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A global network of very sensitive large-scale laser interferometric gravitational wave detectors is projected
to be in operation by around the turn of the century. The network is anticipated to bring a range of new
astrophysical information — relating to neutron stars, black holes, and the very early universe — and also new
fundamental physics information, relating to the nature of gravity in the strongly nonlinear regime for example.
This information is borne by gravitational waves that will typically be very much weaker than the level of
intrinsic strain noise in the detectors. Sophisticated signal extraction methods will therefore be required to
analyze the network’s data. Here, the noisy output sfreyle laser interferometric detector is examined. A
gravitational wave is assumed to have been detected in the data. This paper is concerned only with the
subsequent problem of parameter estimation. Specifically, we investigate theoretical lower bounds on the
minimum mean-square errof8ISE) associated with measuring the parameters that characterize the waveform.
The pre-merger inspiral waveform generated by an orbiting system of neutron stars or black holes is ideal for
this study. Monte Carlo measurements of the parameters of noisy inspiral waveforms have been performed
elsewhere, and the results must now confront statistical signal processing theory. Three theoretical lower
bounds on parameter estimation accuracy are considered here: the Cramer-Raq@R®Bpdthe Weiss-
Weinstein boundWWB); and the Ziv-Zakai boundZZB). The CRB is the simplest and most well-known of
these bounds, but suffers from a number of limitations. It has been applied a number of times already to bound
gravitational wave measurement errors. The WWB and ZZB on the other hand are computationally less simple,
and we apply them here to gravitational wave parameter estimation for the very first time. The CRB is known
as a local bound because it assumes that the parameters one seeks to estimate are deterministic, and provides
bounds on their MSE for every possible set of intrinsic parameter values. The WWB and ZZB are known as
global (Bayesian bounds because they assume that the parameter set is random, of known prior distribution.
They bound the global MSE averaged over this prior distribution. We first set up a model problem in order to
develop intuition about the conditions under which global bounds are more appropriate than their local coun-
terparts. Then we obtain the WWB and ZZB for the Newtonian-form of the coalescing binary waveform, and
compare them with published analytic CRB and numerical Monte Carlo results. At large signal-to-noise ratio
(SNR), we find that the theoretical bounds are all identical and are attained by the Monte Carlo results. As SNR
gradually drops below- 10, the WWB and ZZB are both found to provide increasingly tighter lower bounds
than the CRB. However, at these levels of moderate SNR, there is a significant departure between all the
bounds and the numerical Monte Carlo results. We argue that the WWB and ZZB are probably within a few
percent of the theoretical minimum MSE attainable for this problem. The implication is that the maximum
likelihood method of parameter estimation used by the Monte Carlo simulations is not the optimal estimator for
this problem at low-to-moderate SNR. In fact, it is well-known that the optimal parameter estimator is the
conditional mean estimator. This, unfortunately, is notoriously difficult to compute in general. We therefore
advance a strategy for implementing this method efficiently, as a post-processor to the maximum likelihood
estimator, in order to achieve improved accuracy in parameter estimg$io556-282(98)02806-9

PACS numbd(s): 04.80.Nn, 04.30.Db, 97.86d,

I. INTRODUCTION also provide data through which to learn new and fundamen-
tal physics about the gravitational field. Arguably, broadband
A network of very sensitive instruments is presently beinginstruments based upon the method of laser interferometry
assembled across the globe with a view to directly detectingffer the best long-term potential for making astrophysical
cosmic gravitational radiation on Earth. Although detectionobservations. Several such instruments have been funded and
is the initial goal of the network, it must ultimately function are being constructed at the present time. They include:
as an astrophysical observatory. In this capacity it will studyL IGO, the U.S. 4 km arm-length Laser Interferometric
a range of sources of gravitational waves, such as neutro@ravitational Wave Observatorjl]; VIRGO, a French-
stars, black holes, and the early universe. The network willtalian project to construct a 3 km arm-length interferometer
[2]; GEO600, a U.K.-German effort to build a 600 m arm-
length interferometef3]; TAMA, a Japanese project for the
*Present address: Max Planck Institut Gravitationsphysik, Al-  construction of a 300 m arm-length interferomdi}. Joint
bert Einstein Institut, Schlaazweg 1, D-14473 Potsdam. observations between these interferometers are scheduled for

0556-2821/98/5(B)/458812)/$15.00 57 4588 © 1998 The American Physical Society



57 BAYESIAN BOUNDS ON PARAMETER ESTIMATION . .. 4589

soon after the turn of the century. All of the instruments will one of the following:(i) The CRB is aweaklower bound at
continue to improve their sensitivity incrementally for many this SNR, in which case a tighter theoretical bound would be
years thereafter. desirablejii) the CRB is a tight bound and the ML method
Interferometers are intrinsically noisy instruments and thds not the optimal estimator, in which case a more refined
presence of noise will mask the identity of all but the veryparameter estimation method would be desirablgjiorthe
strongest incident gravitational waves. This requires a very-RB is both weakand the ML method is not optimal, in
careful and sophisticated processing of the data in order tyhich case it may be desirable to seek an improved theoret-
extract the valuable information that is borne by the wavedc@l lower bound and an improved estimator. ,
[39]. Let us consider the data acquired by onlgiagle de- In an attempt to discriminate between these options, we
tector in the network. Suppose that the detection of a graviaPPly néw theoretical bounds on the measurement accuracy
tational wave of some assumed known form has already bee{ﬁ/ Fhe problem. Specifically, we myestlgate the Weiss-
made in the instrument’s noisy output. Our focus of attention e|nste|n_boun<128] and the Ziv-Zakai bounﬂzg]. These
here is the subsequent measurement of the one or more € Bayesllz_an boundghat are muph more ve_rsgule than the
rameters that characterize the waveform. Specifically, wenore familiar CRB. Although a little more d|ff|cult to com-
would like to compute the theoretical minimum mean-squar ute than the CRB, they can often be considerably tlght_er.
errors with which the parameters can in principle be mea- his has been demonstrated for a range of parameter estima-

sured. This will clearly have an impact on the astrophysicaFion problems in radar and song8o].

inferences that can then be drawn as a result of the observa- The paper is organl_zed as follows. Sepuon . IS an over-
tion. view of parameter estimation, emphasizing the differences

The particular gravitational waveform that we will focus betweenlocal boundson parameter estimation accuracy of

on in this paper is thehirp of gravitational radiation that Which the CRB is an example, and Bayesian bounds of

precedes the coalescence of a compact binary system cofflich the Weiss-Weinstein and Ziv-Zakai bounds are ex-

prising of neutron star$NS's) and/or black holesBH's). amples. The Weiss-Weinstein bound is described in some

Coalescing binaries are the most promising sources of ravgeta“.in. Sec. Il. Th'is is fOI.IOWEd in Sec. IV by a detailed
tational wgaves in the long runpfor theg LIGO-VIRG%- description of the Ziv-Zakai bound. In Sec. V, some of the

