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Measuring gravitational waves from binary black hole coalescences.
I. Signal to noise for inspiral, merger, and ringdown
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We estimate the expected signal-to-noise ratl®R9 from the three phasesnspiral, merger, and ring-
down) of coalescing binary black holéBBHSs) for initial and advanced ground-based interferometet&O-
VIRGO) and for the space-based interferometer LISA. Ground-based interferometers can do moder@e SNR
few teng, moderate accuracy studies of BBH coalescences in the mass range of a few to about 2000 solar
masses; LISA can do high SNEf order 1d), high accuracy studies in the mass range of abots 1¢ solar
masses. BBHs might well be the first sources detected by LIGO-VIRGO: they are visible to much larger
distances—up to 500 Mpc by initial interferometers—than coalescing neutron star bitfeiesofore re-
garded as the “bread and butter” workhorse source for LIGO-VIRGO, visible to about 30 Mpc by initial
interferometers Low-mass BBHs(up to 5 for initial LIGO interferometers, 10d@, for advanced,
10°M, for LISA) are best searched for via their well-understood inspiral waves; higher mass BBHs must be
searched for via their poorly understood merger waves and/or their well-understood ringdown waves. A
matched filtering search for massive BBHs based on ringdown waves should be capable of finding BBHs in the
mass range of about 100,—700M out to ~200 Mpc for initial LIGO interferometers, and in the mass
range of ~200M to ~300(M out to aboutz=1 for advanced interferometers. The required number of
templates is of the order of 6000 or less. Searches based on merger waves could increase the number of
detected massive BBHs by a factor of the order of 10 over those found from inspiral and ringdown waves,
without detailed knowledge of the waveform shapes, using a noise monitoring search algorithm which we
describe. A full set of merger templates from numerical relativity simulations could further increase the
number of detected BBHs by an additional factor of up-td. [S0556-282(98)06508-4

PACS numbd(s): 04.80.Nn, 04.25.Dm, 04.30.Db, 95.55.Ym

I. INTRODUCTION AND SUMMARY even if the radiation reaction could be turned off. We will
call the subsequent plunge and violent collision therger
phase. Gravitational waves from the merger could be rich
It has long been recognized that coalescences of binanyith information about the dynamics of relativistic gravity in
black hole(BBH) systems could be an important source ofa highly nonlinear, highly dynamic regime which is poorly
gravitational waved1,2], both for ground-based interfero- understood today.
metric detectors such as the Laser Interferometric Gravita- As the system settles down to a stationary Kerr state, the
tional Wave ObservatoryLIGO) [3] and VIRGO[4] cur-  nonlinear dynamics of the merger gradually becomes more
rently under construction, and also for the possible futureand more describable as oscillations of the final black hole’s
space-based Laser Interferometer Space Antédi$#) [5—  quasinormal modelsl3,14. The corresponding gravitational
7]. The orbits of BBHs gradually decay from energy andwaves consist of a superposition of exponentially damped
angular momentum loss to gravitational radiation. Eventusinusoids. We will call the phase of the coalescence for

A. Coalescences of black hole binaries

ally, they merge to form a single black hole. which the gravitational waves are dominated by the strongest
The process of coalescence can be divided into three mote=m=2 quasinormal mode theéngdown The ringdown
or less distinct phases: waves carry information about the mass and spin of the final

An adiabaticinspiral, during which the gravitational ra- black hole[15,16. (For want of a better terminology, we
diation reaction time scale is much longer than the orbitalwill always usecoalescencéo refer to the entire process of
period. The inspiral ends when the binary orbit becomesnspiral, merger and ringdown, and reserve the word merger
relativistically dynamically unstable at an orbital separationfor the phase intermediate between inspiral and ringdpwn.
of r~6M (in units whereG=c=1) [8,9]. The gravitational In this paper we focus primarily on BBHs in which the
waves from the inspiral carry encoded within them themasses of the two black holes are approximately the same,
masses and spins of the two black holes, some of the binalthough we do also consider sources with one black hole
ry’s orbital elements, and the distance to the bindry0]. much smaller than the other. We consider three different

Towards the end of inspiral, the black holes encounter @lasses of BBHSs:
dynamical instability and make a gradual transition from a (i) Solar masslack hole binaries: these are binaries that
radiation-reaction driven inspiral to a freely falling plunge are formed either from massive main-sequence progenitor
[8,11,13. After the plunge, the black holes would still merge binary stellar systeméfield binarie$ or from capture pro-
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cesses in globular clusters or galactic centeepture bina- radio jet of QSO 1928 738 have been attributed to the or-
ries). Field binaries are expected to have total masses in thieital motion of a SMBH binary37], as have time variations
range 10M,<M=<50My, but not much larger than this, in quasar luminositie$38] and in emission line redshifts
while capture binaries could have somewhat larger mass¢89]. The overall event rate is uncertain, but could be large
[17]. The event rate of solar-mass BBH coalescences is ndt=1/yr), especially if the hierarchical scenario for structure
well known. For globular cluster capture binaries, Sigurdsformation is correc{36].
son and Hernquist argue that generically at least one BBH
coalescence should occur per core-collapsed globular clusteB. Status of theoretical calculations of the gravitational-wave
[18], yielding ~3 yr ! in a distance of 600 Mpc using the signal
extrapolation method of Sec. 3.1 of R¢L9]. This rate is . . . -
one or two orders of magnitude smaller than the expected D_eta_lled theoretical understanding and predlct_lons of the
event rate for what has traditionally been regarded as th@ravitational waveformé, (t) andh,(t) produced in BBH
most promising source for ground-based interferometers‘}oayesclences will .faC|I|tate both the .detect!on. of the
coalescences of neutron-star—neutron-§&8-NS binaries gravitational-wave signal and the extraction of its informa-
[3,10] (about 10°° yr~tin our Galaxy, or several per year in tion. In situations where a complete family of theoretical
a distance of 200 Mp{20,19,21—23. However, BBH sys- template waveforms is available, it will be possible to use
tems can be seen to much greater distances than NS-NS sydiener optimal filtering(“matched filtering”) to search the
tems, and so it is possible that BBH coalescences will bénterferometer data streams and to detect the sipghd0].
seen before NS-NS coalescences. For field binaries, esflhe resulting signal-to-noise ratidcSNR9 can be larger
mates of the coalescence rate by experts in binary evolutiothan those obtainable without theoretical templates by a sub-
theory range from~10"8 yr ' to ~10 ® yr ' in our Gal-  stantial factor; see Sec. II. Thus, while it is possible to detect
axy [22,24], to completely negligibld25]. There are large the various phases of BBH coalescences without theoretical
uncertainties associated with these theoretical estimates tdmplates, such templates can greatly increase the effective
the coalescence rat€26]. range of the interferometers and the event detection rate.

(ii) Intermediate masblack hole binaries: these are bina- Such theoretical template waveforms are available for the
ries with total masses in the range M@=<M=(a inspiral and ringdown phases of the coalescence, but not yet
few)x 10®M, . In contrast to the cases of solar mass blackfor the merger phase, as we now discuss.
holes and supermassive black holdiscussed beloy there For the inspiral, the gravitational waves and orbital evo-
is little direct observational evidence for the existence oflution can be described reasonably well using the post-
black holes in this mass ran§j27]. Despite the lack of evi- Newtonian approximation to general relativity. To date, in-
dence, it is plausible that black holes in this mass range argpiral waveforms have been calculated to post-2.5-
formed in the cores of globular clusters or in galactic nucleiNewtonian order[41], and the prospects look good for
in the process of formation of a supermassive black hol@btaining waveforms up to post-3.5-Newtonian order
[30]. Simulations by Quinlan and Shapiro suggest that black42,43. Post-Newtonian templates will be fairly accurate
holes withM ~100M , to 100(M , could be formed in the over most of the inspiral, the most important error being a
evolution of dense stellar clusters of main sequence stars ieumulative phase lajg4,45. This cumulative phase lag will
galactic nucle[17], and that coalescences of binaries of suchnot be important for searches for inspiral waves; the template
black holes could be possible en route to the formation of g@hasing error will be largely compensated for by systematic
supermassive black hole. Even if the coalescence rate of irerrors in best-fit values of the binary’s parameters, and the
termediate mass BBHs is only 1®that of NS-NS binaries, signals will still be found44,46—48. By contrast, template
they are visible to such great distances that they would stilinaccuracies will be significant when one attempts to extract
be seen more often than NS-NS binaries by initial and adfrom the data the binary’s parameters. In particular, post-
vanced LIGO interferometers, and thus could be the firsiNewtonian templates’ errors start to become very significant
detected type of sourc€See Sec. | E for further details. around an orbital separation of-12M [49], well before the

(iii ) Supermassivblack hole binaries: there is a variety of end of the inspiral at the dynamical orbital instability (
strong circumstantial evidence that supermassive black holes6M). Templates for the phase of the inspiral between
(SMBHs9) in the mass range B, to 1°M, are present in  roughly 12V and 6M will most likely have to be calculated
guasars and active galactic nuclei, and that a large fraction afsing methods other than the post-Newtonian approximation.
nearby massive spiral and elliptical galaxies harbor quiescerthe methods of full blown numerical relativity cannot be
SMBHs|[7,31,30. One of the main goals of the LISA project applied to this “intermediate binary black hole(1BBH)
is to detect and monitor various processes involving SMBHsphase, since the total time taken to evolve fronM1® 6M
such as the capture of compact st#,10,32,38and their is about 150M, too long for supercomputer simulations to
formation[2,7]. In particular, the coalescences of SMBH bi- evolve. Analytical and numerical methods for calculating
naries that are formed in galaxy mergers, in which the indi{BBH waveforms based on the adiabatic approximation are
vidual SMBHs are driven together by dynamical friction andunder developmen60]; it is likely they will be successfully
gas accretion until a gravitational radiation reaction takesmplemented before gravitational-wave interferometers be-
over[34], have often been suggested as a promising sourogin measuremen{s1].
for space-based interferometdts2,7,10,35,3p Such coa- Waveforms from the dynamic, complicated merger can
lescences would be detectable throughout the observable urinly be obtained from numerical relativity. Unlike mergers
verse with large signal to noise ratips,10]. There is some of neutron star binaries, BBH mergers are particularly clean
observational evidence for SMBH binaries: wiggles in thein the sense that there is no microphysics or hydrodynamics
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to complicate simulations of the evolution, and external perspectral density,(f ) of the strain noise in the interferom-
turbations are negligible: the entire merger can be describeeter via[61]

as a solution to the vacuum Einstein equatib8]. Finding _

that solution is not a particularly easy task: a major compu- 5 f‘” Ih(f)[?
tational effort to evolve the vacuum Einstein equation for P o Sy(f)
BBH mergers using massive computational resources is cur-

rently underway, funded by the National Science Foundawhereh(f ) is the Fourier transform df(t) defined by Eq.
tion’s Grand Challenge prograf4,55. (2.3). The SNR(1.1) depends, through the waveforn(t),

The ringdown phase of the coalescence can be accuratebn the orientation and position of the source relative to the
described using perturbation theory on the Kerr spacetiméterferometer. In Sec. Il C we show that if we perform an
background[56]. The gravitational waveforms from this rms average over source orientations and positiaha fixed
phase are well understood, being just exponentially dampedistancg, the rms SNR thus obtained depends only on the
sinusoids. Thus, matched filtering is feasible for searches fagnergy spectrundE/df of the emitted gravitational waves.
ringdown waves. The resulting relationship between the waves’ energy spec-
trum and the rms angle-averaged SNR forms the basis for
most of our calculations. It is given Hgf. Eq. (2.30]

df, (1.7

C. Purpose of this paper

The principal purpose of this paper is to estimate, in more o 201+2)7 (= 1 dE
detail than has been done previously, the prospects for mea- (p%)= 5m°D(z)? fo df £2S,(f ) ﬁ[(Hz)f]'
suring gravitational waves from the three different phases of (1.2
coalescence events, for various different detectors, and for a
wide range of BBH masses. We estimate in each case th&herez is the source’s cosmological redshift abdz) its
distances to which the different types of source can be seddminosity distance. In order for a signal to be detected, the
by calculating expected SNRs. In particular, we determindv@ves’ measured SNR must be larger than a certain thresh-
for each BBH mass and each detector whether a coalescen@lé! Which we discuss in Sec. Il &f. Eq.(2.9].
event is most effectively detected by searching for the in- (Il) Band-pass filtering searchebor the merger phase, a

spiral, or the merger, or the ringdown. We also determinecomplete set of theoretical templates may not be available,

how much the availability of theoretical templates for theand so methods other _than matched fllterlng will need o be
. . . used. Band-pass filtering, followed by setting a detection
merger could increase the event detection rate. Previous

es; . . S :
. . reshold in the time domain, is a simple method of search-
timates of SN.RS fp ' ground—baged interferometers have fol’ng an interferometer data stream for bursts of unknown form
cused on the inspirdll,44] and ringdown[15,16], and also

[40]. In Sec. Il A we derive an approximate relation between

focused on soIar—mass BBHs. For space-based interferomize sNR obtainable from band-pass filtering, and the SNR
eters, previous estimates of SNRs from the meiget0l (1 1) optainable from matched filtering, for any burst of
were restricted to specific masses and did not consider thg,es:

ringdown.

In a companion paper, we discuss in detail the useful S 1 S
information carried by the three phases of the gravitational- (—) o (— 1.3
wave signal, and methods and prospects for extracting this N band-pass V2 TAf N/ matched

information both with and without templates for the merger

phase[57]. HereT is the duration of the burst antif is the bandwidth

of the band-pass filtdicf. Eq.(2.15]. The quantity ZAf is

the dimension of the linear space of signals being searched

for, and is roughly the same as the “number of cycles” of

the gravitational waveform. In Sec. VI B, we use the formula
We calculate SNRs for three different types of interfer-(1.3) to estimate the SNRs from band-pass filter searches for

ometer: initial and advanced ground-based interferometemnierger waves, by inserting on the right hand side the rms

(LIGO-VIRGO), and the proposed space-based interferomangle-averaged matched-filter SNR2) and by making es-

eter LISA. The noise spectra of the initial and advancedimates ofT andAf.

ground-based interferometers we took from R8&f.and that (iii) Noise-monitoring, nonlinear filtering searcheghe

for LISA from Ref. [7]. Our approximate versions of these traditional view has been that the SNR?J) is about the best

noise spectra are given in Eq4.1)—(4.4), and are illustrated that can be achieved in the absence of templates, that is, that

D. Estimating the signal-to-noise ratios:
Method and assumptions

in Figs. 1-3in Sec. V A. the gain in SNR obtainable from matched filtering is ap-
We consider the following three different signal-detectionproximately the square root of the number of cycles in the
methods: gravitational wave signdlEq. (2.15 below]. This view is

(i) Matched filtering searchedror those phases of the based on the assumption that the search method used in the
coalescence for which a complete set of theoretical templategbsence of templates is band-pass filtering or something very
will be available(the inspiral, the ringdown, and possibly the similar. However, we suggest in Sec. Il B an alternative
mergej, matched filtering can be used to search for thesearch method, motivated by Bayesian analyses and incorpo-
waves[1,40,58-6Q. For any source of waves, the SNR rating nonlinear filtering, which performs much better than
obtained from matched filtering is related to the gravitationaband-pass filtering and in some cases almost as well as
waveformh(t) measured by the interferometer and to thematched filtering. In essence, one monitors the noise level in
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the data stream in a certain frequency band, over short timean be larger when they are spinning. Exactly how close to
scales, and looks for statistically significant changes. Thextremal the final black hole will be is a matter that probably

noise level is estimated by calculating the quantity will not be decided until supercomputer simulations—or
observations—settle the issue. In any case, the ringdown
1 (T2 5 SNR values that we obtain depend only weakly on our as-
T J_de s(t+7)%, 14 sumed value of [cf. Eq. (B14)], for fixed total energy ra-

diated in the ringdown.

whereT is the maximum expected duration of the signal, and The overall amplitude of the ringdown signal depends
s(t) is a suitably pre-filtered version of the data stream.  Upon one’s delineation of where “merger” ends and “ring-

The efficiency of this noise-monitoring search methoddown” begins, which is somewhat arbitrary. For equal-mass
cannot usefully be described in terms of an SNR, since th8BHs, we assume a value of the overall amplitude that cor-
detection statistic is non-Gaussian. Instead, its efficiency caffsponds to a total radiated energy in the ringdown of
be described in the fo||owing way. Lptdenote the SNR that 0.03V, i.e., a 3% radiation efficiency. This number is based
would be obtained if matched filtering were possipleg.  ©on a quadrupole-formula-based estimate of the QNR ampli-
(11)] We usep as a convenient parameterization of thetUde when the distortion of the horizon of the black hole is of
signal strength; as such, it is meaningful even in situation®rder unity(cf. Sec. Ill D). Although this radiation efficiency
where matched filtering cannot be carried out. A signal willmay seem rather high, there have been numerical evolutions
be detected with high confidence using the noise-monitorin@f distorted, spinning black holes in which the ringdown
technique whenevas is larger than a threshole, given by ~ waves carry away=3% of the black hole’s total ma$s6].

