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Cross section of a resonant-mass detector for scalar gravitational waves
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Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a
non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding
perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and
absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the
Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and
shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential
detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
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I. INTRODUCTION

Possible extensions of Einstein’s theory of gravitation
include scalar fields have received much attention in the
years. The existence of a scalar component in the grav
tional field was been originally proposed by Jordan and
dependently by Brans and Dicke@1# in order to devise a
theoretical framework allowing for variations of the fund
mental constants and violations of the~strong! equivalence
principle. Many other non-Einsteinian theories of gravity i
corporate scalar fields. Most notably, string theory, the m
serious candidate for a fully consistent quantum theory
gravity, generically predicts the existence of neutral sca
fields @2#. In particular all perturbative string vacua include
scalar, known as the dilaton, in their massless spectrum
vacuum expectation value, which plays the role of the str
coupling constant, is neither fixed at the classical level no
any order in perturbation theory. Very poorly understo
non-perturbative effects may generate a potential for the
laton and the other scalar fields, thus stabilizing their exp
tation value. This mechanism is by no way incompatib
with some scalars remaining massless@3#. Active research in
this field gives new motivations for further investigatin
theories of gravitation including other scalars~dilaton, ax-
ions or the superpartners of the known fermions!. In this
respect, it is worth observing that, assuming the validity o
least coupling principle@3#, the subsector of string theor
determining the coupling of the dilaton has the same fu
tional form as the Jordan-Brans-Dicke~JBD! theory.

Most probably, the existence of massless gravitation
coupled scalar fields would be detected through deviati
from general relativity~GR! in the spin contents of gravita
tional waves~GWs!. In this respect, one of the most prom
ising sources of GWs is given by the gravitational collap
of a star@4#. Since in GR no gravitational radiation is emitte
in a spherically symmetric collapse, most of the existing
erature focuses on the non-spherically symmetric case w
generates GWs of spin two. However, in scalar-tensor th
ries, scalar gravitational waves are radiated from a sph
570556-2821/98/57~8!/4525~10!/$15.00
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cally symmetric collapse. In the Oppenheimer-Snyder
proximation, such an emission process has been rece
studied@5#. Theoretical predictions for the amplitude of GW
depend on the specific model chosen to describe the coll
and on the assumed theory of gravity. The only constrain
that the assumed theory of gravity must agree, in the reg
of weak gravitational fields, with the existing experimen
data@6# which support GR to a high degree of accuracy.
the regime of strong gravitational fields the situation is d
ferent and large deviations from GR are possible in princi
@7#. Eventually, we will argue that scalar GWs emitted in
spherically symmetric collapse in the strong field regim
could give a measurable effect for a source within our lo
group of galaxies.

Among the GW detectors which are now under study
in construction, those with spherical symmetry@8–11# are in
a priviledged position@12,13# to detect and discriminate sca
lar waves. Neither a single cylindrical-shape resonant-m
detector nor a single laser interferometer are in fact able
perform this task. A proposed omnidirectional observato
made out of six cylindrical resonant-mass detectors@14#
should be able to discriminate the scalar component o
GW. A minimum of four laser interferometers are needed
discriminate the scalar mode@15#. On the contrary a single
spherical resonant-mass detector was shown to be ab
detect and discriminate a scalar mode@13,16# and to act as a
veto for different theories of gravity@17#. This can be ac-
complished by monitoring the five degenerate fundame
quadrupole modes of vibration of the detector together w
the fundamental monopole mode. In fact, in any met
theory of gravity the ‘‘electric’’ component of the Rieman
tensor R0i0 j can be written~in the so-called Jordan-Fier
frame! as

R0i0 j5Si j 1
1

3
Td i j , ~1.1!

whereSi j is a traceless symmetric tensor, andT5R0i0i is the
4525 © 1998 The American Physical Society
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4526 57BIANCHI, BRUNETTI, COCCIA, FUCITO, AND LOBO
trace part.1 From measurements of the above~quadrupole
and monopole! modes one is able to completely reconstru
R0i0 j @16,17#.

In order to make quantitative predictions about the po
bility of detecting scalar GWs, we compute in this paper
cross section for scattering and absorption of scalar and
sor GWs by a spherical resonant-mass detector in the fra
work of the JBD theory. We then apply the results to es
mate the potential ability of such a GW detector to sense
characteristic signal emitted in the process of a spheric
symmetric stellar collapse.

