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Space-time description of neutrino flavor oscillations
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Recently the issue of EPR-like correlations in the mutual probability of detecting a neutrino together with an
accompanying charged lepton has received a new impetus. In this paper we describe this effect using the
propagators of the particles involved in Schwinger’s parametric integral representation. We find this descrip-
tion more simple and more suitable to the purpose than the usual momentum-space analysis. We consider the
cases of a monochromatic neutrino source, wave packet source, and neutrino creation in a localized space-time
region. In the latter case we note that the space-time oscillation amplitude depends on the values of the neutrino
masses, and becomes rather small for large relative mass differences~mass hierarchy!. We obtain the expres-
sions for the oscillation and coherence lengths in various circumstances. In the region of overlap our results
confirm those of Dolgovet al. @S0556-2821~98!03307-4#

PACS number~s!: 14.60.Pq
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I. INTRODUCTION

The space-time oscillation of neutrino flavor~see@1,2#! is
considered to be the most promising effect of observa
which might indirectly establish a nonzero neutrino mass.
its very nature it requires a spatiotemporal description of
processes of neutrino creation, propagation, and detec
and of the similar processes that occur with the accompa
ing particles. Such a description has been performed in@3#
and further developed in@4,5# without the ambiguities tha
sometimes accompany noncritical use of neutrino fla
eigenstates.

Recently @6,7# the issue of Einstein-Podolsky-Rose
~EPR!-like correlations in the mutual probability of detectin
both a neutrino and an accompanying charged lepton
received a new impetus.~It was previously considered in
@3#.! In order to simplify the derivation of the basic effec
the authors of@7# combined together descriptions in config
ration space and in momentum space, of the same rele
processes, using simultaneously such mutually exclusive
tions as sharp wave packets in momentum space and de
space-timea posterioritrajectories of particles. EPR-like ex
periments of the same type involving neutral kaon andB
meson oscillations were considered in@8#. In this paper the
authors also adopted a simple approach using the action
ues on the particle classical trajectories to evaluate the
evant phase factors in the probability amplitude. Althou
the results obtained in such a simplified approach are cor
they also might call for a more careful derivation. This w
be the aim of the present paper in which we consider
problem of neutrino flavor oscillations.

In this paper we try to analyze the phenomenon in a c
sistent way using the propagators of the particles involve
Schwinger’s parametric integral representation@see Eq.~3!
below#. We find this description more simple and more su
able to the purpose than the usual one which employs pr
gators in momentum space representation. The latter

*Permanent address. Email address: shtanov@ap3.gluk.apc.
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volves rather complicated momentum integrations~see, e.g.,
@4,9#! and, it seems, frequently obscures the physical pict
of the phenomenon. Our treatment will be general and w
contain the analysis of the EPR-like experiments of detec
a neutrino together with the accompanying charged lep
as well as the standard textbook examples of neutrino fla
space-time oscillations.

After preliminaries in the following section, in Sec. III w
consider the case of a monochromatic neutrino source
the probability of mutual detection of the neutrino and of t
accompanying charged lepton. In Sec. IV the effect o
wave packet neutrino source is analyzed. We obtain the
pressions for the oscillation and coherence lengths in var
circumstances. The case of a neutrino source in a stro
localized space-time region will then be considered in S
V. In this case the space-time oscillation amplitude depe
rather strongly on the values of the neutrino masses,
becomes rather small for large relative mass differen
~neutrino mass hierarchy!. We summarize our results in Se
VI. In the Appendix we provide an alternative derivation
the probability amplitude for the case of a monochroma
neutrino source, in order to elucidate the difference betw
this case and the case of a neutrino source strongly local
in space-time.