GEOB00-TAMA detectors[5-7]. As radiation reaction Computational issues posed by these bounds are presented.
drives the stars through a slow inspiral phase just prior tg '€ Pounds are applied, in Sec. VI, to a simple problem that

coalescence, the binary generates a very clean gravitationif'Strates the general superiority of Bayesian bounds over

wave signal that is amenable to theoretical modelisge their local counterparts. Then, in _Sec. Vi, the bounds are
[5,7—10 and references ther8in_LIGO and VIRGO antici- computed for a Newtonian coalescing binary waveform im-

pate observing the last few minutes of neutron-star—neutror{'-nerseOI in Gaussian random noise of spectral density charac-

star (NS-NS inspiral, during which the gravitational waves teristic of_the first-stage LIGO dgtec’;ors. We compare the
oscillate through~ 16 000 cycles as their frequency sweepsbo,unds with actual parameter estimation errors that were ob-
through the visibility bands of the detectors. The coalescinga"’:et?1 recent.Iy fror?kal!\r/]lonée Catrrl]odex_glj_ﬁnmen.t deS|gIrt1ed to
binary event rate predictions are subject to gross uncertai est the maximum-ikeiinood method. The main resulls are
ties. However, it is not unreasonable that there may be a fe\g!scussed in Sec. VIIl and some pointers for future work are
NS-NS, NS-BH, and BH-BH mergers out to a distance of9IVen.
~200 Mpc in a period of a yed11-15.

Inspiraling binary gravitational waves are encoded with a Il. SUMMARY OF PARAMETER ESTIMATION
rich suite of physical and astrophysical information. This . , :

A common problem in many fields, ranging from radar

ranges from tests of general relativity,16,17, through d sonar through to geophysics and astronomy, is to seek
measurements of neutron star and black hole mass and Spzrgtimates for thegset ofg argrgeters characterizin y;:l waveform
[6,7,18—-20, to new and independent inferences about th p 9

value of the cosmological parameté2s —24. The informa- $hat is corrupted by additive Gaussian noise. Consider the

tional content of binaries has driven gravitational wave theo® bservation

rists to focus much of their collective effort on waveform
calculations for inspiraling binaries. In tandem with this,
there has been considerable study of algorithms for analyz- ) ) ) )
ing noisy gravitational wave data to extract the waveform@nd assume that the sigrt; ) is a known function of time
information. for all values of the parameter vectér andn(t) is a zero-

The main goal of this paper is to reassess the issue dfhean Gaussi_an random noise process. 'So'me measurement
information extraction with respect to observations of coa-2/gorithm, which we do not need to specify in detail yet, is
lescing binaries by an interferometric gravitational wave de2Pplied tos(t) in order to extrac#. The algorithm produces
tector. Our motivation is the result of a recent confrontationan estimate, with associated erroe=6— 6. A statistical
between the theoretical Cramer-Rao low bou@RB) on  summary of the performance of the algorithm is contained in
parameter estimation errof®5,26 for coalescing binary the error covariance matrix, given Bg=(ee'), where(-)
waveforms, with real measurement errors based upon applédenotes expectation. The diagonal elementsRofre the
cation of themaximum likelihoodML) method of parameter mean-square errodISE’s) on each individual parameter,
estimation to simulated data s¢&7]. The ML errors were while the off-diagonal elements represent their cross-
found to depart significantly from the CRB at moderatecovariances. In order to benchmark the performance of any
signal-to-noise ratio§SNR’s) of around~8. This implies practical parameter estimator, one would like to know the

X(t)=s(t;0)+n(t), [t|<T/2, 1)
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T T T T whereJ is the Fisher information matrix whose elements are
l given by[35]

maximim MSE

] 52

] «ZJZ<W|”A(X,0)> €)
Ry
% and A(x; 6) is the likelihood ratio,
E |
& . p(x|6)
8 A(X; 0)= . 4
g

threshold

The CRB is not difficult to compute and it is widely invoked.
In particular, it has been used almost exclusively to bound
the measurement errors on the parameters of gravitational
wave signal$18,19,31—-34 Moreover, it can be proved that
the CRB is asymptotically attained by the maximum-
e likelihood method of parameter estimatif®6]. As gravita-
tional wave observations of coalescing binary signals will be
rare, and the majority of detections will be made at only
FIG. 1. Schematic representation of the behavior of the meammoderate SNR’s, it is unlikely that the asymptotic conditions
square error as a function of the signal-to-noise ratio in a typicawill be met in practice. Similar situations exist in the fields
nonlinear estimation problem. of radar and sonar, and here alternative bounds to the CRB

theoreticaminimumR for the problem at hand. If the signal E)?:\S giﬁ?] g ot?]zltd i;end'bzhaﬁgﬁaﬂgﬁgo?ﬁ ;n fg]ree?g‘gspile, ISa

e e o Homeve, L consideraby more iful 1 compte s

’ requires maximization over a number of free variables. Also,
being a local bound, it still only applies to unbiased estima-
tors and is unable to incorporate prior information about the
I;i)arameters if this information is available.

ambiguity region

asymptotic region

log[signal-to—noise ratio]

estimation problem is given in Fig. 1. In the small error or
asymptotic region, characterized by a high SNR, estimatio
errors are small. In the ambiguity region, where the SNR is

moderate, large errors occur. When the SNR is very small, B. Bayesian bounds

the observations provide little information and the MSE is Rather than treating the unknown parameters as determin-
close to that obtained simply from prior knowledge about the;ic quantities, Bayesian bounds treat them as random vari-

problem. In this paper we will be concerned with bounds thatypjes with known prior distributions. These bounds are glo-
are able to characterize performance in the asymptotic ang,| in the sense that they bound MSE’s on each of the
ambiguity regions. These bounds generally fall into one Of 5 ameters, averaged over their prior distributions. In con-
two classes: local bounds or global Bayesian bounds. Wgaqt with their local counterparts, Bayesian bounds are not
will describe their main features in the next section. restricted in application to unbiased estimators. In fact, they
lower bound the performance ahy estimator. Also, unlike
local bounds, they easily incorporate any prior information
The formulation of local bounds is based on the premiseabout the parameters. It is straightforward to form a Bayesian
that the unknown parameters one seeks to measure are deteersion of the CRB by simply replacing the conditional prob-
ministic quantities. The bounds are local in the sense thadbility densityp(x|#) with a joint probability density(x, 6)
they are placed on the MSE’s for each different possiblausing Bayes’ theorem. However the Bayesian CRB is subject
value of the intrinsic parameter vector. Local bounds haveo a stringent regularity condition: It requires the prior prob-
two serious limitations. First, they are restricted in applica-ability density function of the parameters(6), to be twice
tion to estimators that anenbiased In practice, biased esti- differentiable. In the common case of parameters that have
mation is often unavoidable. If the space of a parameter isiniform priors, this regularity condition is obviously not met.
finite, for example, then an unbiased estimator of it does not Another example of a Bayesian bound is the conditional
exist. Second, local bounds are unable to incorporate angean estimation boun@CMB) [26]. In fact this is not really
prior information that one might have about the parametersa bound, since it can be attained by tbenditional mean
The Cramer-Rao bound is a familiar example of a localestimator (CME). This estimator achieves the minimum
bound and it therefore has only limited utility. This bound MSE and provides the benchmark against which the perfor-
states that for anynbiasedestimator of a parameter vector mance of other estimators should be compared. The CME of
0, based upon noisy observationgthe error covariance ma- a scalar parametef, based upon noisy observatiors is
trix must be larger than or equal to the inverse of the Fishegiven by
information at@. Thus

