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Space-time description of neutrino flavor oscillations
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Recently the issue of EPR-like correlations in the mutual probability of detecting a neutrino together with an
accompanying charged lepton has received a new impetus. In this paper we describe this effect using the
propagators of the particles involved in Schwinger’'s parametric integral representation. We find this descrip-
tion more simple and more suitable to the purpose than the usual momentum-space analysis. We consider the
cases of a monochromatic neutrino source, wave packet source, and neutrino creation in a localized space-time
region. In the latter case we note that the space-time oscillation amplitude depends on the values of the neutrino
masses, and becomes rather small for large relative mass differ@mnass hierarchy We obtain the expres-
sions for the oscillation and coherence lengths in various circumstances. In the region of overlap our results
confirm those of Dolgoet al. [S0556-282(198)03307-4

PACS numbeps): 14.60.Pq

I. INTRODUCTION volves rather complicated momentum integrati¢ese, e.g.,
[4,9]) and, it seems, frequently obscures the physical picture

The space-time oscillation of neutrino flausee[1,2]) is  of the phenomenon. Our treatment will be general and will
considered to be the most promising effect of observatiofontain the analysis of the EPR-like experiments of detecting
which might indirectly establish a nonzero neutrino mass. Bya neutrino together with the accompanying charged lepton,
its very nature it requires a spatiotemporal description of th@s well as the standard textbook examples of neutrino flavor
processes of neutrino creation, propagation, and detectio§pace-time oscillations.
and of the similar processes that occur with the accompany- After preliminaries in the following section, in Sec. lll we
ing particles. Such a description has been performef@jn consider the case of a monochromatic neutrino source and
and further developed if4,5] without the ambiguities that the probability of mutual detection of the neutrino and of the
sometimes accompany noncritical use of neutrino flavoccompanying charged lepton. In Sec. IV the effect of a
eigenstates. wave packet neutrino source is analyzed. We obtain the ex-

Recently [6,7] the issue of Einstein-Podolsky-Rosen- pressions for the oscillation and coherence lengths in various
(EPR-like correlations in the mutual probability of detecting circumstances. The case of a neutrino source in a strongly
both a neutrino and an accompanying charged lepton hdecalized space-time region will then be considered in Sec.
received a new impetuglt was previously considered in V. In this case the space-time oscillation amplitude depends
[3].) In order to simplify the derivation of the basic effects rather strongly on the values of the neutrino masses, and
the authors of7] combined together descriptions in configu- becomes rather small for large relative mass differences
ration space and in momentum space, of the same relevaffieutrino mass hierarchyWe summarize our results in Sec.
processes, using simultaneously such mutually exclusive nd/l. In the Appendix we provide an alternative derivation of
tions as sharp wave packets in momentum space and definitee probability amplitude for the case of a monochromatic
space-time posterioritrajectories of particles. EPR-like ex- neutrino source, in order to elucidate the difference between
periments of the same type involving neutral kaon &hd this case and the case of a neutrino source strongly localized
meson oscillations were considered[8]. In this paper the in space-time.
authors also adopted a simple approach using the action val-
ues on the particle classical trajectories to evaluate the rel- Il. PRELIMINARIES
evant phase factors in the probability amplitude. Although

the results obtained in such a simplified approach are correct, Th_roughout this paper we c_onS|der a process in which a
they also might call for a more careful derivation. This will neutrino is created together with an accompanying charged

be the aim of the present paper in which we consider théepton, and afterwargs both particles are detected. The
problem of neutrino flavor oscillations. charged weak currentsO v are involved in the description
In this paper we try to analyze the phenomenon in a conof this process, wher®,= y,(1+ ys), andys=iyoy1v27s-
sistent way using the propagators of the particles involved i he amplitude of the creation of drv pair at space-time
Schwinger’'s parametric integral representatisee Eq.(3)  point x is proportional t00,Jg(x), with J3(x) being the
below]. We find this description more simple and more suit-source current responsible for this process. In the case of a
able to the purpose than the usual one which employs propaion we would havelg(x)«d“¢.(X), where ¢.(x) is the
gators in momentum space representation. The latter irngion wave function. The charged lepton produced at space-
time pointx, in a flavor statea can propagate to space-time
point x;, and the neutrino to space-time poiyt, at which
*Permanent address. Email address: shtanov@ap3.gluk.apc.orgooints these particles may be detected. At the space-time

0556-2821/98/5(7)/441811)/$15.00 57 4418 © 1998 The American Physical Society



57 SPACE-TIME DESCRIPTION OF NEUTRINO FLAVER. .. 4419

point x,, one may detect neutrino-induced charged leptorwith constant four-momentum. In the case of a pion we
production of flavorb. The amplitude of such a process in would haveJg(x)«d*¢ . (x)xp*exp(—ip-x), where ¢ .(x)
which a neutrino and the corresponding antilepton are creis the pion wave function. We make the notation
ated and subsequently detected will contain the factor

Xne=Xn =™ Xey Xie=X = Xe, Xp=Xp— X . (6)

