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Cross section of a resonant-mass detector for scalar gravitational waves
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Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a
non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding
perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and
absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the
Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and
shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential
detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
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[. INTRODUCTION cally symmetric collapse. In the Oppenheimer-Snyder ap-
proximation, such an emission process has been recently
Possible extensions of Einstein’s theory of gravitation tostudied 5]. Theoretical predictions for the amplitude of GWs
include scalar fields have received much attention in the pastepend on the specific model chosen to describe the collapse
years. The existence of a scalar component in the gravit&and on the assumed theory of gravity. The only constraint is
tional field was been originally proposed by Jordan and inihat the assumed theory of gravity must agree, in the regime
dependently by Brans and DicKd] in order to devise a of weak gravitational fields, with the existing experimental
theoretical framework allowing for variations of the funda- data[6] which support GR to a high degree of accuracy. In
mental constants and violations of tfetrong equivalence the regime of strong gravitational fields the situation is dif-
principle. Many other non-Einsteinian theories of gravity in- ferent and large deviations from GR are possible in principle
corporate scalar fields. Most notably, string theory, the most?]- Eventually, we will argue that scalar GWs emitted in a
serious candidate for a fully consistent quantum theory ofpherically symmetric collapse in the strong field regime
gravity, generically predicts the existence of neutral scalafould give a measurable effect for a source within our local
fields[2]. In particular all perturbative string vacua include a group of galaxies.
scalar, known as the dilaton, in their massless spectrum. Its Among the GW detectors which are now under study or
vacuum expectation value, which plays the role of the stringh construction, those with spherical symmefi8y-11] are in
coupling constant, is neither fixed at the classical level nor a@ Priviledged positioi12,13 to detect and discriminate sca-
any order in perturbation theory_ Very poor|y understoodlar waves. Neither a Single Cylindrical'Shape resonant-mass
non-perturbative effects may generate a potential for the didetector nor a single laser interferometer are in fact able to
laton and the other scalar fields, thus stabilizing their expecPerform this task. A proposed omnidirectional observatory
tation value. This mechanism is by no way incompatiblemade out of six cylindrical resonant-mass detectidr4]
with some scalars remaining masslg3k Active research in should be able to discriminate the scalar component of a
this field gives new motivations for further investigating GW- A minimum of four laser interferometers are needed to

theories of gravitation including other scalddilaton, ax-  discriminate the scalar modé5]. On the contrary a single

ions or the superpartners of the known fermijonis this spherical resonant-mass detector was shown to be able to

respect, it is worth observing that, assuming the validity of sdetect and discriminate a scalar m¢d8, 16| and to act as a

least Coup”ng pr|nc|p|q3], the subsector of String theory veto for dlfferent theo”es Of gl’aVItf{l?]. Th|S can be ac-

determining the coupling of the dilaton has the same funccomplished by monitoring the five degenerate fundamental

tional form as the Jordan-Brans-Dick&BD) theory. quadrupole modes of vibration of the detector together with
Most probably, the existence of massless gravitationallyfhe fundamental monopole mode. In fact, in any metric

coupled scalar fields would be detected through deviationtheory of gravity the “electric” component of the Riemann

from general relativity GR) in the spin contents of gravita- tensorRyjo; can be written(in the so-called Jordan-Fierz

tional waves(GWSs). In this respect, one of the most prom- frame as

ising sources of GWs is given by the gravitational collapse

of a staf4]. Since in GR no gravitational radiation is emitted 1

in a spherically symmetric collapse, most of the existing lit- Roioj=S;; + §T5ij , (1.9

erature focuses on the non-spherically symmetric case which

generates GWs of spin two. However, in scalar-tensor theo-

ries, scalar gravitational waves are radiated from a spheriwhereS; is a traceless symmetric tensor, ane Ry q; is the
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trace part From measurements of the abo(guadrupole equations which correspond to the variation of Exjl) with
and monopolemodes one is able to completely reconstructrespect tag,,, are then given by
Roioj [16,17.