Rij=((6i— 6,)(8;— 6)))=T;; ", ) 0(x)=(9|x)=j_x6p(6|x)d0. ®

A. Local bounds
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In the context of gravitational wave parameter estimation, It is simple to see that the Bayesian form of the CRB and

the CME has been referred to as the Kallianpur-Striebel othe CMB are special cases of the general bound in(8q.

nonlinear filte{37]. Unfortunately, the CMB is prohibitively Consider choosing the functiop(x, 8) as follows:

difficult to compute for all but the simplest of problems. It

generally requires multi-dimensional integrations to be per- dln p(x,6)

formed numerically over the prior parameter space. P(x,0)= Y’} ' ©
The complexity of the CMB has motivated the formula-

tion of two further important Bayesian bounds — the Weiss-This choice satisfies the orthogonality conditi@y and gen-

Weinstein boundWWB) and the Ziv-Zakai boundZZB).  erates the Bayesian CRB. Similarly, the selection

These trade off some of the computational complexity of the

CMB, and yet are only apparently a little less tight. In a W(X,0)=0—{0]x) (10

range of applications the bounds have demonstrated this util-

ity [30]. We now describe each of these bounds in soméeads to the CMB.

detail in the following two sections. In their quest for a less restrictive bound than the CRB

and the CMB, Weiss and Weinstein were led to consider a

L. WEISS-WEINSTEIN BOUND different choice fory(x, 8). They proposed the following:
The Bayesian form of the CRB and the CMB discussed in Y(x,0)=L"(x;0+8,0)—L*""(x;6—6,0), (11

the previous section belong to a general class of Bayesian .

bounds that Weiss and Weinstein were able to derive fronj'neére r and & are arbitrary real-valued scalars and

the Schwarz inequalitj28]. An outline of their derivation is (X 61,62) is thelikelihood ratig

given here. The WWB is a member of this general class, but

it is free from the problems that limit the CRB and CMB. It L(X; 6y,0,) = P(x,61) ) (12)

therefore is of much more general utility than the latter two p(X,6,)

bounds. A version of the WWB for the case of a single ) o . N

parameter is obtained below. A statement of the multiple-This choice fory(x, #) satisfies the orthogonality condition

Eq. (8) generates the WWB on the mean-square eegrin
the estimation o®:

A. Single parameter

A lower bound on the error in estimating a scalar param- 52exp[277(r,5)]
eter 6, based upon noisy observatioms is sought. Let € Bexq 7(2r,8)]+exd n(2—2r,— 8)]—2exd 5(r,28)]’
p(x, 8) denote the joint probability density afand . Weiss (13
and Weinstein introduced a functiof(x, #) such that

where

f do ¥(x,0)p(x,0)=0 Vx. (6)
o 7(r,8)=In (L"(Xx;0+6,0))= In f p'(6+8)pr (6
(€]
Since, for any real-valued measurable functigm),
X

fpr(x|0+5)p“(x|0)dx]da
() ¥(x,0))= Lcdx g(x) Lcdo P(X,0)p(x,6)=0,
7 =1In f@pr((ﬂ S)pr"(0)exd u(r; 6+ 8,6)]do.

the condition in Eq(6) implies thaty(x, #) is orthogonal to (14
any transformation of the data. Subtracting{8y(x, 6)) , , )
from both sides above and then applying Schwarz’s inequa|§everal comments are pertinent here. First, note that the in-

ity to the left side, results in the following: tegration with respect t@ is performed over the regio®
={6:p(6)>0} in order to avoid singularities. Second, the
(0y(X, 0))? bound reduces to the Bayesian version of the CRB for
([6—g(x)]>)= : , (8  —0. Third, the termu(r; 6+ &,6) is a familiar one in infor-
(Y2(x,0)) mation and communications theory: It is known as the semi-

invariant moment generating function and used to bound the
As this inequality is valid for ang(x), it sets a lower bound probability of error in binary hypothesis testing problems
on the mean-square error in estimatihfrom observation of [26]. We shall meet it again in our discussion of the Ziv-
X. To underline this point we will replacg(x) in the follow-  Zakai bound in the next section.
ing by #(x). Note that the lower bound set by the right side In order to remove one of the degrees of freedom, the
of Eq. (8) is independent of the estimatfire. is absent of WWB is usually computed for=1/2. It then reduces to
g(x)]. Recall that local bounds, such as the CRB, do not 5
share this property of Bayesian bounds: They apply only to 2= o"ex27(1/2,6)]
estimators that are unbiased. 2{1—exd n(1/2,26)]}

(15
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The variables that enters the bound is usually referred to as IV. ZIV-ZAKAI BOUND
a test point. The optimal value fdris the one that generates The theoretical foundation of the Ziv-Zakai bound is

the maximum bound. This value may be other tldan0, for . )
which the WWB reduces to the CRB as we remarked earliers'ome\/\/hat different than the WW29): There do not appear

Weiss and Weinstein have shown how to aeneralize thto be any formal theoretical links. In common with the
. . . ger WWB however, the ZZB places a fundamental lower bound
single test point bound15) to incorporate multiple test

oints. Consider a vector ofN test points & on the performance afny parameter estimator. We present a
P ' P simple derivation here for the case of a single parameter with

\7V$/318|532 ---»0). The corresponding multiple-test point a uniform prior distribution. The multiple-parameter exten-
sion of the bound for arbitrary priors is also presented.
e=uQ ", (16)
A. Single parameter
where the elements of the vectorare As a concrete example, suppose that an estimate of the
difference between the arrival time of a gravitational wave at
ui=a;i, (17)  two separated detectors is required. Let us denote this param-
eter by 6. Now ask what is the probability of making a cor-
and the elements of the matr@ are rect decision between two possible valugsand ¢+ A, of
this parameter. The likelihood ratio t€&RT) is the optimal
exd n(1/2,6;— 6;) ] —exd n(1/12,6;+ 6;)] decision scheme that produces the minimum probability of
ij=2 exd27(1/2,5)] . (18 error. Instead of the LRT, consider a simpler suboptimal de-

cision scheme in which a decision is made in favor of the

In order to evaluate Eq16), a matrix of dimension equal to nearest neighbor” to some arbitrary estimaté, of 6.
the number of test points has to be inverted numerically. Thid hus,

imposes a practical restriction on the number of test points. A

However, as we shall see later, the WWB fortunately appears decide Hy:6=¢ if o<¢+ —,

to converge quickly with increasiny. 2

- A
8. Multiple parameters decide Hy:0=p+A  if 9>¢+5. (22

Since the coalescing binary waveform is characterized by
more than one parameter, we shall require a multiple param-
eter version of the WWB. Consider a vector Mf param-  If the two hypothesized delays are equally likely to occur,
eters,0=(6;, ...,0y). The WWB on the error covariance which is physically most reasonable, then the suboptimal de-
matrix R is obtained in a similar fashion to the single pa- Cision scheme has a probability of error given by
rameter bound. The result is

