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Bayesian bounds on parameter estimation accuracy for compact coalescing binary
gravitational wave signals
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A global network of very sensitive large-scale laser interferometric gravitational wave detectors is projected
to be in operation by around the turn of the century. The network is anticipated to bring a range of new
astrophysical information — relating to neutron stars, black holes, and the very early universe — and also new
fundamental physics information, relating to the nature of gravity in the strongly nonlinear regime for example.
This information is borne by gravitational waves that will typically be very much weaker than the level of
intrinsic strain noise in the detectors. Sophisticated signal extraction methods will therefore be required to
analyze the network’s data. Here, the noisy output of asingle laser interferometric detector is examined. A
gravitational wave is assumed to have been detected in the data. This paper is concerned only with the
subsequent problem of parameter estimation. Specifically, we investigate theoretical lower bounds on the
minimum mean-square errors~MSE! associated with measuring the parameters that characterize the waveform.
The pre-merger inspiral waveform generated by an orbiting system of neutron stars or black holes is ideal for
this study. Monte Carlo measurements of the parameters of noisy inspiral waveforms have been performed
elsewhere, and the results must now confront statistical signal processing theory. Three theoretical lower
bounds on parameter estimation accuracy are considered here: the Cramer-Rao bound~CRB!; the Weiss-
Weinstein bound~WWB!; and the Ziv-Zakai bound~ZZB!. The CRB is the simplest and most well-known of
these bounds, but suffers from a number of limitations. It has been applied a number of times already to bound
gravitational wave measurement errors. The WWB and ZZB on the other hand are computationally less simple,
and we apply them here to gravitational wave parameter estimation for the very first time. The CRB is known
as a local bound because it assumes that the parameters one seeks to estimate are deterministic, and provides
bounds on their MSE for every possible set of intrinsic parameter values. The WWB and ZZB are known as
global ~Bayesian! bounds because they assume that the parameter set is random, of known prior distribution.
They bound the global MSE averaged over this prior distribution. We first set up a model problem in order to
develop intuition about the conditions under which global bounds are more appropriate than their local coun-
terparts. Then we obtain the WWB and ZZB for the Newtonian-form of the coalescing binary waveform, and
compare them with published analytic CRB and numerical Monte Carlo results. At large signal-to-noise ratio
~SNR!, we find that the theoretical bounds are all identical and are attained by the Monte Carlo results. As SNR
gradually drops below;10, the WWB and ZZB are both found to provide increasingly tighter lower bounds
than the CRB. However, at these levels of moderate SNR, there is a significant departure between all the
bounds and the numerical Monte Carlo results. We argue that the WWB and ZZB are probably within a few
percent of the theoretical minimum MSE attainable for this problem. The implication is that the maximum
likelihood method of parameter estimation used by the Monte Carlo simulations is not the optimal estimator for
this problem at low-to-moderate SNR. In fact, it is well-known that the optimal parameter estimator is the
conditional mean estimator. This, unfortunately, is notoriously difficult to compute in general. We therefore
advance a strategy for implementing this method efficiently, as a post-processor to the maximum likelihood
estimator, in order to achieve improved accuracy in parameter estimation.@S0556-2821~98!02806-9#

PACS number~s!: 04.80.Nn, 04.30.Db, 97.80.2d,
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I. INTRODUCTION

A network of very sensitive instruments is presently be
assembled across the globe with a view to directly detec
cosmic gravitational radiation on Earth. Although detecti
is the initial goal of the network, it must ultimately functio
as an astrophysical observatory. In this capacity it will stu
a range of sources of gravitational waves, such as neu
stars, black holes, and the early universe. The network

*Present address: Max Planck Institut fu¨r Gravitationsphysik, Al-
bert Einstein Institut, Schlaazweg 1, D-14473 Potsdam.
570556-2821/98/57~8!/4588~12!/$15.00
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also provide data through which to learn new and fundam
tal physics about the gravitational field. Arguably, broadba
instruments based upon the method of laser interferom
offer the best long-term potential for making astrophysi
observations. Several such instruments have been funded
are being constructed at the present time. They inclu
LIGO, the U.S. 4 km arm-length Laser Interferometr
Gravitational Wave Observatory@1#; VIRGO, a French-
Italian project to construct a 3 km arm-length interferome
@2#; GEO600, a U.K.-German effort to build a 600 m arm
length interferometer@3#; TAMA, a Japanese project for th
construction of a 300 m arm-length interferometer@4#. Joint
observations between these interferometers are schedule
4588 © 1998 The American Physical Society
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57 4589BAYESIAN BOUNDS ON PARAMETER ESTIMATION . . .
soon after the turn of the century. All of the instruments w
continue to improve their sensitivity incrementally for ma
years thereafter.

Interferometers are intrinsically noisy instruments and
presence of noise will mask the identity of all but the ve
strongest incident gravitational waves. This requires a v
careful and sophisticated processing of the data in orde
extract the valuable information that is borne by the wa
@39#. Let us consider the data acquired by only asinglede-
tector in the network. Suppose that the detection of a gr
tational wave of some assumed known form has already b
made in the instrument’s noisy output. Our focus of attent
here is the subsequent measurement of the one or more
rameters that characterize the waveform. Specifically,
would like to compute the theoretical minimum mean-squ
errors with which the parameters can in principle be m
sured. This will clearly have an impact on the astrophysi
inferences that can then be drawn as a result of the obse
tion.

The particular gravitational waveform that we will focu
on in this paper is thechirp of gravitational radiation tha
precedes the coalescence of a compact binary system
prising of neutron stars~NS’s! and/or black holes~BH’s!.
Coalescing binaries are the most promising sources of gr
tational waves in the long run for the LIGO-VIRGO
GEO600-TAMA detectors@5–7#. As radiation reaction
drives the stars through a slow inspiral phase just prior
coalescence, the binary generates a very clean gravitat
wave signal that is amenable to theoretical modeling~see
@5,7–10# and references therein!. LIGO and VIRGO antici-
pate observing the last few minutes of neutron-star–neut
star ~NS-NS! inspiral, during which the gravitational wave
oscillate through;16 000 cycles as their frequency swee
through the visibility bands of the detectors. The coalesc
binary event rate predictions are subject to gross uncert
ties. However, it is not unreasonable that there may be a
NS-NS, NS-BH, and BH-BH mergers out to a distance
;200 Mpc in a period of a year@11–15#.