In order to make quantitative predictions about the possi- 1 o o
bility of detecting scalar GWs, we compute in this paper the = 2(0a0"N,= %0t 9,9 ,0)
cross section for scattering and absorption of scalar and ten-
sor GWs by a spherical resonant-mass detector in the frame-
work of the JBD theory. We then apply the results to esti-
mate the potential ability of such a GW detector to sense the
characteristic signal emitted in the process of a spherically 8_771- + i[a 9, E— 1,0, (2.3
symmetric stellar collapse. Chpg #7 pot HOrE T MTura '

1 a aqB
+§77M,,(¢9a3 h—9%9 h,Ba)

whereh is the trace of the fluctuatioh,, and T, is the

matter stress-energy tensor. Defining the new field
Scalar particles may be coupled to gravity in many ways

consistent with general covariance. Experimental tests of the 0 =h — 1 he & 2.4

equivalence principle, however, put severe constraints and R O bo '

tend to favor theories that predict a universal coupling of

such scalar particles to the rest of matter figlds For a and choosing the gauge

single scalar, which may be thought of as the string dilaton, )

the relevant couplings may be encoded in the JBD theory. In 9,0""=0 29

the Jordan-Fierz frame, in which the scalar mixes with th

metric but decouples from matter, the action reads

Il. SCALAR AND TENSOR GWs IN THE JBD THEORY

eyields the final form of the linearized field equations:

167

S:Sgl’a\[¢!g/.w]+sm[¢mlg,uv] [?a(?QGMV:_TOTP-V’ (26)
5 f d'xy 9{¢R o0 g o 8
1A - T v a
16w @ o 9,0% = ——2T. (2.7)
ZwBD+3
1
_ 4
* c f AXLml . Qs ], 21 Far from the sources these equations admit wave-like solu-
tions
WherewBD is a dimensionless constant, whose lower bound R
is fixed to bew__~600 by experimental dafd 8], g,,, is the 0,,(X) = A, (X, w)explik®x,) +c.c. (2.8
metric, ¢ is a scalar field, and),, collectively denotes the - )
matter fields of the theory. The part of the Lagrangian which £(x)=B(x, w)exp(ik*x,) +c.c. (2.9

describes the matter sector does not depend on thedield
and it is the same as in GR. Notice that a Weyl rescaling o
the metric,g,,,= ¢~ g}, brings the gravitational part of
the action to the standard Einstein-Hilbert form but intro-
duces direct couplings of the scalar fiebdo matter. In order
to perform our computations the Jordan-Fierz frame prov
to be more convenient than Einstein’s. The independence
the physical results on the frame choice can be explicitly

ﬁ\/ithout affecting the gauge conditid2.5), we can impose
=—2¢&/ ¢, (so thatd,,=h,,). Gauging away the super-
flous components, we can write the amplitudlg, in terms

of the three degrees of freedom associated with states with
eglelicitiesi 2,0[20]. For a wave travelling in the-direction,

e thus obtain

checked. 0 0 0 0

As a preliminary analysis, we perform a weak field ap- A — 0 ey—b €12 21
proximation around the Minkowskian metric and a constant ) e, —e;—b 0O (2.10
expectation value for the scalar field 0 0 0 0

g,lLV: 77,uV+ h,lLV

¢=dot & (2.2
Ill. CROSS SECTIONS FOR RESONANT MASS

The standard parametrizationpo=2(w, +2)/G(2w DETECTORS

+3), with G the Newton constant, reproduces GR in the  pefore performing the computation of the cross section
limit w_ — o which implies ,—1/G. The linearized field e would like to clearly state the nature of our approxima-
tions. We consider GWs emitted from a distant source. For
the purposes of our computations, we are not interested in
IA convenient basis for symmetric rank two tensors isthe details of the emission but we assume that the GW has
{Stm 1S} [16,17), which allows one to express the spherical the Iorm given in Egs.(2.8), (2.9 with a frequencyw
harmonics withl =0 andl=2 asYUm):S‘(j,m)?(iij. =clk| coincident with one of the vibrational eigenfrequen-

whereb=B/¢,.
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cies of the detector. When the GW impinges on the resonaniFhen, keeping into account this choice, we can introduce the
mass detector, a part of the GW gets scattered and the restsgess-energy pseudo-tengqr,, which results from an ex-
absorbed. The size of the detect®&, is such thatR<\, pansion of the equations of motion to second order in the
where \ is the GW wavelength, so that the interaction isweak fields. In particular the mixed components read
point-like (“quadrupole approximation). Once excited, the

detector re-emits part of the absorbed radiation, while the . ¢oct | Moy T1)
rest is transformed into noise. (to)=—2 397 2 ((908) (o))
In the following we compute the scattering cross section
Pscat +{(dgh ) (3h*P)) |, 3.8
Oscat= (3.1) ((3ohap) (o)) (3.8

where the symbo{---) implies an average over a region of
size much larger than the wavelength of the GW. Substitut-
ing Egs.(2.8), (2.9 into Eq. (3.8 we get

where ® is the incident GW energy per unit time and unit
area, andP.,;is the power subtracted by the scattered wave
and the total cross section:

402 22w +3)
P + P P. ~ ¢0C w BD N
Utof:%absz_%t, 3.2 (tog)=—-2 5 Py IBI2+A*A,
whereP ¢ is the power absorbed by the detector &hgl is _ E A |2 3.9
the power associated to the interference between the incident 2| ol (3.9

and the scattered way&9].