Eq. (2.29 below. In practicep, is slightly larger than the For non-equal-mass black holes, we assume that the total
threshold for matched filtering but not greatly larger. energy radiated in the ringdown i(x/M) 0.0M, where

The relation(1.2) forms the basis of our SNR calcula-
tions. We use the threshol@®.9) and(2.29 to deduce from F(u/M)=(4uiM)? (1.5

the SNR values the detectability of the various parts of the
gravitational wave signal. To calculate the SNRs, we alsandy is the reduced mass of the binary. The reduction factor
need to specify the waves’ energy spectra for the three dif¢1.5) gives the correct results for equal masses and also gives
ferent phases of the coalescence. As we now outline, thehe correct scaling law in the regime<M. For general
waves’ energy spectrum is essentially known for the inspiramass ratios, it is probably a good approximation.
and ringdown phases, and we make an educated guess for theMerger energy spectrunRealistic merger energy spectra
merger. Section Il gives more details. will vary substantially from event to evefdepending on the
Inspiral energy spectrumiWe use the leading order ex- initial BH sping. Currently, we have very little concrete in-
pression for dE/df obtained using Newtonian gravity formation about such spectra, pending supercomputer simu-
supplemented by the quadrupole form{&2] [Eq. (3.14].  lations. We adopt the following crude model for equal-mass
Strictly speaking, this spectrum describes the SNR thaBBHs[Eq. (3.13 below]: a flat spectrundE/df=const ex-
would be achieved by searching for Newtonian, quadrupolgending from the frequency yerqe=0.02M of quadrupole
waves using Newtonian, quadrupole templates. The actualaves at the end of inspiral to the quasinormal ringing fre-
SNR obtained when searching for a real, general-relativistiguencyf,,=0.13M, with amplitude such that the total ra-
inspiral using post-Newtonian templates should deviate frongliated energy in the merger is 10% of the total mass energy
this by only a few tens of a percef3]. We terminate the of the spacetime. In Sec. Il B we describe various circum-
spectrum at the frequendy,eqe= 0.02M which is(roughly)  stantial pieces of evidence, culled from the literature, which
the frequency of quadrupole waves emitted at the orbital dymotivated this choice of energy spectrum. In particular, we
namical instability ar ~6M [8]. For LISA, we assume that outline two different “handwaving” arguments which sug-
the measurement process lasts at most 1 yr, and choose tfjest that in favorable cases the merger radiation efficiency
frequency at which the spectrum starts accordingly. may be as high as our assumed value-df0%. One of these
Ringdown energy spectrunThe spectrum that we use arguments, due originally to Smaf67] and explored by
[Eq.(3.19] is determined, up to its overall amplitude, by the Detweiler [68], is based on extrapolation of perturbation
properties of thé=m=2 quasi-normal ringingQNR) mode  theory results; the other argument is based on angular mo-
of the final Kerr black hole. This mode is the most slowly mentum conservation.
damped of all QNR modes, and so we expect it to dominate Our assumed radiation efficiencies of 3% and 10% for the
the last stages of gravitational-wave emission. The QNRingdown and merger phases should be interpreted as reason-
spectrum depends on three parameters: the modes’ frequenglgle upper bounds that could be achieved in favorable cases,
fqnr» damping timer, and initial amplitude of excitation, rather than as best-guess estimates. We note that numerical
which in turn depend on the mabs and dimensionless spin simulations that have been performed to dathich are re-
parametera of the final black hole and on the total energy stricted to axisymmetric situationgenerally yield lower ra-
radiated in the ringdown. The spectrum is peakeflat,,,  diation efficiencies than we have assunié8]; moreover,
with width Af~1/7. these axisymmetric simulations generally find that ringdown
We (somewhat arbitrarily assumea=0.98. It seems waves carry most of the radiated energy. In Sec. Il B we
likely that in many coalescences the spin of the final blackargue that the radiated energy in the merger phase could be
hole will be close to maximal, since the total angular mo-boosted by the lack of symmetry in generic black hole merg-
mentum of the binary at the end of the inspira€.9M2  ers and especially by the individual black holes’ spiifs
when the individual black holes are non-spinnii&®], and these spins are largje
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For non-equal-mass BBHSs, we again reduce the energy 10 over those found from the inspiral and ringdown waves.
spectrum by the factofl.5), while the upper and lower fre- A full set of merger templates based on numerical relativity
quenciesf ¢ geandf g, are taken to be independent of simulations could further increase the event rate by an addi-

tional factor of up to~4.

E. Signal-to-noise ratios: Results and implications F. Organization of this paper

By inserting our assumed energy spectBald), (3.13

and(3.18 into Eq. (1.2, we obtain matched-filtering SNRs The body of the paper is organized as follows. In Sec. |l

. we discuss the three methods of searching for gravitational
for the three different phases of BBH coalescences as afung,\;ave signals referred to above. In Sec ”? we giscuss our

tion of the redshifted total mass ¢1z)M of the binary. The assumptions about the BBH gravitational-wave signal: the

results are summarized in Appendix B, and graphed in Figs plitting into three epochs, details of the emitted

4, 5 and 6. In Sec. Il E we estimate that the number of's oo .
! L L - h h
independent frequency bint, .= 2TAf characterizing the gravitational-wave energy spectrum during each epoch, and

. . reasonable estimates of the duration and bandwidth of the
merger falls in the range ¥V,;,s=30; a conservative up-

) . ) dynamical merger. In Sec. IV we devise a simple piece-wise
per bound is~60. We use this upper bound in Sec. VI B to ower-law analvtic fif Eq. (4.1)] to the noise spectra of an
estimate the SNR threshol@.29 for merger waves using b ytic fifEq. (4.1] P

interferometer types.

9" In Sec. V we insert these noise spectra models and the
gravitational-wave energy spectra into the general SNR for-
mula (1.2) to produce the matched filtering SNR for each

, type of interferometer and for each phase of BBH coales-
Ground-based interferometers can do moderate $AR conce Detailed SNR results are given in Appendix B. We

few tens, moderate accuracy studies of the dynamics ofyie intuitive insight into these SNRs in Sec. V A by re-

merging black holes. LISA, by contrast, can do high S(#R expressing the power SNR for a source as
few x 10%), high-accuracy studies.

Coalescing black holes may well be the first sources de- ) 5
tected by LIGO-VIRGO: because of their larger masses, they P :f d(In f )[henal(f )/hn(f )17, (1.9
can be seen to much greater distances than coalescing neu-
tron star binaries(With the initial LIGO interferometers, Wherehcha'(f ) is the source’s “characteristic amp]itude” as
BBHs with M<50M¢ can be seen te-250 Mpc, whereas g function of frequency, anth,(f ) is the detector's rms
binary neutron stars can be seen~+®5 Mpc [70]). The  noise in a bandwidth equal to frequency for sources with
distance gain for BBHs could easily compensate for theifandom orientations. We give plots bf;.(f ) andh,(f )
smaller birth rate discussed above. for five specific examples of binaries with widely varying
Low-mass BBH§M =30M, for initial LIGO interferom-  masses and distances. In Sec. V B, we plot and discuss the
eters, M<80M, for advanced, (¥2)M=<3x10°M for  SNRs as functions of source md#sgs. 4, 5, and B These
LISA] are best searched for via their well-understood inspiraplots are the foundation for our conclusions, summarized
waves; more massive BBHs must be searched for via theibove, about what features of which binaries should be ob-
poorly understood merger waves and/or their well-servable with which interferometers. A detailed discussion of
understood ringdown waves. these conclusions is given in Sec. VI. In Sec. VI A, we esti-
A search for massive BBHs based on the ringdown wavegate the number of templates required for a search for ring-
can be performed using matched filtering. We show in Secdown waves based on matched filtering and estimate the
VI A that the number of templates needed for such a searcBNR detection thresholds and, hence, the range of the vari-
is about 6000 or less, assuming that one wants the event rageis interferometers for ringdown waves. In Sec. VIB we
reduction due to discreteness of the template family to be nexamine the prospects for searches for BBHs via their
more than 10%. Such a search with the first LIGO interfer-merger waves, both with and without templates.
ometers should be capable of finding equal-mass BBHSs in
the mass range 100, —700M  out to about 200 Mpc. With
advanced LIGO interferometers, BBHs with 200<M (1
+2)=<3000M ; should be detectable out to~1, and with
LISA, BBHs with 1Mo=<(1+2)M=<3x10PM, should
be visible out toz=100. These distances are reduced by a In this section we discuss the various signal-search meth-
factor of ~(4u/M) for non-equal-mass BBHs. ods which were briefly described in the Introduction. In Sec.
The effectiveness of a search based on the merger wavéisA we derive the approximate relatiofl.3) between the
will depend on how much one has learned about the waveSNR achievable using matched filtering searches for signals
from numerical relativity. With only knowledge of the and the SNR obtainable via band-pass filtering searches. In
merger waves’ range of frequency bands and range of tenBec. || B we describe our proposed noise-monitoring search
poral durations, a search can be performed using the noisesethod, and derive the detection thresh@d9 discussed
monitoring search algorithm discussed above. Such a seardm Sec. | E. Finally, in Sec. Il C we derive the general for-
could increase the number of discovered BBHs by a factor ofnula (1.2) discussed in the Introduction for the angle-

Ground-based interferometers can study black-hole mer
ers in the mass range (a feM), to ~200M ; LISA, by
contrast, can study mergers in the mass rang10s< (1
+2)M=<10°M,.

Il. DERIVATION OF GENERAL FORMULAS
FOR SIGNAL-TO-NOISE RATIOS AND DETECTION
THRESHOLDS
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averaged, matched-filtering SNR for a gravitational-wave S h(tpes?
source. (N) ~ o (2.6

band-pass himd(fena)
A. Searches for gravitational-wave bursts: Band-pass filtering By contrast, if the shape of the signal is known, one can use

and matched filtering the well-known optimal or matched filter K(f)
Suppose that some arbitrary gravitational-wave blofsy =T(f )/S,(f ) [58,59,61;
is present in the data streas(t), so that

_ S\2 = |h(f)[?
s(t)=h(t)+n(v), 2.0 2:(_) _ | |
P N matched 4J’0 Sh(f ) df (2 7)

wheren(t) is noise. If one integrates a filtd€(t) against

s(t) to produce a numbely = [K(t)s(t)dt, then the stan- A crucial element of both matched filtering searches and
dard definition of the SNR if61] most especially band-pass filtering searches with ground-
. based interferometers is the use of coincidencing between

S _ expected value off when signal present different interferometers to circumvent the effects of non-

N  rms value of Ywhen no signal present Gaussian noise bursfd0]. Coincidencing between the 4 in-
terferometers in the LIGO-VIRGO netwolilthe Hanford 2
(Y) km, Hanford 4 km, Livingston 4 km and Pisa 3 km interfer-
= W ometer$ should be sufficient to achieve this. To be conser-

vative, our assumed detection thresholds for the SNR values
o e T are based on combining just the two LIGO 4 km interferom-
= ALodfRIN (T )"K(E ) (2.2  eters, albeit with assumed Gaussian statistics.
\/4f§df|R(f )2S,(F ) ' In order for a signal to be detected with matched filtering,
the waves’ measured SNR must be larger than the detection
see, e.g., Ref$58,59. Here tildes denote Fourier transforms thresholdpesnoiggiven by
according to the convention

erfo( Pthresholt!‘/i) = . (2.9

F(f )= fx ezvmh(t)dt, (2.3 tart—timeNshapeé

see, for example, Ref44]. Here € is the false alarm prob-
andS;(f ) is the power spectral density of strain noise in theability, which we will assume below to be 18, correspond-
detector[61]. ing to a false alarm rate of once per 1000 yr if the length of
Now consider searching for a signa(t) when the only the data set is 1 yr. The quantiy,iimesiS the number of
information one has about it is its approximate bandwidth inindependent starting times of the gravitational wave signal
the frequency domain. Perhaps the simplest search algoriththat are searched for in the data set, determined by the total
one could use to search fti(t) is to choose folK(t) the  duration of the data s€bf order one yearand the sampling

following band-pass filter: time. The quantityNghapes= NshapebPthreshoid IS the number
_ _ of statistically independent waveforms with SNRoyreshold
K(f )=e?"sa@(Af/2—|f—fnal). (2.4  inthe set of signals to be searched [fd2]; Eg.(2.8) must be

_ _ _ o solved self-consistently to determingeshoi¢ 10 @ good
Here® is the step function antdi,is the starting time of the  approximation, Eq(2.8) reduces to

filter. This filter chops out all the data in the frequency do-

main except that in a bandwidthf about a characteristic Prrreshold V2 IN(Nytart-timed €) + 2 IN(Nohaped- (2.9
central frequencyf .na [71]. Suppose that the frequency in-

terval has been chosen wisely, so that the sigr{@) has  Typical values of these parameters are10 3, a sampling
negligible power outside the interval. Thd"f(f ) can be time of 0.01 s and a data set of 1 yr duration; for these values

taken to vanish outside the chosen bandwidth, and @@.  Vstartimed €~ 3% 102 and thus the value of the threshold

and (2.4) yield (2.9 depends only weakly 0N/ghapesSiNCENghapes< 10'2.
There is a standard lore that the matched-filtering SNR
( S) h(tsan [fenar (tsian (2.7) is larger than the band-pass filtering SNIR6) by ap-
N =\ proximately the square root of the number of cycles in the
N/ pand-pass VS ardfSy(f ) AT P feha waveform[1,40]. This relation is strictly speaking only ap-

(2.9 plicable to waveforms that are almost monochromatic, i.e.,

whereh,{(f )=VfS,(f ) is the rms fluctuation in the noise of the form h(t) =ham{t)cod ()], where the amplitude

at frequencyf in a bandwidth equal t. The starting time of hamdt) and Instantaneous frequendygiven by 27Tf.(t)
the filter, to,y, is then varied to give the maximum filter =dd®/dt] are slowly evolving. The standard lore relation can

= : be obtained by inserting the stationary phase approximation
outputY, which is achieved at some valtig,g Of tgar. At : . . X
this maximum overlap time, the SNR is given by H8.5 to the Fourier transform dfi(t) into Eq.(2.7), which yields

with tg, replaced byt In particular, for broadband sig- ho [t(f )]2
nals for whichAf~f .., Eq.(2.5 simplifies to the standard pzzf d(In f ) ney(f ) amr{—z (2.10
result[40] hrmgf )
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wherencyc(f )Elef is the number of cycles spent within a B. Searches for gravitational-wave bursts: Noise monitoring

bandwidthAf~f centered onf, andt(f ) is the time at
which the gravitational-wave frequency & Comparing
Egs.(2.6) and(2.10, we see thah.,(f ) is the gain factor

In this section we describe a “noise-monitoring” method
to search for gravitational wave bursts of unknown form;
more details can be found in R€f73]. A variant of the

in SNR squared for matched filtering over band-pass filtermethod was first suggested by Sch{#8] (there called an

ing, per logarithmic interval in frequendyt].

autocorrelation method here we modify slightly Schutz’s

This analysis does not apply to signals which are nokuggestion and also calculate detection thresholds. In es-
quasi-monochromatic. We can, however, derive an approxisence, the method consists of monitoring the total rms noise

mate formula for the SNRR.6) for general signals. Approxi-
mating S,,(f ) to be constant in Eq2.7) gives[40]

S\ 2 (=
N ~S(f) 2
(N>matched Sh(fonad J,wdt[h(t)]

h?