-~ 10— 1yT ZE : é =
R=HG "H'. (19 P(¢,p+A) 2P 0>¢+2 0=¢

The elements of the matrik are theM X N test points in the 1 /.
multi-dimensional parameter space. TR& N matrix G has 5Pl o=¢t5 0=+ A
elements given by

. (23

Clearly if Ppin(&, ¢+ A) is the minimum probability of er-

_ (126 6)]-exd 7126+ 4)] (200  Tor, associated with the LRT, then

" exd 7(1/2,8) lexd 7(1/2,6))] ’

+1p
2

(24)

1 A A
where & is theith test point in the parameter space and Pmin(@, 0+ A)< EP( e—|¢ e<— 5 d+A

2

w1256)= 0 | o0 8)p(0+3) )
© where e= 6— 6 denotes the estimation error. Now, suppose

x{\p(X] 0+&)p(x|0+5j)dx}d0. (21) that 6 is uniformly distributed or[—T,'_r]. _In this specific
example, T would represent the gravitational wave travel

Again, several comments are pertinent. First, integratior'%Ime between the two detectors. The inequal@) holds

with respect to is over the regior®={8:p(6#)>0}. Sec- good for any¢ andA, in particular combinations ap andA
ond, for a non-singular bound there must be at |&dadin- such thatg, ¢+A <[~ T.T], or

early independent test points. Finally, E#9) reduces to the

Bayesian CRB upon settingy= 6Z, whereZ is the identity —T<¢<T-4a, 0<A<2T. (25
matrix and the scalab—0. We will turn to the practical

issues involved in the computation of the scalar and vectomtegrating Eq.(24) with respect to¢ over [-T,T—A]
parameter versions of the WWB in Sec. V. gives
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T-A A<1T(>A T>OCA/A
Jq Pmin( ¢, ¢+ )d¢\§ﬁTP el= ]| dé, aRa/JO SV’ da, (33

(26)
where the valley filling functiorV’ is now defined as
which can equivalently be expressed as

T-A A V’EV{ maXf [P(#)+p(d+ 8)]Pmin( b, p+ d)dépy,
j;r Pmin(¢v¢+A)d¢$TH(§), (27) (34)

where with the maximum referred té. The bound is generated, as
for the single parameter case, via an inequality between the
1 (7 probability of error in a suboptimal decision rule and the
HA)=57 _TP(|€|>A| ¢) do. (28)  minimum probability of error associated with an LRT. How-
ever, one has now to decide between one of two possible
Note that Eq.(27) is only useful forA<2T, since forA values¢ or ¢+ 6 for the parameter vector under investiga-
>2T the integral is negative and therefore zero is a bettefon. The suboptimal decision rule is then
bound. The next step is to multiply both sides of E2j7) by A
A/T and integrate with respect b over[0,2T]. Noting that decide Hy:0=¢ if a'0>a p+ 5

2T
e2=—J AZd{H(A)} (29 . A
0 decide H,: 0=+ 6 if a'f<a’ ¢+ > (35)

is the mean-square error in the estimationéofvhen the
latter has a uniform prior distribution if—T,T], the inte-  The hyperplane
gration yields

A
L s al=alet 7, (30
ezaﬁfo A dAf P ¢+ 0)dA, (30

separating the two decision regions, passes through the mid-

which is the ZZB in its simplest incarnation. Bellini and point of the line connectingd and ¢+ éand is perpendicular
Tartara[38] have remarked thatl(A) is a non-increasing 1o thea axis. A decision is made in favor of the hypothesis
function of A and suggested that the bound might be tight-that is on the same side of the separating hyperplane as the
ened by applying a “valley-filling” function to the left side estimate®. The tightest bound in E¢33) is achieved by
of EQ. (27). Denoting this function byV[-], the Bellini-  maximization over the vectos, subject to the constraint
Tartara version of the ZZB is a'é=A. This constraint does not determine the vec#r
1 ot s uniquely. In order to satisfy itg must be composed of a
2o — B , fixed component along theeaxis and an arbitrary component
€= ZTL Av f Pm'”(¢’¢+A)d¢}dA' (3 orthogonal toa. That is

The bound generalizes in a straightforward manner for an A
arbitrary prior,p(6), to give o= Wa-i' b, (37)
OOA oo
62>f EVU [P(d)+p(H+A4)] where
0 —
a'b=0, (38)
X Pl ¢, &+ A)dd)] da. 32 and there aré1 — 1 degrees of freedom in choosidyia the

vectorb. Simply settingb=0 results in hypotheses that are
Although there is generally no closed form expression forseparated by the smallest Euclidean distance. However, this
Pmin(¢,d+A), tight lower bounds exigi26]. does not necessarily guarantee the largest probability of er-
ror. A maximization overd can improve the bound.

B. Multiple parameters

The ZZB has only recently been extended to vector ran- V. COMPUTATIONAL ISSUES

dom parameters with arbitrary prior distributiof&0]. Con- In this section the CRB, WWB, and ZZB are reduced to
sider anM-dimensional vector random variabl@, with  forms that are appropriate for calculating error bounds on the
prior probability distribution function(PDF) p(6). As be-  parameters of a signal that is immersed in a background of
fore, let @ be an estimate off produced by any estimatog, = Gaussianrandom noise.

the estimation error, an®=(ee') the error covariance ma- The signal waveforns(t, 8) is parametrized by a vector,
trix. Then the following lower bound ora'Ra for any @, for which an estimate is sought. Noisy measurements of
M-dimensional vectoa has been obtained: the signal are obtained as follows:
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T T 1
X()=s(t.O)+n(t), —5<t<z, (39 p(UU2:8-8)==72pT1-78-8)], (45
wheren(t) is the noise, assumed Gaussian with a knownyherep?=(s|s) is the squared amplitudenergy signal-to-
spectral density denoted I8;(f). noise ratio, and
A. Cramer-Rao bound (s[0+&—61|s[0])
YE—8)= (46)