0,38 UEjUjaj dXcSj(Xn ,Xc) O adg(Xe) SalXc X)), In the amplitudg(1) we represent the propagators usi@y-
! (1) (4), first perform integration ovex., then over the param-
eters\| and\,, that appear in the representati8), respec-
tively, for charged lepton and neutrino propagators. The
integral overx; is Gaussian, hence it can be evaluated ex-
actly; preexponential factors can be obtained after integration
verx. by taking partial derivatives with respectxpandx,,
according to(2). The remaining integral ovex,, \, will be
evaluated afterwards in the stationary phase approximation.
Consider the integral ovex. of one of the terms in the
sum of (1). The phase in the exponent of the integrand will

The total amplitude that will describe the detection of :
charged lepton and neutrino events will contain, besides thégeur?cgocrl?rrt:ﬁt ?:{Brelﬁlv?ﬁs% éog]i\pl)é?]pseators, and from the

factor (1), also positive and negative energy wave functions
of different finite particles involved in the detection process. 1 1

These factors are of a particular nature, they do not affect the d=— E)\|X|2C— Exnxﬁc— p-Xe. )
dependence of the amplitude on the space-time coordinates

x; and x,,, hence they will be omitted as irrelevant to the
main topic of this paper. Due to these factors, however, a

whereU, is the unitary matrix of neutrino mass-flavor mix-
ing ampIitudesUgj is its Hermitian conjugateqa andb nu-
merate flavorsj numerates the neutrino mass eigenstags,
and S, are, correspondingly, the Feynman propagators o
neutrino mass speciewith massm; and of charged lepton
flavor a, andJ§ is the current involved in the neutrino de-
tection process, localized around the space-time pgint

Its extremal pointXx.=X.(\|,\,) is determined from the

well as, in typical cases, due to the positive-frequency char-quatlon
acter of the source, the integration region oxgin (1) will P
be effectively restricted to the causal past of both poigts — =N\ X+ ApXpe— P=0. )
andx, . X
The Feynman propagat8x,y)=S,(x—y) for the Dirac . o
field of massm has the form We also have for the matrix of the second derivatives
Si(X) = (i Y99+ M) D (X), ?) P

« ﬁ:_()\|+)\n)gaﬁa (9)
. ) IXEIXE

where D,(x) is the Feynman propagator for the Klein-

Gordon field of massn. This propagator has the parametric so that integration ovex, will produce a factor

integral representation(first considered by Schwinger,

Dyson, and Feynman in the papers collectefilidl]) . 4im?

J dxe'?=——"—el%x, (10
. ()\I"")\n)2
D Sy f “d o e
m(X)=~ gnz. Jo Aexg = o M+ pImTie] ], where ¢, is the value of the phasé at the extremal point:
()

NINRXG = M2+ 2P (XX + N pXn)

wherex?=x-x=x“X,, is the Lorentz interval squared. The Pe=" 2(N+)\,) - @D

factors of typeO, in the amplitude Eq(1) will have an

effect that in the neutrino propagator the term proportional to . Now consider the integral over thes. It will be evalu-

a unit matrix will not contribute, and only that proportional ated in the stationary phase approximation. The phase of the
to the Dirac gamma matrices will remain. This general prop-integrand is given by

erty is due to the equalitp,Oz=0. Thus in(1) we can

replaces; (x, ,Xc) by Sj(x, ,xc)z§mj(xn—xc), where oo - E(m_'z_,_ ﬂﬁ 0
ST 2l )
| n

Sn(X)=19%9Dm(X). 4 _

wherem, andm, are the masses, respectively, of the charged

lepton and of the neutrino. The stationary point is determined
lil. MONOCHROMATIC SOURCE by differentiating(12) using(11), or by the equivalent con-

In this section we investigate the case of a monochromati€itions in the convenient form obtained usifit) and (8):
source currendg(x) that can arise, for instance, in the pro- )
cess of pion decay. Let ob 1, m 9P 1, m
_ a2 2% 2\2
J4(x)ece P, (5) (13

2

ch

N, 2



4420 YU. V. SHTANOV 57

In these equations.=Xx.(\|,\,) is the solution of Eq(8). d
From (13) we have the relation

MXic=Prs AMnXnc=Pn (14 g, dn

satisfied by the extremal values »fs, wherep, andp, are
the four-momenta that the charged lepton and the neutrino Xn
respectively would have were they free classical particles t
moving from the space-time creation poiqtrespectively to
the registration pointg, andx,. Then Eq.(8) expresses the  x,
energy-momentum conservation law, the condition from
which the extremal poirnt. with extremal\’s can be found
most easily. time
We also need the matrix of the second derivativesbof
over\'’s at the extremal point. Differentiating the ident{i§)
we find space

X

c
(9XC Xic ’9Xc Xne

PR VS VW

) (15 FIG. 1. Time and length definitions in the neutrino source rest
frame.

and, differentiating13), with x; being the extremal point of at extremal values of

5 2 2 \'s—the solution to(8),(13). Using the extremality condi-
E _ Xic mp I PANE W (16) tions (8),(13) we easily find
N2 NHN, A "N AN
I, 0D, on
(92_®:_ X2, _Eﬁ:_mz 2Nn N\ a7 X P e P
INE ONHN, A RONE W) and
A __ch'ch:_ Pi-Pn (18) D, =—P" X = Pn*Xn= P X~ PnXni - (25