Inspiraling binary gravitational waves are encoded with
rich suite of physical and astrophysical information. Th
ranges from tests of general relativity@7,16,17#, through
measurements of neutron star and black hole mass and
@6,7,18–20#, to new and independent inferences about
value of the cosmological parameters@21–24#. The informa-
tional content of binaries has driven gravitational wave th
rists to focus much of their collective effort on wavefor
calculations for inspiraling binaries. In tandem with th
there has been considerable study of algorithms for ana
ing noisy gravitational wave data to extract the wavefo
information.

The main goal of this paper is to reassess the issu
information extraction with respect to observations of co
lescing binaries by an interferometric gravitational wave
tector. Our motivation is the result of a recent confrontat
between the theoretical Cramer-Rao low bound~CRB! on
parameter estimation errors@25,26# for coalescing binary
waveforms, with real measurement errors based upon a
cation of themaximum likelihood~ML ! method of paramete
estimation to simulated data sets@27#. The ML errors were
found to depart significantly from the CRB at modera
signal-to-noise ratios~SNR’s! of around;8. This implies
l
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one of the following:~i! The CRB is aweaklower bound at
this SNR, in which case a tighter theoretical bound would
desirable;~ii ! the CRB is a tight bound and the ML metho
is not the optimal estimator, in which case a more refin
parameter estimation method would be desirable; or~iii ! the
CRB is both weakand the ML method is not optimal, in
which case it may be desirable to seek an improved theo
ical lower bound and an improved estimator.

In an attempt to discriminate between these options,
apply new theoretical bounds on the measurement accu
to the problem. Specifically, we investigate the Weis
Weinstein bound@28# and the Ziv-Zakai bound@29#. These
are Bayesian boundsthat are much more versatile than th
more familiar CRB. Although a little more difficult to com
pute than the CRB, they can often be considerably tigh
This has been demonstrated for a range of parameter es
tion problems in radar and sonar@30#.

The paper is organized as follows. Section II is an ov
view of parameter estimation, emphasizing the differen
betweenlocal boundson parameter estimation accuracy
which the CRB is an example, and Bayesian bounds
which the Weiss-Weinstein and Ziv-Zakai bounds are
amples. The Weiss-Weinstein bound is described in so
detail in Sec. III. This is followed in Sec. IV by a detaile
description of the Ziv-Zakai bound. In Sec. V, some of t
computational issues posed by these bounds are prese
The bounds are applied, in Sec. VI, to a simple problem t
illustrates the general superiority of Bayesian bounds o
their local counterparts. Then, in Sec. VII, the bounds
computed for a Newtonian coalescing binary waveform i
mersed in Gaussian random noise of spectral density cha
teristic of the first-stage LIGO detectors. We compare
bounds with actual parameter estimation errors that were
tained recently from a Monte Carlo experiment designed
test the maximum-likelihood method. The main results
discussed in Sec. VIII and some pointers for future work
given.

II. SUMMARY OF PARAMETER ESTIMATION

A common problem in many fields, ranging from rad
and sonar through to geophysics and astronomy, is to s
estimates for the set of parameters characterizing a wave
that is corrupted by additive Gaussian noise. Consider
observation

x~ t !5s~ t;u!1n~ t !, utu,T/2, ~1!

and assume that the signals(t;u) is a known function of time
for all values of the parameter vectoru, andn(t) is a zero-
mean Gaussian random noise process. Some measure
algorithm, which we do not need to specify in detail yet,
applied tos(t) in order to extractu. The algorithm produces
an estimateû, with associated errore[u2û. A statistical
summary of the performance of the algorithm is contained
the error covariance matrix, given byR[^eeT&, where^•&
denotes expectation. The diagonal elements ofR are the
mean-square errors~MSE’s! on each individual parameter
while the off-diagonal elements represent their cro
covariances. In order to benchmark the performance of
practical parameter estimator, one would like to know t
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4590 57DAVID NICHOLSON AND ALBERTO VECCHIO
theoreticalminimumR for the problem at hand. If the signa
parameters enter nonlinearly, then a closed-form expres
for this cannot be found, and in general it is prohibitive
difficult to compute numerically. A schematic picture of ho
the MSE will depend on the SNR in a nonlinear parame
estimation problem is given in Fig. 1. In the small error
asymptotic region, characterized by a high SNR, estima
errors are small. In the ambiguity region, where the SNR
moderate, large errors occur. When the SNR is very sm
the observations provide little information and the MSE
close to that obtained simply from prior knowledge about
problem. In this paper we will be concerned with bounds t
are able to characterize performance in the asymptotic
ambiguity regions. These bounds generally fall into one
two classes: local bounds or global Bayesian bounds.
will describe their main features in the next section.

A. Local bounds

The formulation of local bounds is based on the prem
that the unknown parameters one seeks to measure are d
ministic quantities. The bounds are local in the sense
they are placed on the MSE’s for each different possi
value of the intrinsic parameter vector. Local bounds ha
two serious limitations. First, they are restricted in applic
tion to estimators that areunbiased. In practice, biased esti
mation is often unavoidable. If the space of a paramete
finite, for example, then an unbiased estimator of it does
exist. Second, local bounds are unable to incorporate
prior information that one might have about the paramet
The Cramer-Rao bound is a familiar example of a lo
bound and it therefore has only limited utility. This boun
states that for anyunbiasedestimator of a parameter vecto
u, based upon noisy observationsx, the error covariance ma
trix must be larger than or equal to the inverse of the Fis
information atu. Thus

Ri j 5^~ û i2u i !~ û j2u j !&>J i j
21 , ~2!

FIG. 1. Schematic representation of the behavior of the m
square error as a function of the signal-to-noise ratio in a typ
nonlinear estimation problem.
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whereJ is the Fisher information matrix whose elements a
given by @35#

Ji j 5 K ]2

]u i]u j
lnL~x;u!L ~3!

andL(x;u) is the likelihood ratio,

L~x;u!5
p~xuu!

p~xu0!
. ~4!