All the computations will be performed twice: once for and using Eq(2.10, we obtain
the tensorial waveg.8) and once for the scalar wavés9). boct?
We note that the GW given by E@2.8) receives contribu- ~ $oC'w
tions both from a tracgless tgnsg:_ term and from a scalar (fo2?=—2 g [le1?+[e1d* + (2wgp+3)|b|?].
term, the trace of,,,. The computation of the traceless part (3.10
is similar to the one performed in the context of standard
GR, which is recovered in the limis__—o. Since the com- From Eq.(3.10 we see that the purely scalar contribution,
putation in the latter case is very well-known, we will paral- assoc!ated vv_|tH:>, and the traceless tensorial contribution,
lel it, describing the general framework but omitting some@Ssociated witte,,,, are completely decoupled and can thus
details which can be found if19]. All the formalism devel- D€ treated independently.
oped will then be applied to the scalar case.

At large distances from the detectors |x| -, the GW A. Cross section for tensor GWs
is a superposition of a plane wave and a scattered wave: For spin-two waves, the scattering cross section is given
0,,(X,)—| A, e X+H, (X) - e '“'+cc., (3.3 I, — L [f,]2]d0
Oscat™ or T w2 (3.11)
whereH ,, is the scattering amplitude. Expanding the plane (e ey~ z]e."]

wave in spherical waves, we get . . .

wheref ,, is the spin-two component of the scattering am-
iwr . gTier o plitudeH ,, . The total cross section is given py9]
6(1—k-x)— 8(1+k-x), (3.9

eik~x_>

. r H r i K
lw lw 47Tj{e)\v*f)\v(k)_ %eﬁ*ﬁfaa(k)} (3 12
Otot™ ' ’

o w[e}\v*e)\v_ %|eaa|2]

wherek andx are the unit vectors in the direction kfandx
respectively. Plugging Eq3.4) back into Eq.(3.3) yields
_ ) i _ The ratio between the two,
0,,—[AL e +A] e e " +cc, (35

__ Oscat

where n=—", (3.13

Otot

Aouyt()'(’):_i[Aﬂvé*(l_R_;()_HwH’uv(;()]’ (3.6 exqctly coincides with the ratio between the energy re-
# lor emitted from the resonant detector as GWs and the energy
transformed into noise, viz.,

ol 1 P
AIEV(X)Z—WAM,,é(l'Fk-X). (37) P

GW
: (3.14
EOSC

1
n= T
If we choose a GW travelling in the direction, with

wave vectork”=(w,0,0w), the perturbatiord,,, will have  where 1I' is the decay time of the free oscillation of the
non-vanishing components only fai # 0,z [see Eq(2.10]. detector.
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dal modes can be found, for example,[ik6,17.2 The last

detector gets excited clearly depends on the polarization dhsk we have to perform is the computation pfrom Eq.

the incoming GW. In the “quadrupole approximation” the
scattering amplitude can be expressed as

- ~ 1 -
B0 =70(X) = 5 7,730, (3.19
where rﬂy(f() are (proportional t9 the Fourier transform of

the stress-energy tensor kit= wX. Stress-energy conserva-
tion allows one to recast E¢3.11) into

27 §{ely(T11— m20) + 2€7,710
o[]eyq?+]e15?]

Otot— (3.16

3

which depends only on the traceless components,pfand
Tuv» @nd EqQ.(3.12 into

A Thri— 5| mil%

Tscat— 3.1
8 B[ |eyy|*+]e)]”] 317
For a “pointlike” spherical detectorR<\),
Tik(@) = y€jx (3.18

wherey is a constant to be determined shortly. By introduc-
ing a set of five matrice§1(§m) which form a convenient
basis for the spherical harmonics witk 2 [16], and choos-
ing +z as the direction of propagation, we obtain

) 8 ) .
PMw)=7y V15 [911(5{52)+SJ(|§—2))

—ieA S5, — S5 5)]1. (3.19
From Eq.(3.19), it is clear that a tensorial GW propagating
in the + z-direction will excite only two modes of the detec-
tor, precisely those witH=2 and m=*=2. Plugging Eq.
(3.18 into Egs.(3.16 and (3.17), the condition(3.13 be-
comes

S(y) (3.20

22
57 '
which allows us to determing in terms of » and w. More-
over, at resonancew(=w,) the modes ofT#”
ily infers the w-dependence of*”, and finally gets

"mt:( ) (

24
w—w,y)°+ 124’

107 9c?