IN19n Mt An AAn(N+An) Note that the four-momenia andp,, lie in the plane formed

Let by the four-vectorp andx,,, and are determined by energy-
momentum conservation.
m=\/ﬁ (19) Combining together the factors calculated ({b0) and

(22), dropping the resulting overall numerical constatr,

be the effective mass of the source. In the case of pion decay'd USing25) we obtain the expression for the amplitudg
this will be equal to the pion masa.... In a realistic case "' the case of a monochromatic source

m—m>m,, m>m,. (20 e iPX : #Oonpﬁos(mrmpf)
Below we will se€[cf. Eq. (29)] that in the limitm,— 0 the Py An)pl P
extremal values ol’s remain finite. Thus we can approxi- X UEjUjae"pn'Xn', (26)
mate the determinant of the matr@%(l)/&)\ia)\j by its limit
asm,—0. The result is whereOp=0,J5, Os=0,J3 . Note that the coordinate de-
pendence of the curredi(x) has transformed to the phase
. ( 52D ( 52D )2 ( PP 2 of (26). Also note that the extremal values % as well as
€ ~- i (e r—— the four-momenta, and p,, under the sum26) depend on
INidN; NN MAn(AiFAn) 21 the neutrino specig. However, the prefactors in our expres-
2D sion (26), as well as in(30) below, are calculated only up to
Therefore the integral over's will produce a factor terms proportional tan;; with this precision they can be
taken in the limitm,=0.
2NN A, The extremal values of;, an_d)\n de_termined by th_e sys-
e Px (22) tem of Eqs(8),(13) can be easily obtained from the kinemat-
Pi-Pn ics of the problem. Let us denote byand byd correspond-

) o ingly the time difference and the absolute spatial distance
where @, is the extremal value of the phade, which is  petween the events, andx, in the rest frame of the source
given by [in which p®=(m,0)], and byv, andv, the velocities, re-

spectively, of the charged lepton and of the neutrino in this
®,=—m, \/X—|2c— mn\/Xﬁc— P-Xc, (23 frame (see Fig. L1 In the rest frame of the source one has
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d—u,t d+ot wherep; andpy are neutrino four-momenta of mass species,
tic= , dii= X =it the= , correspondinglyj andk, pjx=p;— P« andcpjakb are constant
Vit Un vitun phases that stem from the product of matrideandU". The

_ second sum in the square brackets(38) describes space-
dn 1= Xnd =vntnc, (27 time oscillations of the probability. If one is interested in the

conditional probability—that a neutrino event of flavar is

where alsod; denotes the spatial distance in the source resfiqiected providegdomeneutrino event has been detected—
frame between the poing of charged lepton detection and s is given by the expression

the extremal poink., andd,, has the same meaning for a
neutrino. Then

Poa(Xn . X1)
, ) PER" (0 )= === U} Ul
, [d—vgt o o d+ut ) 2pPba(Xn.X1)
X|C_ + (1_U|), ch: N 1_vn),
v+u v+u b
o N (28) +;k |UEjUjaU;kUkb|C05{pjk'Xn|+€0jak)-
and, using(13), we obtain (34)
m viE m v E In other words, this is the relative frequency of detecting a
M:_'ZZL, )\n:_rz‘: n-n (290  neutrino event of flavorb. It is normalized to unity as
WE o d VXne  dn = P x, ,x)=1.

) ] From Eq.(33) or (34) one obtains the oscillation length
where E,; and E, are the energies, respectively, of the 5nq oscillation time of the probability considered. Using the

charged lepton and of the neutrino in the rest frame of thenergy-momentum conservation in the source rest frame of
source. In this notation and in the approximationn@f=0  eference one has

for the prefactors(but not for the phagethe amplitude(26)
will acquire the form Aj AjE

0 ik _
p. =—, p = p — p ~ — = — ,
R o 1Pl=IPl IR 2um  2v,mE,

OD’)’angS(ml_')’Bplﬁ)Ej: U;Ujae P, (35

(300  where approximation uses the assumpti@f) that a neu-
trino has very small mass, and

md

By the way, from the expression®9) it is clear that the
extremal values ok’s remain finite in the limit ofn,—0, as A= mjz_ mZ. (36)
was stated above. o S

We shall now estimate the applicability limits of the sta- Thus, oscillation lengtt. ;5. and oscillation timeT o of the
tionary phase approximation used. Our approximation will(jk) component of33) in this frame of reference are given,
be good when the extremal values 06 are much larger respectively, bywe use the limit ofv,=1)
than their dispersions determined by the matrix

(92<1>/(9)\i(7)\j . Using (29) and (16)—(18) we obtain after L =EL T =mL (37
straightforward analysis the conditions g % E
d=<d,<md® or d,=<d<md?, (31)  where
under which our approximation is valid. They imply also the 2E,
condition L= (38
|Ajl
mad>1, (32)

is the standard expression. To proceed to any other reference
which is quite reasonable. frame what one has to do is to transform the four-vector

In the limit of (20) the four-momentap, and p,, change comppnentspj“k obtained in(35) to this new frame. The ex-
relatively very slightly with the neutrino mass spegjieand, pressiong37) and the relevant expressions in the laboratory
we remember, our prefactors (80) were actually calculated frame of reference have been obtained7h

in this limit. In this case the space-time behavior of the If one of the particles, a charged lepton or a neutrino, is
pair detection probability is given by not observed, then the probability of detecting the other one

is uniform in space and time. This is quite obvious without
1 any calculations and is due to the fact that the pair cre-