The CRB is not difficult to compute and it is widely invoked
In particular, it has been used almost exclusively to bou
the measurement errors on the parameters of gravitati
wave signals@18,19,31–34#. Moreover, it can be proved tha
the CRB is asymptotically attained by the maximum
likelihood method of parameter estimation@35#. As gravita-
tional wave observations of coalescing binary signals will
rare, and the majority of detections will be made at on
moderate SNR’s, it is unlikely that the asymptotic conditio
will be met in practice. Similar situations exist in the field
of radar and sonar, and here alternative bounds to the C
have been considered. The Barankin bound, for example,
local bound that can be much tighter than the CRB@36#.
However, it is considerably more difficult to compute as
requires maximization over a number of free variables. Al
being a local bound, it still only applies to unbiased estim
tors and is unable to incorporate prior information about
parameters if this information is available.

B. Bayesian bounds

Rather than treating the unknown parameters as deter
istic quantities, Bayesian bounds treat them as random v
ables with known prior distributions. These bounds are g
bal in the sense that they bound MSE’s on each of
parameters, averaged over their prior distributions. In c
trast with their local counterparts, Bayesian bounds are
restricted in application to unbiased estimators. In fact, th
lower bound the performance ofany estimator. Also, unlike
local bounds, they easily incorporate any prior informati
about the parameters. It is straightforward to form a Bayes
version of the CRB by simply replacing the conditional pro
ability densityp(xuu) with a joint probability densityp(x,u)
using Bayes’ theorem. However the Bayesian CRB is sub
to a stringent regularity condition: It requires the prior pro
ability density function of the parameters,p(u), to be twice
differentiable. In the common case of parameters that h
uniform priors, this regularity condition is obviously not me

Another example of a Bayesian bound is the conditio
mean estimation bound~CMB! @26#. In fact this is not really
a bound, since it can be attained by theconditional mean
estimator ~CME!. This estimator achieves the minimum
MSE and provides the benchmark against which the per
mance of other estimators should be compared. The CME
a scalar parameteru, based upon noisy observationsx, is
given by

û~x!5^uux&5E
2`

`

u p~uux!du. ~5!

n
l
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In the context of gravitational wave parameter estimati
the CME has been referred to as the Kallianpur-Striebe
nonlinear filter@37#. Unfortunately, the CMB is prohibitively
difficult to compute for all but the simplest of problems.
generally requires multi-dimensional integrations to be p
formed numerically over the prior parameter space.

The complexity of the CMB has motivated the formul
tion of two further important Bayesian bounds — the Wei
Weinstein bound~WWB! and the Ziv-Zakai bound~ZZB!.
These trade off some of the computational complexity of
CMB, and yet are only apparently a little less tight. In
range of applications the bounds have demonstrated this
ity @30#. We now describe each of these bounds in so
detail in the following two sections.

III. WEISS-WEINSTEIN BOUND

The Bayesian form of the CRB and the CMB discussed
the previous section belong to a general class of Baye
bounds that Weiss and Weinstein were able to derive fr
the Schwarz inequality@28#. An outline of their derivation is
given here. The WWB is a member of this general class,
it is free from the problems that limit the CRB and CMB.
therefore is of much more general utility than the latter t
bounds. A version of the WWB for the case of a sing
parameter is obtained below. A statement of the multip
parameter generalization of the scalar bound follows.

A. Single parameter

A lower bound on the error in estimating a scalar para
eter u, based upon noisy observationsx, is sought. Let
p(x,u) denote the joint probability density ofx andu. Weiss
and Weinstein introduced a functionc(x,u) such that

E
2`

`

du c~x,u!p~x,u!50 ;x. ~6!

Since, for any real-valued measurable functiong(x),

^g~x!c~x,u!&5E
2`

`

dx g~x!E
2`

`

du c~x,u!p~x,u!50,

~7!

the condition in Eq.~6! implies thatc(x,u) is orthogonal to
any transformation of the datax. Subtracting^uc(x,u)&
from both sides above and then applying Schwarz’s ineq
ity to the left side, results in the following:

^@u2g~x!#2&>
^uc~x,u!&2

^c2~x,u!&
. ~8!

As this inequality is valid for anyg(x), it sets a lower bound
on the mean-square error in estimatingu from observation of
x. To underline this point we will replaceg(x) in the follow-
ing by û(x). Note that the lower bound set by the right si
of Eq. ~8! is independent of the estimator@i.e. is absent of
g(x)#. Recall that local bounds, such as the CRB, do
share this property of Bayesian bounds: They apply only
estimators that are unbiased.
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It is simple to see that the Bayesian form of the CRB a
the CMB are special cases of the general bound in Eq.~8!.
Consider choosing the functionc(x,u) as follows:

c~x,u!5
] ln p~x,u!

]u
. ~9!

This choice satisfies the orthogonality condition~6! and gen-
erates the Bayesian CRB. Similarly, the selection

c~x,u!5u2^uux& ~10!

leads to the CMB.
In their quest for a less restrictive bound than the CR

and the CMB, Weiss and Weinstein were led to conside
different choice forc(x,u). They proposed the following:

c~x,u!5Lr~x;u1d,u!2L12r~x;u2d,u!, ~11!

where r and d are arbitrary real-valued scalars an
L(x;u1 ,u2) is the likelihood ratio,

L~x;u1 ,u2!5
p~x,u1!

p~x,u2!
. ~12!

This choice forc(x,u) satisfies the orthogonality conditio
~6! for all combinations ofd and 0,r ,1. Substitution into
Eq. ~8! generates the WWB on the mean-square error,e2, in
the estimation ofu:

e2>
d2exp@2h~r ,d!#

exp@h~2r ,d!#1exp@h~222r ,2d!#22exp@h~r ,2d!#
,

~13!

where

h~r ,d!5 ln ^Lr~x;u1d,u!&5 ln E
Q

pr~u1d!p12r~u!

3 H E pr~xuu1d!p12r~xuu!dxJ du

5 ln E
Q

pr~u1d!p12r~u!exp@m~r ;u1d,u!#du.

~14!

Several comments are pertinent here. First, note that the
tegration with respect tou is performed over the regionQ
5$u:p(u).0% in order to avoid singularities. Second, th
bound reduces to the Bayesian version of the CRB fod
→0. Third, the termm(r ;u1d,u) is a familiar one in infor-
mation and communications theory: It is known as the se
invariant moment generating function and used to bound
probability of error in binary hypothesis testing problem
@26#. We shall meet it again in our discussion of the Zi
Zakai bound in the next section.