II. PRELIMINARIES

Throughout this paper we consider a process in whic
neutrino is created together with an accompanying char
lepton, and afterwards both particles are detected.
charged weak currentsl̄ Oan are involved in the description
of this process, whereOa5ga(11g5), andg55 ig0g1g2g3.
The amplitude of the creation of anl -n pair at space-time
point x is proportional toOaJS

a(x), with JS
a(x) being the

source current responsible for this process. In the case
pion we would haveJS

a(x)}]afp(x), wherefp(x) is the
pion wave function. The charged lepton produced at spa
time pointxc in a flavor statea can propagate to space-tim
point xl , and the neutrino to space-time pointxn , at which
points these particles may be detected. At the space-g
4418 © 1998 The American Physical Society
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57 4419SPACE-TIME DESCRIPTION OF NEUTRINO FLAVOR . . .
point xn one may detect neutrino-induced charged lep
production of flavorb. The amplitude of such a process
which a neutrino and the corresponding antilepton are
ated and subsequently detected will contain the factor

ObJD
b (

j
Ub j

† U jaE dxcSj~xn ,xc!OaJS
a~xc!Sa~xc ,xl !,

~1!

whereU ja is the unitary matrix of neutrino mass-flavor mix
ing amplitudes,Ub j

† is its Hermitian conjugate,a andb nu-
merate flavors,j numerates the neutrino mass eigenstatesSj
and Sa are, correspondingly, the Feynman propagators
neutrino mass speciej with massmj and of charged lepton
flavor a, andJD

b is the current involved in the neutrino de
tection process, localized around the space-time pointxn .

The total amplitude that will describe the detection
charged lepton and neutrino events will contain, besides
factor ~1!, also positive and negative energy wave functio
of different finite particles involved in the detection proce
These factors are of a particular nature, they do not affect
dependence of the amplitude on the space-time coordin
xl and xn , hence they will be omitted as irrelevant to th
main topic of this paper. Due to these factors, however
well as, in typical cases, due to the positive-frequency ch
acter of the source, the integration region overxc in ~1! will
be effectively restricted to the causal past of both pointsxn
andxl .

The Feynman propagatorS(x,y)[Sm(x2y) for the Dirac
field of massm has the form

Sm~x!5~ iga]a1m!Dm~x!, ~2!

where Dm(x) is the Feynman propagator for the Klein
Gordon field of massm. This propagator has the parametr
integral representation~first considered by Schwinger
Dyson, and Feynman in the papers collected in@10#!

Dm~x!52
1

8p2
lim

e→10
E

0

`

dlexpF2
i

2S lx21
1

l
@m22 i e# D G ,

~3!

wherex25x•x5xaxa is the Lorentz interval squared. Th
factors of typeOa in the amplitude Eq.~1! will have an
effect that in the neutrino propagator the term proportiona
a unit matrix will not contribute, and only that proportion
to the Dirac gamma matrices will remain. This general pro
erty is due to the equalityOaOb50. Thus in ~1! we can
replaceSj (xn ,xc) by S̃j (xn ,xc)[ S̃mj

(xn2xc), where

S̃m~x!5 iga]aDm~x!. ~4!

III. MONOCHROMATIC SOURCE

In this section we investigate the case of a monochrom
source currentJS

a(x) that can arise, for instance, in the pr
cess of pion decay. Let

JS
a~x!}e2 ip•x, ~5!
n
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with constant four-momentump. In the case of a pion we
would haveJS

a(x)}]afp(x)}paexp(2ip•x), wherefp(x)
is the pion wave function. We make the notation

xnc5xn2xc , xlc5xl2xc , xnl5xn2xl . ~6!

In the amplitude~1! we represent the propagators using~2!–
~4!, first perform integration overxc , then over the param
etersl l andln that appear in the representation~3!, respec-
tively, for charged lepton and neutrino propagators. T
integral overxc is Gaussian, hence it can be evaluated
actly; preexponential factors can be obtained after integra
overxc by taking partial derivatives with respect toxl andxn
according to~2!. The remaining integral overl l , ln will be
evaluated afterwards in the stationary phase approximat

Consider the integral overxc of one of the terms in the
sum of ~1!. The phase in the exponent of the integrand w
stem from the expression~3! for propagators, and from the
source current in~1!. It will be given by

f52
1

2
l lxlc

2 2
1

2
lnxnc

2 2p•xc . ~7!

Its extremal pointxc5xc(l l ,ln) is determined from the
equation

]f

]xc

[l lxlc1lnxnc2p50. ~8!

We also have for the matrix of the second derivatives

]2f

]xc
a]xc

b
52~l l1ln!gab , ~9!

so that integration overxc will produce a factor

E dxce
if5

4ip2

~l l1ln!2
eif

* , ~10!

wheref* is the value of the phasef at the extremal point:

f* 52
l llnxnl

2 2m212p•~l lxl1lnxn!