Poa(Xn X1)* > [Uf;Ujal? ation probability for a monochromatic source is homoge-
J neous in space and time. If a neutrino is not detected, oscil-

lations in the charged lepton detection probability disappear
+ 2> |Uf;UjaULUkplcos pj X+ €50) | also due to orthogonality of neutrino mass eigenstates. This
I7k last cause will operate with any type of source, not necessar-

(33 ily monochromatic. Specifically, it is the necessity of sum-
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ming the probability over the neutrino flavor indéxthat  ence lies well within the source wave packet. Because of
will eliminate the oscillatory terms in this case. A detailed Eqg. (39) the conditiong42) essentially imply
discussion of these issues is presentefin
d<E,xmin(oZ,0?). (43)
IV. WAVE-PACKET SOURCE . I . .
Spatiotemporal oscillations in the mutual detection prob-
First of all let us analyze in a little more detail teffec-  ability can be observed only up to certain relative distances
tive region of integration ovex. in (1) in the case of a between the detection points of a charged lepton and a neu-
monochromatic source considered in the previous section. ltxino. We are going to determine such maximal distances,
other words, it is the region of constructive interference fromcalledcoherence lengthdeyond which oscillations cease to
which most of the contribution to the integral () comes. occur. The reason for such distances to exist is that for dif-
The extension of this region in space-time around the exferent neutrino masses; andm, the corresponding centers
tremal pointx. is determined by the covariance matfi®) (extremal pointsx; andx, of the integration region iw. are
for given values of\’s, and by the variation ok’s that are  different. If they become sufficiently separated in space-time
determined by the covariance matn&d)/a)\i(?)\j with the  they may no longer be able to lie simultaneously within the
componentg16)—(18). First, using(9) and (29) we obtain  wave packet of the source; thus components in the probabil-
the estimate of the linear dimensiofs of the effective re- ity amplitude that correspond to different neutrino mass spe-

gion of integration for fixed extremal values bfs as cies will not be able to interfere.
Consider this effect quantitatively. The shift four-vector
g [didy d Xji=X; — X lies in the plane of the four-momengg andp,,,
Ox=(N+Ap)"7"= Ends E (39 and can be decomposed into componedfsand x() that

go, respectively, along the directions pf and p,. These
Next, we must estimate the linear dimensiofs, of the ~ components can be easily estimated. Using @ we ob-
spread of the extremal valug(\,,\,) caused by the spread tain, for the time componentapproximation uses,~1 and

S\ of the values of\’s. This latter spread can be estimated Av,,Av,<v;,v,),
using (21) as
N e A% gy S g
de( 92D ) _ /)\|)\n()\|+)\n). 0 K G o2 2mE2
INON; Pi- Pn
AU| 2

Then using(15),(27),(29) and the conditiondA <\, , pro- t(n)”—z(d—vnt)“—mdh (45)

vided by Eq.(31), we will have the estimate K (vt 0y) m?E2

dén Mg d where A is given by (36). The distancesl, andd, then
OXc= =d\/———=\/= (4) change as
Aty Pr- Pa(N+Np) m

2
Ajemy A

ikEl

O\ =

Approximations “~" in (40) and(41) use smallness of the Adi=—Ad~pt™W_p D~ — d
neutrino mass and become equalities in the limjt-0. The ! nornk ik 2mZE§ ! 2mE, n
last value in(39) is larger than that ii41) hence the dimen- (46)
sion of the region of constructive interference will be esti-

mated by(39). For large enough absolute valuestg=t{ +t{ and/orAd,

In realistic situations the source of neutrinos can often behe centers¢; and x, will not be able to lie simultaneously
approximated by a wave packet with sharp energy and maowithin the source wave packet. Components in the probabil-
mentum distribution (therefore small relative energy- ity amplitude which correspond to different neutrino mass
momentum spreadLet us suppose that in the rest frame of species will not be able to interfere, and probability will
the source the spread in the coordinate spaeg, isin mo-  cease to oscillate. This will determine coherence lengths of
mentum spacer,, so thato,o,~1. The source also has the detection probability oscillations in various cases.
finite coherence time; in the case of the pion this will be In the case
determined by its lifetime, or by its collision time with the

environment. Typically, however, the time spreadof the m?
wave packet is much larger than its spatial spread and the dp=—-4d, (47)
latter will determine most of the interesting effects. mE,

If the source is to a high precision monochromatic so tha}
its spatial and temporal spread is sufficiently large, namelyt
if

rom (46) it follows thatAd,;~0, and the shiftx; is in the
emporal direction in the source rest frame. For a sufficiently
large value ofd=d, +d, the absolute value of the shiff,
X<y, 0, (42)  becomes larger than the extensiop of the source wave
packet in the temporal direction. This determines coherence
then we can use the expressions from the previous section ftengthL .—the largest value ad at which oscillations can be
the detection probability amplitude whenever the effectiveobserved. In the case consideret?) it is determined by
region of integration ovex, (region of constructive interfer- using(44), (45), and(47) as
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mE, oy <L, (56)