In order to remove one of the degrees of freedom,
WWB is usually computed forr 51/2. It then reduces to

e2>
d2exp@2h~1/2,d!#

2$12exp@h~1/2,2d!#%
. ~15!
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The variabled that enters the bound is usually referred to
a test point. The optimal value ford is the one that generate
the maximum bound. This value may be other thand→0, for
which the WWB reduces to the CRB as we remarked ear

Weiss and Weinstein have shown how to generalize
single test point bound~15! to incorporate multiple tes
points. Consider a vector of N test points d
[(d1 ,d2 , . . . ,dN). The corresponding multiple-test poin
WWB is

e2>uQ21uT, ~16!

where the elements of the vectoru are

ui5d i , ~17!

and the elements of the matrixQ are

Qi j 52
exp@h~1/2,d i2d j !#2exp@h~1/2,d i1d j !#

exp@2h~1/2,d i !#
. ~18!

In order to evaluate Eq.~16!, a matrix of dimension equal to
the number of test points has to be inverted numerically. T
imposes a practical restriction on the number of test poi
However, as we shall see later, the WWB fortunately appe
to converge quickly with increasingN.

B. Multiple parameters

Since the coalescing binary waveform is characterized
more than one parameter, we shall require a multiple par
eter version of the WWB. Consider a vector ofM param-
eters,u[(u i , . . . ,uM). The WWB on the error covarianc
matrix R is obtained in a similar fashion to the single p
rameter bound. The result is

R>HG21HT. ~19!

The elements of the matrixH are theM3N test points in the
multi-dimensional parameter space. TheN3N matrix G has
elements given by

Gi j 52
exp@h~1/2,di2dj !#2exp@h~1/2,di1dj !#

exp@h~1/2,di !#exp@h~1/2,dj !#
, ~20!

wheredi is the i th test point in the parameter space and

h~1/2,didj !5 ln E
Q
Ap~u1di !p~u1dj !

3$Ap~xuu1di !p~xuu1dj !dx%du. ~21!

Again, several comments are pertinent. First, integrat
with respect tou is over the regionQ5$u :p(u).0%. Sec-
ond, for a non-singular bound there must be at leastM lin-
early independent test points. Finally, Eq.~19! reduces to the
Bayesian CRB upon settingH5dI, whereI is the identity
matrix and the scalard→0. We will turn to the practical
issues involved in the computation of the scalar and ve
parameter versions of the WWB in Sec. V.
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IV. ZIV-ZAKAI BOUND

The theoretical foundation of the Ziv-Zakai bound
somewhat different than the WWB@29#: There do not appea
to be any formal theoretical links. In common with th
WWB however, the ZZB places a fundamental lower bou
on the performance ofanyparameter estimator. We present
simple derivation here for the case of a single parameter w
a uniform prior distribution. The multiple-parameter exte
sion of the bound for arbitrary priors is also presented.

A. Single parameter

As a concrete example, suppose that an estimate of
difference between the arrival time of a gravitational wave
two separated detectors is required. Let us denote this pa
eter byu. Now ask what is the probability of making a co
rect decision between two possible values,f andf1D, of
this parameter. The likelihood ratio test~LRT! is the optimal
decision scheme that produces the minimum probability
error. Instead of the LRT, consider a simpler suboptimal
cision scheme in which a decision is made in favor of t
‘‘nearest neighbor’’ to some arbitrary estimate,û, of u.
Thus,

decide H0 :u5f if û<f1
D

2
,

decide H1 :u5f1D if û.f1
D

2
. ~22!

If the two hypothesized delays are equally likely to occ
which is physically most reasonable, then the suboptimal
cision scheme has a probability of error given by

P~f,f1D!5
1

2
PS û.f1

D

2 Uu5f D
1

1

2
PS û<f1

D

2 Uu5f1D D . ~23!

Clearly if Pmin(f,f1D) is the minimum probability of er-
ror, associated with the LRT, then

Pmin~f,f1D!<
1

2
PS e.

D

2 Uf D1
1

2
PS e<2

D

2 Uf1D D ,

~24!

wheree5 û2u denotes the estimation error. Now, suppo
that u is uniformly distributed on@2T,T#. In this specific
example,T would represent the gravitational wave trav
time between the two detectors. The inequality~24! holds
good for anyf andD, in particular combinations off andD
such thatf,f1DP@2T,T#, or

2T<f<T2D, 0,D,2T. ~25!

Integrating Eq.~24! with respect tof over @2T,T2D#
gives
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E
2T

T2D

Pmin~f,f1D!df<
1

2E2T

T

PS ueu>
D

2Uf D df,

~26!

which can equivalently be expressed as

E
2T

T2D

Pmin~f,f1D!df<THS D

2 D , ~27!

where

H~D![
1

2TE2T

T

P~ ueu>Du f! df. ~28!

Note that Eq.~27! is only useful forD<2T, since for D
.2T the integral is negative and therefore zero is a be
bound. The next step is to multiply both sides of Eq.~27! by
D/T and integrate with respect toD over @0,2T#. Noting that

e252E
0

2T

D2d$H~D!% ~29!

is the mean-square error in the estimation ofu when the
latter has a uniform prior distribution in@2T,T#, the inte-
gration yields

e2>
1

2TE0

2T

D dDE
2T

T2D

Pmin~f,f1D!dD, ~30!

which is the ZZB in its simplest incarnation. Bellini an
Tartara@38# have remarked thatH(D) is a non-increasing
function of D and suggested that the bound might be tig
ened by applying a ‘‘valley-filling’’ function to the left side
of Eq. ~27!. Denoting this function byV@•#, the Bellini-
Tartara version of the ZZB is

e2>
1

2TE0

2T

DVF E
2T

T2D

Pmin~f,f1D!dfGdD. ~31!

The bound generalizes in a straightforward manner for
arbitrary prior,p(u), to give

e2>E
0

`D

2
VH E

2`

`

@p~f!1p~f1D!#

3Pmin~f,f1D!dfJ dD. ~32!

Although there is generally no closed form expression
Pmin(f,f1D), tight lower bounds exist@26#.

