrical Coﬁtrary to the spherical case, and as in the usual cylin-
systems proceeds .V\.”th emission of grawtatlonal \_Ne[Be£8] drical collapse, the metric outside the collapsing toro{dg
which creates additional problems in the modeling of thes

I - t It h Iso b K f | . §indrical or planay matter is non-static. However, surpris-
collapsing systems. as aiso been known for a long ImGfngly, the problem can be solved exactly by using a modified

:hat[g?llapflg?_“nﬂ_lr_];]t.e dgslt tcyhrt\r(]jers form naked S'r:‘.gma”'Vaidya metric appropriate to the toroidaylindrical or pla-
1es |5, no S. 1NIS violales the cosmiC censorship Con'na0 collapse(see Sec. )l Of course, this metric obeys Ein-

Jecture[g] élwguch fhorblds Lhet ex'tSttﬁnCE of smgqlartltle; NOt stein field equations, and it describes the gravitational field
Su[]r.o';n tet )t/hat Bol_r"Z?n u r;]o € d oolp cci]njec UEM] associated with a toroid&tylindrical or planay flow of un-
[which states tha S form when and only when a méss ,,5i7ed scalar, neutrino, electromagnetic or gravitational

g_ets t(_:om_palcted tlr?to ".’}[ reSglor;]Whoss_lglrc_umfe;ence N EVelYadiation in the geometrical optics approximation. The inte-
irection is less than its Scwharzschild circumferenaavi rior solution we use is a modified Friedmann solution also

(G=C=1)]. The cosmic censorship is formulated to be ap-,icapje to toroidalcylindrical or planar topology (Sec.
plied to realistic gravitational collapse, which in principle IIl). By making a smooth matching at the interfaec. IV)

does not include cylindrical matter. However, in a certaing .« find that the flux of waves modeled by the modified

sgnse,_cylindrical collapse can simul_ate the collap_se of a ﬁ\'/aidya metric is an incoming flux, and consequently that the
nite spindle[10]; near the central regions of the spindle the

. . . S ) mass parameter of the collapsing matter grows up to the
collapse behaves as if the spindle is an infinite cylinder. Bey, . -von of the BH. By carefully choosing the right amount
sides these possible astrophysical applications, the collap

£ infini lind b d h : incoming flux one avoids the emission of graviational
:)el:ti:/?tI;e cylinders probes and tests the structure of genergj,, o from the collapsing matter. Finally, one can study BH

. . . formation from the inside and outside points of vié¢&ec.
In a previous work it has been conjectured by 8kthat, I S| usee pol vie

. > ) ] V) and draw some conclusioriSec. V).
since there are known cylindrical BH solutions with a nega- ) t )

tive cosmological constant, collapse of cylindrical matter in a

backgrou_nd with negative cosmol_oglcal constant could form Il. EXTERIOR RADIATING SOLUTION

a cylindrical BH (i.e., a black string rather than a naked

singularity, violating in this way the hoop conjecture but not As stated in the introduction, the Schwarzschild metric
the cosmic censorship. In this work we show that indeedepresents the external field of a collapsing spherical star,