Le=0EnL| 1+ —-], (48)
m

. . N even if the accompanying charged lepton is not observed the

with L given by (38). The condition(43) necessary for our neytrino flavor oscillations can be observed relative to the

approximation will imply that the formul@48) is valid for  soyrce spatial position. Indeed, when integrating the detec-
) tion probability Py,.(X,,,X;) overx, in the source rest frame
o £>L 1+ ﬁ (49) we notice that only in a small region &f the probability will
v oy m? | be nonzero and will be given K®3). This will be the region

for which the extremal values of; lie within the wave
Equation(47) implies rather special experimental coinci- packet of the source. The linear dimensions of this region are

dence conditions. In a less special case similar to o,m/E;, as can be inferred from Fig. 1, and Eq.
(56) follows from the condition that these dimensions be
much smaller than the oscillation lendths. which is given
by (37). Then, after integration ovex, the phases of the
oscillatory terms in(33) will be fixed and their dependence
the second term in the last expression(48) dominates. In  on the value ok, will remain. Detection of a neutrino alone
this case the coherence length will be determined by thés the case most frequently discussed in the literature.

my
dp>——d, (50)
mE,

condition that eithert;| becomes larger tham,, or/and ~ Consider this effect more thoroughly. The phage Xy,
|Ad,| becomes larger tham, . Using(44) and(46) we obtain  in the oscillating term in the probabilit{33) can be written
in this case in terms of the distanced andd,, introduced in(27). Choos-
ing thez axis in the direction op, in the source rest frame
_ En one will have
L,=LmXmin ax,atE . (51
|
L =(p° . =
The condition(43) will determine the validity limit of(51) to Pik=(Pik-0.01plj). Xm=(t,0,00). (57)
be [see Eq.(37)]
2 2 Taking into account the values p?szjkIZm,
UX,E>EL=TOSC; Ut12>m|—=|—osc- 52 IPlp=—AuE/20,mE, [see Eq.(35)] and using(27), one
oy Ej oy E obtains the standard expression for the phase
The case
m? Pk Xn1 == (dn——d.)+ F——(dy )= —
d,<——d, (53 2v,m En vpm vnl
mE,
t
can describe the situation when the momentum of the = % (58

charged lepton is measured to a good accuracy by measuring
its time of flight. Its analysis is quite similar to that of the
previous cases. The oscillations in the probability will disap-

pear at the length From this expression it is again clear that if the distasces

fixed with accuracy better thah by the position of the

m2E source wave packet relative to the neutrino detector, the
L.= 2” LXmin(oy,ay), (54)  Phases of the probability oscillations will remain fixed even
m after integration of(33) over the unobserved poin;, and

the oscillations will be observed with respect to the value of

and the analysis is valid as long as the estintd® is sat-  d,. This condition again leads to the estim&5).
isfied, which gives Remarkably, the phag®8) does not depend ol . This
fact can also be explained as follows.df is fixed andd,
is changing, this means that the four-vectgrchangegsay,
by the amountAx,) in the direction of the charged lep-
ton’s four-momentump, (this is clear from Fig. L Then

If the source wave packet is sufficiently broad in spacethe oscillation phase change iy AXp<pjc-pi=—Ap
and if one of the particles, a charged lepton or a neutrino, isp.=—A(p|2)/2=0. The expressiofb8) for the phase coin-
not observed, the probability of observing the other one willcides with that derived ifi7].
not oscillate in space and time. This is because after integrat- As noted already at the end of the previous section, and as
ing the probability(33) over one of the variablel ,x,} the it was discussed ifi7], if a neutrino is not detected oscilla-
oscillatory terms are averaged to approximately zero. Howtions in the charged lepton detection probability disappear in
ever, with the source wave packet sufficiently narrow inany case due to orthogonality of neutrino mass eigenstates.
spacebut still such that the conditiofd2) or its equivalent  Specifically, it is the summation df33) over the neutrino
(43) holdg), namely, flavor indexb that will eliminate the oscillatory terms.

2 2 o
oy of m

oy,0,—,—>—L. (55
oy Oy M,
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V. SOURCE IN A LOCALIZED SPACE-TIME REGION Mj=m; —m, (64)

First consider a hypothetical process in which a neutrino, ab
together with a charged lepton, is created at a fixed spac@"d @ik are const?nt phases that stem from the product of
time pointx, . Note that in this case the energy and momen.matricesU and U'. The last term in Eq(63) describes
tum of the neutrino created is totally undetermined. TheSPace-time oscillations of the probabilities.
probability amplitude of detecting neutrino-induced charged The conditional probability that a neutrino event of flavor

lepton production of flavob at the space-time point, will b is detected providedomeneutrino event has been detected
contain the factor is given by the expression
~ _ 31t /
Aba(xn-Xc):z UkT)jUJaSi(ch)u (59 P(b‘;"“@(xn,xQ—N 2 mj|UbjUja|2+j§k (mjmk)32
i
if the charged lepton created together with the neutrino at ><|UEjUjaU;|<U|<|o|<305(mjkVxﬁcJr @?kb) ,
point x. is of flavora.
Again, as was already discussed in Sec. Il, the total am- (65)

plitude that will describe the detection of a neutrino event
will contain, besides the fact@b9), also those related to the \yhere the normalization factot is given by
processes of creation, propagation, and detection of other
particles involved. These factors, however, are of particular
nature, and do not affect the dependence of the probability N~1=2 mPUlUj.. (66)
amplitude of neutrino detection on the space-time paiqts )
andx.; hence they will be omitted.