(02

(3.21

where w, is the resonance frequency of one of the quadru-

pole modesi(=2) of the detector. The eigenfrequencigg
can be simply labeled by the radial quantum numiemnd
the principal angular quantum numblersince by spherical

(3.14). To this end we need the power emitted as GWs from
the detector. For the spin-two components under consider-
ation,

6

Pow=5 455 D (@)Djjm(@). (322
The traceless quadrupole moment is defined as
Dr)(@)=D"(w)~ %5‘J’Dkk(w>, (3.23
where
D'i(w) ::f X% p(X, w)dX (3.24

is the quadrupole moment of the detector and the mass
density. This quadrupole moment is due to the mass varia-
tion of the detector forced by the incoming GW. Its compu-
tation is not particularly enlightening, and we report here
only the final result for a spherical detector of radiis

y 16m | ’
D ()= 1—5pR4C(n,2)e_"”n2t§ Sthm)

dn2R

j (anR)

12
B1(0n2R) kR

X | Bs(kn2R)

n2

—_— +cC.C.
kn2

-3

i 8 4 ~iwnotail

' R
X Bg(knoR)M +cc, (329
anR
wherej,(x) are spherical Bessel functioh2l], and
2 2
2 P®n _ PWy
qnl_)\+21u1 nl— P (3-26

enforce the dependence on the material used to build the

. : \ behave as  getector through the Lameoefficients\,u. The auxiliary
damped harmonic oscillators. Fourier transforming, one ea%'unctionsﬁ-’
1

s are
d (ji(2)
31(2)==d—z<7>
d?j,(z
pulz) =02

symmetry they do not depend on the azimuthal quantum 2Toroidal modes of a spherical detector cannot be excited by GWs

numberm, i.e., they are (B+1)-fold degenerate. A few
numerical values of the eigenfrequencigg of the spheroi-

in any metric theory, and can thus be used as a veto in the detection

[17].
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ii(2) TABLE I. Numerical values foiF, andH,,.
Ba(2) = ,32(2)4'('4'2)('—1)_2—} (3.27)

n Fn H,

The normalization constant3(n,l) are given by[{16,22 1 2.98 1.14
4 R 2 1.14 0.177

a nl
cinhlP=2T k R)? f E 210141 3 0.110 0.0741
|C(n,])| 3 (Kni )[ o [ 1(n|)(|') ( ) 4 0.0337 0.0408
-1
XFZ(nI)(r)Z]d(knlr)] (3.28 N
Up:m (334)

where
is the Poisson ratio, and finally

d
F1n(r) = Ba(kyR)kyr aaan Ji(@ur)=1(1+1) 2 j2(qn2R)
Onil) — " 128 Hn27Y
! Fn = 5(1+0-P) |:183(kn2R) q R

n2

X B AnR (kai) (K

5 n2R)|?
. Bi(anR) knz; }(knzms

Kn .
Fz(nl)(r):q—n:ﬂa(ka)Mer) -1

KnoR
X [ J;) [Fimnz)(r)2+ 6F2(n2)(r)2]d(kn2r)]

On
i BAnR) G r)[kn.n.(kn.r)] (3.39
(3.29 It is useful to compute the integrated cross section
2
A more detailed exposition of the above computations can be s =i J+°°0<n)dw_ GMug Fr(2wgp+3)
found in[22]. 2w ). ot ¢ 2(wpt2)
Substituting Eq(3.25 into Eq. (3.22 yields (3.36
12 j2(qn2R) A few numerical values of, are given in Table | for a
Pew=g_ o C5M2R2|C(n 2)|?w; Bs(kan)—R standard value of the Poisson ratig,= 1/3. For this value
an2

of op, an analytic expression for the integral which appears

qnz lz(kan) in the definition off,, is given in the appendix. Note that Eq.
,31( n2R) ————1 » (330 (3.32 correctly reproduces the GR res[d3,23 in the limit
wpp—*.
where M is the total mass of the sphere. The oscillation .
energy of the five modes with=2 is given by B. Cross section for scalar GWs
15 1 R We now turn to a detailed computation of the cross sec-
EM—=""M C(n,2)2 f n2 F 2 tion for a ;calar _GW. We begin by determining the energy
osc” D w2l C(n,2)] koR)3 {Fana)(r) flux of the incoming scalar waves, E.10):
+6F2(n2)(r)2}d(kn2r). (33]) -~ (1)2C4 2wBD+3