The CRB was defined in Eq2) to be the inverse of the (sLalls[ 6])
Fisher information atf. The latter is a matrix of second _ ) o ) )
derivatives of the likelihood ratio of an observation with re- is the normalized signal ambiguity function. It is often the

spect to#. In the case of stationary Gaussian noise, the macase in practice that the latter function is independen#, of

trix elements reduce to and then its calculation is greatly simplified. This will be the
case for the examples that are presented later. However, nu-

as | ds merical integrations are still generally required to compute

Jij= (9_6“ a_gj ' (40 the signal ambiguity function. Moreover, these integrations

have to be performed for every set of test point locations in
where 6,|s,) denotes the inner product between two signalsthe parameter space. As the WWB also requires inversion of
s;(t) ands,(t). In terms of the signal's Fourier transforms, a matrix having dimension equal to the number of test points,

S,(f) and S,(f), and the spectral density of the noise, it iS clearly desirable to keep the number of test points down

S,(f), the inner product can be expressed as to a minimum. An indicator of the number of test points that
are required for a given problem, and their optimal locations,
=S¥ () s,(f)+5.(f)S5(F) is the shape of the signal ambiguity function. As we shall see
(sl|sz)=2f df. (41 later, for the coalescing binary waveform this function has a
0 Sn(f) very well-defined shape.
The integral is a measure of the degree of “overlap” be- ) _
tween the two signals, and in radar applications it is often C. Ziv-Zakai bound
termed theambiguity function Thus, Eq.(40) can be inter- The main term on which the evaluation of the ZZB in Eq.

preted as the local curvature of the signal ambiguity function33) hinges isPy,, the minimum probability of error in a
arqund its maximum. Numerical integration is ge_nerally ré-pinary detection problem. An exact expression Ry, ex-
quired to compute the elements of the Fisher informationsts for the decision problem of discriminating between two
matrix. It is then Stra|ghtf0rward to perform the inversion equa”y ||ke|ys|gna| Vectorssl and Sy, in a background of

and obtain the CRB. The diagonal elements of the invertegaussian noise of covariante The minimum probability
Fisher matrix are the Cramer-Rao bounds on the variances @f error is then given simply by

each of the signal's parameters.

Pmin=P

d
B. Weiss-Weinstein bound 5)’ @7
The calculation of the WWB relies upon evaluating the
semi-invariant moment generating functiei{1/2;4 ,4;) in
Eqg. (21). It is not difficult to show(see the Appendix if28]
for detail9 that, for stationary and Gaussian noise, this func- d=V(s-s) K Xs-s)), (48)
tion can be reduced to

whered is the normalized distance between the signals,

and
7(1/2;8,8)=In C(&,8)+u(l/2,6—-6), (42
o 71 2
where D(z =J — e 2t 49
(2) . 2m (49
C(a.6)= f@ Vp(0+8)p(0+ 5)d6, 43 if the inner products under the square root sign in @&)

are evaluated, one finds that
and the region of integration i® ={6:p(6)>0}. In Eq.
(42), the first term embodies the prior information about the d=+-u(l/2;6—-6), (50)
parameters. Consider the single test-point version of the
WWB for a single parameter having a uniform prior on thewhere u is given by Eq.(45). Therefore the calculation of
interval[ —D/2,D/2]. The integral is simple to evaluate and the ZZB, like the WWB, is crucially dependent on the shape
it yields of the signal ambiguity function. In the case of the WWB
this dictates the number of test points and their locations in
order to achieve a tight bound. In terms of the ZZB, the
shape of the signal ambiguity function defines a path of in-
tegration in Eq.(33), subject to the constraint under which
After some algebra, the second term in E4p) reduces to  the integration is evaluated.

)= ( |5I)
(9=In|1- 5. (44)
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VI. ILLUSTRATIVE EXAMPLE oois E T " T T T T T T ]

In this section we apply the CRB and one of the Bayesian r
bounds (WWB) to a simple scalar parameter estimation 001 |~
problem. Our intention is to investigate the conditions under < . ~
which Bayesian bounds are tighter than local bounds. 0.005

A common feature of all the bounds that we have pre- C ° o T -]
sented is that they depend on the shape of the signal ambi: P P S S e
guity function, vy, rather than the signal shape, when the 5 10 15 20
background of noise is Gaussian. Often the shape of the sig-
nal ambiguity function is the same for all underlying values Ig T —RF- T T~ T T T T T T ]
of the signal’s parameters, greatly simplifying the calculation A W I U A U AN A vt ===
of the bounds. 05

The CRB only probes the shape of the signal ambiguity
function around its maximum. Structure in the ambiguity
function away from the maximum could be enhanced by . F E
noise and masquerade as a false peak. This would confounc r
a maximum likelihood parameter estimator, and may lead to A Mo s e L
numerical parameter estimation errors that depart signifi- 0 0.02 00, 0% 0.08 0.1
cantly from the theoretical CRB.

While the CRB is “blind” to the presence of sidebands in  FIG. 2. This diagram illustrates the link between the structure of
the signal ambiguity function, the WWB and ZZB are able tothe ambiguity function and the accuracy of parameter estimation.
capture this structure. In the case of the WWB this isThe lower panel displays the ambiguity function for two different
achieved through the test points. As well as probing aroun@ne-parameter signals, as a function of the displaceténtrom
the main lobe of the ambiguity function, test points may alsdthe true parameter valus; (dashed ling was chosen to have an
be placed around the secondary maxima. Similarly, the zzgmbiguity function with one broad maximurs; (bold line) was
is generally tighter than the CRB if a path of integration igdesigned to _have a more structureq amb@wty fun(_:tlon with many
selected to traverse all of the predominant lobes.in seco_ndgry S|de_lobes. For the special signals considered here, both

The difference between the CRB and the WWB is besfamblguny functions depen_d only ang, and not on the_ actual value
illustrated through an example. We consider two sigrsls, 0. In the upper panel we fjlsplay the results of applylng the Cramer-

. Rao (dashed and bold line fos; ands,, respectively and the
a_ndsz, chara_lcterlzed by a_scalar parametérthat enters the Weiss-Weinstein theorysolid and open circles fos; ands,, re-
signals nonllnearly. The-S|g.naI Wavgforms need not Co,ncergpectively to bound the mean-square errgy in the estimation of
uslhzer\?\,/eoagletzh:rllr()sa;bé?;rlltgl;L:/\?r?(t;;enﬁagea,iﬁgébgvnrljeerr?tl of the signal’s parameter as a function of the signal-to-noise ratio. See
0 and depend only on displacementsédni.e. Af. These text for further detatls
ambiguity functions are displayed in Fig. 2. The sigsal
was designed so that; has only a single broad maximum. e X
The other signals,, hasy, comprised of a number of sig- test point is always forced to hav®—0. This ensures that