=2 fcharT hrms(fchar)2

(2.11

whereh is an rms average dfi(t) and T is the effective
duration of the signal. Comparing Eg2.11 and (2.5 we
find that

(S/N)band—pass% h(tbe39 1
(S/N)matched h_ \/Nbin;

(2.12

where
Nbins: 2TAf. (213)

The quantity Vs can be interpreted as the “number af

in the detector output in the frequency band in which the
signal is expected, rms averaged over time scales of the ex-
pected signal duration, and waiting for statistically signifi-
cant changes in one’s estimate of the noise power.

Suppose that the maximum expected signal duratidn is
and that the interferometer outputs@). Focus attention on
the data streans(r) in the time intervalt—T/2<r<t
+T/2. Since the data stream is discrete, this data can be
represented by the numbers

(2.19

for 0<j=<N,uz=T/At, where At is the sampling time.
From Eq.(2.1) we have

Sj=s(t—T/2+]At)

Sj=hj+nj,

(2.17

whereh; is the gravitational-wave signal amd is the noise.
Now because the interferometer noise is colored, the noise
matrix

EijE<ninj> (2.18)

will not be diagonal. Here, angular brackets denote ensemble

priori frequency bins,” since when one searches for a signafveraging over realizations of the noise. If one performs a

of duration<T and bandwidth<Af, the relevant data is

described by\,;,s real Fourier coefficients or, equivalently,

frequency bins.
This notion of number ofa priori frequency bins is

fast Fourier transfornFFT) just of this finite stretch of data,
the noise matrix on the new basis will not be diagonal either
because of aliasing effects. However, it is possible to change
to a basis which diagonalizes the mat(&18. We will de-

closely related to the notion of number of cycles in the wave-note this new basis by capital Roman letteii K. The data

form: the number of waveform cyclesVo,~Tfcha, is
roughly equal toN,s for a broadband burst with .,
~Af. An important distinction, however, is thaf, is in-

trinsic to the signal, whereas);;,s depends upon the charac-
teristics of our band-pass filter. The number of frequency

bins thus characterizes in part aupriori assumptions about
the signal.

The first factor on the right hand side of EQ.12) is the
ratio between the peak strain amplitudé,.s) in the time

domain and an rms value of this strain amplitude. By de-
fining the effective duratiol of the signal to be given by

f AL RO T2=Th(tsen? (2.14

this factor reduces to unity. With this interpretationofin
Eqg. (2.13, Eq.(2.12 reduces to

( S/N ) band—pass% 1
(S/N)matched \/Nbins,

(2.15

points s; on this new basis can be chosen to correspond
approximately to frequencies,=I1/T, 1=1,—-1,2-2,...
[73]. Equation(2.18 can now be replaced by
<n|nJ>:5|JO'|2. (219)
The datas, extend up to some high frequen@yf order sev-
eral kH2 determined by the sampling time. We next discard
all data above some upper cutoff frequency; thus, we have
effectively band-pass filtered the data, since the restriction to
a segment of lengtfi in the time domain removes frequency
components at<1/T. The total number of data points re-
maining will be approximatelyWy,=2TAf, where Af is
the bandwidth of our effective band-pass filter.

In terms of this new basis, matched filtering consists of
calculating, for each trial waveform shape, the quantity

2JSJhJ/O'§
VE5h3od

(We are assuming here that all the trial waveform shapes
have duration less thah and most of their power within the

(2.20

as discussed in the Introduction. We use this result in SedandwidthAf.) We introduce the notatiop,=h, /o, ; then,

VI B.

the matched filtering SNR1.1) becomes
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h,2 With no signal present, Eq$2.24) continue to hold withp
p?=> pr= > —2- (2.21 =0. These equations show that a signal should be detectable
! g in the regime
Thus, the quantity; is the matched filtering SNR-squared N%i/ﬁSPSN%i%y (2.29

per data bin. Throughout this subsection, we pises a con-

venient parameterization of the signal strength, which isas well as at larges: in the regime(2.25 the expected value
meanlngful even in situations where templates are not avaIIQ_24; of Qis |arge Compared to its rms value in the absence
able and where matched filtering cannot be carried out. ~ of a signal. By contrast, a signal is detectable using band-

In this language, band-pass filteriigf a pre-whitened  pass filtering only in the regime= N2, [Eq. (2.22 above
data streamapproximately corresponds to calculating the gnq associated discussion

statistic The approximate SNR threshold predicted by E824)
is correct in order of magnitude, but to obtain an accurate
g S5 SNR threshold one needs to calculate the full probability
pgp=max—. (2.22 L = . o e R
3 99 distribution for the statisti®. This probability distribution

is given by, from Eqs(2.17), (2.19 and(2.23,
This will have an expected value of p/JNyns [Cf. EQ.
(2.19)] if the signal is spread out over the bandwidit ' (Mpind 2. Qo+ Nying)/2)

rather than peaked at some frequency. PLQ(=Qo]= I (Npind2) (2.26
In the noise-monitoring technique, the detection statistic
is wherel'(- - ,--) is the incomplete gamma function ah¢ - -)
is the usual gamma function. Suppose that we examine
I=Noind2 g2 NaarsimesStarting timest. We wish to find the numbe®,
Q) =—Noinst > —3. (223 such that the probabilit{2.26) of Q(t) exceedingl, for any

=— . ag . . .
3= Noind2 T3 t, in the absence of a signal, is some small nunddrelow

we will take e=10"3). This thresholdQ, is obtained by

Up to an additive constan(t) is an estimate of the noise .
solving

power in the given bandwidth over the given time interval.
That constant,— M., iS chosen so that when no signal is N N /2
present{Q(t))=0 and soQ(t) fluctuates between positive Woind2( Qo+ Noind/2) _
and negative values. On the other hand, when a signal is
present,Q(t) will with high probability be large and posi-
tive. One monitorsQ(t) as a function of time, setting a
threshold that it has a very low probability of exceeding in
the absence of a signal. This search method constitutes a type =, = 29
of nonlinear filtering. p=px= Q0. (2.28

Noise-monitoring is closely related to two commonly Equations(2.27) and(2.28 determine the threshold, as a
used techniques in radio astronomy. In the first such techgnction of the parameters Nygrimes aNdNpis; We USe
nique, observers sum the power from frequency bins whichhese formulas in Sec. VI B. FoNyiS>1, p, IS approxi-
are expected to contain harmonics of the signal they are trymately given by solving the equation

ing to detect. This procedure is not as effective as coherently
comb_ining the signal fr_om all the frequency bi_ns, bl_Jt is com- Pi =2 IN(Nyarttimed €) + NoindN(1+ Pi/Nbins)-
putationally much easier. The second technifitd] is ap- (2.29
plicable when one is looking for periodic signals in a data
train that is too long to Fourier transform. One splits the data The above derivation is based on frequentist statistics. In
into shorter segments, takes the FFT of each segment, aief.[73] a Bayesian analysis is outlined of the detection of
adds the FFTs incoherentlj.e., adds the individual power gravitational wave signals of unknown form which automati-
spectra. This is not the optimal search method, but is oftencally identifies the statistiQ(t) as optimal, and which also
useful given finite computational resources. Although noiseapproximately reproduces the detection threshqld
monitoring and the radio astronomy techniques have differ- In practice, this search method would be combined with
ent motivationgin radio astronomy, one adds frequency binscoincidencing between interferometers to achieve high de-
incoherently to save computational cost; in noise-monitoringfection reliability and to reduce the effects of non-Gaussian
one performs such an addition because the phase relationeise, as is the case with band-pass and matched filtering
ships are unknown they are operationally quite similar. discussed above. Matched filtering could be more efficient
We now turn to a derivation of the efficiency and perfor- than the noise-monitoring method at combating non-
mance of the method. From E.23, when a signal is Gaussian noise via coincidencing: when coincidencing with

€

. 2.2
r (Nbins/z) J\/'start—times ( 7)

From Eqgs.(2.24), this threshold will be exceeded by a signal
whenever the signal streng(B.21) satisfies

present, templates, one can demand that the SNR in each interferom-
eter be above the appropriate threshaldd that the signal-
<Q(t)>=p2, parameter values deduced in each interferometer be consis-
tent with each other. For the noise-monitoring searches, one
([Q() —(Q(1)) 1% =4p?+ 2 Npins- can only demand that the SNR in each interferometer be

(2.249 above the appropriate threshold. Hence, matched filtering has
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more discriminating power against situations in which all theHere F, andF, are the interferometer beam pattern func-
interferometers have moderately large non-Gaussian noigens, given in, e.g., Refl]. The dependence of the Fourier
spikes somewhere in the relevant time window. Non-transformed waveforn, onr is of the form

Gaussian noise may therefore make the less-discriminating

noise-monitoring search perform somewhat worse in prac- ho(f,r,e,B)=H.(f,.,B)Ir (2.32
tice, relative to matched filtering searches, than is indicated
by the threshold2.29. for some functionH,; we define Hy(f,¢,8) similarly.
Combining Egs(2.7), (2.31) and(2.32 gives
C. Signal-to-noise ratio for matched filtering in terms 4 (= |F H, +FyH |2
of waves’ energy spectrum Pz(r,e,ﬂPy'//,L,ﬁ):r—z f - ;h(f )X <L df.
0
In this section we derive the relatid2.30 between the (2.33

expected value of the matched-filtering SNR7) and the

energy spectrum of emitted gravitational waves. In general, We now average over the anglés ¢, , « and 8. The
the SNR(2.7) for a burst of waves depends on the details ofaverage over polarizations and over the sky location gives
the gravitational waveform, on the orientation of the sourceF2)=(F2)=1/5, (F_F,)=0 [1], where the meaning of
with respect to the interferometer, and on the direction to thehe angular brackets is given by, for example,

source. By contrast, the quantity?), the average of the g

squared SNR over all orientations of and directions to the 1 ™ dg

source, depends only on the total energy per unit frequency (F% A f dﬂwfo o Fi(0.0.)% (234
dE/df carried off from the source by the waves. Consider a

gravitational-wave source located at a cosmological redshifErom Eq.(2.33 this gives

z and corresponding luminosity distanBgz). Let the lo-

cally measured frequency of the waves near the source be ) 4 (= H(f)?

fe, related to the frequendymeasured at the interferometer (p%)= 5r2 |, Wdf’ (239
by f=f./(1+2). Let the locally measured energy spectrum

of the waves belE./df(f.). Then the orientation-averaged \where

SNR squared is given by

0 2(1+2)? F
p?) =

1
HIT 7= o [ 40 lIH L (B Ho B
- 57°D(2)? Jo

(2.36

We now express the energy spectrd&/df of the waves
d in terms of the quantity (f )2. The local energy flux is

dh, dhy\?
ot at

dE,
df f25h7) d—fe[(l'f'Z)f].
(2.30

Note that the relatiorf2.30 refers to an angle-average
SNR obtained from amms averageof signal amplitudes dE 1
over different possible orientations of the source and inter- - =
ferometer. This averaging convention differs from that dAdt 167
adopted in Refs[1,10], where the angle-averaged SNR is
taken to be a cube root of an average of cubed signal amplivhere the overbar means an average over several cycles of
tudes. That “cube root of a mean cube” method is appropri-N€ Wave. Switching to the frequency domain using Parse-
ate for calculating the expected event detection [iteAs a  Val's theorem, inserting a factor of 2 to account for the fold-
result, the SNR formulas used in Ref§,10] are a factor of N9 ©of negative frequencies into positive, and using
J312 larger than those used in this paper, the factof®@® [N+ «(f )[*dA=[H . (f )|°dQ gives
being an approximation to the effect of the different angle- dE 2
averaging methods. _ " g 2,15 2

Turn now to the derivation of Eq2.30. First, consider a dadf 2 [H: AP +Hx (] (238
source close enough that cosmological effects can be ne- o .
glected. Let the source be at a distamcizom the detector Combining Eqs(2.35), (2.36) and(2.38 now yields
and at a locatiord,¢) on the sky. Le{,8) denote the direc-

2

: (2.37)

tion towards the detectofspherical polar angléswith re- <p2>: 2 fwdff d0 1 dE (f).
spect to a set of Cartesian axes centered at and determined by 5712 Jo f2S,(f ) dQdf
the source. Let the two independent polarizations of the (2.39

strain amplitude at the interferometer be(t,r,:,8) and o . o
hy«(t,r,¢,8), and let the polarization angle be Then the This is Eq.(2.3@ with z=0 apdD(z)zr, the limiting form
response of the interferometer will He(t)+n(t), where that applies when cosmological effects are neglected.
n(t) is the noise, and Consider now sources at cosmological distances. First,
observe that Eq2.39 is valid for arbitrary bursts of gravi-
tational waves provided that we interpret the quantity
h(t):F+(0!¢vl//)h+(t!r!l‘!ﬁ)+':><(01(P1(//)h><(t!r1l’!:8)'
1 dE

(2.30) r2 dQdf
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as the locally measured energy flaE/dAdf. Next, note linear mode-mode couplings are important. Clearly there is
that the number of gravitons per unit solid angle per unitsome arbitrariness in the exact time at which the ringdown
frequency is conserved for propagation in a Friedmannstarts, related to the accuracy we require of the fit of the
Robertson-Walker background in the geometric optics limit:.waveform to the ringdown signal.
By definition, the three phases of the signal are disjoint in
dE o dEe 14 9)f 04 the time domain. It does not follow that they should be dis-
def( )_defe[( f]. (240 joint in frequency: their energy spectra might overlap. How-
ever, it is at least approximately true that the inspiral and
Here f, is the frequency at the source ahef./(1+z) is  merger are disjoint in both time and frequency. The adiabatic
the frequency at the detector. Finally, the conversion factoapproximation is only just beginning to break down at the
at the detector from energy per unit solid angle to energy peend of inspiral; thus, there is a well-defined frequency as a
unit area is (#2)%/D(z)%, whereD(z) is the luminosity  function of timef(t) over almost the entire inspiral. Because
distance 75]. Hence the inspiral chirps upward monotonically in frequency, al-
most all energy emitted before the merger lies at frequencies
less thanf ¢4 the gravitational-wave frequency at the end
of inspiral. We discuss below estimates fgfg,qe. We shall
assume that the merger waves’ spectrum is confined to the

dE (1+2)? o
dadi )= Bz? anar, AT 24D

Combining this with Eq(2.39 yields Eq.(2.30. frequency regimef>f ... One particular component of
the gravitational-wave signal, the Christodoulou memory
Ill. GRAVITATIONAL-WAVE SIGNAL [80], will violate this assumption. This component has most

FROM COALESCING BLACK HOLES of its power belowf ,oqcin the frequency domain, but accu-

. . . , ._mulates gradually during the inspiral, merger and ringdown
In this section we describe our assumptions concerning, the time domain. It will probably not be detectable with
the gravitational-wave signal from BBH mergers and the eviqynd-hased interferometers, but very probably will be de-
dence that underlies those assumptions. tectable with LISA[81]. We will neglect the memory com-
ponent of the waves in our analysis, since it will not be as
A. Three phases of the gravitational-wave signal easy to detect as the components we do discuss.