2~l l1ln!
. ~11!

Now consider the integral over thel ’s. It will be evalu-
ated in the stationary phase approximation. The phase o
integrand is given by

F5f* 2
1

2S ml
2

l l

1
mn

2

ln
D , ~12!

whereml andmn are the masses, respectively, of the charg
lepton and of the neutrino. The stationary point is determin
by differentiating~12! using ~11!, or by the equivalent con-
ditions in the convenient form obtained using~7! and ~8!:

]F

]l l

[2
1

2
xlc

2 1
ml

2

2l l
2

50,
]F

]ln

[2
1

2
xnc

2 1
mn

2

2ln
2

50.

~13!
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4420 57YU. V. SHTANOV
In these equationsxc5xc(l l ,ln) is the solution of Eq.~8!.
From ~13! we have the relation

l lxlc5pl , lnxnc5pn , ~14!

satisfied by the extremal values ofl ’s, wherepl andpn are
the four-momenta that the charged lepton and the neut
respectively would have were they free classical partic
moving from the space-time creation pointxc respectively to
the registration pointsxl andxn . Then Eq.~8! expresses the
energy-momentum conservation law, the condition fro
which the extremal pointxc with extremall ’s can be found
most easily.

We also need the matrix of the second derivatives ofF
overl ’s at the extremal point. Differentiating the identity~8!
we find

]xc

]l l

5
xlc

l l1ln

,
]xc

]ln

5
xnc

l l1ln

, ~15!

and, differentiating~13!,

]2F

]l l
2

52
xlc

2

l l1ln

2
ml

2

l l
3

52ml
2 2l l1ln

l l
3~l l1ln!

, ~16!

]2F

]ln
2

52
xnc

2

l l1ln

2
mn

2

ln
3

52mn
2 2ln1l l

ln
3~l l1ln!

, ~17!

]2F

]l l]ln

52
xlc•xnc

l l1ln

52
pl•pn

l lln~l l1ln!
. ~18!

Let

m5Ap•p ~19!

be the effective mass of the source. In the case of pion de
this will be equal to the pion massmp . In a realistic case

m2ml@mn , ml@mn . ~20!

Below we will see@cf. Eq. ~29!# that in the limitmn→0 the
extremal values ofl ’s remain finite. Thus we can approx
mate the determinant of the matrix]2F/]l i]l j by its limit
asmn→0. The result is

detS ]2F

]l i]l j
D '2S ]2F

]l l]ln
D 2

52S pl•pn

l lln~l l1ln!
D 2

.

~21!

Therefore the integral overl ’s will produce a factor

2pl lln~l l1ln!

pl•pn

eiF
* , ~22!

whereF* is the extremal value of the phaseF, which is
given by

F* 52mlAxlc
2 2mnAxnc

2 2p•xc , ~23!
o
s

ay

with xc being the extremal point off at extremal values of
l ’s—the solution to~8!,~13!. Using the extremality condi-
tions ~8!,~13! we easily find

]F*
]xl

52pl ,
]F*
]xn

52pn , ~24!

and

F* 52pl•xl2pn•xn52p•xl2pn•xnl . ~25!

Note that the four-momentapl andpn lie in the plane formed
by the four-vectorsp andxnl , and are determined by energy
momentum conservation.

Combining together the factors calculated in~10! and
~22!, dropping the resulting overall numerical constanti /8p,
and using~25! we obtain the expression for the amplitude~1!
in the case of a monochromatic source

e2 ip•xl(
j

l lln

~l l1ln!pl•pn

ODgapn
aOS~ml2gbpl

b!

3Ub j
† U jae2 ipn•xnl, ~26!

whereOD5OaJD
a , OS5OaJS

a . Note that the coordinate de
pendence of the currentJS(x) has transformed to the phas
of ~26!. Also note that the extremal values ofl ’s as well as
the four-momentapl and pn under the sum~26! depend on
the neutrino speciej . However, the prefactors in our expre
sion ~26!, as well as in~30! below, are calculated only up to
terms proportional tomn

2 ; with this precision they can be
taken in the limitmn50.