nificant secondary lobes. Note also that is actually the —the WWB reduce(is) to the CRB at a large SNR. _
“envelope” of y,. The _bounds,eg (|=1,2){ that we calculated are dis-
We assume tha# has a uniform prior. However, the re- Played in the top panel of Fig. 2. Fsg, the WWB and the
gion of support of the prior is set much larger than the an.CRB are in good agreement down to SNRL1. At smaller
ticipated parameter estimation errors, so that the prior dogéa/ués of SNR, the WWB is a tighter bound than the CRB
not actually impact upon the estimation accuracy for thisPut not significantly so. This result is not too surprising:
problem. has only a single broad maximum and the CRB probes the
Fors;, the WWB was computed by placiry test points ~ curvature of thi_s Iqbe. Similarly the _V\_/WB probes the struc-
uniformly along the lobe of the signal ambiguity function. It ture in the ambiguity lobe, although it is able to probe further
was found that the resulting bound was not very sensitive t§Way from the maximum with respect to the CRB. As the
where the test points were placed along the lobe for thidoPe is broad, the WWB is generally a little tighter than the
signal. A variable number of test pointtsp to 20 were used CRB. The results fos, are significantly d|ff_erent. Here, the
to study the convergence of the bound. This was attained fof¥\WB departs from the CRB at a much higher value of the
only 4 test points. Fos,, the test points were placed around SNR, around 20. This is because the CRB is blind to the
the main lobe of the ambiguity function and also around thesécondary maxima iry, that the WWB is able to capture
principal secondary maxima. In fact only the first three secthrough a judicious choice of test points. The discrepancy

ondary lobes needed to be covered: Again the WWB exhibbetween the CRB and the WWB for this example is striking:
ited rapid convergence. a factor of~5 at SNR=10 and more than an order of mag-

The CRB was also obtained fsf ands, over an identi- hitude at SNR=5. The WWB falls significantly as the SNR
cal range of SNR. This was obtained by inverting the Fisheicreases, while the CRB remains fairly constant, due to the
matrix (40) for this specific problem. However, the CRB can sharp maximum iny,.
also be computed in terms of the WWB formalism for a It is also interesting to compare the behaviorefjf’ and
single test point,s, allowing §—0. It should be remarked 5(92). At a high SNR the accuracy in the determinationgof

7(a8)

ofF 3

that in the multiple test-point formulation of the WWB, one
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for s, is better than fors;. This is clearly due to the sharp zation of the signal in order to compare the bounds. In par-
maximum in y,. At a low SNR, we expect{)~¢€{?) be- ticular the set of parameters that we are assuming here may
cause the ambiguity functions have roughly the same “glo-not correspond to physical ones, and this would be the case if

bal” profile. This intuition is borne out in the results of the We extended this setting to post-Newtonian wavefof2.
Bayesian analysi§WWB), but not for the local analysis However, there is one crucial feature of the wave parametri-

(CRB) wheree%2)<e(01) at all SNR’s. zation that we a_dopt here: It produc_es_ a _signal ambiguity
function that is independent of the intrinsic values of the

VII. APPLICATION TO COALESCING BINARY parameters and depends only upon their displacements. This
PARAMETER ESTIMATION fact is more transparent if we examine the signal’'s Fourier

transformh(f), which in the stationary phase approximation
We are now in a position to investigate whether Bayesiaif18] reads

bounds provide a tighter constraint than the CRB on the error
covariance matrix for the parameters of a gravitational wave h(fy=Nf"76 exd ¥ (f)], (55)
signal generated during the inspiral phase of a compact ob-

ject binary. In the following we use units whe@@=c=1. Wwhere
This implies a conversion factor 1M=4.926x 10 % s.

2 1/2
N=Am?3 ?) f43 (56)

A. Signal and noise model

The coalescing binary inspiral waveform can be cast ins a normalization constant, and
the following generic form:

3
h(t)=A=f(t)]*cog 4(1)], (5 V(=13 e (NG (57)

wheref(t) is the instantaneous gravitational wave frequencyw
¢(t) the instantaneous phase, ahdhe amplitude. We will
consider the phasing of the wave, as well as the amplitude N=(t,,D,,7), (58)
evolution, only up to Newtonian order. In this approximation

the factorA is a constant, complicated, function of the bina- and

ry’'s distance, location in the skychirp mass M

represents the parameter vector

=m3"m3® (m, +m,)Y® (wherem, andm, are the masses of yr=27f,
the compact objectsand the detector’'s antenna patté&j. _
Its precise functional form need not concern us further. Fre- Yo=-1,
guency and phase read 167,
t—t 8/3 l//3:27Tf_ 5
_ _ a
f(t)—fa{l - (52 6t -5 y
and 5 \fa ' 59
16mf.7 f(t)]~53 Notice that the signal's parameters enter linearly into the
d(t)= a { —[—} +0,, (53)  phase(57) of its Fourier transform. The normalized ambigu-
5 fa ity function for the signal55) is given by
where the constant, sometimes referred to as the chirp ~713 3
time, can be cast in terms of the chirp mass of the binary as  y(A\")=J"1 Sn(f)CO% Re{ 21 zpy(f)A)\V” df,
= iGM*5/3( ,n_fa) 78/3. (54) (60)
25 where
The constant$, and®, are respectively the frequency and §-73
phase of the signal at the arbitrary timet,. The waveform J= Xt df (61)
is characterized in terms of 3 parametgrs ®,, andr. The Sh

amplitude parameteA enters the waveform linearly and it 5 the integral is defined over the frequency interval, within

will be incorporated later into our definition of signal-to- he instrument’s sensitivity band, spanned by the signal. The
noise ratio[see Eq.(62)]. Of course, the parametrization of optimal signal-to-noise ratio reads

the signal is not unique and one can expte@3 as a func-

tion, for example, of the time to coalescence and the phase of p?=(hlh)=4N?] (62)

the wave at this time. In fact, the latter parametrization may

have some advantages. However, our main goal here is @nd, therefore, incorporates the amplitude paramiteia
assess theelative difference between the CRB and Bayesianthe definition of\; cf. Eq. (56).

bounds and so this detail of the parametrization is not cru- Our model for the noisy spectral densitg,(f), is in-

cial: We require only consistency in the choice of parametritended to be representative of the performance of the first
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stage LIGO detectors. An analytic fitting formula for this has

been presented i181], and we utilize it here. Accordingly to

[27], we have considered the observational window confined ,

to the frequency interval 40-750 Hz. We suppose that the™™o4Y fnetn

final frequency of inspiral is outside the considered band- 08

width, so that the integral involved in the definition of the 83
0

inner product(41l) is evaluated on the same frequency range.