II. SCALAR AND TENSOR GWs IN THE JBD THEORY

Scalar particles may be coupled to gravity in many wa
consistent with general covariance. Experimental tests of
equivalence principle, however, put severe constraints
tend to favor theories that predict a universal coupling
such scalar particles to the rest of matter fields@3#. For a
single scalar, which may be thought of as the string dilat
the relevant couplings may be encoded in the JBD theory
the Jordan-Fierz frame, in which the scalar mixes with
metric but decouples from matter, the action reads

S5Sgrav@f,gmn#1Sm@cm ,gmn#

5
c3

16p E d4xA2gFfR2
v

BD

f
gmn]mf]nfG

1
1

c E d4xLm@cm,gmn#, ~2.1!

wherev
BD

is a dimensionless constant, whose lower bou

is fixed to bev
BD

'600 by experimental data@18#, gmn is the

metric, f is a scalar field, andcm collectively denotes the
matter fields of the theory. The part of the Lagrangian wh
describes the matter sector does not depend on the fief,
and it is the same as in GR. Notice that a Weyl rescaling
the metric,gmn5f21/2gmn

E , brings the gravitational part o
the action to the standard Einstein-Hilbert form but intr
duces direct couplings of the scalar fieldf to matter. In order
to perform our computations the Jordan-Fierz frame pro
to be more convenient than Einstein’s. The independenc
the physical results on the frame choice can be explic
checked.

As a preliminary analysis, we perform a weak field a
proximation around the Minkowskian metric and a const
expectation value for the scalar field

gmn5hmn1hmn

f5f01j. ~2.2!

The standard parametrizationf052(v
BD

12)/G(2v
BD

13), with G the Newton constant, reproduces GR in t
limit v

BD
→` which impliesf0→1/G. The linearized field

1A convenient basis for symmetric rank two tensors
$S(2m)

i j ;S(00)
i j % @16,17#, which allows one to express the spheric

harmonics withl 50 andl 52 asY( lm)5S( lm)
i j x̂i x̂ j .
t
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equations which correspond to the variation of Eq.~2.1! with
respect togmn are then given by

2
1

2
~]a]ahmn2]a] (mhn)a1]m]nh!

1
1

2
hmn~]a]ah2]a]bhba!

5
8p

c4f0
Tmn1

1

f0
@]m]nj2hmn]a]aj# ~2.3!

whereh is the trace of the fluctuationhmn and Tmn is the
matter stress-energy tensor. Defining the new field

umn5hmn2
1

2
hmnh2hmn

j

f0
~2.4!

and choosing the gauge

]mumn50 ~2.5!

yields the final form of the linearized field equations:

]a]aumn52
16p

f0
Tmn , ~2.6!

]a]aj5
8p

2v
BD

13
T. ~2.7!

Far from the sources these equations admit wave-like s
tions

umn~x!5Amn~xW ,v!exp~ ikaxa!1c.c. ~2.8!

j~x!5B~xW ,v!exp~ ikaxa!1c.c. ~2.9!

Without affecting the gauge condition~2.5!, we can impose
h522j/f0 ~so thatumn5hmn!. Gauging away the super
flous components, we can write the amplitudeAmn in terms
of the three degrees of freedom associated with states
helicities62,0 @20#. For a wave travelling in thez-direction,
we thus obtain

Amn5S 0 0 0 0

0 e112b e12 0

0 e12 2e112b 0

0 0 0 0

D , ~2.10!

whereb5B/f0 .

III. CROSS SECTIONS FOR RESONANT MASS
DETECTORS

Before performing the computation of the cross sect
we would like to clearly state the nature of our approxim
tions. We consider GWs emitted from a distant source.
the purposes of our computations, we are not intereste
the details of the emission but we assume that the GW
the form given in Eqs.~2.8!, ~2.9! with a frequencyv

5cukW u coincident with one of the vibrational eigenfreque
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57 4527CROSS SECTION OF A RESONANT-MASS DETECTOR . . .
cies of the detector. When the GW impinges on the reson
mass detector, a part of the GW gets scattered and the re
absorbed. The size of the detector,R, is such thatR!l,
where l is the GW wavelength, so that the interaction
point-like ~‘‘quadrupole approximation’’!. Once excited, the
detector re-emits part of the absorbed radiation, while
rest is transformed into noise.

In the following we compute the scattering cross secti

sscatª
Pscat

F
, ~3.1!

whereF is the incident GW energy per unit time and un
area, andPscat is the power subtracted by the scattered wa
and the total cross section:

s tot ª
Pscat1Pabs

F
52

Pint

F
, ~3.2!

wherePabs is the power absorbed by the detector andPint is
the power associated to the interference between the inci
and the scattered wave@19#.

All the computations will be performed twice: once fo
the tensorial waves~2.8! and once for the scalar waves~2.9!.
We note that the GW given by Eq.~2.8! receives contribu-
tions both from a traceless tensor term and from a sc
term, the trace ofumn . The computation of the traceless pa
is similar to the one performed in the context of stand
GR, which is recovered in the limitv

BD
→`. Since the com-

putation in the latter case is very well-known, we will para
lel it, describing the general framework but omitting som
details which can be found in@19#. All the formalism devel-
oped will then be applied to the scalar case.