B. Multiple parameters

The ZZB has only recently been extended to vector r
dom parameters with arbitrary prior distributions@30#. Con-
sider an M -dimensional vector random variable,u, with
prior probability distribution function~PDF! p(u). As be-
fore, let û be an estimate ofu produced by any estimator,e
the estimation error, andR5^eeT& the error covariance ma
trix. Then the following lower bound onaTRa for any
M -dimensional vectora has been obtained:
r

-

n

r

-

aTRa>E
0

`D

2
V8 dD, ~33!

where the valley filling functionV8 is now defined as

V8[VH max E @p~f!1p~f1d!#Pmin~f,f1d!dfJ ,

~34!

with the maximum referred tod. The bound is generated, a
for the single parameter case, via an inequality between
probability of error in a suboptimal decision rule and t
minimum probability of error associated with an LRT. How
ever, one has now to decide between one of two poss
valuesf or f1d for the parameter vector under investig
tion. The suboptimal decision rule is then

decide H0 :u5f if aTû.aTf1
D

2
,

decide H1 :u5f1d if aTû<aTf1
D

2
. ~35!

The hyperplane

aTu5aTf1
D

2
, ~36!

separating the two decision regions, passes through the
point of the line connectingf andf1d and is perpendicular
to thea axis. A decision is made in favor of the hypothes
that is on the same side of the separating hyperplane as
estimateû. The tightest bound in Eq.~33! is achieved by
maximization over the vectord, subject to the constrain
aTd5D. This constraint does not determine the vectord
uniquely. In order to satisfy it,d must be composed of a
fixed component along thea axis and an arbitrary componen
orthogonal toa. That is

d5
D

iai2
a1b, ~37!

where

aTb50, ~38!

and there areM21 degrees of freedom in choosingd via the
vectorb. Simply settingb50 results in hypotheses that a
separated by the smallest Euclidean distance. However,
does not necessarily guarantee the largest probability of
ror. A maximization overd can improve the bound.

V. COMPUTATIONAL ISSUES

In this section the CRB, WWB, and ZZB are reduced
forms that are appropriate for calculating error bounds on
parameters of a signal that is immersed in a background
Gaussianrandom noise.

The signal waveforms(t,u) is parametrized by a vector
u, for which an estimate is sought. Noisy measurements
the signal are obtained as follows:
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x~ t !5s~ t,u!1n~ t !, 2
T

2
<t<

T

2
, ~39!

where n(t) is the noise, assumed Gaussian with a kno
spectral density denoted bySn( f ).

A. Cramer-Rao bound

The CRB was defined in Eq.~2! to be the inverse of the
Fisher information atu. The latter is a matrix of secon
derivatives of the likelihood ratio of an observation with r
spect tou. In the case of stationary Gaussian noise, the m
trix elements reduce to

Ji j 5S ]s

]u i
U ]s

]u j
D , ~40!

where (s1us2) denotes the inner product between two signa
s1(t) ands2(t). In terms of the signal’s Fourier transform
s̃1( f ) and s̃2( f ), and the spectral density of the nois
Sn( f ), the inner product can be expressed as

~s1us2!52E
0

` s̃1* ~ f ! s̃2~ f !1 s̃1~ f ! s̃2* ~ f !

Sn~ f !
df . ~41!

The integral is a measure of the degree of ‘‘overlap’’ b
tween the two signals, and in radar applications it is of
termed theambiguity function. Thus, Eq.~40! can be inter-
preted as the local curvature of the signal ambiguity funct
around its maximum. Numerical integration is generally
quired to compute the elements of the Fisher informat
matrix. It is then straightforward to perform the inversio
and obtain the CRB. The diagonal elements of the inver
Fisher matrix are the Cramer-Rao bounds on the variance
each of the signal’s parameters.

B. Weiss-Weinstein bound

The calculation of the WWB relies upon evaluating t
semi-invariant moment generating functionh(1/2;di ,dj ) in
Eq. ~21!. It is not difficult to show~see the Appendix in@28#
for details! that, for stationary and Gaussian noise, this fu
tion can be reduced to

h~1/2;di ,dj !5 ln C~di ,dj !1m~1/2;di2dj !, ~42!

where

C~di ,dj !5E
Q
Ap~u1di !p~u1dj !du, ~43!

and the region of integration isQ5$u:p(u).0%. In Eq.
~42!, the first term embodies the prior information about t
parameters. Consider the single test-point version of
WWB for a single parameter having a uniform prior on t
interval @2D/2,D/2#. The integral is simple to evaluate an
it yields

C~d!5 ln S 12
udu
D D . ~44!

After some algebra, the second term in Eq.~42! reduces to
n

-

,

-
n

n
-
n

d
of

-

e

m~1/2;di2dj !52
1

4
r2@12g~di2dj !#, ~45!

wherer2[(sus) is the squared amplitude~energy! signal-to-
noise ratio, and

g~di2dj !5
~s@u1di2dj #us@u# !

~s@u#us@u# !
~46!

is the normalized signal ambiguity function. It is often th
case in practice that the latter function is independent ou,
and then its calculation is greatly simplified. This will be th
case for the examples that are presented later. However
merical integrations are still generally required to comp
the signal ambiguity function. Moreover, these integratio
have to be performed for every set of test point locations
the parameter space. As the WWB also requires inversio
a matrix having dimension equal to the number of test poin
it is clearly desirable to keep the number of test points do
to a minimum. An indicator of the number of test points th
are required for a given problem, and their optimal locatio
is the shape of the signal ambiguity function. As we shall s
later, for the coalescing binary waveform this function ha
very well-defined shape.

C. Ziv-Zakai bound

The main term on which the evaluation of the ZZB in E
~33! hinges isPmin , the minimum probability of error in a
binary detection problem. An exact expression forPmin ex-
ists for the decision problem of discriminating between tw
equally likelysignal vectors,s1 and s2, in a background of
Gaussian noise of covarianceK . The minimum probability
of error is then given simply by

Pmin5FS d

2D , ~47!

whered is the normalized distance between the signals,

d5A~s22s1!TK21~s22s1!, ~48!

and

F~z!5E
z

` 1

A2p
e2t2/2dt. ~49!