B. Calculating the bounds

In order to compare the bounds on parameter estimatior 0.01

errors given by local and global approaches, we computec

the CRB, WWB and ZZB. The computational steps are de- time of arival (S5

scribed here, focusing particularly on the WWB and the

ZZB. Our discussion is centered upon the evaluation of

bounds for the time-of-arrival parameteég, (=X\,). Similar o _ o )

results apply tob, and 7. FIG. 3. The ambiguity fu_nctlon, maximized Wlth respe_ct to the
The CRB involves the computation of the diagonal e|e_phz.ase of arrivafb, , fgr th.e signal 55) as a function of the time of

ments of the inverse of the Fisher information mat@g),  &"ival and of the chirp time.

that is,

-0.02
chirp time (sec)

0.03

) . =0,,AN]", with AN{'<1 (here§,, is the Kronecker sym-
€=T;" (63)  bol); indeed, we always probe the primary peak of the am-
) biguity function, as does the CRRii) in order to get the
for the signal(S5) and the parameter$8), we have tightest possible bound at a low SNR, we placed the other
5 test points #,; for j>3) along the maxima of the ambiguity
—.=i/\/f‘7’ez/;j(f)exp[‘lf(f)] (64) functl_on,_usmg the_test—case problem prese_nted in Sec. VIl as
I a guideline. In Fig. 3 we showy(A\"), in the plane
(At,,A7), maximized with respect tA®, (we already
and, therefore, know that the regions where the ambiguity function is small
—73 do not contribute significantly to the resulfhe plot is en-
f_ df. (65) lightening asy consists of a long, sharp ridge and clearly
Sn(f) indicates that the test points need to be spread along that

) ) , curve. We placed up to 25 poinfabout the maximum per-
The evaluation of Eq(63) is straightforward from EQS59)  njtted by the numerical routines implemented for the matrix

and (65) and has been thoroughly studied in many papers,ersion with different choices of their separation and dis-
[18,19,32—34 where further details can be found. tance from the origin. We noted, in fact, that with only 4
The WWB involves the computation of E19) and  5imqast equally spaced pointspacing=16 ms), the result
therefore of theM XN matrix 7 and theNXN matrix G, §iq not change significantly, in agreement with what was
whereM is the number of paramete(3 in this problemand  ¢5,,nd in the toy problem.
N is the number of test pointsd;,j=1,... N}. The test The evaluation of the ZZB involves the computation of
points are now given explicitly b’ (the lower and upper  the integral(33), using the minimum probability error given
i_ndices labelling the test points ant_j the parameters, respegy Eqs.(47) and(50). As we have stressed before, the strat-
tively). The elements of the matri%( are therefore},;  egy of computation replaces here the spreading of test points
=A)\j”- with the selection of the integration path. Our discussion of
We will assume here that” has a uniform prior distribu-  the evaluation of the WWB indicates that the integration has
tion with a region of support that is much larger than theto be performed along the ridge of the ambiguity function
anticipated errors on the parameters. Therefore the prior wikhown in Fig. 3, in order to produce the tightest bound. Of
not impact on the calculation of the WWB. course, no “valley filling” function was needed, agis a
Equations(20) and (45) read now smooth curve free from oscillations for the signal that we
were studying. We carried out the integration up to a maxi-
exdp®y(AN]— AN/4]—exd p?y(AN]+ AN /4] mum displacement from the origis 0.2 s(of the same or-
Gik=2 exp[pzy(A)\J-”)/4]exp[p2y(A>\j”)/4] Qer of the position of the Ia}st test point dyring_the investiga-
(66) tion of the WWB), after which no appreuab_le improvement
was found. As in the case of the computation of the WWB,
and the prior probability on\; did not impact on the bound,
because the region of support was chosen to be much larger
N(L2ZAN] AN = u(L2AN] = ANY). (67)  than the anticipated error.

2
=2 [ )

A crucial issue for a reliable computation of the bound is the
placing of test points(i) In order to get the CRB in the limit
of a high SNR, the elementq; for j=1,2,3 (notice thatj The bounds calculated following the three different theo-
runs from 1 toN) have been chosen according 19, retical approacheéCRB, WWB and ZZB were computed

C. Results
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o~ 1. "~ 1 1] main properties of global and local bounds on parameter
estimation, we applied a set of these bounds to a gravita-
[ ] tional wave parameter estimation problem. In particular we
25 . have introduced the Weiss-Weinstein and the Ziv-Zakai

I ] bounds. These provide fundamental lower limits on the

I ] mean-square error on the parameters that describe a signal,
o0 b - independently of the actual estimator that is adopted in the
[ ] data-analysis process. In addition these bounds easily incor-
porate anya priori information that is available about the
problem and do not suffer from limitations that affect local
bounds and the Bayesian version of the Cramer-Rao bound.
In short, these global bounds can be used to benchmark the
performance of any practical information extraction tech-
nique.

We have applied the bounds to the case of laser interfero-
metric measurements of waveforms that are characteristic of
those emitted by inspiraling compact binaries in a back-
ground of noise that is characteristic of the performance of
first-stage detectors. Comparisons between the Cramer-Rao,

signal-to-noise ratio Weiss-Weinstein and Ziv-Zakai bounds on the MSE and ac-
tual maximum likelihood errors obtained by numerical ex-

FIG. 4. Comparison between local and global theoretical boundperiments, over a wide range of SNR, show tfiatat high
on the time-of-arrival error with actual parameter estimation errorssignal-to-noise ratio§SNR =15) all the approaches con-
obtained b)_/ applying the ma>.<imum Iikel?hood method to simulatedverge to the same value of the MSE. In this regime one can
data(bold line, CRB; open circles, maximum of WWB and ZZB; yegard the Fisher information matrix as a simple and reliable
solid circles, maximum likelihood errpr tool to compute “realistic” bounds on estimation errors.

Maximum likelihood methods are probably adequate to ex-
for values ofp in the relevant range € p<25. In the same tract astrophysical information from noisy data at these
SNR interval we compared these results with those obtaine8NR’s (although a definitive statement is premature, pending
by means of numerical simulation®7] that implement & detailed analysis applied to more general waveforiis
maximum likelihood estimators. The root-mean-square erroft low signal-to-noise ratio$SNR <10, in which most of
bounds on the time-of-arrival parametgrare displayed as a the events are likely to be recorded during the first years of
function of p in Fig. 4. All the bounds converge to the CRB operation of the detectoréshe WWB and ZZB produce a
at p~15, and at this SNR the CRB is attained by the maxi-more stringent constraint{25% atp=7) on the MSE with
mum likelihood estimator. At smaller values of SNR, the respect to the CRB, indicating that the latter can underesti-
Bayesian bounds deviate from the CRB, providing a slightlymate the errors in this regime. Perhaps more seriously, all the
tighter result &6% atp=10 and=25% atp=7). Thisnot bounds are about 2 times smaller than the errors that are
too severe discrepancy can be explained by the structure @btained in the numerical experiments.