As discussed in the Introduction, the coalescence and its _ o o
associated gravitational-wave signal can be divided into B. Energy spectrum of the emitted gravitational radiation
three successive epochs in the time domain: inspiral, merger, from the merger phase

and ringdown. The inspiral consists of the coalescence epoch The total amount of energy radiated in BBH mergers, and
in which the black holes are separated bodies that graduallys gistribution in frequency, is highly uncertain because de-
lose energy and angular momentum, slowly spiraling to+ajled numerical calculations of these mergers have not yet
wards one aqother. The merger is the epoch in which thﬁeen made. In this subsection, we discuss what little evi-
dynamics is highly nonlinear and must be treated by numerigence there is about the energy radiated, and describe our
cal relativity. With this in mind, it is useful to define the end ¢r,de model of the spectrum.

of inspiral as the time and frequency at which n_umerically The total amount of energy radiated during a BBH coa-
generated templates become neefié@l. Up to this time, |escence will be some fractioa of the total massvi =m;,
post-Newtonian templates, possibly supplemented with, m, of the systemE,.giaei €M. The fractione will de-

IBBH templates, will be usedcf. Sec. | B. pend only on the mass ratim; /m,, on the initial spinsS;

After merger, the system will gradually settie down to a ndS, of the two black holes, and on the initial directién
Kerr black hole; the last gravitational waves we expect to se X ’ )
gf the orbital angular momentuh82]:

are those produced by the quasi-normal modes of thi

merged black hole. It is clear that there will be a smooth mS S .

transition in the gravitational waveform from the merger por- €= e(— v =5, 7,k . (3.9
tion to the ringdown portion, as the effects of nonlinearities m'M*'M

become less and less important with time. As this happensye can very roughly divide up this fraction as

the signal should become increasingly well approximated by

a linear combination of exponentially decaying sine waves. €= E€inspiralT Emerger! €ringdown (3.2

This is the behavior that has been seen in numerical simula-

tions of, for example, head-on collisiog7,78. At late  according to the amounts of energy radiated in the three dif-
times, thel = m=2 mode will probably dominate over other ferent epochs of the waveform. We emphasize that there is
guasi-normal modes, for two reasons which are of compasome arbitrariness in this division, related to the choice of
rable importance(i) Thel=m=2 mode is the most slowly frequency at the end of inspiral and the time at the beginning
damped of all the QNR modd44], and (ii) during coales- of ringdown.

cence, the binary will have a rotating shape roughly corre- We now discuss estimates of the frequehgy,q.. From a
sponding to spheroidal harmonic indicess m=2, so this data-analysis oriented viewpoirft,eqe Should represent the
mode will be preferentially excite[9]. We define the ring- frequency at which post-Newtonian templates cease to be
down as beginning when the waveform becomes dominatedseful and numerical templates will be needed. On the other
by thel=m=2 QNR mode; the merger thus contains thosehand,f,¢¢eCould be chosen at the supposed point of transi-
portions of the waveform where other modes and/or nontion from a radiation-reaction driven inspiral to a freely fall-
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ing plunge[8,11,12. These two viewpoints turn out to give quency depends on the dimensionless spin pararaettthe
roughly the same value fdiege- final Kerr black hole; for concreteness, we use the value of
To estimate the frequency where numerical templates ara=.98, for whichfg,~0.9/(27M) [56,15:
likely to be needed, we examined numerical initial data sets
of black holes binaries generated by Cd&g. Comparing 0.13 20M ¢
the predictions of second post-Newtonian order calculations fan:W: 1320 HZ( M
to his initial data sets, Cook finds that the discrepancy in the
binding energy between the two methods 5% atf  ouyr reasons for assuming a high valueaodre discussed in
~0.02M (whereM is the total system masand is~15%  Sec. |11 D below.
at f~0.05M. ThUS, numerical relatiVity’S prediCtionS begin Fina”y, consider the total amount of energy
to significantly deviate from post-Newtonian theory néar
= O'OZ'M_' . . Erad™ (emerger"' eringdown) M (3.9
The “innermost stable circular orbit'(ISCO) for black
hole binaries only exists, strictly speaking, in the test particleradiated during the final merger and ringdown. We consider
limit m;<my,, and it is not clear that it is well defined, even two methods of estimating this radiation efficiency, which
approximately, in the equal mass case. Nevertheless, varioygeld consistent results. The first method, due to Smarr
methods have been proposed to locate the supposed trangé7,77,, is an extrapolation from perturbation theory: the en-

tion point from inspiral to plunge. Cook estimates the gravi-ergy radiated in the test particle limit is of the form
tational wave frequency at the ISCO to bgco~0.055M

for equal mass black hol¢8], by using his initial data sets Era=ku?/M, (3.6
together with the calculation of an “effective potential.” In
post-Newtonian theory, the ISCO can be defined by artifiwherek is a dimensionless constant, is the mass of the
cially turning off the radiation reaction terms in the equationsparticle, andV the total mass of the system. Replacjadpy
of motion. Using this method, Kidder, Will and Wiseman the reduced mass of the system, one finds that the formula
estimatef sco~0.02M [8]. This value varies by less than (3.6) reliably predicts(to within ~20%) the energy radiated
~20% as the mass ratio is varied. Finally, earlier analysein the head-on collision of two black hold§8,77,78,84
by Blackburn and Detweiler used a variational principle to-Consider applying a similar extrapolation to an inspiral-
gether with the assumption of periodic solutions to Einstein'spreceded merger. Detweil¢68] examined the amount of
equations to obtain the approximate lower boufigco  energy radiated per orbit by a test particle on the final, mar-
=0.06M [83]. All of these estimates are for equal mass,ginally bound orbit of a Kerr black hole. He found that the
non-spinning black holes; the value of the frequeri@to  energy radiated is of the forii3.6), with 0.65<k<2.8 as the
can presumably also vary by factors®® if the black holes  spin of the black hole varies from 0 to .95. Assuming that
are spinning and/or have different masses. there will bex= 1 effective orbit during the final plunge, De-
Given this uncertainty, we adopt the conservative value tweiler estimate$68]

0.02 20M ¢
fme,ge=W=205 H Ik
whereF(u/M) is given in Eq.(1.5).

This (low) value off ergeis conservative in the sense thatwe A second method, based on angular momentum conserva-
can be reasonably sure numerically generated templates wtibn, also suggests a lower bound Bpgq of about 0.M for
not be needed before=f ,e,qe. ON the other hand, it may equal-mass BBHs in the most favorable cases. Roughly
overestimate the merger SNR by increasing the number gfpeaking, the system’s angular momentum divides up as
cycles in what we define as our merger waveform at the
expense of the inspiral. S1+ S+ Lon= Jradt Stinal» (3.8

We next discuss our choice of upper frequency shutoff for
the merger energy spectrum. As discussed above, we definghereS; andsS, are the black hole spins just before the final
the end of merger to occur at a ting,, after which the plunge,L ., is the orbital angular momentum just before the
waveform can be accurately fit by the m=2 QNR signal.  plunge,J,,qis the angular momentum radiated in the merger
The merger and ringdown will therefore be disjoint in the and ringdown waves, angky, is the spin of the final Kerr
time domain, but not necessarily in the frequency domain. Iblack hole. This splitting of the spacetime’s total angular
seems likely, however, that an approximate upper bound fomomentum is, strictly speaking, well defined only in a post-
the frequencies carrying appreciable power during theNewtonian type of limit; however, the effects of this ambi-
merger is the quasinormal ringing frequency itself. This con-guity are presumably not important for the purposes of our
jecture is supported by calculations in the test particle limitcrude estimate. Specialize now to the most favorable case
(cf. Fig. 2 of Ref.[68]) and calculations of the head-on col- where S;, S, and L, are all aligned. We assumjé oy
lision of two black hole§77,78. It is not clear how relevant ~0.9M?, the value predicted by Cook’s initial data sets at
these calculations are to the merger of comparable mads=.02M [9]. We also assume that both black holes are rap-
black holes, but there is no other guidance available at thiglly spinning, so that|S;|~|S,|~(M/2)2. Equation (3.8)
time. then yields

Therefore, we use the frequendy,, of the [=m=2
quasi-normal mode as our upper merger frequency. This fre- |3,ad =0.4M12, (3.9

(3.4

0.0MF(u/M)=<E,o¢=0.2MF(/M), (3.7

(3.3
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since|Sxnal <M?2. Next, we use that fact that the enefgyg Finally, consider the shape of the energy spectdiid f

and the angular momentudy,q carried off by gravitons of betweenf ¢ geandf,,. For simplicity, and for lack of evi-
frequencyf and azimuthal multipole ordem are related by dence in favor of anything more specific, we choose a flat
[85] spectrum:

dE  euMF(u/M)

EradZZWerad/m. (31@ - =
df fan_ fmerge

®(f_fmerge)®(fan_f )

If we estimatef~ (ferget fqn)/2, and make the admittedly _ 2 _ _
optimistic assumption that most of the radiation is quadrupo- O.9MZF(1/M)O(F = Tmergd O (fon—T ),
lar, we obtain from Eqgs(3.9) and(3.10 the estimatd¢ 86| (3.13

E,.c=0.1M. (3.1)  Whereey= €merge 0.1 and® is the step function.

This estimate includes both merger and ringdown radiation; ©- ENergy spectrum of the radiation from the inspiral phase

we need to subtract the ringdown portion to obtain the en- The standard quadrupole formula prediction for the in-
ergy radiated in the merger. Below we estimat8.03V to  spiral energy spectrum iSee, e.g., Re{88])
be an approximate upper bound for the ringdown energy. dE 1
Hence most of the energy3.11) should be radiated as L, 23 1
merger waves. daf 37 PuM (3.14
There is an additional, separate argument one can make
which indicates that most of the enerd$.11) should be This formula is adequate to estimate the SNR obtained from
radiated as merger waves and not as ringdown waves. Asatched filtering of the inspiral waveform; it will be accurate
noted by Eardley and Hirschman87], any system with)  to within a few tens of a percent up 6= f erge[63]. Using
>M?2 cannot evolve toJ<M? by radiating quadrupolar Eq. (3.14 to estimate the SNR assumes that both the
waves at the ringing frequencl,,~ 1/(2wM) of a near- gravitational-wave signal and the templates used to filter the
extremal Kerr black hole. This is because at this high fre-<data stream are given by the quadrupole approximation
guency, too much mass-energy is radiated per unit anguldB.14). The SNR we calculate using E¢3.14) will be ap-
momentum radiated; E43.10 with m=2 and withf=f,, proximately the same as that found by cross-correlating real
yields AJ=A(M?). Hence, since the final black hole must signals against sufficiently accurate theoretical templates
haveJ<M?, a substantial amount of the radiation must be[which incorporate higher order corrections to Eg.14].
emitted at lower frequencies. As outlined in Sec. | B, the required template accuracy
Based on the estimat€8.7) and(3.11), and on the esti- should be achievable by post-Newtonian expansjd8s39,
mated upper boune 0.03M which we derive below for the perhaps supplemented with alternative techniques for the lat-
ringdown radiated energy, we take Bllas our radiated en- ter, high frequency part of the signal at OB f
ergy for the merger in the equal mass case. For non-equak 0.02M (the IBBH regim@. We assume that the inspiral
mass BBHs we assume that the radiated energy is reduced Byergy spectrum shuts off dt=f4=0.02M, as dis-
the factor(1.5), so that cussed in Sec. Il B above.

Emerger: GmergeF(M/M) M=0.1F(u/M)M. (3.12 D. Energy spectrum of the radiation from the ringdown phase

The ringdown of the gravitational-wave signal is that por-
This rather high radiation efficiency is probably most plau-tion which can be fit fairly accurately by an exponentially
sible in the context of rapidly spinning coalescing blackdecaying sinusoid corresponding to the-m=2 quasi-
holes. In particular, if the spins and the orbital angular mo-normal mode of the final black hole. The shape of the corre-
mentum are somewhat misaligned, one would intuitively ex-sponding energy spectrum is well understood: it is a reso-
pect that such systems have more “settling down” to do tonance curve(although see Appendix B for discussion of a
get to the final Kerr black hole, and that correspondingly thesubtlety in the applicability of the concept of the waves’
nonlinear, highly dynamical phase should last longer and/ognergy spectrum to calculating ringdown SNREhe overall
produce more radiation. Also, the potential barrier that suramplitude of the energy spectrum, however, is not well un-
rounds the final black holéwvhich normally tends to reflect derstood.
back into the black hole the dominant waves of frequency The QNR gravitational waveformsh,(t,:,8) and
f~1/a few timesM) presumably will effectively not be hyx(t,¢,8) are given by[15]
present during the violent phase of a merger in which the AM
spins and orbital angular momentum are of comparable mag- _ih 2 @2 —2imfgat—tir+ip
nitude and are misaligned. hy—ihx r 255(v.B,8)e ot ° (319

Coalescences which radiate as much energy as¥FEtp)

may also radiate a substantial amount of linear momentunfpr t>0. Here we have choser=0 to be the start of the
the consequent recoil of the final black hole could correxingdown, M is the final black hole massM? is its spin,
spond to a kick velocity that is a moderate fraction of theandgg is a constant phase. The quantitieend 8 are spheri-
speed of light. cal polar coordinates centered on the black Hale Sec.
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Il C], ,S5(¢,B,a) is a spin weighted spheroidal harmonic =2 perturbation such that the horizon’s cross section is a
whose angle averaged rms value is rotating oval, rather than a circle. Quantify the distortion by
computing the ratio of the polar circumference about the
long axis of this oval to that about the short axis. L&t
:E’ (3.16 denote the perturbation amplitude such that this ratio of cir-
cumferences is 2:1. Clearly, the validity of linear perturba-
and A is a dimensionless coefficient that describes the magtion theory must break down for amplitude=.A, (due to
nitude of the perturbation when the ringdown begins. Thehonlinear couplings between te=m=2 mode and other
quantitiesf, and r are the frequency and damping time, modes. At this 2:1 dlstortlo_n ratio, the signal will not be
respectively, of thé=m=2 QNR mode. The quality factor Very well approximated by just the=m=2 mode. There-

1/2

1
| [ annsiepar

Q of the mode is given bR=m7f 4. fore, A, is a reasonable upper bound for the true amplitude
As mentioned in the Introduction, there is a mapping, ex-A. o -
plored by Leaver[90] and Echeverrig15], between the In principle, we could calculatel, by writing the space-

(M,a), and (4, 7). Using the Teukolsky equation, Leaver tIme metric as
produced catalogs of and f, as functions of black hole
massM and dimensionless spia [90]. From that data,
Echeverria[15] produced the following analytic fits, which
are good to about 5%:

Gab=0ap  + Az hGp™
where gkEf®R is the Kerr metric anch3® is the |=m=2
guasinormal mode whose asymptotic form at large given
1 by Eq.(3.15, and by calculating from this metric the ratio of
— circumferenceg92]. For this paper, we used a much less
2mM sophisticated method to estimatl. Using the quadrupole
formula, we examined the radiation produced by a solid

fan~[1—0.631—a)3]

=[1—0.631—a)3’1°](20MO 1620 Hz body that is distorted to this 2:1 circumference ratio, and
M obtained the estimatgl,~0.4 [93]. Setting our waveform
920 amplitude A to this value yields an rms angle-averaged
Q=nfgnr~2(1-a) : (3.17 waveformh= (0.4N47)(M/r)=0.1(M/r) at the beginning
The energy spectrum for the QNR wavefo@®15) is g;grngdi(;wn. From Eq.(3.18, the corresponding radiated
derived in Appendix A and is given by oy
1
dE _ A?M2f2 1 Exingdowr™ g A2M?f 4, Q~0.03M. (3.20
df 3277 |[(f—fg)?+(277) 2]
1 As mentioned in the Introduction, comparable ringdown ra-

(3.18 diation efficiencies of~3% have been seen in numerical
simulations of the evolution of distorted, spinning black
holes[66].

%% AZQMqunrﬁ(f — ) [1+0(1/Q)]. To summarize, our assumed values for the black hole spin

parametera and for the amplituded for equal-mass BBHs
319 are

Approximating the energy spectrum by a delta function as in a=0.98

Eq. (3.19 will often (but not alway$ provide a fairly good

approximation to the SNR; see Appendix A for more details. A=0.4. (3.2)
The value of the spim of the final black hole and also of

the amplitude4 will depend on the initial parameters of the These imply the values

system, as in Eq(3.1). This dependence is very poorly un-

derstood at present. We expect the final black hole to be I E’: 1320 Hz( 2Mo

rapidly spinning since, as explained in Sec. Il B, the total ant

angular momentum of the binary at the end of the inspiral is

T [+ T2+ (2mn) 22

~0.9M2 when the individual black holes are non-spinning Q=12
[65], and the individual black hole spins can augment this.
Moreover, the individual black holes may typically have €ringdowr= Eringdown/ M = 0.03. 322

been spun up to near maximal rotation by an accretion dis
[91]. For definiteness, we somewhat arbitrarily take
=0.98, which corresponds, from E¢.17), to Q=12 and
fqn=0.13M. The final ringdown SNRs we obtain vary only
weakly with our assumed value af[cf. Eq.(B14)], for fixed
total energy radiated in the ringdown.