At large distances from the detector,r 5uxW u→`, the GW
is a superposition of a plane wave and a scattered wave

umn~xW ,t !→FAmneik•x1Hmn~ x̂!
eivr

r Ge2 ivt1c.c., ~3.3!

whereHmn is the scattering amplitude. Expanding the pla
wave in spherical waves, we get

eik•x→
eivr

ivr
d~12 k̂• x̂!2

e2 ivr

ivr
d~11 k̂• x̂!, ~3.4!

wherek̂ andx̂ are the unit vectors in the direction ofkW andxW
respectively. Plugging Eq.~3.4! back into Eq.~3.3! yields

umn→@Amn
outeivr1Amn

in e2 ivr #e2 ivt1c.c., ~3.5!

where

Amn
out~xW !5

1

ivr
@Amnd~12 k̂• x̂!1 ivHmn~ x̂!#, ~3.6!

Amn
in ~xW !52

1

ivr
Amnd~11 k̂• x̂!. ~3.7!

If we choose a GW travelling in thez direction, with
wave vectorkm5(v,0,0,v), the perturbationumn will have
non-vanishing components only fori , j Þ0,z @see Eq.~2.10!#.
t-
t is

e

,

nt

ar

d

e

Then, keeping into account this choice, we can introduce
stress-energy pseudo-tensortmn , which results from an ex-
pansion of the equations of motion to second order in
weak fields. In particular the mixed components read

^t0z&52 ẑ
f0c4

32p F4~v
BD

11!

f0
2 ^~]0j!~]0j!&

1^~]0hab!~]0hab!&G , ~3.8!

where the symbol̂¯& implies an average over a region o
size much larger than the wavelength of the GW. Substi
ing Eqs.~2.8!, ~2.9! into Eq. ~3.8! we get

^t0z&52 ẑ
f0c4v2

16p F2~2v
BD

13!

f0
2 uBu21Aab* Aab

2
1

2
uAa

au2G , ~3.9!

and using Eq.~2.10!, we obtain

^t0z&52 ẑ
f0c4v2

8p
@ ue11u21ue12u21~2vBD13!ubu2#.

~3.10!

From Eq.~3.10! we see that the purely scalar contributio
associated withb, and the traceless tensorial contributio
associated withemn , are completely decoupled and can th
be treated independently.

A. Cross section for tensor GWs

For spin-two waves, the scattering cross section is gi
by @19#

sscat5
*@ f ln* f ln2 1

2 u f a
au2#dV

@eln* eln2 1
2 uea

au2#
, ~3.11!

where f mn is the spin-two component of the scattering a
plitude Hmn . The total cross section is given by@19#

s tot5
4pI$eln* f ln~ k̂!2 1

2 eb* b f a
a~ k̂!%

v@eln* eln2 1
2 uea

au2#
. ~3.12!

The ratio between the two,

h5
sscat

s tot
, ~3.13!

exactly coincides with the ratio between the energy
emitted from the resonant detector as GWs and the en
transformed into noise, viz.,

h5
1

G

PGW

Eosc
, ~3.14!

where 1/G is the decay time of the free oscillation of th
detector.
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4528 57BIANCHI, BRUNETTI, COCCIA, FUCITO, AND LOBO
Which particular combination of vibrational modes of th
detector gets excited clearly depends on the polarizatio
the incoming GW. In the ‘‘quadrupole approximation’’ th
scattering amplitude can be expressed as

f mn~ x̂!5tmn~ x̂!2
1

2
hmnt~ x̂!, ~3.15!

wheretmn( x̂) are ~proportional to! the Fourier transform of
the stress-energy tensor atkW85v x̂. Stress-energy conserva
tion allows one to recast Eq.~3.11! into

s tot5
2pF$e11* ~t112t22!12e12* t12%

v@ ue11u21ue12u2#
, ~3.16!

which depends only on the traceless components ofemn and
tmn , and Eq.~3.12! into

sscat5
4p@t ik* t ik2 1

3 ut i i u2#

5@ ue11u21ue12u2#
. ~3.17!

For a ‘‘pointlike’’ spherical detector (R!l),

t jk~v!5gejk ~3.18!

whereg is a constant to be determined shortly. By introdu
ing a set of five matricesS(2m)

jk which form a convenient
basis for the spherical harmonics withl 52 @16#, and choos-
ing 1z as the direction of propagation, we obtain

t jk~v!5gA8p

15
@e11~S~22!

jk 1S~222!
jk !

2 ie12~S~22!
jk 2S~222!

jk !#. ~3.19!