If the inner products under the square root sign in Eq.~48!
are evaluated, one finds that

d5A2m~1/2;di2dj !, ~50!

wherem is given by Eq.~45!. Therefore the calculation o
the ZZB, like the WWB, is crucially dependent on the sha
of the signal ambiguity function. In the case of the WW
this dictates the number of test points and their locations
order to achieve a tight bound. In terms of the ZZB, t
shape of the signal ambiguity function defines a path of
tegration in Eq.~33!, subject to the constraint under whic
the integration is evaluated.
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VI. ILLUSTRATIVE EXAMPLE

In this section we apply the CRB and one of the Bayes
bounds ~WWB! to a simple scalar parameter estimati
problem. Our intention is to investigate the conditions un
which Bayesian bounds are tighter than local bounds.

A common feature of all the bounds that we have p
sented is that they depend on the shape of the signal a
guity function, g, rather than the signal shape, when t
background of noise is Gaussian. Often the shape of the
nal ambiguity function is the same for all underlying valu
of the signal’s parameters, greatly simplifying the calculat
of the bounds.

The CRB only probes the shape of the signal ambigu
function around its maximum. Structure in the ambigu
function away from the maximum could be enhanced
noise and masquerade as a false peak. This would confo
a maximum likelihood parameter estimator, and may lead
numerical parameter estimation errors that depart sig
cantly from the theoretical CRB.

While the CRB is ‘‘blind’’ to the presence of sidebands
the signal ambiguity function, the WWB and ZZB are able
capture this structure. In the case of the WWB this
achieved through the test points. As well as probing aro
the main lobe of the ambiguity function, test points may a
be placed around the secondary maxima. Similarly, the Z
is generally tighter than the CRB if a path of integration
selected to traverse all of the predominant lobes ing.

The difference between the CRB and the WWB is b
illustrated through an example. We consider two signalss1
ands2, characterized by a scalar parameter,u, that enters the
signals nonlinearly. The signal waveforms need not conc
us here, only their ambiguity functionsg i(u,Du), where i
51,2. We have chosen signals whoseg ’s are independent o
u and depend only on displacements inu, i.e. Du. These
ambiguity functions are displayed in Fig. 2. The signals1
was designed so thatg1 has only a single broad maximum
The other signal,s2, hasg2 comprised of a number of sig
nificant secondary lobes. Note also thatg1 is actually the
‘‘envelope’’ of g2.

We assume thatu has a uniform prior. However, the re
gion of support of the prior is set much larger than the
ticipated parameter estimation errors, so that the prior d
not actually impact upon the estimation accuracy for t
problem.

For s1, the WWB was computed by placingN test points
uniformly along the lobe of the signal ambiguity function.
was found that the resulting bound was not very sensitive
where the test points were placed along the lobe for
signal. A variable number of test points~up to 20! were used
to study the convergence of the bound. This was attained
only 4 test points. Fors2, the test points were placed aroun
the main lobe of the ambiguity function and also around
principal secondary maxima. In fact only the first three s
ondary lobes needed to be covered: Again the WWB exh
ited rapid convergence.

The CRB was also obtained fors1 ands2 over an identi-
cal range of SNR. This was obtained by inverting the Fis
matrix ~40! for this specific problem. However, the CRB ca
also be computed in terms of the WWB formalism for
single test point,d, allowing d→0. It should be remarked
n
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that in the multiple test-point formulation of the WWB, on
test point is always forced to haved→0. This ensures tha
the WWB reduces to the CRB at a large SNR.

The bounds,eu
( i ) ( i 51,2), that we calculated are dis

played in the top panel of Fig. 2. Fors1, the WWB and the
CRB are in good agreement down to SNR.11. At smaller
values of SNR, the WWB is a tighter bound than the CR
but not significantly so. This result is not too surprising:g1
has only a single broad maximum and the CRB probes
curvature of this lobe. Similarly the WWB probes the stru
ture in the ambiguity lobe, although it is able to probe furth
away from the maximum with respect to the CRB. As t
lobe is broad, the WWB is generally a little tighter than t
CRB. The results fors2 are significantly different. Here, the
WWB departs from the CRB at a much higher value of t
SNR, around 20. This is because the CRB is blind to
secondary maxima ing2 that the WWB is able to capture
through a judicious choice of test points. The discrepan
between the CRB and the WWB for this example is strikin
a factor of;5 at SNR510 and more than an order of mag
nitude at SNR55. The WWB falls significantly as the SNR
increases, while the CRB remains fairly constant, due to
sharp maximum ing2.

It is also interesting to compare the behavior ofeu
(1) and

eu
(2) . At a high SNR the accuracy in the determination ofu

FIG. 2. This diagram illustrates the link between the structure
the ambiguity function and the accuracy of parameter estimat
The lower panel displays the ambiguity function for two differe
one-parameter signals, as a function of the displacementDu from
the true parameter value:s1 ~dashed line! was chosen to have a
ambiguity function with one broad maximum;s2 ~bold line! was
designed to have a more structured ambiguity function with m
secondary sidelobes. For the special signals considered here,
ambiguity functions depend only onDu, and not on the actual value
u. In the upper panel we display the results of applying the Cram
Rao ~dashed and bold line fors1 and s2, respectively! and the
Weiss-Weinstein theory~solid and open circles fors1 and s2, re-
spectively! to bound the mean-square erroreu in the estimation of
the signal’s parameter as a function of the signal-to-noise ratio.
text for further details.
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for s2 is better than fors1. This is clearly due to the shar
maximum in g2. At a low SNR, we expecteu

(1);eu
(2) be-

cause the ambiguity functions have roughly the same ‘‘g
bal’’ profile. This intuition is borne out in the results of th
Bayesian analysis~WWB!, but not for the local analysis
~CRB! whereeu

(2),eu
(1) at all SNR’s.

VII. APPLICATION TO COALESCING BINARY
PARAMETER ESTIMATION

We are now in a position to investigate whether Bayes
bounds provide a tighter constraint than the CRB on the e
covariance matrix for the parameters of a gravitational w
signal generated during the inspiral phase of a compact
ject binary. In the following we use units whereG5c51.
This implies a conversion factor 1M(54.92631026 s.