The extremal values ofl l andln determined by the sys
tem of Eqs.~8!,~13! can be easily obtained from the kinema
ics of the problem. Let us denote byt and byd correspond-
ingly the time difference and the absolute spatial dista
between the eventsxn andxl in the rest frame of the sourc
@in which pa5(m,0)#, and byv l and vn the velocities, re-
spectively, of the charged lepton and of the neutrino in t
frame ~see Fig. 1!. In the rest frame of the source one has

FIG. 1. Time and length definitions in the neutrino source r
frame.
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57 4421SPACE-TIME DESCRIPTION OF NEUTRINO FLAVOR . . .
t lc5
d2vnt

v l1vn

, dl :5uxlcu5v l t lc , tnc5
d1v l t

v l1vn

,

dn :5uxncu5vntnc , ~27!

where alsodl denotes the spatial distance in the source
frame between the pointxl of charged lepton detection an
the extremal pointxc , and dn has the same meaning for
neutrino. Then

xlc
2 5S d2vnt

v l1vn
D 2

~12v l
2!, xnc

2 5S d1v l t

v l1vn
D 2

~12vn
2!,

~28!

and, using~13!, we obtain

l l5
ml

Axlc
2

5
v lEl

dl

, ln5
mn

Axnc
2

5
vnEn

dn

, ~29!

where El and En are the energies, respectively, of th
charged lepton and of the neutrino in the rest frame of
source. In this notation and in the approximation ofmn50
for the prefactors~but not for the phase! the amplitude~26!
will acquire the form

e2 ip•xl

md
ODgapn

aOS~ml2gbpl
b!(

j
Ub j

† U jae2 ipn•xnl.

~30!

By the way, from the expressions~29! it is clear that the
extremal values ofl ’s remain finite in the limit ofmn→0, as
was stated above.

We shall now estimate the applicability limits of the st
tionary phase approximation used. Our approximation w
be good when the extremal values ofl ’s are much larger
than their dispersions determined by the mat
]2F/]l i]l j . Using ~29! and ~16!–~18! we obtain after
straightforward analysis the conditions

dl<dn!mdl
2 or dn<dl!mdn

2 , ~31!

under which our approximation is valid. They imply also t
condition

md@1, ~32!

which is quite reasonable.
In the limit of ~20! the four-momentapl and pn change

relatively very slightly with the neutrino mass speciesj , and,
we remember, our prefactors in~30! were actually calculated
in this limit. In this case the space-time behavior of thel -n
pair detection probability is given by

Pba~xn ,xl !}
1

d2F(
j

uUb j
† U jau2

1(
j Þk

uUb j
† U jaUak

† Ukbucos~pjk•xnl1w jk
ab!G ,

~33!
st

e

ll

wherepj andpk are neutrino four-momenta of mass speci
correspondingly,j andk, pjk5pj2pk , andw jk

ab are constant
phases that stem from the product of matricesU andU†. The
second sum in the square brackets of~33! describes space
time oscillations of the probability. If one is interested in th
conditionalprobability—that a neutrino event of flavorb is
detected providedsomeneutrino event has been detected
this is given by the expression

Pba
~cond!~xn ,xl !5

Pba~xn ,xl !

(bPba~xn ,xl !
5(

j
uUb j

† U jau2

1(
j Þk

uUb j
† U jaUak

† Ukbucos~pjk•xnl1w jk
ab!.

~34!

In other words, this is the relative frequency of detecting
neutrino event of flavorb. It is normalized to unity as
(bPba

(cond)(xn ,xl)51.
From Eq.~33! or ~34! one obtains the oscillation lengt

and oscillation time of the probability considered. Using t
energy-momentum conservation in the source rest fram
reference one has

pjk
0 5

D jk

2m
, upu jk[upj u2upku'2

D jk

2v lm
52

D jkEl

2vnmEn

,

~35!

where approximation uses the assumption~20! that a neu-
trino has very small mass, and

D jk5mj
22mk

2 . ~36!

Thus, oscillation lengthLosc and oscillation timeTosc of the
( jk) component of~33! in this frame of reference are given
respectively, by~we use the limit ofvn51)

Losc5
m

El

L, Tosc5
m

En

L, ~37!

where

L5
2En

uD jku
~38!

is the standard expression. To proceed to any other refer
frame what one has to do is to transform the four-vec
componentspjk

a obtained in~35! to this new frame. The ex-
pressions~37! and the relevant expressions in the laborato
frame of reference have been obtained in@7#.