Although the value of the overall amplitudé is uncer- In Sec. Il A we showed that for any burst of gravitational
tain, we can estimate an upper bound on it for equal maswaves, the band-pass filtering SNR is smaller than the
BBHs. Consider a Kerr black hole, distorted by Bam  matched filtering SNR by a factor of approximately

lI‘—'or non-equal-mass BBHs, we assume tBatgown IS re-
duced by the factofl.5).

E. Number of independent frequency bins
for the merger phase
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VNpine= V2TAT (3.23 The factor MNpins is thus likely to lie in the range 2
< Myins=5. We adopt the estimat¢\p,=4 in Sec. VI B
[cf. Eq.(2.13 and associated discussjoin this section, we to estimate the reduction in SNR resulting from using band-
estimate\,,s for the merger gravitational waves, and hencepass filtering instead of matched filtering. We use the con-
determine the factor by which the SNR is degraded if bandservatively large valueVy,,s=60 in Sec. VIB to estimate
pass filtering rather than matched filtering is used for mergegletection thresholds for noise-monitoring searches for sig-

wave searches. nals.
First consider the bandwidthf. Our assumed bandwidth
for the merger signal ia\f=f g~ frerge= fonr [SINCE Frmerge IV. INTERFEROMETER NOISE CURVES
<fqnr; cf. Egs.(3.3) and (3.4)]. We cannot, however, be ) _ ) _ )
completely confident that all signal power in the merger will  In this section we describe our piecewise power law, ana-

lie at frequencies belowiy,, and so a more appropriate lytic approximation to the noise curves for initial LIGO in-
choice might beAf~2 f .. Also the quasi-normal ringing terferometers, advanced LIGO interferometers, and the LISA
frequencyf , depends on the dimensionless spin parametelpterferometer. We express our model in terms of the dimen-

a of the final black hole as given by E(B.17). Choosing the ~ Sionless quantityhn{(f )= ViSy(f ), where Sy(f ) is the
highest possible valud ,,—=[1/(27M)], yields one sided power spectral density of the interferometer noise
i [61]. Our model for the noise spectrum is

1
Af~—. (3.29 o, f<fs,
™
h(aflfy) 32 f<f<f,la,
Turn, now, to the effective duratioh of the merger, de- himd ) = s fola<f<af,, (4.

fined by Eq.(2.14. We expect thaT will vary considerably
from event to event, depending on the black hole parameters.
To get a feeling for the range possible valuesToftonsider

hol f/(af)]%?  af,<f.

: : : .. The noise curve depends on four parametépsA lower
f h f I . 1B h ) . ;
Irst the type of coalescence described in Sec , Wit shutoff frequencyf ; below which the noise rapidly becomes

both black holes nearly maximally spinning with spins and s
orbital angular momentum aligned. In this favorable case Y large and can be taken to be infinite. For ground-based

recall that the binary has to shed an excess angular momemt_erferometers, _th_is low-frequency shutoff is_due to seismic
tum of about 0.M during the merger in order to settle down gguse_,. f‘X ][‘ISA’ I |sfdue t%.azcglirr]on;ete:_no(sﬁ?atl; (7], p.t
its final Kerr state. Thus, the two black holes might well be ). (ii) A frequencyfy,, which is the location of the center

centrifugally hung-up, orbiting for many cycles before their ©f the flat portion of the spectruniiii) A dimensionless pa-

event horizons merge, so that the duration of the mergei@Metemm, which is the minimum value diy,{(f ). (iv) A

might be quite long. By contrast, when two non-spinningd'mens'onless parameter which determines the width of

black holes merge, there is probably no excess angular mébe flat porti_on of _the noise curve. We_ approximate the _noise
mentum that must be shed after the orbital dynamical instaS4veS _by piecewise power laws in this way for calculational
bility, and so the merger might be fairly quickn such a convenience.

case, the ringdown waves might carry most of the emitted For initial and advanced LIGO interferometers, we deter-
eneréy) mined best-fit values of the parametéts f,,, h,, anda by

To estimateT in the angular-momentum-excess scenario,ﬂtt'ng to the noise curves given in R¢BJ. (Note that Fig. 7

assume that the luminosit&/dt during the merger is about of Ref. [S]hi_s a fac(;or of 3 to smgll f_rom~1? th tof
the same as the luminosity at the start of the ringdown 70 HZ. T Ihs errorl 'oes not appear 'T Fig. 10 of that refer-
2€ingdowrM/ 7. Since the total energy radiated in the mergerence[94]') The resulting parameter values are

IS €mergeM, We find

fs=40 Hz
1 €merger fn=160 Hz initial LIGO 4.2
TNE?T- (3.29 a=1.4 interferometer, 4.2
ringconn hy,=3.1x 10~ 22
Clearly this estimate will become invalid for high valuesrof
(a—1); in that limit, the high quality factor of the QNR @nd
mode causes a low QNR luminosity, whereas there is no
reason for the merger luminosity to be comparably low. Nev- fs=10 Hz
ertheless, we insert our assumed parameter vaB4S), fm=68 Hz advanced LIGO 43
(3.22, and (3.2)) into Egs.(3.17 and (3.29 and find T a=1.6 interferometer. :
~50M. Combining this with Egs(2.13 and(3.24) yields h,=1.4x10 %
VNbinsN\/%N& (3.26 For ground-based interferometers, the? portion of our

approximate formula4.1) models the thermal suspension
For inspiraling Schwarzschild black holes, on the other handpoise and theé®? portion models the laser shot noig7].
T may not be much larger than a single QNR damping time: For the space-based LISA interferometer, we determined
T~7r~10M (assuminga=0.5 say, yielding VNV~ V6. best-fit values of the parametefrg, h,, and « by fitting to
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the noise curve given in Refl10], and obtained the lower 10-®
cutoff frequencyf, from Ref. [7]. The resulting parameter
values are

Lo 1M

fS: 10_4 HZ 10-?1 | =

fm=3.7x10"3 Hz| LISA g 3

a=55 interferometer. 44 L - i

hyy="5.8% 1022 = | T30 M, 2=k ]
S22 I

|
|
Our piecewise power-law model is less accurate for LISA :
than for the LIGO interferometers, but it is still a fairly good |
approximation. Piy
The sensitivity of LISA at the lower end of its frequency i
ay
iy
l
|

window may be degraded somewhat by a background of 10-23
gravitational waves from white dwarf binari¢g]. We ne- iAo
glect this issue here as this white dwarf noise level is fairly Ll Ll LA b !
uncertain(see Ref[99] for a recent discussion 10 100 1000

frequency f (Hz)

Eroond”

V. SIGNAL-TO-NOISE RATIOS ] ]
FIG. 1. An illustration of the relative magnitudes of our esti-

In this section we calculate the angle-averaged SNRs fomates of thenspiral, mergerand ringdown energy spectra in two
the three coalescence epoctisspiral, merger, and ring- different cases. The solid lines are the rms noise amplitudes
down) for initial LIGO interferometers, for advanced LIGO h,(f )=5fS,(f ) for our assumed modé#.1) of the LIGO initial

interferometers, and for LISA. and advanced interferometer noise spectra. The dashed and dotted
lines show the characteristic amplitutig,,(f )<dE/df of the
A. Specific examples waves, defined by Ed5.1). The definition ofh.,, is such that the

. signal-to-noise ratio squared for a randomly oriented source is
Wg start by rewriting the general fqrmu{a.sq for the. _given by (S/N)2=fd(In f )[hea(f )/ha(f )]2. The upper dashed
SNR in a more useful form. If we define the characteristicang dotted lines correspond to a binary of twdVily black holes at
gravitational-wave amplitude a distance oD =200 Mpc. The sloped portion of the dashed line is
the inspiral, which gives an SNR for the initi@dvancedlinterfer-

2(1+2z)? dE : L
h f )2= —[(1+2)f], 1 ometer noise curve of 2.84). The flat portion is our crude model
cnalf) m2D(z)? df [( )] . of the merger, which gives an SNR of 216). The dotted line is

) our estimate of the ringdown, which gives an SNR of (0186).
then from Sec. Il C the SNR squaréd.?) for an optimally  The lower dashed and dotted lines correspond to a binary of two

oriented source can be written as 15M, black holes at redshift=1 (or at a luminosity distance of
D=4.6 Gpc; the cosmological paramete®@,=1 and H,

5 Nenaf f )2 =75 kmsMpc™! were assumed In this case the inspiral,
Poptimal Orientation:f d(in ) Ny f )2 ’ (5.2 merger and ringdown SNRs for the initiddvancey interferom-

eters are 0.08, 0.42, and 0.(6.6, 7.2, and 0.brespectively. Black
where h,Jf )=+fSy(f ). From Eg. (2.30, the angle- hole binaries with constituents this massive will be visible to great
averaged SNR squared is a factor of 5 smaller than the oglistances, making them a possibly important source, depending on

timal value(5.2); so we can rewrite E¢2.30 as the very uncertain event rate. The SNR from the merger is enhanced
for these massive distant sources in part because the combination of
henal f )2 cosmological redshift and lower intrinsic frequency brings the
(p?)= f d(ln f) h(F)2 (5.3  merger waves down to lower frequencies where the interferometer
n

noise is smaller.

whereh,(f )=Bh{f ) is the rms noise appropriate for
waves from random directions with random orientationsthe ringdown. Note that the ringdown and merger overlap in
[100]. Plottingh¢,,(f ) andh,(f ) for various sources illus- the frequency domain sindgas we have defined therthey
trates[from Eq. (5.3)] the possible SNR values and the dis- are disjoint in the time domain, while the inspiral and merger
tribution of SNR squared with frequency. are approximately disjoint in both the frequency and time
In Fig. 1, we show the rms noise amplitubdg(f ) forour  domains(Sec. Il A abové.
model(4.1) of the initial and advanced LIGO interferometer  In both cases, 2@, and 3M,, the waves’ characteris-
noise curves, together with the characteristic amplitudaic amplitudehg,,(f ) is rather larger thah,(f ) for most of
henalf ) for two different BBH coalescences: a coalescenceghe merger spectrum for the advanced interferometers, indi-
of total mass 2MM at a distance oD=200 Mpc and a cating the detectability of the merger waveform when
30M coalescence at redshifi=1. (We assume that the matched filtering can be used. In particular, note that the
cosmological  parameters are Qg=1 and Hy waves should be quite visible to the advanced interferom-
=75 km st Mpc™L.) In each case, the sloped portion of the eters for the 3M, binary even though it is at a cosmological
dashedhy, line is the inspiral signal, the flat portion is our distance. Even if such binaries are rare, they are visible to
crude model of the merger, and the separate dotted portion &ich great distances that they may be an important and in-
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FIG. 3. The noise spectruim,(f ) of the space-based detector

FIG. 2. A merger of a binary consisting of two [9Q, black LISA, together with the characteristic amplitudeg,, of two equal-
holes at redshifz=0.5, together with the rms noise amplitudes mass BBH coalescencésee caption of Fig.)1 The first is a binary
h,(f ) for both the initial and advanced interferometer noise curvesof total mass 18M, at redshiftz=5. The inspiral signal of this
for LIGO (see caption of Fig.)L The SNRs for the inspiral, merger, binary enters the LISA waveband &t=10"* Hz about 1 week
and ringdown stages are about 0, 1.7 and 1.0 respectively for thieefore the final merger; the SNRs from inspiral, merger and ring-
initial interferometer noise level, and about 11, 52 and 11 respecdown are about 1800, 4600 and 1700 respectively. The second is a
tively for advanced interferometers. binary of total mass % 10*M, at redshiftz=1, which enters the

) ) o LISA waveband about 20 years before the final merger. For this
teresting source. Cosmological binaries have an enhanceghary an SNR of approximately 900 would be obtained for the last
SNR in part because the cosmological redshift moves theiear of inspiral(from f=1.6x10"% Hz to f=4x 102 Hz). The

frequency spectrum down closer to LIGO’s optimal band. SNRs from the merger and ringdown would be about 70 and 4.
Figure 1 also shows that, of these two example BBH coa-

lescences, only the nearby one at a distance Dof BBH of total mass 5 10°M, at redshiftz=1. The 16M,

=200 Mpc would be detectable by the initial interferom- ggH enters the LISA waveband &t f~10"* Hz roughly

eters. As discussed in the Introduction, such coalescenc@syeek before the final merger. The SNRs obtained in this

may y|e|d an interesting event rate fOI‘ the |n|t|a| interferom'case from the inspiraL merger and ringdown Signa|s are ap_

eters. _ o proximately 1800, 4600 and 1700 respectively. The
A qualitatively different, possibly important type of 5x10*M, BBH enters the LISA waveband about 20 yr be-

source for the initial LIGO interferometefand also for the  tgre the final merger. The SNR obtained from the last year of
advanced interferometerss the coalescence of black hole {he inspiral signal, from f=1.6x10%Hz to f=

binaries with masses of order 10Q,, as we have discussed 4x 102 Hz is approximately 900, while the merger and

in the Introduction. In Fig. 2 we show the characteristic am-ringdown SNRs are about 70 and 4 respectively.
plitude h,,(f ) for a hypothetical BBH coalescence of total

mass 10M  at redshiftz=0.5, corresponding to a luminos-
ity distance ofD=2.2 Gpc. Note in particular that the initial
LIGO interferometer noise curve has best sensitivity near We now turn from these specific examples to the depen-
200 Hz just where théredshifted ringdown frequency is dence of the SNR values on the mass of and distance to the
located. We discuss further in Sec. VI the range of initialbinary in general. In Appendix B we obtain analytic formu-
LIGO interferometers for this type of source. las for the SNR values for the three phases of BBH coales-
Turn, now, to the detection of supermassive BBH signalsences and for the various interferometers. In this section we
by the space-based detector LISA,6]. LISA can study plot the results for equal-mass BBHs, which are shown in
BBH mergers with far higher accuracy and resolution tharnFigs. 4, 5 and 6. The inspiral and merger curves in these
the ground-based interferometers, because the SNR valuigures (except for the LISA inspiral curves; see Appendix
are typically much higher%10°). When calculating inspiral B) are obtained from EqgB4) and (B10) of Appendix B,
SNRs for LISA, it is necessary to restrict the integral overwhile the ringdown curves are obtained by numerically inte-
frequency in Eq(2.30 to a domain that corresponds to, say, grating Eq.(3.19 in Eq. (2.30.
1 yr of observation—some binaries require hundreds of years The SNR values for the initial LIGO interferometers are
to pass through LISA’s band. See Appendix B for details. shown in Fig. 4. This figure shows that an important source
Figure 3 shows our approximate modélgs. (4.1) and  for the initial LIGO interferometers may be the coalescences
(4.4)] of LISA’s projected noise spectrum, together with the of binary black holes with total masses of the order of sev-
gravitational-wave amplitudeh,o(f ) for the inspiral, eral hundred solar masses. These would be visible out to
merger and ringdown stages of two different BBH coales-almost 1 Gpc. For such sources, the inspiral portion of the
cences: a BBH of total mass @M, at redshiftz=5 and a  signal would not be detectable, and one would need to search