A. Signal and noise model

The coalescing binary inspiral waveform can be cast
the following generic form:

h~ t !5A@p f ~ t !#2/3cos@f~ t !#, ~51!

wheref (t) is the instantaneous gravitational wave frequen
f(t) the instantaneous phase, andA the amplitude. We will
consider the phasing of the wave, as well as the amplit
evolution, only up to Newtonian order. In this approximati
the factorA is a constant, complicated, function of the bin
ry’s distance, location in the sky,chirp mass M
[m1

3/5m2
3/5/(m11m2)1/5 ~wherem1 andm2 are the masses o

the compact objects! and the detector’s antenna pattern@5#.
Its precise functional form need not concern us further. F
quency and phase read

f ~ t !5 f aF12
t2ta

t G8/3

~52!

and

f~ t !5
16p f at

5 H 12F f ~ t !

f a
G25/3J 1Fa , ~53!

where the constantt, sometimes referred to as the chi
time, can be cast in terms of the chirp mass of the binary

t5
5

256
M25/3~p f a!28/3. ~54!

The constantsf a andFa are respectively the frequency an
phase of the signal at the arbitrary timet5ta . The waveform
is characterized in terms of 3 parametersta , Fa , andt. The
amplitude parameterA enters the waveform linearly and
will be incorporated later into our definition of signal-to
noise ratio@see Eq.~62!#. Of course, the parametrization o
the signal is not unique and one can expressh(t) as a func-
tion, for example, of the time to coalescence and the phas
the wave at this time. In fact, the latter parametrization m
have some advantages. However, our main goal here
assess therelativedifference between the CRB and Bayesi
bounds and so this detail of the parametrization is not c
cial: We require only consistency in the choice of parame
-

n
or
e
b-

n

,

e

-

s

of
y
to

-
i-

zation of the signal in order to compare the bounds. In p
ticular the set of parameters that we are assuming here
not correspond to physical ones, and this would be the ca
we extended this setting to post-Newtonian waveforms@27#.
However, there is one crucial feature of the wave parame
zation that we adopt here: It produces a signal ambigu
function that is independent of the intrinsic values of t
parameters and depends only upon their displacements.
fact is more transparent if we examine the signal’s Fou
transformh̃( f ), which in the stationary phase approximatio
@18# reads

h̃~ f !5Nf 27/6 exp@C~ f !#, ~55!

where

N5Ap2/3S 2t

3 D 1/2

f a
4/3 ~56!

is a normalization constant, and

C~ f !5 i (
n51

3

cn~ f !ln2 i
p

4
; ~57!

ln represents the parameter vector

ln[~ ta ,Fa ,t!, ~58!

and

c152p f ,

c2521,

c352p f 2
16p f a

5

1
6p f a

5 S f

f a
D 25/3

. ~59!

Notice that the signal’s parameters enter linearly into
phase~57! of its Fourier transform. The normalized ambig
ity function for the signal~55! is given by

g~Dln!5J21E f 27/3

Sn~ f !
cosH ReF (

n51

3

cn~ f !DlnG J df ,

~60!

where

J5E f 27/3

Sn~ f !
df ~61!

and the integral is defined over the frequency interval, wit
the instrument’s sensitivity band, spanned by the signal.
optimal signal-to-noise ratio reads

r2[~huh!54N 2J ~62!

and, therefore, incorporates the amplitude parameterA via
the definition ofN; cf. Eq. ~56!.

Our model for the noisy spectral density,Sn( f ), is in-
tended to be representative of the performance of the
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stage LIGO detectors. An analytic fitting formula for this h
been presented in@31#, and we utilize it here. Accordingly to
@27#, we have considered the observational window confin
to the frequency interval 40–750 Hz. We suppose that
final frequency of inspiral is outside the considered ba
width, so that the integral involved in the definition of th
inner product~41! is evaluated on the same frequency ran

B. Calculating the bounds

In order to compare the bounds on parameter estima
errors given by local and global approaches, we compu
the CRB, WWB and ZZB. The computational steps are
scribed here, focusing particularly on the WWB and t
ZZB. Our discussion is centered upon the evaluation
bounds for the time-of-arrival parameter,ta (5l1). Similar
results apply toFa andt.

The CRB involves the computation of the diagonal e
ments of the inverse of the Fisher information matrix~40!,
that is,

e i
25J i i

21 ; ~63!

for the signal~55! and the parameters~58!, we have

] h̃

]l j
5 iNf 27/6c j~ f !exp[C~ f !] ~64!

and, therefore,

Jjk5
r2

J E c j~ f !ck~ f !
f 27/3

Sn~ f !
d f . ~65!

The evaluation of Eq.~63! is straightforward from Eqs.~59!
and ~65! and has been thoroughly studied in many pap
@18,19,32–34#, where further details can be found.

The WWB involves the computation of Eq.~19! and
therefore of theM3N matrix H and theN3N matrix G,
whereM is the number of parameters~3 in this problem! and
N is the number of test points$dj , j 51, . . . ,N%. The test
points are now given explicitly byDl j

n ~the lower and upper
indices labelling the test points and the parameters, res
tively!. The elements of the matrixH are thereforeHn j

5Dl j
n .

We will assume here thatln has a uniform prior distribu-
tion with a region of support that is much larger than t
anticipated errors on the parameters. Therefore the prior
not impact on the calculation of the WWB.

Equations~20! and ~45! read now

Gjk52
exp@r2g~Dl j

n2Dlk
n!/4#2exp@r2g~Dl j

n1Dlk
n!/4#

exp@r2g~Dl j
n!/4#exp@r2g~Dl j

n!/4#
~66!

and

h~1/2;Dl j
n ,Dlk

n!5m~1/2;Dl j
n2Dlk

n!. ~67!

A crucial issue for a reliable computation of the bound is
placing of test points:~i! In order to get the CRB in the limi
of a high SNR, the elementsHn j for j 51,2,3 ~notice thatj
runs from 1 to N) have been chosen according toHn j
d
e
-

.

n
d
-

f

-

s

c-

ill

e

5dnaDl j
a , with Dl j

a!1 ~heredna is the Kronecker sym-
bol!; indeed, we always probe the primary peak of the a
biguity function, as does the CRB;~ii ! in order to get the
tightest possible bound at a low SNR, we placed the ot
test points (Hn j for j .3) along the maxima of the ambiguit
function, using the test-case problem presented in Sec. V
a guideline. In Fig. 3 we showg(Dln), in the plane
(Dta ,Dt), maximized with respect toDFa ~we already
know that the regions where the ambiguity function is sm
do not contribute significantly to the result!. The plot is en-
lightening asg consists of a long, sharp ridge and clear
indicates that the test points need to be spread along
curve. We placed up to 25 points~about the maximum per
mitted by the numerical routines implemented for the mat
inversion! with different choices of their separation and di
tance from the origin. We noted, in fact, that with only
almost equally spaced points~spacing.16 ms), the result
did not change significantly, in agreement with what w
found in the toy problem.