v: Both the local and global approaches probe the ambiguity This analysis suggests that maximum likelihood tech-
function around its origin, but the Bayesian bound is able tdliques need to be refined, or complemented, in order to at-
follow it further away from the originsee the discussion in tain the lowest possible value of the errors. Our study of toy
Sec. V). The behaviors of WWB and ZZB were found to be Problems and the results from previous investigations in dif-
very similar, although not exactly equal: The SNR thresholdferent fields suggest that these are within a few percent of
at which they depart from the CRB ,914, for the ZZB, those predicted theoretica”y via the WWB and ZZB. A first
and p=12, for the WWB, but the latter provides a better attempt toward the understanding of the outcome of numeri-
constraint at low SNR’s. This agrees with results from otherc@l experiments and the performances of maximum likeli-
applications of the bound to time-of-arrival parameter esti-n0od estimators has been recently reportefddl. We are
mation problems in radar and in sonar applicaticsee[30] ~ currently exploring the possibility of implementing
and references therginThe striking feature of the compari- conditional-mean estimators to improve parameter estima-
son is given by the maximum likelihood errors obtained intion accuracy, and will report on this in a forthcoming paper
numerical experiments: While matching the behaviotlof [41]. The condition_al mean estimator is gene_zrally intractab_le
cal and global lower bounds at a high SNRo& 15), they tq |mpl_emen_t as it requires the computation of a multi-
produce errors that are dramatically higher than expecteflimensional integral over the space of all the paraméters

theoretically at low SNR’s: about 65% at=10 and more realistic cases more than feeven though suitable strategies
than a factor of 2 ap=7. to reduce the amount of computation have been proposed

and successfully tested isimple caseg42]. Hierarchical
strategies combining maximum likelihood and non-linear fil-
tering could also speed up the process.

We have reassessed the issue of information extraction Finally, it is important to underscore the point that the
with respect to observations of coalescing binaries by interform in which we have presented the WWB and ZZB is
ferometric gravitational wave detectors. After discussing thecompletely general. It can be applied to parameter estimation

VIIl. CONCLUSIONS
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problems for other kinds of signale.g. pulsarsand other for fielding questions and providing references to the WWB.
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Andrzej Krolak, Bernard Schutz, and B. Sathyaprakash. A.V.
ACKNOWLEDGMENTS acknowledges financial support from the Fondazione Della

Riccia and the Department of Physics and Astronomy of the
We are indebted to Kristine Bell for sending us her thesisSUWCC for the kind hospitality. The last months of A.V.'s
dissertation on the ZZB and graciously answering many otontribution to this work were supported by the Max Planck
our subsequent queries. In addition, we thank Tony Weis&esellschaft.

[1] A. Abramovici et al, Science256, 325 (1992. [20] L. S. Finn, Phys. Rev. 33, 2878(1996.
[2] C. Bradaschiaet al, Nucl. Instrum. Methods Phys. Res. A [21] B. F. Schutz, NaturéLondon) 323 310(1986.
289, 518(1990. [22] D. Markovic, Phys. Rev. D48, 4738(1993.

[3] K. Danzmann, inGravitational Wave Experimentedited by  [23] D. F. Chernoff and L. S. Finn, Astrophys. 411, L5 (1993.
E. Coccia, G. Pizzella and F. Rong@orld Scientific, Sin-  [24] Y. Wang and E. L. Turner, Phys. Rev. &5, 724 (1997.
gapore, 1995 pp. 100-111. [25] H. Crame, Mathematical Methods of Statisticdrinceton
[4] K. Tsubono, inGravitational Wave Experimentsdited by E. University Press, Princeton, NJ, 1946
Coccia, G. Pizzella and F. Rong#/orld Scientific, Singapore, 2] 1. L. van TreesDetection Estimation and Modulation Theory

1999, pp. 112-114. o (Wiley, New York, 1968, Pt. 1.
[5] K. S. Thorne, in300 Years of Gravitatioredited by S. Hawk- [27] R. Balasubramanian, B. S. Sathyaprakash, and S. V.

ing and W. Israel(Cambridge University Press, Cambridge, Dhurandhar, Phys. Rev. B3, 3033(1996.

[6] En%i::’reltgfly gf}‘ys?’g;\fsf&ttm 2084(1993 [28] E. Weinstein and A. J. Weiss, IEEE Trans. Inf. The8dy 338
' ? ' ) ' ) (1988.

[7] K. S. Thorne, inProceedings of the Snowmass 95 Summer 291 ). 7i d M. Zakai. [EEE T Inf. Th 386 (196
Study on Particle and Nuclear Astrophysics and Cosmology[ | J. Ziv and M. Zakai, rans. Inf. Theodp, (1969.

edited by E.W. Kolb and R. PeccéWorld Scientific, Sin- [30] K. L. Bell, Ph.D. thesis, George Mason University, 1995.
gapore, 1995 [31] L. S. Finn and D. F. Chernoff, Phys. Rev.47, 2198(1993.
[8] C. M. Will, in Proceedings of the 8th Nishinomiya-Yukawa [32] P- Jaranowski and A. Krolak, Phys. Rev.4D, 1723(1994.
Symposium on Relativistic Cosmologydited by M. Sasaki [33] A. Krolak, K. D. Kokkotas, and G. Scher, Phys. Rev. [52,

(Universal Academic Press, Japan, 1994 2089(1995.
[9] Numerical Relativity Grand Challenge Alliance, 1995. Refer- [34] P. Jaranowski, A. Krolak, K. D. Kokkotas, and G. Tsegas,
ences and information on the WWW at http://jean- Class. Quantum Grad3, 1279(1996.
luc.ncsa.uiuc.edu/GC. [35] C. W. Helstran, Statistical Theory of Signal Detectip2nd ed.
[10] L. Blanchet, “Gravitational radiation from relativistic (Pergamon, London, 1968
sources,” presented at the Les Houches School on Gravita:36] E. W. Barankin, Ann. Math. StaR0, 477 (1949.
tional Radiation, gr-qc/9607025. [37] M. H. D. Davis, inGravitational Wave Data Analysi®dited
[11] R. Narayan, T. Piran, and A. Shemi, Astrophys. J. L8719, by B.F. SchutzKluwer, Dordrecht, 1989 pp. 73-94.
L17 (199)). [38] S. Bellini and G. Tartara, IEEE Trans. Commu22, 340
[12] E. S. Phinney, Astrophys. 380, L17 (1991. (1974.
[13] E. P. J. Van den Heuvel and D. R. Lorimer, Mon. Not. R. [39] B. F. Schutz, inData Processing Analysis and Storage for
Astron. Soc.283 L37 (1996. Interferometric Antennasedited by D. G. Blair(Cambridge
[14] V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, New University Press, Cambridge, United Kingdom, 189pp.
Astron. (to be published 406-452.
[15] V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astron. [40] R. Balasubramanian and S. V. Dhurandhar, “Gravitational
Lett. (to be published waves from coalescing binaries: Estimation of parameters”
[16] C. M. Will, Phys. Rev. D50, 6058(1994). gr-qc/9702015; “Estimation of parameters of gravitational
[17] E. Poisson, Phys. Rev. B4, 5939(1996. waves from coalesing binaries,” gr-qc/9708003.
[18] C. Cutler and EFlanagan, Phys. Rev. B9, 2658(1994. [41] A. Vecchio and D. Nicholsottin progress

[19] E. Poisson and C. M. Will, Phys. Rev. &2, 848(1995. [42] A. Pasetti, M.Sc. thesis, University of London, 1987.