0556-2821/98/5(B)/46006)/$15.00 57 4600 © 1998 The American Physical Society



57 GRAVITATIONAL COLLAPSE TO TOROIDAL, . .. 4601

implying that in spherical collapse there is no emission of<s@<2, and in the planar case < §<w, —oo<p<w,
gravitational waves. Another spherically symmetric solutionThe parameteq has different values depending on the to-
of Einstein field equations is the Vaidya metric which de-pology of the two-dimensional space. For the torgs
scribes the gravitational field of an isotropic flow of unpolar- =2a/7 andm(v) is a mass, for the cylindey=4 andm(v)
ized radiation in the geometrical optics approximation. It isis a mass per unit length, and for the plape2/a andm(v)
usually employed in the study of imploding radiation shellsis a mass per unit area.
[11], as well as in modeling the external field of radiating Metric (2) is a modified Vaidya solution pertinent to tor-
stars[12] and evaporating BHEL3]. In the case of static or oidal (cylindrical or planar topology. From the energy-
collapsing spherical stars, one can usually neglect the effectaomentum tensor given in E¢3) one can infer that it de-
of this radiation and treat the external field as being given byscribes the gravitational field of a toroidétylindrical or
the Schwarzschild metric. However, one should consider thglana) flow of unpolarized radiation in the geometrical op-
Vaidya metric in the latest stages of the collapse when aics approximation, and it can be used in modeling the exter-
supernova and a neutron star are formed accompanied Inal fields of matter with toroidafcylindrical or planay to-
copious emission of neutrinos and photons. It is also possiblpology radiating or absorbing energy. Besides modeling
that a BH forms directly from the collapsing star without radiation in the form of neutrinos or electromagnetic waves,
passing through the strong radiative stage, in which case thg,, in Eq. (3) can also represent scalar or gravitational ra-
Schwarzschild metric gives again an accurate description fafiation in an adequate limit. Now, noting that the energy
the external field. If the star is slightly non-spherical, thedensity of the radiation ig=(q/8mwar?)dm/dv, one sees
latest stages of such a direct collapse onto a BH producthat the weak energy condition for the radiation is satisfied
some gravitational waves which have to be treated as a pewheneverdnm/dv =0; i.e., the radiation is imploding. For
turbation on the Schwarzschild spacetime. The effects ofn=const one has a vacuum and Ef) describes a static
adding a negative cosmological constant do not alter raditoroidal (cylindrical or planay black hole in ingoing(ad-
cally the description. The main difference would be that thevanced timg Eddington-Finkelstein coordinates. The values
outside spacetime should be described by the Schwarzschilgdf the parameteq given above were taken from Arnowitt-
AdS metric or when relevant by the Vaidya-AdS metric.  Deser-Misner(ADM) masses of the corresponding static
The situation changes drastically for a star with non-BHs found in[1-3].
spherical topology, the reason being that, since there is no |n these coordinates, lines with=const represent incom-
analogue of Birkhoff's theorem, a collapsing non-sphericaling radial null vectors whose generator vectors have the form
symmetric star produces a non-static external spacetim@?=(0,—1,0,0), with k,=(—1,0,0,0) [see Eq.(3)]. The
Notwithstanding, as we will show, one can treat the problenyeneratord? of outgoing null lines do not have this simple
analytically for the gravitational collapse of toroid@ylin-  form. By the conditiond,1?=0 andl k= —1 one findsl?

drical or planay configurations. (111 2.2 - -
The Einstein field equations are (1’2[6“ ' qm(v)/ar],0,0). The. equation for outgm.ng
radial null geodesics(v) can easily be found by putting

Gapt AQap=87Tap, (1) ds’=0 in metric(2), yielding,
whereG,,,, a4, Tap are the Einstein, the metric and the the dar 1/ ,, 9am@)
. ; —=z|aTr"t——|. (4)
energy-momentum tensors, respectively, anid the cosmo- dv 2 ar
logical constant G=C=1). The equations admit the fol- ] ) ) )
lowing solution: The exterior solution discussed here is to be matched to the
interior metric presented in the following section.
am(v)
— 2p02_ 1 "7 2 2 2 2
ds’= (a r op | dvtt2dvdr+ri(deT+de), Ill. INTERIOR MATTER SOLUTION
@) We now assume that the interior spacetime is made of a
for an energy-momentum tensor given by homogeneous collapsing dust cloud whose spacetime is de-
scribed through a flat Friedmann-Robertson-Walker type
g dm(v) metric given by
b 8rar? d—kakb’
ds?=—dt?+a(t)2[dI?+12(d6>+d¢?)], (5)
ka=—05, kak*=0. (3 wheret and! are comoving coordinates, and agaftyp are

—— . . ) .. the coordinates which describe the two-dimensional zero-
Here a=y—A/3, v is the advanced time coordinate with curvature spacdtorus, cylinder or plane Because of the

_°°<v<r:°’ r |sdt_he radla:]_Cﬁodrd|na_t§ er:h @r<:' and_ allEinstein field equationél), we have to set to zero the usual
0.¢ are the coordinates which describe the two-dimensionag e qmann-Robertson-Walker curvature parameter0