D 5 =Xi(t%) (9= B>,  (3.39
Making use of Eqs(3.30 and (3.31), we can find the ex-
plicit value of Eq.(3.14 which, inserted into Eq(3.21),  where the subscrip stands for “scalar.” If we denote the

leads to the final expression for the total cross section of gcattering amplitude by, at large distances from the detec-

spin-two GW by a spherical detector in the context of JBDtor, and in complete analogy with E(B.3) the scalar GW is

theory: a superposition of a plane and a scattered wave:
GMv2 2wgp+3 r - . . e
o =Fn—g 2(w22+2) PR E(X,t)—| BEK X+ W(X) —|e “+c.c.  (3.38
n
3.3
(332 We can thus define incoming and outgoing amplitudes:
where 1
B°”t(>2):m[B@(l—R-ime(i)], (3.39
w
ve=+2(1+0p) k—' (3.33

nl

. 1 A
in oy — _ )
is the sound velocity, BU(x)=— 1 -Bd(l+k-x), (3.40
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By substituting Eq{(3.39 into Eqg. (3.37) one can compute

the power associated with the outgoing part of the GW. The
interference between the incident plane wave and the scat-

tered wave leads to a contribution

1) A a A
Pimz——(ZwBD+3)3[jdQc‘)‘(l—k-X)B*W(X)},

4’7T¢0

(3.4)

while the contribution of the scattered wave is

(1)2
Pscatzm(ZwBD+ 3) | dQ|w|2. (3.42
The scattering cross section is
Pscar)  [dQIW|?

Uscat’:( csbca)s: |B|2 ) (3.43

and the total cross section is

_(Pint) _ 2 3{SdQ8(1-k-x)B*W(X)}
Otot = o S_w |B|2 .

(3.4

The “quadrupole approximation” and the conservation of

the stress-energy tensor impTI;/,j(IZ,w)z(—wZIZ)Dij(w)
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4_WJ{B*(Tii—RiRjTij)}
® B|*

(3.48

Otot=

As in the spin-two case, the vibrational modes of the de-
tector which are excited by an incoming GW depend on the
polarization of the GW. Thus, in the case of a scalar GW
propagating in thetz direction, the excited modes are those
with {I=m=0} and alsothose with{l=2, m=0}. This is
because the space components of the trace part of the GW
tensor(2.10 must be expressed as a linear combination of
Slgo) and Sfsy) [16]. For a spherically shaped detector, the
eigenfrequencies corresponding to the spheroidal modes with
quantum numbers=m=0 (wg) andl=2, m=0 (w,) are
numerically differenf13,16,11, and consequently we have
to consider two cases: the scattering amplitudes for a GW
travelling in thez-direction are given by

(w)= aBijoo) for w=wq

7i(w)=BBShy for w=w,, (3.49

which, once substituted into Eq&.47) and(3.48), in con-
junction with Eq.(3.13), lead to the conditions

2w

UO\/E

Ia)= |al?,

3B)=— ——|B|?
! 2n,\5 .
(3.50

and allow one to express the incoming wave amplitude as a; resonancém=w, or »=w,) the modes oT*” behave as

B0) =~ o gyret | T o) FX R
= 2 T(k
= oot ayrct | K@)
2 = -
=~ Qoggryrerl ik @) ~Tolk 0)]
2 ~ ~ o~ -
:_W[T“(k'“’)_xixkﬂk(k,w)]
2 ~ A
:W[ajk_xjxk]Djk(w)-

(3.495
In analogy with the form of Eq(3.45), the scattering ampli-
tude can be written as

W(;():Tﬁﬂ(;():(ajk_;(j;(k)ﬂk (3.49

and, once substituted into Eq8.43), (3.44), yields

8 |Tii|2+ ’Tij*Tij/B
UscatI?Tv

(3.47

damped harmonic oscillators. Fourier transforming, one eas-
ily obtains thew-dependence of*”, and finally

:nom( —To/2 )

« 20 \w—wgt+ily/2

ﬁ: 27]2\/577 F2/2 (3 51)

o) w—wy+il'y/2)" '
The cross sections are thus given by

A7 7oC? r'/4

Utot(OO):( 2 ) (0—wo) 21 T 24 (3.52
2077 77,2 I'3/4

Utot(ZO):( w2 ) (w—w2)2+I’§/4’ (3.53

wherel',I', are the decay times of the free oscillation of the
detector’'s modes with=0 andl =2, and,, n, are defined
as in Eq.(3.14). Note the geometrical ratio 5:1, related to the
degeneracy of the quadrupole modes, between E353
and (3.52 for a hypothetical detector withyg=7,, '
:FZ andw0=w2.