From Eq.~3.19!, it is clear that a tensorial GW propagatin
in the1z-direction will excite only two modes of the detec
tor, precisely those withl 52 and m562. Plugging Eq.
~3.18! into Eqs.~3.16! and ~3.17!, the condition~3.13! be-
comes

F~g!5
2v

5h
ugu2, ~3.20!

which allows us to determineg in terms ofh andv. More-
over, at resonance (v.v2) the modes ofTmn behave as
damped harmonic oscillators. Fourier transforming, one e
ily infers thev-dependence oftmn, and finally gets

s tot5S 10phc2

v2 D G2/4

~v2v2!21G2/4
, ~3.21!

wherev2 is the resonance frequency of one of the quad
pole modes (l 52) of the detector. The eigenfrequenciesvnl
can be simply labeled by the radial quantum numbern and
the principal angular quantum numberl , since by spherica
symmetry they do not depend on the azimuthal quan
number m, i.e., they are (2l 11)-fold degenerate. A few
numerical values of the eigenfrequenciesvnl of the spheroi-
of

-

s-

-

m

dal modes can be found, for example, in@16,17#.2 The last
task we have to perform is the computation ofh from Eq.
~3.14!. To this end we need the power emitted as GWs fr
the detector. For the spin-two components under consi
ation,

PGW5
2v6

5f0c5 D ~T!
i j * ~v!Di j ~T!~v!. ~3.22!

The traceless quadrupole moment is defined as

D ~T!
i j ~v!5Di j ~v!2

1

3
d i j Dk

k~v!, ~3.23!

where

Di j ~v! ªE xixjr~xW ,v!dxW ~3.24!

is the quadrupole moment of the detector andr is the mass
density. This quadrupole moment is due to the mass va
tion of the detector forced by the incoming GW. Its comp
tation is not particularly enlightening, and we report he
only the final result for a spherical detector of radiusR:

D ~T!
i j ~ t !5

16p

15
rR4C~n,2!e2 ivn2t(

m
S~2m!

i j

3Fb3~kn2R!
j 2~qn2R!

qn2R

23
qn2

kn2
b1~qn2R!

j 2~kn2R!

kn2R G1c.c.

5Di j ~ t !1
8p

3
rR4C~n,0!e2 ivn0tS~00!

i j

3Fb3~kn0R!
j 2~qn0R!

qn0R G1c.c., ~3.25!

where j l(x) are spherical Bessel functions@21#, and

qnl
2 5

rvnl
2

l12m
; knl5

rvnl
2

m
~3.26!

enforce the dependence on the material used to build
detector through the Lame´ coefficientsl,m. The auxiliary
functionsb i ’s are

b1~z! ª

d

dzS j l~z!

z D
b2~z! ª

d2 j l~z!

dz2

2Toroidal modes of a spherical detector cannot be excited by G
in any metric theory, and can thus be used as a veto in the dete
@17#.



b

on

f
D

ars
.

ec-
gy

c-

57 4529CROSS SECTION OF A RESONANT-MASS DETECTOR . . .
b3~z! ª

1

2 Fb2~z!1~ l 12!~ l 21!
j l~z!

z2 G . ~3.27!

The normalization constantsC(n,l ) are given by@16,22#

uC~n,l !u25
4p

3
~knlR!3H E

0

knlR

@F1~nl !~r !21 l ~ l 11!

3F2~nl !~r !2#d~knlr !J 21

~3.28!

where

F1~nl !~r !5b3~knlR!knlr
d

d~qnlr !
j l~qnlr !2 l ~ l 11!

3
qnl

knl
b1~qnlR! j l~knlr !

F2~nl !~r !5
knl

qnl
b3~knlR! j l~qnlr !

2
qnl

knl
b1~qnlR!

d

d~knlr !
@knlr j l~knlr !#.

~3.29!

A more detailed exposition of the above computations can
found in @22#.

Substituting Eq.~3.25! into Eq. ~3.22! yields

PGW5
12

5pf0c5 M2R2uC~n,2!u2vn2
6 Fb3~kn2R!

j 2~qn2R!

qn2R

23
qn2

kn2
b1~qn2R!

j 2~kn2R!

kn2R G2

, ~3.30!

where M is the total mass of the sphere. The oscillati
energy of the five modes withl 52 is given by

Eosc
~n! 5

15

2p
Mvn2

2 uC~n,2!u2
1

~kn2R!3 E
0

kn2R

$F1~n2!~r !2

16F2~n2!~r !2%d~kn2r !. ~3.31!

Making use of Eqs.~3.30! and ~3.31!, we can find the ex-
plicit value of Eq. ~3.14! which, inserted into Eq.~3.21!,
leads to the final expression for the total cross section o
spin-two GW by a spherical detector in the context of JB
theory:

s tot
~n!5Fn

GMvs
2

c3

2vBD13

2~vBD12!

G

~v2vn2!21G2/4
,

~3.32!

where

vs5A2~11sP!
vnl

knl
~3.33!

is the sound velocity,
e

a

sP5
l

2~m1l!
~3.34!

is the Poisson ratio, and finally

Fn ª

2p

5~11sP! Fb3~kn2R!
j 2~qn2R!

qn2R

23
qn2

kn2
b1~qn2R!

j 2~kn2R!

kn2R G2

~kn2R!5

3H E
0

kn2R

@F1~n2!~r !216F2~n2!~r !2#d~kn2r !J 21

.

~3.35!

It is useful to compute the integrated cross section

Sn5
1

2p E
2`

1`

s tot
~n!dv5

GMvs
2

c3

Fn~2vBD13!

2~vBD12!
.

~3.36!