Zero-curvature space generated_by the two-dime_nsional CONjithout loss of generality. For dust the energy-momentum
mutative Lie groupG, of isometries. The topologies of this tensor is given by

two-dimensional space can g T>=S'x S!, the flat torus
model [G,=U(1)xU(1)], (i) RxS, the cylindrically Tab= pUaUp , (6)
symmetric mode[G,=RxU(1)], and (iii) R?, the planar

model [G,=E,]. In the toroidal case we choose<®  wherep is the energy density of the matter, andlits four-
<2, 0<¢<2m, in the cylindrical case—»<f<x, 0  velocity. The Einstein field equatior{4) yield
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1 /da\? 8+ ) We analyze first the surfaceas viewed from the exterior
2\gt) T3P (7 spacetime. To match the exterior metric with the metric:on
we use the junction conditiofll) and metrics(2), (14), to
1 d2a 1 /da\? 3a2 obtain
_— = — | — —_, 8
a dt? 2a% | dt 2 ® r(v)]s=R(7) (15)

where againa=+—A/3. Integration of these equations and

gives
gm(v) dr 1
2,2 —
are— ——-2—| =—7—| , (16)
P:p—g (9) ar dv s (dv/d7) s
Sinz(iat) where both equations are evaluatedXnThe unit normal to
3, in the exterior spacetime is
and
1 dr
- a. sir?3 3 10 Ne = ( - d—z,l,0,0).
a=a sirtd s at |, (10 \/_2d£+a2r2_qm(u) v
dv P ary
wherep, anda, are constants, witpo=3a?/8. Restoring 17

the constanG one hag,=3a?/87G, which means that the
initial density is independent of the mass and radius of th
initial configuration(a similar situation was found if4] for
gravitational collapse in Lovelock gravityThis could be dr< dov
expected, since for very small one findsp=1/6wGt?, re- ng = ( — _2'_2,0'0)
covering the flat model with toroidal topology at@imos} dr ' dr

zero cosmological constant, similar in its time dependence t®om now on. we will usually omit the subscriBitto denote
the spherical flat Fgrledmann model. Note also t_IpaP ~evaluation at the interface. From E.3) we then get the
= const. Definingt =35 at, one sees that the solution is valid K, component of interest:

in the time range &t <w. From 0<t<w/2 the matter is

expanding, and fromr/2< t < the matter is collapsing. At K= _r dar oy dv (azrz_ qm(v))
t =7/2 there is a moment of time symmetry. We are inter- o0 dr dr ar )’

ested in the collapsing part of the solution, and thus we take

— , valid on X, of course.
m/2<t<m. The energy density of the matter as well as the \yg now analyze the surfadzas viewed from the interior

Kretschmann scalar blows up & 7, indicating the forma-  spacetime. To match the interior metric with the metricon
tion of a spacetime singularity. we use the junction conditiof.1) and metrics(5), (14), to
obtain

sing Eq.(16) and dr/dv=(dr/d7)/(dv/d7) we can put
g.(17) in the form

(18

(19

IV. MATCHING
o . . Isa(t)=R(7) (20)
To match the interior and exterior spacetimes, across an

interface of separatioR, we use the junction conditions and

ds’]s=ds’]s, (11) dr
Is Is CUY 21
Kapls=Kapls (12

. o valid onX. The unit normal ta& in the interior spacetime is
whereK ,;, is the extrinsic curvature,

XS xS oxd n. =(0,a(t),0,0). (22)
= * x e + OA+
fav= e 233 ~Melea 3_§a 6_55 13 From Eq.(13) we then have
andn_ are the components of the unit normal vectoEta K,p=lsa(t)=R(7). (23

the coordinatex.. , and¢ represents the intrinsic coordinates . .
in 3. The subscriptst represent the quantities taken in the " order to have a smooth matching one imposes ti+1at the
exterior and interior spacetimes. Both the metrics and th&XUrinsic curvatures(19) and (23) must be equal,Ky,
extrinsic curvatures in Eq¢11) and(12) are evaluated &. =Ky, Yielding
It is useful to define a metric intrinsic B as

dr dv (azrz gm(v)

d2 = —dr2+ R2(7)(d 62+ d$?), (14) BETET: ar

) =R(7), (24)

where 7 is the proper time orx. an equation valid ox.. Using Egs.(24) and(16) we find



dv 1

dr 1-dR/d7’ (25

on 2. Using now Eqs(24), (16), (25 and(7) we have

8

mw:a(3pW—mﬂ) (26)