The propagatorS,(x) of Eq. (2) has the leading
asymptotic behaviofsee, e.g.[11])

The conditional probability has the normalization property
> P x,,x)=1 and gives the relative frequency of de-
tection of the neutrino event of flavd.

As an illustration consider mixing between two mass

3wil4 3/2 @
e m ‘an . . . .
Sm(X)N( 1+ ) exp( —imyx?), e|genstate§«1'and v,, with two flavor eigenstates, andv.
4:[2732] (x2)3/4 VX2 Let, for definitenessm;>m,,

for myx%>1, (60) v, = v1C00+ v,8inf, ve=—v;SiNf+v,c08, (67)

@ and let a neutrino be created in a flavor eigenstgte The

VX ; - e .
for mJx2<1. (61) corresponding conditional probabilities of detecting muon

Sn(X)~ %>
2m2(x?)? and electron events at, will be

Hence, qscillations in the neutrino detection probabilities can piforw)(xn Xc) =N[micos 6+ m3sint 6+ 2(mym,) 32

develop in space and time arourg only whenmj\/xnzczl _ ,

at least for the largest of the neutrino masses, sBi¢&,) X sirf cos fcod Amyxqo) 1, (68)

do not differ for differentj in the opposite Iimilmj\/xznc<1. (cong 3. 3 3 5
Consider, therefore, the case m]‘\/x2m>1 for all j. In this P& (X0 Xe) = N[My+ m3 — 2(mymy) **cog Amyxy) ]
limit the amplitude(59) up to one and the same factor will be X SirfAcoL, (69)
given by

whereAm=m;—m,, and

Apa(Xn X = D> mPUL U exp—im X2, (62
bal Xn Xec) E,: i UbjUjaexp Vo (62 N~1=m3cog 9+ masirfg. (70)

Note the mass dependence of the coefficients in the lasthe last terms in the square brackets in E§8) and (69)
equation. The space-time variation of the probabilities of thejescribe space-time oscillations of the probabilities. Because

corresponding processes will be given by of mass dependence of the coefficients in these expressions
N the amplitude of oscillations will be suppressednf<m,,
Pba(Xn:Xe) =t Apa(Xn,Xe)* " Apa(Xn,Xe)* ] and co® is not too small.
The conditionsnix/xzn?l, together with the asymptotic
M; mJ-3|Ungja|2 form (60) of the propagator, imply that all the mass eigen-

state neutrinog; arrive at the space-time poiry practically
as on-mass-shell particles, with four-velocity xnC/\/xan.

+;k (mim)34Uf,U5,U LUl In the opposite limitmy/x?<1 the Feynman propagator has
J the asymptotic behavig6l) independent of mass. Then, for
X cog m /Xﬁd‘ qojakb), (63)  instance, in our example of two neutrinos, in the region

mzx/xznc< l<m, \/xnzc, which exists in the case of large rela-
where tive mass differencan,<m,, one obtains
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- T these oscillation scales will be determined by the four-
sin6+ §§300§9+ \/%53/28"12000529 momentum differencep,=mMjXc/ X3, with fixed four-
vectorx,./ /X2, which is the neutrino four-velocity at the
detection evenk, .

The same is also true as regards the detection point: in
order to observe space-time oscillations of the probability the
detection point must be localized within the limits given by
1+ ng_ \/E§3/2COS{§_3W/4)) f[he osciIIatioq time and length s_cales._lf this.is not so, that is,
8 2 if the resolution of the detection point is insufficient, the
oscillatory terms in the probabilitie®8),(69),(71),(72) will
be averaged, and only the so-callgidbal effects of appear-
ance and disappearance of neutrino flavor species will be
where observed.
Let us consider these criteria within the model of two

Pifond)(xn Xc)=N

X cog {—3ld) |, (7D

PO (x,,x.) =N

X sinf6co< 6, (72

T neutrinos considered above. We have
=m\X3., N~ l=sirto+ §§3co§0. (73
A am (76)
—p,=UAm=p;—,
It is important to stress the difference between the cases P1™P2 P1 m;

of the sufficiently extended wave packet source and the fixed

space-time point source. In the first case the probability ofvherep, is the four-momentum of the heavier neutrino mass
detecting a neutrino is given by E¢33) with the phase specie at the detection point. In the case of close neutrino
given by Eq.(58); in the second case the probability is given massesAm<m;, the oscillation length and time will be
by Eq.(63). The origin of this difference lies in the fact that given by

in the former case the amplitud®) involves integration over )

X., Whereas in the latter case the poiqtis fixed. In the my my

asymptotic limit in which Eq{(60) is valid neutrino propa- Losc™Tose™ EAm E2 (77)
gators have strong preexponential mass dependence that re- . "

sults in the peculiar mass dependence of the probalbBy  \hereL is given by Eq(38) andE, is the neutrino energy at

With propagators in the asymptotic [imi60) it can be ex-  the detection point. Then Eq&8), (69) will be valid as long
plicitly demonstrated that integration of the amplitud® g

over X in the case of a monochromatic source produces

neutrino-mass-dependent factors that cancel out such pre- mi
exponential neutrino-mass dependence of the probability am- oy, <—L. (78
plitude and also modify the phase of the probability ampli- Ex

tude, leading to Eq(30). In view of the derivation of Eq.
(30) presented in Sec. lll such a demonstration in the main
text would be redundant. Therefore, in order to make this
point clear, we perform it in the Appendix.