A few numerical values ofFn are given in Table I for a
standard value of the Poisson ratio,sP51/3. For this value
of sP , an analytic expression for the integral which appe
in the definition ofFn is given in the appendix. Note that Eq
~3.32! correctly reproduces the GR result@13,23# in the limit
vBD→`.

B. Cross section for scalar GWs

We now turn to a detailed computation of the cross s
tion for a scalar GW. We begin by determining the ener
flux of the incoming scalar waves, Eq.~3.10!:

F~s!5 x̂k^t
0k&~s!5

v2c4

8p

2vBD13

f0
uBu2, ~3.37!

where the subscripts stands for ‘‘scalar.’’ If we denote the
scattering amplitude byW, at large distances from the dete
tor, and in complete analogy with Eq.~3.3! the scalar GW is
a superposition of a plane and a scattered wave:

j~xW ,t !→FBeik•x1W~ x̂!
eivr

r Ge2 ivt1c.c. ~3.38!

We can thus define incoming and outgoing amplitudes:

Bout~xW !5
1

ivr
@Bd~12 k̂• x̂!1 ivW~ x̂!#, ~3.39!

Bin~xW !52
1

ivr
Bd~11 k̂• x̂!, ~3.40!

TABLE I. Numerical values forFn andHn .

n Fn Hn

1 2.98 1.14
2 1.14 0.177
3 0.110 0.0741
4 0.0337 0.0408
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By substituting Eq.~3.39! into Eq. ~3.37! one can compute
the power associated with the outgoing part of the GW. T
interference between the incident plane wave and the s
tered wave leads to a contribution

Pint52
v

4pf0
~2vBD13!JH E dVd~12 k̂• x̂!B* W~ x̂!J ,

~3.41!

while the contribution of the scattered wave is

Pscat5
v2

8pf0
~2vBD13!E dVuWu2. ~3.42!

The scattering cross section is

sscat ªS Pscat

F D
s

5
*dVuWu2

uBu2
, ~3.43!

and the total cross section is

s tot ª2S Pint

F D
s

5
2

v

J$*dVd~12 k̂• x̂!B* W~ x̂!%

uBu2 .

~3.44!

The ‘‘quadrupole approximation’’ and the conservation
the stress-energy tensor implyTi j (kW ,v)5(2v2/2) Di j (v)
and allow one to express the incoming wave amplitude a

B~xW ,v!.2
2

~2vBD13!rc4 E T~xW8,v!e2 ikW•xW8dxW8

52
2

~2vBD13!rc4 T~kW ,v!

52
2

~2vBD13!rc4 @Tj j ~kW ,v!2T00~kW ,v!#

52
2

~2vBD13!rc4 @Tj j ~kW ,v!2 x̂ j x̂kTjk~kW ,v!#

.
v2

~2vBD13!rc4 @d jk2 x̂ j x̂k#D jk~v!.

~3.45!

In analogy with the form of Eq.~3.45!, the scattering ampli-
tude can be written as

W~ x̂!5tb
b~ x̂!5~d jk2 x̂ j x̂k!t jk ~3.46!

and, once substituted into Eqs.~3.43!, ~3.44!, yields

sscat5
8p

5

ut i i u21t i j * t i j /3

uBu2 , ~3.47!
e
at-

f

s tot5
4p

v

J$B* ~t i i 2 k̂i k̂ jt i j !%

uBu2 . ~3.48!

As in the spin-two case, the vibrational modes of the d
tector which are excited by an incoming GW depend on
polarization of the GW. Thus, in the case of a scalar G
propagating in the1z direction, the excited modes are tho
with $ l 5m50% and alsothose with$l 52, m50%. This is
because the space components of the trace part of the
tensor~2.10! must be expressed as a linear combination
S(00)

jk and S(20)
jk @16#. For a spherically shaped detector, t

eigenfrequencies corresponding to the spheroidal modes
quantum numbersl 5m50 (v0) and l 52, m50 (v2) are
numerically different@13,16,17#, and consequently we hav
to consider two cases: the scattering amplitudes for a G
travelling in thez-direction are given by

t i j ~v!5aBS~00!
i j for v.v0

t i j ~v!5bBS~20!
i j for v.v2 , ~3.49!

which, once substituted into Eqs.~3.47! and ~3.48!, in con-
junction with Eq.~3.13!, lead to the conditions

J~a!5
2v

h0A4p
uau2, J~b!52

v

2h2A5p
ubu2.

~3.50!

At resonance~v.v2 or v.v0! the modes ofTmn behave as
damped harmonic oscillators. Fourier transforming, one e
ily obtains thev-dependence oftmn, and finally

a5
h0A4p

2v S 2G0/2

v2v01 iG0/2D
b5

2h2A5p

v S G2/2

v2v21 iG2/2D . ~3.51!