Recalling from Egs.(9) and (10) that pR®=p,R3 with
R=a(t)ls [see Eq.20)], and using Eq(15) we find, from
Eq. (26),

a (8w 3
M) == | S poRS-r3(v) |, (27

q
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null, i.e.,VY.-VY=0, yieldingl o= — 1/(da/dt). Using Eq.
(10) this is

3
1/3 Sinl/3§ at

ls 87TpoR8a 3
COSEC!t

(30

The apparent horizon first forms at the surface of the star
lan=Ils . Thus, for a giverpy,Ry and « one can find from
Eq. (30) the timet at which the apparent horizon first forms.

For outside observers the description is different as they
should use metri€2). If one looks for trapped two-toxtwo-
cylinders or two-plangswhose outwards normals are null,
Vr-Vr=0, one now obtains the condition

which gives the evolution of the mass with the external time

v. Equation(27) is the most important result of the section.

By Eq. (20), we knowR(7)=I1sa(t), and from Eq.(10) we

a3rf\H=qm(u). (32

have the evolution of the radius of the surface of the star wittPifferentiating Eq.(31) and puting it back in the metri€2)

time t (or 7, sincedt=dr). Then from Eq.(25 one gets
v=v(7), or its inverse r=7(v). Since from Eg. (15
rs(v)=R(7), we find thatrs(v) is a known function ob .
Unfortunately, integration of Eq25) to find v (7) cannot be
performed analytically. However, since for collapg®/dr
<0, we find thatv increases monotonically with or t.
Thus, as the collapse proceeds decreases from its maxi-
mum valuery =rs(vo) =Ro, wherev, denotes the time at

the onset of the collapse. Therefore, we have obtained th\g

result that the mass of the cloud(v) increases during the

collapse due to the incoming flux of the high frequency ra-
diation, be it in the form of scalar, neutrinos, electromagnetiq,

or gravitational waves.
It is convenient to define an initial masy, in terms ofpg
andrzo= R, through the equation

qmg 8
3 PorsiTrs, (28)
Then Eq.(27) can be written as
o
m(w)=mo+ 5 lrs,=rs(v)]. (29

This equation will be used in the next section.

V. BLACK HOLE FORMATION

To study BH formation we distinguish two situations, the

inside and outside points of view.
For the interior of the star we use meti(§) and study

collapse in the range/Zst_<7r (t_Ezat). At the onset of

the collapse, at time¢ = /2, there are no singularities. The
singularity forms att =7 where the curvature scalars and

gives
2q dm(v) 5 o o )
=332 do dv“+re(doc+do°).

The sign ofdm(v)/dv decides on the character of the AH.
Here dm(v)/dv>0. Thus, the apparent horizon is an un-
physical spacelike surface, interior to the surface of the mat-
ter where the metri¢2) is not valid. Equation31) is only

alid at v=v,y, the time at which the apparent horizon
forms.

We have a dynamic situation. As the matter collapses, the
ass of the toroidal star increases. To find the radius at
which the apparent horizon forms we equate Eg4)—(29)
to obtain a cubic equation far :

@3t aray—(dmp+ary )=0. (32)

This equation has one real root. Defini@g A, andB as

C=gqmg+ars, (33
lc e 1
A:1/3 = — 34
2" N7 27 (39
and
C c’ 1
B:1/3 = — 35
2 V72 "27 (39
the solution forr 5y can be written as
ar ay=A+B. (36

One can check that both procedusdise inside and out-

the density blow ugsee Eq.(10)]. The appearance of an side points of view give the same time (andv) for the

apparent horizon(AH) indicates the formation of a BH.

formation of the apparent horizon. As an example we choose

Here, the apparent horizon is defined as the boundary dfs,=1/2, po=5/m, a=2/3, qme=7/9. Then putting

trapped two-tori(two-cylinders or two-plangsn spacetime.
To find this boundary we look for two-toftwo-cylinders or