If one of the particles, a charged lepton or a neutrino
not observed, then the probability of detecting the other o
is uniform in space and time. This is quite obvious witho
any calculations and is due to the fact that thel -n pair cre-
ation probability for a monochromatic source is homog
neous in space and time. If a neutrino is not detected, os
lations in the charged lepton detection probability disapp
also due to orthogonality of neutrino mass eigenstates. T
last cause will operate with any type of source, not neces
ily monochromatic. Specifically, it is the necessity of sum
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4422 57YU. V. SHTANOV
ming the probability over the neutrino flavor indexb that
will eliminate the oscillatory terms in this case. A detaile
discussion of these issues is presented in@7#.

IV. WAVE-PACKET SOURCE

First of all let us analyze in a little more detail theeffec-
tive region of integration overxc in ~1! in the case of a
monochromatic source considered in the previous section
other words, it is the region of constructive interference fro
which most of the contribution to the integral in~1! comes.
The extension of this region in space-time around the
tremal pointxc is determined by the covariance matrix~9!
for given values ofl ’s, and by the variation ofl ’s that are
determined by the covariance matrix]2F/]l i]l j with the
components~16!–~18!. First, using~9! and ~29! we obtain
the estimate of the linear dimensionsdx of the effective re-
gion of integration for fixed extremal values ofl ’s as

dx.~l l1ln!21/25Adldn

End
<A d

En

. ~39!

Next, we must estimate the linear dimensionsdxc of the
spread of the extremal valuexc(l l ,ln) caused by the sprea
dl of the values ofl ’s. This latter spread can be estimat
using ~21! as

dl.UdetS ]2F

]l i]l j
D U21/4

'Al lln~l l1ln!

pl•pn

. ~40!

Then using~15!,~27!,~29! and the conditiondl!l l ,n pro-
vided by Eq.~31!, we will have the estimate

dxc.
ddl

l l1ln

.dA l lln

pl•pn~l l1ln!
'Ad

m
. ~41!

Approximations ‘‘' ’’ in ~40! and ~41! use smallness of the
neutrino mass and become equalities in the limitmn→0. The
last value in~39! is larger than that in~41! hence the dimen-
sion of the region of constructive interference will be es
mated by~39!.

In realistic situations the source of neutrinos can often
approximated by a wave packet with sharp energy and
mentum distribution ~therefore small relative energy
momentum spread!. Let us suppose that in the rest frame
the source the spread in the coordinate space issx , in mo-
mentum spacesp , so thatsxsp;1. The source also ha
finite coherence time; in the case of the pion this will
determined by its lifetime, or by its collision time with th
environment. Typically, however, the time spreads t of the
wave packet is much larger than its spatial spread and
latter will determine most of the interesting effects.

If the source is to a high precision monochromatic so t
its spatial and temporal spread is sufficiently large, nam
if

dx!sx ,s t , ~42!

then we can use the expressions from the previous sectio
the detection probability amplitude whenever the effect
region of integration overxc ~region of constructive interfer
In

-

-

e
o-

f

he

t
y,

for
e

ence! lies well within the source wave packet. Because
Eq. ~39! the conditions~42! essentially imply

d!En3min~sx
2 ,s t

2!. ~43!

Spatiotemporal oscillations in the mutual detection pro
ability can be observed only up to certain relative distan
between the detection points of a charged lepton and a
trino. We are going to determine such maximal distanc
calledcoherence lengths, beyond which oscillations cease t
occur. The reason for such distances to exist is that for
ferent neutrino massesmj andmk the corresponding center
~extremal points! xj andxk of the integration region inxc are
different. If they become sufficiently separated in space-ti
they may no longer be able to lie simultaneously within t
wave packet of the source; thus components in the proba
ity amplitude that correspond to different neutrino mass s
cies will not be able to interfere.

Consider this effect quantitatively. The shift four-vect
xjk5xj2xk lies in the plane of the four-momentapl andpn ,
and can be decomposed into componentsxjk

( l ) and xjk
(n) that

go, respectively, along the directions ofpl and pn . These
components can be easily estimated. Using Eq.~27! we ob-
tain, for the time components~approximation usesvn'1 and
Dv l ,Dvn!v l ,vn),

t jk
~ l !'