B. General signal-to-noise ratio results
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FIG. 4. The SNR for equal-mass BBH coalescences detected b T P
LIGO initial interferometers, assuming matched filtering, as a func- (1+2)M measured by Advanced LIGO Interferometer (M,)
tion of the redshifted mass (1z)M of the final black hole, at a
luminosity distance oD =1 Gpc. For fixed redshifted mass, the  FIG. 5. The SNR values for advanced LIGO interferometers for
SNR values are inversely proportion@l. The solid, dotted, and the inspiral(solid line), merger(dotted ling and ringdown(dashed
dashed curves are the SNR values from the inspiral, merger anghe) phases of equal-mass BBH coalescences at a luminosity dis-
ringdown respectively. For non-equal-mass binaries, the inspiralance ofD=1 Gpc; see the caption of Fig. 4. For values of the
SNRs will be reduced by the facter y4u/M, while the merger  redshifted final mass lower than60M  the inspiral SNR is larg-
and ringdown SNRs will be reduced by4u/M; thus the inspiral  est, while for larger BBH systems the merger and/or ringdown por-
will be enhanced relative to the merger and ringdown. This plottions of the signal dominate.
indicates that BBH coalescences of systems with masses of the
order of several hundred solar masses may be an important souree300M ,. Thus, there is likely to be an interesting event
for the initial LIGO interferometers. These events would be visiblerate. Indeed, the SNRs will be high enough even for rather
to almost 1 Gpc. For such sources, the inspiral would not be deteqarge distances that it should be possible to extract each bi-
qble, and the waves would have to be detected using either tr\ﬁ’ary’s parameters with reasonable accurfit§]. By con-
ringdown or the merger. trast, the ringdown SNR is fairly small except for the largest

mass systems. For very massive binaries or binaries that are

for the ringdown or merger to detect the waves. See Sec. Mdloser than 1 Gpc, advanced interferometers may measure
for further discussion. The event rate for such high massairly large ringdown SNRs, which would allow fairly good
BBHs is very uncertain; see RdfL7] for a possible forma- estimates of the mass and spin of the final black hibte14.
tion scenario. Intermediate mass BBHs wijiixM (e.g., Figure 6 shows the SNR values obtainable from the three
m;=10M g, m,=500M ) are presumably much more com- phases of BBH coalescences by LISA: the last year of in-
mon than the intermediate mass BBHs with- M discussed spiral, the merger and the ringdown. We also show the SNR
above. The SNRs for such mixed binaries will be muchvalue obtainable from 1 yr of integration of the inspiral sig-
lower, however. As seen in Appendix A, the merger andnal 100 yr before the merger, and a similar curve for 1000 yr
ringdown SNRs scale asu(M)?, while the inspiral ring- before the merger. This figure shows that LISA will be able
down scales ag/M. (The scaling difference arises becauseto perform very high accuracy measurements of BBH merg-
the inspiral duration scales asul/whereas the merger and ers(SNR values=10°) essentially throughout the observable
ringdown durations are approximately independent.9f Universe ¢=<10) in the mass range Ml ,<M=<10°M.

Figure 4 also shows that the inspiral of BBH mergers withAs discussed in the Introduction, there is a good chance there
M=30M, should be visible to about 200 Mp¢the SNR  will be an interesting event rate. The SNR curves in Fig. 6
detection threshold is about[84]). The ground-based inter- for measurements 100 and 1000 yr before merger show that
ferometers will, over a period of years, gradually be im-many inspiraling BBHs that are far from merger should be
proved from the initial sensitivity levels to advanced sensi-detectable by LISA as well. If the merger rate of SMBH
tivity levels [3]. Roughly halfway between the initial and binaries turns out to be about one per year throughout the
advanced interferometers, the range of the detector systeabservable Universe, then at any given time one would ex-
for M=<30M BBHSs will be ~1 Gpc. If the BBH birthrate  pect roughly 1000 SMBH binaries to be 1000 yr or less away
is as large as was discussed in the Introduction, they shoulifom merger. LISA will be able to monitor the inspiral of
be detected early in the gradual process of interferometeguch binariesif they are of sufficiently low magsvith mod-
improvement. erate to large SNR10].

Figure 5 shows the SNR values for the advanced LIGO Finally, it should be noted that the relative magnitude of
interferometers. It can be seen that for advanced LIGO interthe merger and ringdown SNR values is somewhat uncertain.
ferometers, equal-mass BBH inspirals will be visible out toWe have assumed a total radiated energy oMOih the
z~1/2 for the entire range of massesM@=(1+2z)M merger portion of the signal and 0M3in the ringdown
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108

L R detectthe entire waveform. In these cases, it is not necessary

‘ff’f.%if to searchfor the merger and ringdown portions of the wave-
AT form, since it will be known roughly where in the interfer-
ometer data stream they are expected to lie.

For larger mass BBHSs, however, our results show that the
merger and ringdown SNRs can be larger than the inspiral
L SNRs. For equal-mass BBHSs, this will occur whenever (1
Y] +2)M=30M, for the initial LIGO interferometers, and
; Lost, year N whenever (% z)M=60M, for the advanced LIGO interfer-

! of Inspiral ometers. Indeed, the inspiral SNR completely shuts off for
/ 1 large enough (*2z)M, as can be seen from Figs. 4 and 5.
/ | Admittedly, BBH binaries of total mass20M s may well
/ 3 be very much more rare than BBH binaries e20M ;
] however, they will be visible to such great distances that
rgsr there may be an interesting event rate. Moreover, for the
initial LIGO interferometers, the mass scale30M at

1000 yeghs 1 which the inspiral SNR becomes much smaller than the
I VAT ST AN AW I T R I A merger and ringdown SNRs is not terribly high.
100 1000 - 10t 10 106107 108 10° In such high mass cases for which the merger and inspiral
(1+2)M measured by LISA (M) SNRs exceed the inspiral SNR, it will be necessary to per-

FIG. 6. The SNR for equal-mass BBH coalescences detected biPrm & search for the merger and/or ringdown portions of the

LISA, assuming matched filtering, as a function of the redshiftedSignal, independen?ly of any searches for inspiral signals, in
mass (1 z)M of the final black hole, at a luminosity distance of order that all possible events be detected. If one seeks to
D=1 Gpc. The dotted and dashed curves are the SNR values frodetect the waves merely by optimal filtering for the inspiral
the merger and ringdown, respectively. The upper solid curve is thevaveform, some fraction of the events will be missed which
SNR that would be obtained from measuring the last year of theytherwise might have been detectable. In fact, it may very
inspiral. For (1 2)M=<1C0°M , the last-year-inspiral SNR is larg- el| turn out that merger signals from BBH coalescences
est; for larger BBH systems the merger and/or ringdown dominatécq |4 pe the dominant source for the initial LIGO interfer-
Also shown(lower solid curves are the SNRs that would be ob- ometers

tained from 1 yr of integration of the inspiral at 100 and 1000 yr One miaht imagine that the aravitational waves would
before the final merger. If the rate of SMBH coalescences within 9 9 9

z=<(a few) is roughly one per year, then one would expect roughl)f-zl,em:"r"’lIIy be eaS|er't0 detect Py searching for .the merger
one thousand SMBH binaries to be a 1000 yr or less away fronsignal than for the ringdown, since we have estimated that
merger. This plot shows that LISA will be able to measure thethe SNR values for the merger phase are typically a factor of
inspiral of such binariegrovided they are of sufficiently low mass ~a few larger than those for the ringdowef. Figs. 4 and b
with moderate to large SNRLO]. There are several factors that complicate this conclusion,
however. On the one hand, the ringdown’s waveform shape
portion, a ratio of 3:1. It may turn out that in individual casesis better understood, which makes it easier to produce search
the ratio is as high as 10 or as low &sl. It may even turn  templates and hence easier to detect the signal. On the other
out to be the case that for many coalescences, the ringdowiand, the ratio between the merger and ringdown SNRs is
portion of the waveform carries most of the radiated energyeally quite uncertain, as discussed in Sec. V B, and so it is
of the combined merger and ringdown regirfiepending  plausible that the merger SNR will be larger than we have
possibly on the distribution of initial spinsThus, the SNR  jngicated relative to the ringdown SNR. In any case, the ratio
values shown in Figs. 4, 5 and 6 should merely be taken ageyveen merger and ringdown SNRs will presumably vary a
lllustrative. lot from event to event. Thus, it would seem that searches
will be necessary fobothtypes of signal in the data stream,
V1. IMPLICATIONS FOR DETECTABILITY at least for the mass range in which the ringdown SNR is
OF THE GRAVITATIONAL-WAVE SIGNAL expected to exceed the inspiral SNIRrom Sec. V we esti-

One of the reasons that coalescences of compact objediéate this mass range to be {Z)M=200Mg, for the ad-
are such good sources for gravitational-wave detectors is thagnced interferometers, and t)M =60M, for the initial
the inspiral is very predictable, so that matched filtering mayinterferometerg.
be used for signal search¢&]. As we have discussed, We summarize the discussion of this subsection by dis-
matched filtering enhances the achievable inspiral SNR valplaying the optimum search strategies for various mass
ues by a factor of roughly/ Ny whereN is the number ranges for the three different interferometers. In each case
of cycles of the waveform in the frequency band of the de-below, the mass range marked merger refers to matched fil-
tectors. For neutron-star—neutron-gfd6-NS coalescences, tering searches for merger signals. If merger templates are
Ngyc Will be on the order of several thousand, while for low available, then in the indicated mass ranges merger searches
mass M =50M) BBH coalescences it will be on the order will probably be more successful than inspiral or ringdown
of several hundref44]. Thus, for NS-NS coalescences and searches; the question mark is a reminder that merger tem-
for low mass BBH coalescences, the inspiral will be used tglates may not be available.
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vanced LIGO interferometers, the mass range to be searched

inspiral Me=M=60Mg LIGO
ringdown 60Mo=M =100 ( initial (6.1) ;;)erlrdeizgonds t0 1oughip min=IMo and Muma,=500Mo ,
merget?) 30M 5 <M =100QM, J interf.

/\/templatesg 4000. (6-6)
inspiral Me=M=200M¢o LIGO This is a rather small number of templates compared to the
ringdown 2001 =M =<300M } advanced number expected to be necessary for inspiral seari@#s
merget?) 80M o =M =300(M interf. and soa ringdown search should be f_airly easy to implement.

6.2) A similarly small number of required template shapes
(Miemplates=6000) is obtained for LISA assumindl
- 7 ~10°M g andM pa~10°M g .
inspiral 10Mo=M=10'Mo LISA We next discuss the distance to which BBH mergers
ringdown 10Mo=M=10Mg interf should be detectable via their ringdown signals. As explained
merget?) 2X10PM o <M=<10°M,, ' in Sec. Il C, an estimate of the appropriate SNR threshold for
(6.3  detection using one interferometer[02]

Pthreshold™ \/2 In[-/\/templateg-/( €At)] (6.7)

whereT is the observation time\t is the sampling time and

. . . . . =103 is as defined in Sec. Il B. In fact coincidencing
Con§|der first the search for rmgdown signals. In thISbetween the 4 different interferometers in the LIGO-VIRGO

case, since the shape .Of the signal IS known' up to Sever?1|etwork will be carried out, in order to increase detection

unknown _parr_:lmeters, it will be feasible to |mpler_nent areliability and combat non-Gaussian noisee Sec. Il A If

matched filtering search. The numb&f{emm?tesof requwed_ the noise were exactly Gaussian, the appropriate detection

templateg 72] can be estimated by combining the formalism criterion would be to demand that

developed by Owen89] and the results of Echeverria and

Finn on the expected measurement accuracy of the ringdown

frequency and damping tim5,16. Using Egs.(4.15 of

Ref.[16] and Egs(2.23 and(2.28 of Ref.[89] we find that

the mitriclglefined by Owen on the space of parameters kﬁ/here the sum is over the different SNRs obtained in each
given by[101] interferometer. In order to combat non-Gaussian noise, the

detection criterion will be modified to require approximately
equal SNRs in each interferometer:

A. Detectability of high mass black-hole coalescences
via the ringdown signal

2 2
Ej: Pj = Pihresholds (6.9

QZ
Fo| fonn (6.4)

1
ds’=—dQ?+
8Q2 gnr

Pijthresholc!‘/2 for all j. (6.9
where Q is the quality factor. The formul&6.4) for the
Owen metric is valid only in the higk limit; it has correc-
tions of order 10?. Moreover, the formula is also only valid
when the noise spectru®,(f ) does not vary significantly ,
within the resonance bandwidthf ~ f,,./Q. Therefore esti- four |nyerferomet7ers. _ _
mates obtained from Ed6.4) for the number of template ~ Taking T=10's and At=1ms yields the estimate
shapes required for ringdown searches will only be accurat@threshoid V2~ 6.0 for the initial and advanced LIGO interfer-
to within factors of order unity; this is adequate for our pur-Ometers. Therefore, from Fig. 4, we see that the initial LIGO
poses. |nterferometgrs should be able to see ringdowns from equal-
Using Eq.(2.16 of Ref.[89] we find that that the number Mass BBHs in the mass range M@=<=M=700M¢ out to

as we have estimated. The advanced LIGO interferometers,

M by contrast, should see ringdowns in the mass range

_max} 6.5 200Mp=(1+2)M =300 out toz~1 (from Fig. 5. For
non-equal-mass BBHS, these distances are reduced roughly
by the factor~ (4u/M).

where Qmax» Mmin @and M ., are the extremal values of the For LISA, the detection threshold is given by E§.7).

quality factor and of the black hole mass that define theAlthough LISA does incorporate several partially indepen-

range of signal searches. The quanfifM in the formula  dent interferometers, we have used the noise specdtfun

(6.5) is theminimal matchparameter introduced by Owen. A which is the effective noise spectrum that applies to the

lattice of templates with minimal matckiM will have an  LISA detector as a wholg7]. Thus it is consistent to treat

event detection rate smaller than the ideal fathieved with  LISA as one interferometer. Takin§=10" s andAt=1s,

an infinitely dense template gjithy the factor MM)3 [89]. and using the valueVgyapes=6000 estimated above yields

We assuméViM =0.97 as in Ref[89], corresponding t0 a pineshoid™ 7-5. Hence, from Fig. 6, LISA should see ring-

10% event rate loss, and tak@n,..=100 [which by Eq. downs in the mass range ®N,=<(1+z)M=3x10°M,

(3.17) corresponds to +a=10"*]. For the initial and ad- out toz=100.

We have chosen a factor 2 here to be conservative; it
corresponds to combining the outputs of just two interferom-
eters(say, the two LIGO 4 km interferometgrinstead of

1
Memplate?v‘ §Qmax(1_ MM )_lm

min
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B. Detectability of high mass black hole coalescences lower than the event rate from matched filtering. Hegeis
via the merger signal the noise-monitoring detection threshold, given by Egs.