The last thing which is left to do is the computation of the
parameters;g, 77, in Egs.(3.52,(3.53. Using Eq.(3.25 we
find the power emitted by the detector due to the presence of
the scalar field:
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p _ w2r203(2wBD+3)
GW™— 87T¢O

f|B(w)|2dQ

wG

= 8o 2opg 350

*(@)D"™(w)

Xf (5ij_;(i;(j)(5lm_;(lg(m)d9
"~ 5¢o(2wgp+3)C°

2
T Brd(20ppt 3)C

1
D'm*(w)D|m(w)

|Djj(w |2

5 M2R?(5P g+ Py,

where
Poo=1C(n,0)|2080[ Ba(KnoR) (j 2(AnoR)/dnoR)1?

2085 B3(Kn2R) (j 2(4n2R)/GnzR)
—3(An2/Kn2) B1(An2R) (j z(kan)/kan)]Z-

P2=|C(n,2)

(3.55

For the mode with quantum numbdrs 0, m=0, putting
together the first term in E¢3.54) and the oscillation energy

3 C(n,0)|?
osc 2 M2 20|(k R)|3 BS( OR)2

k oR
% | 7 ot (0nan) Peltknar). (356

one finds

” :< PGW)
0 FOEosc (00)

2GMuviw?, 5 5
W[(]Z(QnOR)/anR)] (knoR)

-1

KnoR _
XUO [Knol'j o(Anor)1%d(Kno) t (3.57

wherev,=
cal detector is then

2
(n0)_ 27  GMvu

t .
Otot = 3 m[(]Z(QnOR)/anR)]Z(knOR)5
-1

KnoR
><| f (Koo 5(Gnor )12 (Knor)
0

X FO
(w— wn0)°+T5/4

’ GMu? Ty
"¢} (wgpt+2) (w_wno)z+F(2)/4v

(3.58

with

(3.59

wn 1K, .- The total cross section for resonant scat-
tering and absorption aé~ w,y of scalar GWSs by a spheri-
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7T .
H,= —0_)[(] Z(anR)/QnOR)]z( knOR)5
p

3(1+

-1

knoR
X{ f [knOrJ O(qnor)]zd(knor)]
0

S j 2(AnoR)/dnoR) 12
—m[(lz(%o ) AnoR) ]

1 1
X (knoR)Z(qnoR){E(qnoR) + 7 Sin(200R)

-1

 sir(gnoR)

IroR (3.59
n

Taking a standard value for the Poisson ratig=1/3, we
report in Table | the values dfl, andF,. It is useful to
determine also the integrated cross section:

GMv2 H,
C3 (J)BD+2'

1 [+ 0
Sno=5— f it do= (3.60

For the other mode, with quantum numbées2, m=0,
using Eq.(3.31) and the second term in E3.54) one finds

(oo
772 1—‘IZEOSC

(20

2GMufw [ j2(0n2R)
= T e 26 l["S("“zR) R

Jz( n2 )}

q“2ﬁ1< R (knoR)

-1
X

kooR
Jo [F1(n2) ()24 6F 3n2)(1) ]d(knzr)]

(3.6))

From this one gets the total cross section for resonant scat-

tering and absorption aé~ w,, of scalar waves by a spheri-
cal detector:

(n2)_ 2T GMu? T2
ot 7 15 ¢} wpp+2) (0—wpy)2+ 124

i(quR
X ﬂa(kan)JZ;q—Z)

n2

12( n2 )}

q“zﬂl( R (knoR)®

-1

KnoR
X [ fo [F1n2)(r)2+ 6F2(n2)(r)2]d(kn2r)}

_F, GMud r,
"~ 6 cXwppt2) (w—wpy)2+T3/4°

(3.62

where F,, is given by Eq.(3.35. The corresponding inte-
grated cross section is given by
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1 [+ GMvZ F 1
=g f_w Olor do= —5— gy AEy=7Muglb(wy)*wrKs. “.9
(3.63 . : . ,
The detector’s signal-to-noise ratio can be defined as
From Table | we can infer the ratio between the integrated
cross section for the modes with-0, m=0, and the inte- SNR= AE, 4.6
grated cross section for the modes wliith2, m=0. For ex- AEnin '

ample for the vibrational mode with=1, we find>,,/2 1,
=2.3. As a last remark, we note that in the limigp—o~ we  WhereAE,, is the minimum detectable energy innovation,
recover GRs sincerggtz),gggf’)_,o and Eq.(3.32 tends to  depending on the detector’s thermal and electronic noises.

the value reported ifi13]. The results of our calculations The theoretical bound oAEr, using linear readout systems
revise and extend some previous estimates of the cross sdg-fixed by quantum mechanics to b@,. For SNR=1 one
tions obtained if16], and will find an interesting application gets the minimum detectable value of the Fourier transform
to a binary system of staf@4]. In the next section we will of the scalar GW amplitude:
briefly consider the case of a burst of gravitational radiation