The cross sections are thus given by

s tot~00!5S 4ph0c2

v2 D G0
2/4

~v2v0!21G0
2/4

~3.52!

s tot~20!5S 20ph2c2

v2 D G2
2/4

~v2v2!21G2
2/4

, ~3.53!

whereG0 ,G2 are the decay times of the free oscillation of t
detector’s modes withl 50 andl 52, andh0 ,h2 are defined
as in Eq.~3.14!. Note the geometrical ratio 5:1, related to th
degeneracy of the quadrupole modes, between Eqs.~3.53!
and ~3.52! for a hypothetical detector withh05h2 , G0
5G2 andv05v2 .

The last thing which is left to do is the computation of th
parametersh0 ,h2 in Eqs.~3.52!,~3.53!. Using Eq.~3.25! we
find the power emitted by the detector due to the presenc
the scalar field:
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PGW5
v2r 2c3~2vBD13!

8pf0
E uB~v!u2dV

5
v6

8pf0~2vBD13!c5 Di j * ~v!Dlm~v!

3E ~d i j 2 x̂i x̂ j !~d lm2 x̂l x̂m!dV

5
v6

5f0~2vBD13!c5 F uD j j ~v!u21
1

3
Dlm* ~v!Dlm~v!G

5
2

5pf0~2vBD13!c5 M2R2~5P001P20!, ~3.54!

where

P005uC~n,0!u2vn0
6 @b3~kn0R!„j 2~qn0R!/qn0R…#2

P205uC~n,2!u2vn2
6 @b3~kn2R!„j 2~qn2R!/qn2R…

23~qn2 /kn2!b1~qn2R!„j 2~kn2R!/kn2R…#2.

~3.55!

For the mode with quantum numbersl 50, m50, putting
together the first term in Eq.~3.54! and the oscillation energy

Eosc
~n0!5

3

2p
M2vn0

2 uC~n,0!u2

~kn0R!3 b3~kn0R!2

3E
0

kn0R

@kn0r j 08~qn0r !#2d~kn0r !, ~3.56!

one finds

h05S PGW

G0Eosc
D

~00!

5
2GMv t

2vn0
2

3G0~vBD12!c5@„j 2~qn0R!/qn0R…#2~kn0R!5

3H E
0

kn0R

@kn0r j 08~qn0r !#2d~kn0r !J 21

, ~3.57!

wherev t5vnl /knl . The total cross section for resonant sc
tering and absorption atv'vn0 of scalar GWs by a spheri
cal detector is then

s tot
~n0!5

2p

3

GMv t
2

c3~vBD12!
@„j 2~qn0R!/qn0R…#2~kn0R!5

3H E
0

kn0R

@kn0r j 08~qn0r !#2d~kn0r !J 21

3
G0

~v2vn0!21G0
2/4

5Hn

GMvs
2

c3~vBD12!

G0

~v2vn0!21G0
2/4

, ~3.58!

with
-

Hn ª

p

3~11sP!
@„j 2~qn0R!/qn0R…#2~kn0R!5

3H E
0

kn0R

@kn0r j 08~qn0r !#2d~kn0r !J 21

5
p

3~11sP!
@~ j 2~qn0R!/qn0R!#2

3~kn0R!2~qn0R!3F1

2
~qn0R!1

1

4
sin~2qn0R!

2
sin2~qn0R!

qn0R G21

. ~3.59!

Taking a standard value for the Poisson ratio,sP51/3, we
report in Table I the values ofHn and Fn . It is useful to
determine also the integrated cross section:

Sn05
1

2p E
2`

1`

s tot
~n0!dv5

GMvs
2

c3

Hn

vBD12
. ~3.60!

For the other mode, with quantum numbersl 52, m50,
using Eq.~3.31! and the second term in Eq.~3.54! one finds

h25S PGW

G2Eosc
D

~20!

5
2GMv t

2vn2
2

75G2~vBD12!c5Fb3~kn2R!
j 2~qn2R!

qn2R

23
qn2

kn2
b1~qn2R!

j 2~kn2R!

kn2R G2

~kn2R!5

3H E
0

kn2R

@F1~n2!~r !216F2~n2!~r !2#d~kn2r !J 21

.

~3.61!

From this one gets the total cross section for resonant s
tering and absorption atv'vn2 of scalar waves by a spher
cal detector:

s tot
~n2!5

2p

15

GMv t
2

c3~vBD12!

G2

~v2vn2!21G2
2/4

3Fb3~kn2R!
j 2~qn2R!

qn2R

23
qn2

kn2
b1~qn2R!

j 2~kn2R!

kn2R G2

~kn2R!5

3H E
0

kn2R

@F1~n2!~r !216F2~n2!~r !2#d~kn2r !J 21

5
Fn

6

GMvs
2

c3~vBD12!

G2

~v2vn2!21G2
2/4

, ~3.62!

where Fn is given by Eq.~3.35!. The corresponding inte
grated cross section is given by
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Sn25
1

2p E
2`

1`

s tot
~n2!dv5

GMvs
2

c3

Fn

6~vBD12!
.

~3.63!