We next discuss the feasibility of searches for the mergef2-27 and(2.28 as a function of the parametess\art-times
signal. As we have explained, this will be most necessanfid Moins: @Nd pireshoig is the matched filtering threshold,
when the merger SNR is larger than both the inspiral an@iven by Eq.(2.8) as a function of the parametek§napeand
ringdown SNRs by factors of a feggince the fractional loss Vstarimes AS discussed in Sec. Il B, the calculation we have
in event detection rate, if searches for the merger signal argiven of the thresholg, assumes Gaussian noise behavior;
not carried out, is the cube of the ratio of the SNR values the possible residual non-Gaussianity of real data even after

Consider first the ideal situation in which theoretical tem-coincidencing between detectors may degrade the effective-
plate waveforms are available, so that matched filtering caff€SS Of noise-monitoring. _
be used in searches. From Figs. 4 and 5 it can be seen that W& now estimate the loss factor in event rée To ob-
the merger SNR values are larger than the inspiral and ring@in the most pessimistic estimate, we use the following as-
down values by a factor of up te-4, in the mass ranges Sumptions(i) The number of template shapes in the matched
30M,=<M=200M, for initial LIGO interferometers and filtering search iSVsnapes= 1. A realistic larger number would
100M <M =<400M, for advanced LIGO interferometers. yield a smallerR. (ii) The number of frequency bins is
More precisely, in this mass range, Npins= 60, twice the upper limit estimated in Sec. Il E

[104]. (iii) The number of starting times in the data stream is
E Neartimes= 10°, corresponding to a sampling time of 0.1 s in
€moraed 0-1 a data set of one-third of a year. Such a large sampling time
mene <4 —E (and smallNy4med Would only be appropriate for the larg-
S S €. r(oog‘ start-time: e ; - -
ma{ _) (_) J ringdow est BBHs; more realistic sampling times will be smaller.
N/ inspiral N/ vingdow Larger values ofVyiime<gdive smaller values oR. (iv) The
(6.10 parametere in Egs.(2.27 and(2.8) is e=10"3. With these
assumptions we obtaipyeshoi 6-8, p =10.3; the result-
The detection threshold for merger searches should be ajg loss factor is
proximately the same as that for inspiral and merger
searches, if the number of template shapgg,pesiS Not too R=3.5.
large (see further discussion belgwTherefore, the gain in . .
event rate over inspiral and ringdown searches should var ence, noise-monitoring se_arrlslhes should Onriy be a faﬁtor of
between 1 and about®4 64, depending on the mass of the fi}terﬂgzt;ei,rcilqs more typically~2, worse than matched
system, if our estimates of;e;qer @Nd €;ingdown Are reason- S .
able. The large possible gaingin eventgrate clearly demon- The above ghscussmn assumed Wgfapeds small. As 'the'
strates the importance of merger seardhes). numberNgppedncreases, the advantage of matched fll'gerlng

Note, however, that it is not clear how feasible it will be segrches decreases; at some NUMBEEpes, max Matched fil-
to produce a set of numerically generated templates that igr'ng and noise monitoring perform about equally well. In
complete enough to be used to successfully implement a ef. [73] we show tha{103]
optimal filtering search. There may be a very large number 1
of distinct waveform shapes, each of which will require ex- IN(Nzhapes, mae 5 Nopindn(1+ p?/ Nying) . (6.12)
tensive numerical computations. If both black holes are spin- 2
ning rapidly, the waveforms could depend in significant and -
nontrivial ways on 6 distinct angular parameters, suggestingrom Eqs.(_6.12) z;13nd(2.27), the critical Val?e of the number
that the number of distinct shapes could be very large. f shapes is~ 10 for Ayjps=60, and~10 for Ajins=20,

Next, consider the situation in which merger templates aré@SSUMNGVstartfmes= 1 _ ,
unavailable. Consider first band-pass filtering searches. From T1he actual number of shapeSnapes ill vary with the
the estimate|Ni<=4 of Sec. Il E, combined with Eq. SNR_ levelp. We can define an eﬁ_‘ectlve dimensiby of the
(2.15, we see that the merger SNR in a band-pass fiIteringﬁ“"’“'"fmd of signals by the equation
search is reduced by a factor of 4 from the values presented 1
in Appendix B and Figs. 4, 5, and 6. By Eqs.l_O), the ln[Nshapegp)]:ENd(p)In[l+p2/Nd(p)]; (6.13
achievable band-pass filtering merger SNR is likely to be
essentially no larger than the inspiral and ringdown SNRs. _ . _ )

Noise monitoring searches for the merger will be moreth® pParameteNy(p) is the dimension of the equivalediin-
efficient than band-pass filtering searches, approaching tHe) Space of signals that has the same number of distinguish-
effectiveness of matched filtering searchfBy contrast, abPle wave shapes with SNRp as the true, curved, manifold
noise-monitoring searches for inspiral waves would perfornff merger signal$57]. In Fig. 7, we show the gain facta?
very badly, sinceVj,. is much larger £1000) for inspiral @S @ function ofVpns for the valuesN=0, 5, and 10. The
waves than it is for merger wavess@0)]. The event- true value ofNy is quite uncertain; at high SNR levels it

detection rate from noise-monitoring is a factor of could conceivably be as large &s10. _
Combining the gain factor of 64 discussed above with the
3 loss factorR, it follows that noise-monitoring searches for
R:( Px ) (6.11)  Merger waves could increase the event rate—and hence the
Pthreshol number of discovered BBHs—by a factor up to about 10



57 MEASURING GRAVITATIONAL WAVES ... . I. ... 4555

6 L . L the interferometers by a additional factor ef2, without
requiring detailed knowledge of the waveform shapes. It
seems likely that BBH coalescences will be detected early in
the gradual improvement towards advanced interferometers,
and there is a strong possibility that they will be the first
sources of gravitational radiation to be detected.

Theoretical template waveforms obtained from numerical
relativity supercomputer simulations will be crucial for ana-
lyzing the measured merger waves. A match of the detected
waveform with a predicted waveform would be a triumph for
the theory of general relativity and an absolutely unambigu-
ous signature of the existence of black holes. A complete set
of such theoretical templates would also aid the search for
BBHSs, but not by a large amount.

L - The space-based interferometer LISA will be an ex-
, , tremely high precision instrument for studying the coales-
0 50 100 150 cences of supermassive BBHs. Coalescences with masses in
Number of bins the range 18M,=<(1+2)M<10°M should be detectable
out toz~ 10 with very large SNRs* 10%), via their merger

FIG. 7. The factor by vx_/hich the event detection rate is ipcrease.%nd ringdown waves. Additionally, systems in the mass

when one uses matched filters for the merger waves vs using a Noi%Enge 16M o=(1+2)M=3x10'M, should be detected to

monitoring search. Plotted on the horizontal axis is the numbe%imilar distances and with SNR=10? via their inspiral
Niins=2TATf of independent frequency bins characterizing thewaves

space of signals one searches fbris the maximum expected sig-

nal duration andAf is the frequency bandwidth. The vertical axis

shows gain factofR in event rate. This gain factor depends on the ACKNOWLEDGMENTS

number of statistically independent waveform shapes in the set of

signals one is searching for, which is currently unknown. This num- We thank Kip Thorne for suggesting this project to us, for
ber of waveform shapes can be characterized by the effective dbeing a constant source of ideas and encouragement along
mensionV of the manifold of signals; cf. Eq6.13. The solid line  the way, and for detailed comments on the paper’s content
shows the gain factor in the limit in which the number of waveform and presentation. We also thank Patrick Brady and David
shapes is smallX3=0); it is an upper limit on the gain factor Chernoff for some helpful conversations, and Tom Prince
obtainable from matched filtering. The lower two dashed lines shovand Chip Sumner for locating a well-hidden typographical
the gain factor wheVy=5 and\y=10. Our best estimate ?,i,s  error in one of our equations. This research was supported by
is roughly 30, corresponding t0=50M and Af=1/(wM); it is NSF Grants PHY-9220644, PHY-9408378, PHY-9424337,
unlikely to be much larger than 10@ec. Ill B). This plot can be  gnd PHY-9514726, and by NASA Grant NAGW-4268.
generated by combining Eqf2.27), (2.28, (2.8 and(6.13 of the g A . gratefully acknowledges the support of the National
text, with the parameter valuesan.imes= 10° and e=10"7. Science Foundation Graduate Program. E Flanagan

o ) would like to thank the Enrico Fermi Institute for financial
over those found from inspiral and ringdown searches foypport.

ground-based interferometergFor LISA, the expected
SNRs are so high that the availability of merger templates

will likely have no impact on event detection rates. APPENDIX A: ENERGY SPECTRUM
FOR RINGDOWN WAVES

Gain factor in event rate

VIl. CONCLUSIONS There is a subtlety in calculating the SNR for the ring-
o o down waves, related to the fact that the SNR squared does

It seems quite likely that gravitational waves from merg-not accumulate locally in the time domain. In order to ex-
ing BBH systems will be detected by the ground-based iny|ain this subtlety, let us focus not on the angle-averaged
terferometers that are now under construction. Initial LIGOgNR squared which was our main concern in the body of the
interferometers will be able to detect low mass30Mo)  paper, but rather on the SNR squared obtained in one inter-
coalescences of equal-mass BBHs to about 200 Mpc Vigerometer from a specific source with specific relative angu-

their inspiral waves, and higher mass (M@=M |5 orientations. In this case the wavefohft) seen in the
=<700M¢) systems to about 200 Mpc via their ringdown jnterferometer, foit>0, is of the form

waves. Advanced LIGO interferometers will be able to de-

tect equal-mass BBH coalescences in the mass range

10M <M =<300Mg to z~1/2 via their inspiral waves and

higher mass (20@ =M =3000M) systems toz~1 via

their ringdown waves. For non-equal-mass BBHs, these disfor some constantl, and ¢,, while h(t) is the (unknown

tances will be reduced by a factor of abof#u/M for in- merger waveform fot<O.

spiral signals and aboutM for ringdown signals. Let us also focus first on the simple, idealized case of
Searches for massive BBHsME50M, for LIGO-  white noise, S (f )=S,=const. Then, the SNR squared

VIRGO) based on merger waves could increase the range dR.7) accumulates locally in time:

h(t)=hgcog 27 f ot +o)e " (A1)
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, 2 [~ ) guency behavior due to a discontinuityhift) att=0 [or a
reg f dt h(t)~. (A2)  discontinuity inh’(t) att=0 in the casay,= /2], and the
o resulting SNRs can in some cases differ from the correct
Hence, for white noise, the SNR squared from the ringdowry2lues(see below by factors=10. Other choices foh(t)
is clearly unambiguously given by for t<<0 [for instanceh(t)=h(0)] get around this problem
but instead have unrealistic low frequency behavior. In any
) 2 (=, case, it is clear that these choices are somewatidtocand
Pringdown™ g f hgcoS(2mf gt + o) 2627 that there should be some more fundamental, unique way to
n JO
calculate the SNR.
We now explain the correct method to calculate the SNR.

_ @ cog2¢o) — Q sin(2¢o) The question that effectively is being asked is, what is the
2S5, 1+Q° probability that there is a ringdown waveform present in the
data stream, starting &ay t=07? This probability is to be
h3r calculated given only the data frote>0, without using the
=~ E[:HO(:L/Q)]’ (A3) measured data fro<0 which is contaminated by the un-

known merger waveform. To do this one must effectively

whereQ= mfq,7. Now consider the case when the noise isintegrate over all possible realizations of the noisetfa.
not exactly white. Naively, we expect that in the Fourier The necessity for such an integration is illustrated by the
domain the energy spectrum of the ringdown signal will be afollowing simple analogy. Suppose that one is measuring
resonance curve that peaksfat f ., with width ~f,,/Q.  two real variablesh, (“waveform for positivet”) andh_
Thus, for largeQ we would expect that most of the SNR (“waveform for negativet” ), and that the measured values
squared will be accumulated netef,,, unless the noise of these variables afe, andh_. Suppose that because of
spectrum varies very strongly with frequency. Moreover, ifthe noise in the measurement process, the probability distri-
the noise spectrurg,(f ) does not vary much over the band- bution for the true values of these parameters given their
width ~ f,,,/Q of the resonance peak, then we would expectneasured values is
the formula(A3) to be valid to a good approximation, with
Sy replaced byS,(fg,). We show below that this is indeed
the case: under such circumstances, @®) is fairly accu-
rate, and the resulting approximate ringdown SNR is embod-P(h+.h-)=
ied in our approximate delta-function energy spectf@Gm9
and in Egs(B13)—(B17) of Appendix B[106].

In many cases of interest, it will indeed be true that most
of the SNR squared for ringdown waves will be accumulated
in the vicinity of the resonance peak, so that the SNR will
approximately be given by EGA3). However, this will not  Thyus,h, andh_ are Gaussian distributed about their means
always be the case. For instance, suppose that we were Iuc‘gy+ andh_, and they are correlated. If we assume that

enough that two 1M, black holes were to merge at the =0 [analogous to assuminig(t)=0 for t<0], we obtain
center of our own galaxy. Would such an event be detectabI{?Or the probability distribution foh ' '
+

by advanced LIGO interferometers? Clearly, most of the

power in the ringdown waves in this case would be far below

the LIGO-VIRGO waveband. However, given that the

merger is only at~10 kpc, one might hope to be able to p(h.lh_=0)=

detect the tail of the ringdown waves that extends upwards in 270

frequency into the LIGO-VIRGO waveband. Or consider the

detectability of a ringdown of a nearby 3M ., black hole by

LISA. In this case most of the ringdown power is concen-whereh’. =h, —ch_. By contrast, if we instead calculate

trated at frequencies above LISA’s optimum waveband, anghe probability distribution foh, alone by integrating over

the detectability of the signal is determined by the amount of, e find

power in the low frequency tail of the ringdown. In such

cases, it is clearly necessary to understand the power carried

in the ringdown waves at frequencies far from the resonant

frequency. p(h,)=
Normally, such an understanding is obtained simply by 2mo*

taking a Fourier transform of the wavefoimit). In the case

of ringdown waves from BBH mergers, however, the wave-

form for t<0 is the unknown, merger waveform. In order to wherec* = ¢/\/1—£2. Itis clear in this simple example that

obtain the SNR squared from the ringdown signal alone, onene should use the reduced distributi@®) rather than the

might guess that the appropriate thing to do is to takB distribution(A5). Note also that the widths of the probability

=0 for t<0, and insert this together with E¢A1) into the  distributions(A5) and(A6) are different, and that the correct

standard formuld2.7) for the signal to noise squared. How- distribution(A6) could not have been obtained from the joint

ever, the resulting energy spectrum has unrealistic high fredistribution (A4) for any assumed choice of_ .

exp{ — % [(hy—h,)2+(h_—h_)?

2ma?

+28(h+—h_+)(h_—h__)]]. (A4)

e—(h+—h7’+)2/(2a)2' (A5)

! e~ (he—h)%(20*)? (AB)
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Turn now to the analogous situation for random pro-
cesses. Ifn(t) is the interferometer noise, le€C,(At)
=(n(t)n(t+At)) denote the autocorrelation function. De-
fine the inner product

<h1|h2>5f:dtf:dt' K(t,t") hy(t)hy(t’) (A7)

on the space of functionk(t) for t>0, where the kernel
K(t,t") is determined from

fmdt”K(t,t”)Cn(t”—t’)= S(t—t’) (A8)
0

for t,t'=0. The quantityK(t,t") is analogous to the modi-
fied width o* in Eq. (A6) above. Using the inner product
(A7), the usual theory of matched filterirj$9,60 can be
applied to random processes on the half line0. Thus, if
s(t) is the interferometer output art(t) is the waveform
(A1), the detection statistic isr=(s|h), and the SNR
squared for the measurement is

, E[YP
P = EIYI—E[Y]?
=(h[h)

=fmdtfxdt’K(t,t’)h(t)h(t’), (A9)
0 0

whereE[---] means expectation value. If we define

G(f'f/)zj dt f dt’ e2fn-ifte727rif't'K(t’t/)
0 0
(A10)

and

h(f)= f:ez”‘“h(t) dt, (A11)

the SNR squared can be rewritten as
p2=f df f df’ h(f )*G(f,f)h(f"). (A12)

Note that the Fourier transforr@(f,f’) of K(t,t’) is not
proportional to 8(f—f')/S,(f ) but instead is in general
non-diagonalin frequency.

The formula (A12) resolves the ambiguities discussed
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We start our derivation by describing an alternative
method of calculating the exact ringdown SNR given by Egs.
(A1) and(A9). It is straightforward to show that the quantity
(A9) can be obtained bgi) choosingany waveformh(t) for
t<0, (ii) calculating the SNR from the usual formula.7),
and (i) minimizing over all choices of the functiom(t) on
the negative real axis. We have experimented with several
choices of h(—t) for t>0, namely h(—t)=0, h(-t)
=h(0), h(—t)=h(t). We found that the SNR obtained by
minimizing over these choices is alwaffer the entire black
hole mass ranges discussed in Secwithin a few tens of a
percent of the SNR obtained from the following prescription:
(i) Assume thah(t) for negativet is identical to the wave-
form for positivet except for the sign of/ r; i.e., that

h(t)=hgcog 2mf 4ot + gho)e 117 (A13)
for positive and negative (ii) Calculate the total SNR using
the standard formul&.7). (iii ) Divide by a correction factor
of v2 in amplitude to compensate for the doubling up. This
prescription gives the correct, exact res(9) for white
noise. For more realistic noise curves, the errors of a few
tens of a percent resulting from this prescription are unim-
portant compared to the uncertainty in the overall amplitude
A of the ringdown signal. Moreover, the resulting SNR val-
ues multiplied byv2 are an upper bound for the true SNR
[since if ourad hocchoice ofh(t) for t<0 happened to be
exactly right, then the prescription would underestimate the
SNR byv2].