1/2
emitted during the spherically symmetric collapse of a cloud 1b(wp)|min= 4AEmin 4.7
of dust. MVIMINT My ZwiK,
IV. DETECTABILITY OF SCALAR WAVE SIGNALS As usual in the case of short bursts, i.e., bursts lasting for a

time 7~ 1/f; much shorter than the detector’'s characteristic
Let us now use the calculated cross sections to evaluaigamping time, the peak amplitudeand the Fourier trans-
the detectability by a spherical detector of a possible scalaorm b(w) at w,=2#f; can be related byp~|b(w,)|f..
GW signal of astrophysical origin such as a burst from aThe minimum detectable peak amplitude of the scalar GW is
gravitational collapse. then
We consider the spherically symmetric collapse of a ho-

mogeneous dust balDppenheimer-Snyder approximatjon AEmin \Y?
whose scalar GW emission and waveform have been recently |Bl min~ ( MoK (4.8
studied[5]. The peak amplitude of the scalar GW in the JBD son
theory turns out to be For instance let us consider a homogeneous spherical
mass of a material with a high sound velocity such as molib-
b= ile* 23(@ M, | (10 Mpc) 4.2) denum, recently added to the traditional list of materials used
b0 wgp/ Mg r ’ ' in GW researchi25]. In order to havawgy~3 kHz, taken as

. _ _ _ a typical value in5], with vs=5 600 m/s, one has to take a
whereM, is the collapsing mass andis the distance from  getector diamater of 1.8 m, and hene=31 tons. Substi-
the source. The characteristic frequerfgy defined as the tuting into Eq.(4.8) we see thab,,,;,=3X% 10" %2 From Eq.
frequency at which the energy spectrum of the waveform hag 1), and takingwgp= 600, we can estimate the maximum

its maximum value, is distance at which a solar mass collapse can be observed
M.\ Y2/ 15 Kk 32 through the emission of scalar GWs to bg,~0.3 Mpc.
- * m This range includes several galaxies in our Local Group.
fe=3x10° Hz, (4.2) : VErs
Mo I's Assuming a rate of gravitational collapses of 1 event per 10

] ] ] yr per galaxy, one may expect a resulting event rate ap-
wherer g is the equatorial radius of the stellar surface beforéygaching 1 event per 1 yr in the detector.

the collapse and is assumed to satisfyr 4M, Gc™ 2. Using

the above figures, we can then estimate the possibility of
detecting scalar GWs with a spherical detector. To this end it
is convenient to define the energy absorbed by the detector's Although Einstein’s general theory of relativity is

V. SUMMARY AND CONCLUSIONS

nth mode: strongly supported by all experimental evidence available to
date, certain alternative theories of the gravitational interac-

_ |- tion naturally emerge out of more general theoretical

AE,= f P do=~27d 4.3 > .
" Jo (0)o(w)do=2mP(wn) 2y 4.3 schemes, notably string theory. It seems clear that any devia-

tions from the predictions of general relativity must originate
where ®(w) is the incident GW energy flux per unit fre- under very strong gravity conditions, such as stellar col-
quency. Using the above computed integrated cross sectiofegpses. We naturally expect such phenomena to produce
one gets GWs, which will convey to the observer information both on
the physics of the source and on the limits of a given theo-
retical model to understand that physics. One of the best
known and well developed alternative theories to GR is
Jordan-Brans-Dicke’s scalar-tensor theory.
whereK,=2H, for the mode withl=0 andK,=F /3 for In this paper we have performed an in-depth analysis of
the mode withl =2, m=0. Using Eq.(3.37 with b=B/¢,  how JBD gravitational waves interact with a spherical detec-
one finds tor, which is particularly well suited to reveal or set thresh-

7K, ®(w,) GMv?2
AE,= Ztom) & (4.4)
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This is a very specific feature aphericaldetectors, for no Ih=
other individual GW antenna constructed or conceived so far 0
can possibly discriminate quadrupole from monopole GWyyhere, in accordance with E¢3.29),
radiation: an array of such detectors is required for this pur-

pose, and this very significantly complicates detection tech-  Fj(nz)(r)= Ba(Kn2R)Kn2rj 5(0nar)
niques and algorithms.