In reality, creation of a neutrino cannot occur at a fixedgg that
space-time point. However, a possible creation region might
happen to be sufficiently localized by the nature of the Lose=Tos=Ent, (80)
source or by the experimenter, so that the phase differences
between components @b62) will be well fixed. Thus the WwhereEy is the energy of the heavier neutrino at the detec-
equations of this section will apply to the situation when ation point. The equations for the probabilities in this case are
neutrino creation region is localized in space and time irvalid for
such a way that

In the case of mass hierarchy;>m,, we have

P1—P2=P1, (79

oy, 0 <Egt. (812)

ﬂkaV(Xn_xc)z]sL (74 Due to incoherent distribution of the sources in realistic
situations(in a supernova or in the Synor due to insuffi-
where by &[f(x;)] we signify characteristic variation of cient resolution of the space-time detection point as was dis-
f(x.) due to variation ok. over the creation region. As the cussed above, the probabilitigs),(69),(71),(72) will be av-
probability oscillation phasemjk\/(xn—xc)2 are symmetric eraged over the source and/or detection sites and the
with respect tax,«< X, interchange, this means that the cre-oscillatory terms are likely to be averaged to give zero. In
ation region is to be restricted in space and time bydse this case the probabilities will describe the so-caligabal
cillation time and length scales in the vicinity of the point effects of appearance and disappearance of neutrino flavor
Xy - Since for small variations species. To obtain the relevant expressions in this case one
must consider the integral of th@naveraged, uncondi-
tioned probability P, (X, ,Xc) or Pe(X,,Xc) over the space-
> , (75)  time pointsx,, X, using the asymptotic expressiof&) and
\/X_nc (61) for the propagators and the property of the trace

mijnc' 8Xc

5[mjk V(X = Xo) ]~ —
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try(oYp =48, Thus the expressions for averaged uncon{rom the booK2]. In all these cases one hag<o, and it

ditioned probabilitiesP,, and P, will be is Ithe value ofay which will be important: In the case of
solar neutrinos

P,=C denc(tr['él(xn Xe) S1(Xp,Xc)]cost o 0~10"" cm, E,~10 MeV. (89

With A;,=mi—m3~10"* eV? in the case of close neutrino

masses the conditiofY8), under which the formulas of this
section will apply, will read

F[S I (X 1 Xe) Sa(Xn ,Xc) ]SIN*6), (82)

P.=C f DXt S 100 %6 S1 X0 )
m;=3 eV. (90
+t SJ(Xn ,Xe) Sp(Xn Xe) )sirPAcogd,  (83)
Since E;,;*~107*2 c¢m, in the case of mass hierarchy the
whereC is a constantSj:Smj as before, the expression for formulas of this section will not work.

S,, is given by Eq.(4), and the integrals proceed over the ~FOr supernova neutrinos from the core

effective regionA of the values ofx,. determined by the
distribution of sources and detection points.

In the casemj\/xnzc>1 the averagedonditional prob-
abilities will look like

o~10"-10 2 cm, E,~100 MeV, (91)

so thatE, *~10"* cm, the condition(81) will be on the
edge of fulfillment and the formulas of this section might be

m3cog 0+ m3sin' o

pleond — : (84)
# m3co 6+ m3sir 4
3 3\ i
ms+m3)sir 6cos 0
pyeona _ (M1 2 (85)

micog 6+ masin?e

applicable.
For supernova neutrinos from the neutrino sphere

o~10"%cm, E,~10 MeV, (92)

in the case of mass hierarchy the expressions of this section

will not be applicable. In the case of close neutrino masses

In the casem,\x2.<1<m,; /X3, the averaged probabili- for A;,=m?—m3~10"* eV? we will have the condition
ties are more complicated because of more complicated
space-time dependence of the corresponding unaveraged

m;=0.3 eV, (93
probabilities. The result is !

for which the relevant expressions of this section will apply.
(86) In connection with the above examples we must note that
the probabilities(68)—(72) will refer to neutrinos as they
appear from the source. Subsequent neutrino scattering off
the particles of the solar or supernova media will result in the
(87) well-known Mikheyev-Smirnov-Wolfenstein effect(see
[1,2] ), which is not considered in this paper.
To end this section let us stress once again that the criteria
value of under which the equations of this section will apply are
given by Eq.(78) in the case of close neutrino masses, and
by Eqg. (81) in the case of neutrino mass hierarchy. In the
previous sections we discussed the case of a neutrino source
with sharp energy and momentum distribution; the formulas
derived there are valid under conditio(®&l) and (43). Note
88 that these two cases, namely, of broad wave-packet neutrino
source and neutrino source localized in space-time, are ex-
clusive but not exhaustive. Intermediate cases when neither
(31) and (43) nor (78) or (81) are valid should be studied
In the last expressiox|?= (x°)?+|x|, the integrals proceed separately, perhaps by different methods.
over the effective regiol\ of the values ofx=x,,. deter-
mined by the distribution of sources and detection points,
and the space-time componentsxqf are to be taken in the  Inote that in[2] as well as in some other literature, usually
detection reference system. stands for the emittedeutrino wave packet spread. In this paper
To see whether the assumption of a well-localized neupoth o, and o, denote the spread of the neutrisource Also note
trino source is realistic, let us make some estimates for thehat we put the speed of light as well as the Planck constant to unity
cases of solar and supernova neutrinos. We take all the daéad measure, in units of length.