From Table I we can infer the ratio between the integra
cross section for the modes withl 50, m50, and the inte-
grated cross section for the modes withl 52, m50. For ex-
ample for the vibrational mode withn51, we findS10/S12
52.3. As a last remark, we note that in the limitvBD→` we
recover GRs sinces tot

(n2) ,s tot
(n0)→0 and Eq.~3.32! tends to

the value reported in@13#. The results of our calculation
revise and extend some previous estimates of the cross
tions obtained in@16#, and will find an interesting application
to a binary system of stars@24#. In the next section we will
briefly consider the case of a burst of gravitational radiat
emitted during the spherically symmetric collapse of a clo
of dust.

IV. DETECTABILITY OF SCALAR WAVE SIGNALS

Let us now use the calculated cross sections to eval
the detectability by a spherical detector of a possible sc
GW signal of astrophysical origin such as a burst from
gravitational collapse.

We consider the spherically symmetric collapse of a
mogeneous dust ball~Oppenheimer-Snyder approximation!,
whose scalar GW emission and waveform have been rece
studied@5#. The peak amplitude of the scalar GW in the JB
theory turns out to be

b5
j

f0
.10223S 500

vBD
D S M*

M (
D S 10 Mpc

r D , ~4.1!

whereM* is the collapsing mass andr is the distance from
the source. The characteristic frequencyf c , defined as the
frequency at which the energy spectrum of the waveform
its maximum value, is

f c.33103S M*
M (

D 1/2S 15 km

r S
D 3/2

Hz, ~4.2!

wherer S is the equatorial radius of the stellar surface bef
the collapse and is assumed to satisfyr S.4M* Gc22. Using
the above figures, we can then estimate the possibility
detecting scalar GWs with a spherical detector. To this en
is convenient to define the energy absorbed by the detec
nth mode:

DEn5E
0

`

F~v!s~v!dv'2pF~vn!Sn ~4.3!

where F(v) is the incident GW energy flux per unit fre
quency. Using the above computed integrated cross sec
one gets

DEn5
pKnF~vn!

~21vBD!

GMvs
2

c3 ~4.4!

whereKn52Hn for the mode withl 50 andKn5Fn/3 for
the mode withl 52, m50. Using Eq.~3.37! with b5B/f0
one finds
d

ec-

n
d

te
ar
a

-

tly

s

e

of
it
r’s

ns

DEn5
1

4
Mvs

2ub~vn!u2vn
2Kn. ~4.5!

The detector’s signal-to-noise ratio can be defined as

SNR5
DEn

DEmin
~4.6!

whereDEmin is the minimum detectable energy innovatio
depending on the detector’s thermal and electronic noi
The theoretical bound onDEmin using linear readout system
is fixed by quantum mechanics to be\vn . For SNR51 one
gets the minimum detectable value of the Fourier transfo
of the scalar GW amplitude:

ub~vn!umin5S 4DEmin

Mvs
2vn

2Kn
D 1/2

. ~4.7!

As usual in the case of short bursts, i.e., bursts lasting fo
time t'1/f c much shorter than the detector’s characteris
damping time, the peak amplitudeb and the Fourier trans
form b(v) at vn52p f c can be related byb'ub(vn)u f c .
The minimum detectable peak amplitude of the scalar GW
then

ubumin'S DEmin

p2Mvs
2Kn

D 1/2

. ~4.8!

For instance let us consider a homogeneous sphe
mass of a material with a high sound velocity such as mo
denum, recently added to the traditional list of materials u
in GW research@25#. In order to havev00'3 kHz, taken as
a typical value in@5#, with vs55 600 m/s, one has to take
detector diamater of 1.8 m, and henceM531 tons. Substi-
tuting into Eq.~4.8! we see thatbmin53310222. From Eq.
~4.1!, and takingvBD5600, we can estimate the maximu
distance at which a solar mass collapse can be obse
through the emission of scalar GWs to ber max'0.3 Mpc.
This range includes several galaxies in our Local Gro
Assuming a rate of gravitational collapses of 1 event per
yr per galaxy, one may expect a resulting event rate
proaching 1 event per 1 yr in the detector.

V. SUMMARY AND CONCLUSIONS

Although Einstein’s general theory of relativity i
strongly supported by all experimental evidence available
date, certain alternative theories of the gravitational inter
tion naturally emerge out of more general theoreti
schemes, notably string theory. It seems clear that any de
tions from the predictions of general relativity must origina
under very strong gravity conditions, such as stellar c
lapses. We naturally expect such phenomena to prod
GWs, which will convey to the observer information both o
the physics of the source and on the limits of a given th
retical model to understand that physics. One of the b
known and well developed alternative theories to GR
Jordan-Brans-Dicke’s scalar-tensor theory.

In this paper we have performed an in-depth analysis
how JBD gravitational waves interact with a spherical det
tor, which is particularly well suited to reveal or set thres
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olds on non-GR GW amplitudes, e.g., monopole amplitud
This is a very specific feature ofsphericaldetectors, for no
other individual GW antenna constructed or conceived so
can possibly discriminate quadrupole from monopole G
radiation: an array of such detectors is required for this p
pose, and this very significantly complicates detection te
niques and algorithms.