We now explain how to obtain the energy spectiiig
from the above approximate prescription. From E@s31)
and (3.15 it can be seen that the waveform as seen in one
interferometer, before angle averaging, is given by &q.)
with

AM , , A
hOe“po: T[F+(0,Q0,l//)+|FX(a,@,lp)]zsz(b,ﬁ,a)eupo.
(A14)

Here the angles$, ¢, ¢, « and 8 have the meanings explained
in Sec. Il C. Let us now insert the wavefor@Al) into the
formula (A9) for the exact SNR, and then average over the
angleséd, ¢, ¥, « and B using Egs.(2.34 and (3.16. This
yields for the angle-averaged, exact SNR squared

1
<pexac[h(t)]2>: E{Pexae[hto(t)]z"' Pexac[hx,o(t)]z}a
(A15)

where peyact h(t)] denotes the exact SNR functiongh9)

above in the method of calculating the ringdown SNR; theand

result does not require a choice of the wavefdr(h) for t
< 0. Unfortunately, the final answé&A12) is complicated in
the sense that it cannot be expressed in the @180 for
any effective energy spectrudE/df. This is somewhat in-

AM )
h+,0(t): T COQZWfant)e ur

convenient for the purposes of this paper: the wave’s energy
spectrum is a useful and key tool for visualizing and under-
standing the SNRs. Clearly, an approximate, effective energy
spectrum(to the extent that one exigtaould be very useful. for 1>0. Now, for each of the two terms on the right-hand
We now turn to a derivation of such an approximate, effecside of Eg.(A15), we make the approximation discussed
tive energy spectrum, namely the spectr(@8 which is  above consisting of using Eq&.7) and(A13) and dividing
used throughout the body of this paper. by 2. This yields

AM
hy o) = —— sin(2mf gut)e™ ", (A16)
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= = APPENDIX B: SIGNAL-TO-NOISE RATIO FORMULAS
= I o(F)1P+ T o f ]2

{Pexadt (D)%)~ 75~ JO df S.(f) ’ _In this appendix, we give the details of our SNR calcula-
(A17) tions. Note that throughout this appendix we use MM
(mega solar-magsas shorthand for fM, .

1. Inspiral

where it is understood that, o andh, o have been extended  Tg calculate the angle-averaged SNR squared for the in-
to negativet in the manner of Eq(A13). Finally, evaluating  spiral, we insert the inspiral energy spectr(®il4 and our

the Fourier transforms yields an angle averaged SNRparameterized modéd.1) of an interferometer’'s noise spec-
squared of the forni2.30, with the energy spectrum given trum into Eq.(2.30, and integrate fronf=fg to f="f ¢

by Eq.(3.18. The result is
|
( [ 36 4 fs\8°
Fi(M,z,D) 9alP— — o - — o 13,108 3 —S) o af S Thegd (1+2),
_ 5 5 frn
[ V3 (0)1/3 3( fS)SIB}
Fi(M,z,D)|9 -8|—| - — , flasf 1+z<af,,
(pry={ T ERPE G] T, nf e ) (B1)
[ aZ 8/3 fs 8/3
Fi(M,z,D) a1’3(7) —a3(f—) } fs<fmergd (1 +2)<fp/a,
L m
L0, fmergd (1 +2)<fs,
where
1+2)af
Uzﬁ (B2)
fmerge
and
_[(1+2)MPF4u/M]
Fi(M,z,D)= 807T4/3D(Z)2hfnf|¥3 . (B3)

HereD(z) is the luminosity distance to the sourde, «, f,, andh,, are parameters characterizing the detector noise spectrum
(4.1), andf nergeis given by Eq.(3.3).

Inserting the values of the noise spectrum parameters from(4£g). for initial LIGO interferometers, we obtain the
following numerical values for the SNR in the equal-mass qaseM/4:

5/

[ [200M 1+2)M 1+z)M ) 10/3)172
2. P& ((1+2) - i ., (l+zM=<18M,
D(z) 18M ¢ 18M
200 Mpg| ( (1+2)M | 1+z)M |32
S 4.7( pé) ( ) {1—0.7(2 } ., 18Mp<(1+z)M=<36M,
- = D(2) 18Mg 18Mg (B4)
N initial 200 Mp (1+Z)|V| —1/2 (1+Z)M 8/311/2
2. - —_ , 3BMp<(1+z)M<10M,
D(z) 36Mg 36M g
. 0, 10M o< (1+2)M.
For the noise curve parametdrs3) appropriate for advanced LIGO interferometers we obtain
( 1G 1+2)M 5/ 1+2)M 10/311/2
27 pe((1+2) 1-0.1 i ., (1+2M<3Mg,
D(z) )| 3Mg 3¢
1Gpc)((1+2)M| 56 1+z)M| 1312
S 43( pc)(( 2) [ — L } ., 3Mp<(1+z)M<95M,
advanced 1 Gp (1+Z)M —1/2] (1+Z)|\/| 8/311/2
31 1-.021) — , 9BMo<(l+z2)M<=41Mg,
D(z) 95M 95M ¢
L O, 41M<(1+2)M.
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As explained in Sec. V A, the calculation of the inspiral SNR for LISA differs from the other SNR calculations in the
following way. If one were to integrate over the whole frequency domain in the interferometer waveban@i=ep.{9, (as
is done for the initial and advanced interferometers in L)G® some cases one would obtain the SNR for a measurement of
several hundred years duration, which is obviously irrelevant. Thus, it is necessary to restrict the integral over frequency in Eq.
(2.30 to the domain that corresponds to, say, 1 yr of observation when calculating inspiral LISA SNRs. Using the Newtonian
relationship for the rate of frequency sweep, we obtain, for the frequency afTtibefore merger in the equal-mass case,

64 —3/8
Finsd T) = | f merast 3 M1+ 2)53T| . (B6)
Binaries of redshifted total mass €1z) M larger than about % 10°M ., enter the LISA waveband &t=f,=10" % Hz less than
1 yr before merger, while binaries of smaller redshifted mass spend more than 1 yr in the LISA waveband. To calculate the
SNR, we insert Eq(3.14) into Eq.(2.30 and integrate numerically from the largerfefandfi,s(1 yr) to f,eqe. The resulting
SNR values are shown in Fig. 6. We also show in Fig. 6 the SNR obtained from 1 yr of observation 100 yr before the final
merger, obtained by integrating frofi,s;(100 y» to f;,s(99 yr), as well as a similar curve for 1000 yr prior to merger.

Equation (B1) applies to LISA only for (+z)M=5x10°M. By combining Egs.(B1) and (4.4 for (1+z)M=
5x 10°M, together with an approximate fit to Fig. 6 for €&Z)M <10°M. we obtain, for the SNR from the last year of
inspiral in the equal-mass case,

( 1.5x 10* 16pq 1+ oW 100M 5 <(1+2)M=<0.5MM
' D(z) )| 0.5MMg)" o= T e
1Gpg((1+2)M | (1+z)M ) 322
S 1.9x 10 -038 ~—— , 0.5MM<(1+2z)M=<6.0MM,
- ox10* 1 Gpa ((1+2)M) 71 1-0.00 a+2M " 6.0MM o <(1+2z)M<41MM
50101 5y | MM B VTV . OVVNe = o
L O, 41MM o <(1+2)M.
2. Merger
To calculate the merger SNR we use the energy spectBut® and follow the same procedure as above. The result is
f,,,(em,M,z,D)v3 [ni;l] fmerge/(1+z) Zafm
fm(fm, M, z, D) [3lnv — 03:3“3] fm/a’ < fmerge/(l + Z) <afm < fqm‘/(l + Z)
I’A}-m(em:MazaD) [2 - %TG - Z—z +61na] fmerge/(l +2) < f/a<afm < fqm‘/(l +2)
L]:m(em)M) 2, D) [3 ln"f'] fm/a < fmerge/(l + Z) < fan/(l + Z) < afm
3 3
L Fm(eém, M, z, D) [2— (%) —Z—3+6lna] fmerge/ (14 2) < fs < fm/a < afm < foue/(L+ 2)
(*) = N
ALE (em, M, 2, D) [L 4310 (522) = 28] o < frnerge/ (L4 2) < fin/00 < fane/ (14 2)
3 2
I,Afm(ﬁmyM,Z)D) [1— ('ofi%) +3In (%T—)jl fmerge/(1+z) < fs <.fm/a§fan/(1+z)
Lfm(fm, M, Z, D) [a60_3(f€3 - 1)] fs S .fmerge/(l + Z) < fqm‘/(l + z)
2\ 3 3
Frlem, M, 2,D) [(L) - (&) ] fmerge/ (L +2) < fo < fane/(L+2) < fin o
0 fan/(1+z)<fs~
(B8)

Herev is given by Eq.B2), ¢, is the fraction of total mass energy radiated during the mengbkich we have also denoted
bY €mergerin the body of the papgr k= 4o/ f merge: @and
2epM(1+2)[4u/M]?

Foo(€m,M,z,D)= .
m(€m ) 1572D(2)?h% f mergd < — 1)

(B9)

Lines marked with the superscript “I"” turn out to hold for the initial LIGO interferometer parameters, those with “A” hold
for advanced LIGO interferometer parameters, and those with “L” hold for LISA.
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Using the numerical values of the noise curve paraméte®s for initial LIGO interferometers, and Eg€3.3), (3.4), (B2),
and (B8) we find, for the initial LIGO interferometers in the equal-mass case,

15 () (200 (o)™ (14 2)M < 18 M
s ™ (258 ()
[ z - 1+2)M 3 12
x h1+3ln<%ﬁ}®—)—3.6x10 3((—%}6—) ] 18 Mg < (1+ 2)M < 36 M
6.1 (5)'/* (2pMee) (%Eﬁ)g’)
r -3 371/2
<5) x 1423 (GEE) T - 0.007 (G5 ] 36 Mg < (1+ 2)M < 102 Mg
N/ nitial 17.3 (%%)1/2 (203(1\;1;5) ((1104;32[1\64)
311/2
x [1—.17 (Stam) ] 102 Mg < (14 2)M < 118 Mg,
z z 1/2
oo i (25 () 10 (S540)] s < <20
-1/2 z 3 y
20 (g2)"/* (2og8ee) (SE9) [1 —0.04 (G220) ] 230 Mg, < (1+ 2)M < 660 Mg
0 660 Mo < (1+ 2)M.
(B10)
Similarly using Eq.(4.3) we find, for advanced LIGO interferometers,
C 2 5/2
13 ()" (4me) (S) (14 2)M < 37 Mg
€ 1 C 2
13 ()" () ()
511/2
x |13 (G )—3.6x10-3(%) ] 37 Mg < (1+ 2)M < 95 Mg
€ 1/2 C 2
-~ 511/2
(S) x [1-0.21 (G ) —0.013 (4£52) ] 95 Mo < (1+ 2)M < 240 M,
ﬁ =
advanced 88 (%mf)l/z (lD(JE.ZE)c (12144621&1\(;1)
a7/
x 1—31n( b ) —0.061 (L) ] 240 Mg < (1+ 2)M < 410 My
1/2
150 ( 1“( <) (G5 ) [1-3.01n (4522)] 410 Mg < (1+ 2)M < 620 Mg
-1/ 311/
290 (a)'/? ( ) ( ) [1 —0.013 (%%’oi) ] 620 My, < (1 + 2)M < 2600 M
0 2600 Mg < (1+ 2) M.

(B11)

Finally, using the paramete(d.4) appropriate for LISA, we obtain
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L9x10° (5) " (155) (s8is) (1+2)M <20 10° Mg,
Lo 105 (45) (i)
[1 +3In (ﬁlx%%%) 3.6 x 10~3 (%%)3] Y 10°Mg < (14 2)M < L.3MM,
2.8 % 10 ()% (588 ) ({5505) L3MM; < (1 +2)M < 6.0MMg
g 345104 (5)'" (53) (555 )

(-IV) LIsA x [1 —3In (g;{;M@) - (é,ﬁ)ﬁ;M@)_s]l/z 6.0MMg < (14 2)M < 39MMg
3.6 x 10° (5a)"/* (42 (%%%)_1/2 39 MM < (1+2)M < 41 MM,
3.4 % 10° (5a)"/* (42

X 4‘1;;M o [1 —3.8x1073 (%)3] v 41 MM < (1 + 2)M < 260 MM,
0 960 MM < (1+ 2) M.
(B12)
3. Ringdown

The ringdown SNRs are calculated a little differently from the inspiral and merger SNRs. First, we use the effective energy
spectrum(3.18 which yields an estimate of the true SNR obtainable from the model wave®rf that is accurate to within
a few tens of a percerisee Appendix A Second, the integral over frequency in the SNR form@&0 with the noise
spectrum(4.1) and the energy spectruf3.18 cannot easily be evaluated analytically. Hence, we calculated this integral
numerically to produce the plots of ringdown SNR versus BBH mass shown in Figs. 4, 5, and 6.

In the remainder of this appendix we derive approximate formulae for the ringdown SNR as a function of mass, by
approximating the ringdown energy spectrum as a delta function at the ringdown frequériey. (3.19]. This approxima-
tion yields (see Appendix A and Ref106])

(1+2)°M2A2Q[4uIM]?

P 20D (D Sl el (1721 (813

Using Eq.(3.17 and the relation3.22 between the dimensionless coefficieAtand the radiated energy we can rewrite
formula (B13) as

1 (1+2)M

) (1+2)M
(=5 F<a>2 € S/ (15 2)]

D(2)

2 4:“’ 2
{V} , (B14)

where €, = €ingaown IS the fraction of the total mass energy radiated in the ringdown, and

Fla)=1- 2>
(2)=1~ 150

—(1—a)%0 (B15)
An equivalent formula was previously obtained by F[i®,107.

We find the following numerical result when we insert our assumed value.03 anda=0.98 for the ringdown signal
together with the parameters for the initial LIGO interferometer noise curve in the equal-mass case:

( e |3 200 Mpc, [ (1+z)M ) >?
0.0 — C (1+zM<118M,
0.03 D(z) 18M
s e.d & |"[200Mpg ((1+2)M 118M o < (1+2)M <230M
2] ={"1o03 D(z) |\ 118M, © h © (B16)
N/ i 1/2 —-1/2
inital & 200 Mpc| [ (1+2)M
17 — | 230Mo<(1+Z)M=<660M
0.03 D(z) || 230Mg
L0, 66(M o< (1+2Z)M.
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The corresponding formulas for advanced LIGO interferometers are

( & | 1Gpc[(1+2)M)\>2
0.71 — . (1+2)M=<240M,
0.03 | D(z) /| 3Mg
211 G 1+z)M
s 77 = pe((1+2)M) 240M o< (1+2)M=<620M, ,
> = 0.03 | D(z)/\ 240M (B17)
N advanced € 1/2 le (l+Z)|\/| -1/2
20 . 620M o <(1+2)M <2600,
0.03 | D(2)/\ 620M¢
L O, 260M o< (1+2)M.
Finally, the corresponding formulas for LISA are
([ & \"}1Gpq[(1+2)M)>?
96 , (1+z2)M<1.3MM,
0.03 | D(2)/\0.2MM¢
e \Y?1Gpe [(1+2)M
S 1.0x10% — , 1.3MM<(1+2)M<39MM,
2 —{ 0.03 | D(2)/\1.3MM, (B18)
N LISA 1/2 —-1/2
3110 | | LCPY((L*2M 39MM o < (1+2)M <260MM o,
0.03 | D(2)/\39MM ’
L O, 260MM o <(1+2)M.

By comparing Eqs(B16)—(B18) with Figs. 4—6 it can be seen that the delta-function energy spectrum approximation is fairly
good except foM =3000M , for advanced LIGO interferometers aMi=3x 10°M, for LISA. The approximation fails to
capture the high mass tails of the SNR curves.
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