(Con@:sin40+ ncoso
g sirf6+ ncoso’

o (1+ 7)sinfcos 6

P(con
sirf 6+ ncos o

where 7 is a weighted average of the
(w18) 3= (w/8) m3(x3)%? and is given by

wmff Ix|2(x?) ~>dx
A

n:
8[ |x|2(x?) " 4dx
A
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VI. SUMMARY nience we make the notatio—X;=X;; , X,—X;=X,;, and

In this paper we treated the problem of neutrino flavorXij = Ui Xnj=Un. The phase_b can be developed in powers
oscillations by consistently using space-time description oPf X=Xc—X; around the stationary point=0 with the result
the relevant processes of particle creation and subsequent 1
detection. We described the EPR-like experiments of detect- D(X), X, Xe) = ECan“x[’+---, (A3)
ing a neutrino together with the accompanying charged lep-
ton, as well as the standard textbook examples of neutrinahere
flavor space-time oscillations, without invokiregpriori the
notion gf particle trajectories. From our an;a;?/gis itis also  Cap™ CilU)a(Un) g+ CalUn) o(Un) 3= (C1+ Cn)Gap.

clear why in fact it is possible to use such a notion. The (A4)
effective integration regiofthe region of constructive inter-
ference in the probability amplitud€l) over the space-time _.M _m

. . . . . C| 1 Cn 2 (AS)
point X, of particle creation is localized around the place \/X_u VX5 ]

determined by particle classical trajectories, and the contri- ) , )

bution to the phase of the amplitude comes mainly from thd?"OPPing the higher order terms {#A3), denoted by dots,

action along these trajectories. In the case of a wave pack¥f€ Will be interested in the value of a Gaussian integral

neutrino source our treatment enabled us to obtain in a rather i

simple way the coherence lengths of the oscillations. We f d“xexp(zcaﬂx“xﬁ . (A6)

also considered the case of a neutrino source strongly local-

ized in space and time and in this case found out dependendehis, up to a constant factor, is given I,‘Iy/e{CaﬁH’l’Z. In

of the probability oscillation amplitude on the neutrino terms of the velocitiesy;, and v,,, respectively, of the

masses. charged lepton and the neutrino in the source rest frame the
determinant is given by
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Combining all the factors in1) together we obtain the
expression for the amplitude in the limit of,,—0 for the
In this appendix we shall derive the expression for theprefactors and up to an irrelevant constant as

(A7)

APPENDIX: ALTERNATIVE DERIVATION
OF THE PROBABILITY AMPLITUDE

probability amplitude(30) in the case of a monochromatic (1=09)(1=0D)
source, in the limitm,x2.>1, mx2>1, using the CiCn Yi Un
asymptotic expressiof60) for the propagators in the coor- i (¢ tcy) v+,

dinate representation. The integral over in (1) will be
evaluated in the stationary phase approximation, according
to the assumption that the main contribution comes from the

X Op¥oUnOs(1— yauf)Uf U e

1 .
region of stationary phase of the integrand. This phase stems = —dODyapﬁOS(m - yﬁpf)z UEJUjae"I)J‘,
from the propagators and from the source currenlinand m !
is given by the expression (A8)

__ 7 7 where®; is the value of the phase at the stationary point of
D (X, Xn Xe) = — My XEe =My X2 —P- X, (A1) X.=X; that corresponds to neutrino mass spgcie view of
and its stationary point is determined from the condition ~ the expressiortAl) for the phase we see that this value is
identical to that of Eq(23). Therefore the expressidi\8)
® for the amplitude coincides with that of EGO).
b ., la «_ Note that the preexponential factors in the final expression
IXE = MiXje +MpXne = p*=0, (A2) (A8) for the amplitude remain finite in the limit af,=0 in
spite of the fact that neutrino propagatd¢6®) have preex-
where the notation is used=x//xZ. Sincech and )‘(nc are ponential factorssnﬁ’z. The reason is that the strong neutrino-
just four-velocities, respectively, of the charged lepton andmass dependence of these factors has been counterbalanced
the neutrino at their respective detection points, ) by the neutrino-mass dependence of the vafjeas well as
expresses the total energy-momentum conservation. Nof the factor|def{C, g} ~*2 with the determinant given by
that for different neutrino masses,=m; the value ofx,  (A7). In the case of a fixed neutrino creation point there is no
determined by Eq(A2) will be different. Letx; be the solu-  integration ovei. and factorsmﬁ’2 remain in the probability
tion for x. of Eq. (A2) with m,=m;. For further conve- amplitude, Eq(62).

C
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