The evaluation of the ZZB involves the computation
the integral~33!, using the minimum probability error given
by Eqs.~47! and~50!. As we have stressed before, the str
egy of computation replaces here the spreading of test po
with the selection of the integration path. Our discussion
the evaluation of the WWB indicates that the integration h
to be performed along the ridge of the ambiguity functi
shown in Fig. 3, in order to produce the tightest bound.
course, no ‘‘valley filling’’ function was needed, asg is a
smooth curve free from oscillations for the signal that w
were studying. We carried out the integration up to a ma
mum displacement from the origin.0.2 s~of the same or-
der of the position of the last test point during the investig
tion of the WWB!, after which no appreciable improveme
was found. As in the case of the computation of the WW
the prior probability onl1 did not impact on the bound
because the region of support was chosen to be much la
than the anticipated error.

C. Results

The bounds calculated following the three different the
retical approaches~CRB, WWB and ZZB! were computed

FIG. 3. The ambiguity function, maximized with respect to t
phase of arrivalFa , for the signal~ 55! as a function of the time of
arrival and of the chirp time.
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4598 57DAVID NICHOLSON AND ALBERTO VECCHIO
for values ofr in the relevant range 7<r<25. In the same
SNR interval we compared these results with those obta
by means of numerical simulations@27# that implement
maximum likelihood estimators. The root-mean-square e
bounds on the time-of-arrival parameterta are displayed as a
function ofr in Fig. 4. All the bounds converge to the CR
at r;15, and at this SNR the CRB is attained by the ma
mum likelihood estimator. At smaller values of SNR, t
Bayesian bounds deviate from the CRB, providing a sligh
tighter result (.6% atr510 and.25% atr57). This not
too severe discrepancy can be explained by the structur
g: Both the local and global approaches probe the ambig
function around its origin, but the Bayesian bound is able
follow it further away from the origin~see the discussion in
Sec. VI!. The behaviors of WWB and ZZB were found to b
very similar, although not exactly equal: The SNR thresh
at which they depart from the CRB isr.14, for the ZZB,
and r.12, for the WWB, but the latter provides a bett
constraint at low SNR’s. This agrees with results from oth
applications of the bound to time-of-arrival parameter e
mation problems in radar and in sonar applications~see@30#
and references therein!. The striking feature of the compar
son is given by the maximum likelihood errors obtained
numerical experiments: While matching the behavior of~lo-
cal and global! lower bounds at a high SNR (r*15), they
produce errors that are dramatically higher than expec
theoretically at low SNR’s: about 65% atr510 and more
than a factor of 2 atr57.

VIII. CONCLUSIONS

We have reassessed the issue of information extrac
with respect to observations of coalescing binaries by in
ferometric gravitational wave detectors. After discussing

FIG. 4. Comparison between local and global theoretical bou
on the time-of-arrival error with actual parameter estimation err
obtained by applying the maximum likelihood method to simula
data~bold line, CRB; open circles, maximum of WWB and ZZB
solid circles, maximum likelihood error!.
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main properties of global and local bounds on parame
estimation, we applied a set of these bounds to a grav
tional wave parameter estimation problem. In particular
have introduced the Weiss-Weinstein and the Ziv-Za
bounds. These provide fundamental lower limits on t
mean-square error on the parameters that describe a si
independently of the actual estimator that is adopted in
data-analysis process. In addition these bounds easily in
porate anya priori information that is available about th
problem and do not suffer from limitations that affect loc
bounds and the Bayesian version of the Cramer-Rao bo
In short, these global bounds can be used to benchmark
performance of any practical information extraction tec
nique.

We have applied the bounds to the case of laser interf
metric measurements of waveforms that are characteristi
those emitted by inspiraling compact binaries in a ba
ground of noise that is characteristic of the performance
first-stage detectors. Comparisons between the Cramer-
Weiss-Weinstein and Ziv-Zakai bounds on the MSE and
tual maximum likelihood errors obtained by numerical e
periments, over a wide range of SNR, show that~i! at high
signal-to-noise ratios~SNR *15) all the approaches con
verge to the same value of the MSE. In this regime one
regard the Fisher information matrix as a simple and relia
tool to compute ‘‘realistic’’ bounds on estimation error
Maximum likelihood methods are probably adequate to
tract astrophysical information from noisy data at the
SNR’s~although a definitive statement is premature, pend
a detailed analysis applied to more general waveforms!. ~ii !
At low signal-to-noise ratios~SNR &10, in which most of
the events are likely to be recorded during the first years
operation of the detectors! the WWB and ZZB produce a
more stringent constraint (.25% atr57) on the MSE with
respect to the CRB, indicating that the latter can undere
mate the errors in this regime. Perhaps more seriously, al
bounds are about 2 times smaller than the errors that
obtained in the numerical experiments.

This analysis suggests that maximum likelihood tec
niques need to be refined, or complemented, in order to
tain the lowest possible value of the errors. Our study of
problems and the results from previous investigations in
ferent fields suggest that these are within a few percen
those predicted theoretically via the WWB and ZZB. A fir
attempt toward the understanding of the outcome of num
cal experiments and the performances of maximum lik
hood estimators has been recently reported in@40#. We are
currently exploring the possibility of implementin
conditional-mean estimators to improve parameter esti
tion accuracy, and will report on this in a forthcoming pap
@41#. The conditional mean estimator is generally intracta
to implement as it requires the computation of a mu
dimensional integral over the space of all the parameters~in
realistic cases more than ten!, even though suitable strategie
to reduce the amount of computation have been propo
and successfully tested in~simple! cases@42#. Hierarchical
strategies combining maximum likelihood and non-linear
tering could also speed up the process.

Finally, it is important to underscore the point that th
form in which we have presented the WWB and ZZB
completely general. It can be applied to parameter estima
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problems for other kinds of signals~e.g. pulsars! and other
instruments and/or arrays of detectors.
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