Iaq=Iy in EQ. (30) givest=2.51. On the other hand, one
gets from EQ.(36) r,y=21.09, which upon using Eq10)

two-plane$ Y=a(t)l=const whose outward normals are suitably gives agaitn=2.51.
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There is an interesting situation in toroidal collapse. The 1 2ar +[qm(v)]¥3 r
initial configuration can collapse from a negative mass pa- 1 7 (44
rameterm, into a BH with positive mass. To find the mini- v3 v3[am(v)] 'y
mum possible mass that yields a BH we set
M(v an) =Man=0. (37)

Thenv s as the surface of the star approaches the ap-
Putting this condition back in Eq29) implies parent horizont s —qm(v ay)/ @. As seen by outside observ-
ers the collapse to a BH takes an infinite time. One can also
check that the redshift of the light diverges as the apparent
horizon is approachedg —drs /dt[rs — (qm) ], implying

that light from star gets ever dimmed. The soluti@ will
Equations(38) and (32) then giver,=0. Thus,may=0  then tend to the static BH solutions found[i+3].

implies r .y =0. In addition, Eq.(38) gives that the initial

mass should obey

q
FAr=T(van) =rs,+ — Mo. (38)

o VI. CONCLUSIONS

M=~ arzo- (39) We have found collapsing solutions of toroidaylindri-

cal, or planar matter onto toroidalcylindrical, or planay

Below this value ofm, the collapsing matter forms a naked BHs. In the model used there is a flux of high frequency

singularity rather than a BH. radiation towards the star. This incoming radiation has to be
To deal with the cubic equatiof82) one can study two chosen with the right fluksee Eq(27)] in order to avoid the

limiting situations. First, assum€=qmy+ars <1 with  emission of gravitational waves. If there is no such precisely

ars >qmg. Then the solution is chosen incoming flux, the toroiddkylindrical or planay
configuration will presumably collapse to form a BH with
) qmg emission of large amounts of gravitational waves.
arAH:arEo( 1-a rzg+ E) (40) For external observers, the solution tends asymptotically
0

with time to static BH solutions. The maximally analytical

|extension of these static BH solutions shows unphysical re-
gions, such as the white hole region behind the past event
horizon, which also appear in the Schwarzschild solution.

In order that there is no black hole at the onset of the co
lapse one ha$y2r2(2]>qmolarzo, which impliesray<rs,

always. _ 4 When one performs complete gravitational collapse of some
Second, if we assum€=qmy+ary >1 with a’rs; matier configuration in an approprite background, this part of

>C, then the solution for the apparent horizon is the solution will cover the unphysical regions of the maxi-
mally extended black hole. In the corresponding Penrose dia-

Yy 1 - (41) gram, each point representing a torus, a cylinder or a plane,
3(qmy+ “rﬁo) ' depending on the topology chosen, one visualizes collapsing
solutions of toroidal, cylindrical or planar matter onto black
where agairr 4 <rs , as it should. holes, black strings or black membranes, respectively. Col-
We still have to check that the collapsing star fades frorlapse to BH solutions with pseudospherical horizons have
sight to external observers. A null geodesic emerging fornlso been recently studig¢d5].
the surface of the stak at a timev arrives at an observer at A further extension of this paper could be the inclusion of

arap=(Qmot+ars

pointr at timewv 4, given by the Teichmuller complex parameter, which specifies confor-
mally equivalent classes of the torus, into the metric of the

r dov toroidal BH[16] and see if it produces significant changes.

Vobs— U+ Jl Edr' (42) The Vaidya metric is also used to study the formation of

> naked singularities in spherical gravitational collapk®. In

Using Eq.(4) this gives a preliminary studyf17] we have found that collapse of tor-
oidal (cylindrical or planay radiation using the modified
EI _ 132 Vaidya metric of Sec. Il does not yield naked singularities,
g/Mar—lam()] strengthening the claim made in the Introduction that non-
spherical collapse in a negative cosmological constant back-
ground may violate the hoop but not the cosmic censorship

2
= Fam I

—éln{a2r2+ar[qm(v)]1/3+[qm(v)]2/3} (43

conjecture.
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