We have expressed our results under the form of G
absorption cross sectionsfor the different resonant modes o
the antenna which get excited by those waves, and succe
in finding closed analytic formulas for them. In particula
JBD waves excite the usualm562 quadrupole modes o
the spherical antenna, but they also excite the monop
modeand them50 quadrupole mode. Since the frequenc
of these modes are different, we define suitable cross
tions for the excitation of each of them.

Cross sections are of course very useful to define thesen-
sitivity of a detector with a given level of noise: i.e., the
enable an estimate of the signal-to-noise ratio. As a prac
application, we have considered the signal emitted during
spherically symmetric collapse of a cloud of dus
matter—an event which would never occur should GR be
correct theory of gravity—and assessed the possibilities
seeing it with projected future spherical detectors. With
present bounds on the JBD parametervBD , we conclude that
such events as this could be observed if they happen w
our Local Group of galaxies, with an event rate of a rath
encouraging one per year.

The possibility of sensing or thresholding monopo
gravitational radiation with a single antenna is very prom
ing, as it would contribute new and very important data
the understanding of the gravitational interaction, and a
supply experimental evidence for sounder discussions
string theory.
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APPENDIX

In order to find an analytic expression forFn defined in
Eq. ~3.35! we have to perform the following integration:
s.

r

r-
-

ed

le
s
c-

al
e

e
of
e

in
r

-

o
of

.

.
h

I n5E
0

kn2R

@F1~n2!~r !216F2~n2!~r !2#d~kn2r ! ~A1!

where, in accordance with Eq.~3.29!,

F1~n2!~r !5b3~kn2R!kn2r j 28~qn2r !

26
qn2

kn2
b1~qn2R! j 2~kn2r !

F2~n2!~r !5
kn2

qn2
b3~kn2R! j 2~qn2r !

2
qn2

kn2
b1~qn2R!

d

d~kn2r !
@kn2r j 2~kn2r !#.

~A2!

Since

knl
2 5qnl

2 S 21
l

m D ~A3!

choosingsP51/3 yieldsknl52qnl and Eq.~A1! can be writ-
ten in terms of the following integrals:

G15E
0

kn2R

j 2~x!2dx

G25E
0

kn2R

x2 j 28~x!2dx

G35E
0

kn2R

x j28~x! j 2~x!dx

G45E
0

kn2R

x j28~x! j 2~x/2!dx

G55E
0

kn2R

x j28~x/2! j 2~x!dx

G65E
0

kn2R

j 2~x/2! j 2~x!dx. ~A4!

Because j 2(x)5(3/x321/x)sinx2(3/x2)cosx, we simply
have to integrate by parts. For example, let us consider
first integral
G15E
0

kn2R

@~9/x611/x226/x4!sin2x1~9/x4!cos2x2~6/x2!~3/x321/x!sin x cosx#dx

5E
0

kn2R

@9/2x611/2x213/2x41~1/2x2!~15/x229/x421!cos 2x2~3/x3!~3/x221!sin 2x#dx

5
Si~2kn2R!

5
2

1

2~kn2R!
2

1

2~kn2R!3 2
9

10~kn2R!5 1
cos~2kn2R!

10~kn2R!
2

sin~2kn2R!

5~kn2R!2 2
13 cos~2kn2R!

10~kn2R!3

1
9 sin~2kn2R!

5~kn2R!4 1
9 cos~2kn2R!

10~kn2R!5 ~A5!
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where Si(x)5*0
x(sinx8/x8)dx8. Solving in an analogous way all the other integrals, we finally obtain

I n5
1

8~kn2R!5 $3b1~qn2R!2@36 cos~2kn2R!172 sin~2kn2R!~kn2R!260 cos~2kn2R!~kn2R!2224 sin~2kn2R!~kn2R!3

16 cos~2kn2R!~kn2R!41sin~2kn2R!~kn2R!5236212~kn2R!226~kn2R!412~kn2R!6#116b3~kn2R!2@1728 cos~kn2R!

11728 sin~kn2R!~kn2R!2720 cos~kn2R!~kn2R!22144 sin~kn2R!~kn2R!3116 cos~kn2R!~kn2R!41sin~kn2R!~kn2R!5

217282144~kn2R!2216~kn2R!41~kn2R!6#296b3~kn2R!b1~qn2R!@36 cos~qn2R!118 sin~qn2R!~kn2R!

13 cos~qn2R!~kn2R!213 sin~qn2R!~kn2R!31cos~qn2R!~kn2R!4236 cos~3qn2R!254 sin~3qn2R!~kn2R!

133 cos~3qn2R!~kn2R!219 sin~3qn2R!~kn2R!32cos~3qn2R!~kn2R!4#%. ~A6!
,

en
e,

n

e,
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