We have expressed our results under the form of GW —6E,8 (GnaR)j 2Kl )
absorption cross sectiorfer the different resonant modes of Ky, N2 128 n2
the antenna which get excited by those waves, and succeeded
in finding closed analytic formulas for them. In particular,
JBD waves excite the usuah=*=2 quadrupole modes of
the spherical antenna, but they also excite the monopole
modeandthem=0 quadrupole mode. Since the frequencies —%B( R) d [Knofj 2(Knaf)]
of these modes are different, we define suitable cross sec- Knp 1 A2 d(Kpr) -2t 2tKn2l )]
tions for the excitation of each of them.

olds on non-GR GW amplitudes, e.g., monopole amplitudes. Kn2R ) )
f [F1n2)(r)+6Fna(r)]d(knr) (A1)

Kn2 )
Fan2)(r)=——B3(Ky2R)j 2(qn2r )
an2

Cross sections are of course very useful to definesére (A2)
sitivity of a detector with a given level of noise: i.e., they Since
enable an estimate of the signal-to-noise ratio. As a practical
application, we have considered the signal emitted during the K2 =2l o4 ﬁ (A3)
spherically symmetric collapse of a cloud of dusty ni = Al m

matter—an event which would never occur should GR be the
correct theory of gravity—and assessed the possibilities ofhoosingop= 1/3 yieldsk, = 2q, and Eq.(Al) can be writ-
seeing it with projected future spherical detectors. With theten in terms of the following integrals:
present bounds on the JBD parameigg , we conclude that KR
such events as this could be observed if they happen within Glzf " jo(x)2dx
our Local Group of galaxies, with an event rate of a rather 0
encouraging one per year.

The possibility of sensing or thresholding monopole G, = Jk”"‘szj (%) 2dx
gravitational radiation with a single antenna is very promis- 2 2
ing, as it would contribute new and very important data to
the understanding of the gravitational interaction, and also (kRO
supply experimental evidence for sounder discussions of Gs= JO Xa(X)j2(x)dx
string theory.

anR ., .
ACKNOWLEDGMENTS GAZJO Xjo(X)j2(x/2)dx

We would like to thank V. Fafone and V. Ferrari for R
useful discussions. M.B. and M.B. would like to thank C. N. GSZJ " Xj5(x/2)j (x)dx
Colacino for collaboration at the initial stages of this work. 0
J.A.L. acknowledges financial support from the Spanish
Ministry of Education, contract PB93-1050. Ge= fk”ZRj H(X12)j o(X)dX. (A4)

APPENDIX
Because j,(x) = (3/x3—1/x)sin x—(3/x?)cosx, we simply

In order to find an analytic expression fBy, defined in  have to integrate by parts. For example, let us consider the
Eq. (3.35 we have to perform the following integration: first integral

knoR
G,= f ’ [(9/X8+ 1/x%— BIx*)sir’x+ (9/x*) cogx — (6/x?)(3/x3— 1/x)sin x cosx]dx
0

knoR
= f [9/2x8+ 1/2x2+ 3/2x*+ (1/2x?) (15/4%— 9/x*— 1) cos X — (3/x3)(3/x2—1)sin x]dx
0

Si(2kn,R) 1 1 9 cog2k,R)  sin(2k,,R) 13 cog2k,,R)
T 5 2(kgR)  2(kgR®  10KpR)® | 10KpR) | B(kppR)Z | 10(kpR)?
9sin2k,,R) 9 cog2k,,R)
B(knR)? | 10(kpgR)®

(A5)
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where Sik) = [5(sinx'/x")dx'. Solving in an analogous way all the other integrals, we finally obtain

1
In:W{3Bl(qn2R)2[36 c0%2k,R) + 72 sin(2kn,R) (KqoR) — 60 c0%2Kn,R) (KnpR)?— 24 sin(2kn,R) (KyoR)3
n2

+ 6 €0 2kn,R) (KnoR)*+ Sin(2kn,R) (KnoR) °— 36— 12(koR) 2 — 6(KnoR) 4+ 2(kaoR) 81+ 1683(knoR) [ 1728 cosk,,R)
41728 sirik,,R) (kpaR) — 720 co$k,R) (K,oR)2— 144 sir(k,,R) (knpaR)3+ 16 cogkn,R) (KnoR)*+ sin(kn,R) (kpoR)®
— 1728~ 144(koR)?— 16(kyoR)*+ (Kn2R) 1 — 9683(Kn2R) B1(0n2R)[36 €0$7oR) + 18 siM(qoR) (Kn2R)

+3 08 0n2R) (Kn2R)?+ 3 sin(GnzR) (Kn2R) *+ €05 02R) (Kn2R) * — 36 €0$3012R) — 54 sin(30n2R) (Kn2R)

+33 c0$30n2R) (Kn2R)?+9 siN32R) (kn2R)* — €08 30n2R) (kn2R) 1} (A6)
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