Dvn

~v l1vn!2
~d1v l t !'2

D jkEl

2mEn
2

dn , ~44!

t jk
~n!'

Dv l

~v l1vn!2
~d2vnt !'2

D jkml
2

2m2En
2

dl , ~45!

where D jk is given by ~36!. The distancesdl and dn then
change as

Ddl52Ddn'vnt jk
~n!2v l t jk

~ l !'2
D jkml

2

2m2En
2

dl1
D jk

2mEn

dn .

~46!

For large enough absolute values oft jk5t jk
( l )1t jk

(n) and/orDdl

the centersxj and xk will not be able to lie simultaneously
within the source wave packet. Components in the proba
ity amplitude which correspond to different neutrino ma
species will not be able to interfere, and probability w
cease to oscillate. This will determine coherence lengths
the detection probability oscillations in various cases.

In the case

dn5
ml

2

mEn

dl ~47!

from ~46! it follows that Ddl'0, and the shiftxjk is in the
temporal direction in the source rest frame. For a sufficien
large value ofd5dl1dn the absolute value of the shiftt jk
becomes larger than the extensions t of the source wave
packet in the temporal direction. This determines cohere
lengthLc—the largest value ofd at which oscillations can be
observed. In the case considered~47! it is determined by
using ~44!, ~45!, and~47! as
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57 4423SPACE-TIME DESCRIPTION OF NEUTRINO FLAVOR . . .
Lc5s tEnLS 11
mEn

ml
2 D , ~48!

with L given by ~38!. The condition~43! necessary for our
approximation will imply that the formula~48! is valid for

s t ,
sx

2

s t

@LS 11
mEn

ml
2 D . ~49!

Equation~47! implies rather special experimental coinc
dence conditions. In a less special case

dn.
ml

2

mEn

dl , ~50!

the second term in the last expression of~46! dominates. In
this case the coherence length will be determined by
condition that eitherut jku becomes larger thans t , or/and
uDdl u becomes larger thansx . Using~44! and~46! we obtain
in this case

Lc5Lm3minS sx ,s t

En

El
D . ~51!

The condition~43! will determine the validity limit of~51! to
be @see Eq.~37!#

sx ,
s t

2

sx

@
m

En

L5Tosc; s t ,
sx

2

s t

@
m

El

L5Losc. ~52!

The case

dn,
ml

2

mEn

dl ~53!

can describe the situation when the momentum of
charged lepton is measured to a good accuracy by meas
its time of flight. Its analysis is quite similar to that of th
previous cases. The oscillations in the probability will disa
pear at the length

Lc5
m2En

ml
2

L3min~sx ,s t!, ~54!

and the analysis is valid as long as the estimate~43! is sat-
isfied, which gives

sx ,s t ,
sx

2

s t

,
s t

2

sx

@
m2

ml
2

L. ~55!

If the source wave packet is sufficiently broad in spa
and if one of the particles, a charged lepton or a neutrino
not observed, the probability of observing the other one w
not oscillate in space and time. This is because after integ
ing the probability~33! over one of the variables$xl ,xn% the
oscillatory terms are averaged to approximately zero. Ho
ever, with the source wave packet sufficiently narrow
space@but still such that the condition~42! or its equivalent
~43! holds#, namely,
e

e
ing

-

e
is
ll
t-

-

sx!L, ~56!

even if the accompanying charged lepton is not observed
neutrino flavor oscillations can be observed relative to
source spatial position. Indeed, when integrating the de
tion probability Pba(xn ,xl) over xl in the source rest frame
we notice that only in a small region ofxl the probability will
be nonzero and will be given by~33!. This will be the region
for which the extremal values ofxc lie within the wave
packet of the source. The linear dimensions of this region
similar to sxm/El , as can be inferred from Fig. 1, and E
~56! follows from the condition that these dimensions
much smaller than the oscillation lengthLosc which is given
by ~37!. Then, after integration overxl the phases of the
oscillatory terms in~33! will be fixed and their dependenc
on the value ofxn will remain. Detection of a neutrino alon
is the case most frequently discussed in the literature.

Consider this effect more thoroughly. The phasepjk•xnl
in the oscillating term in the probability~33! can be written
in terms of the distancesdl anddn introduced in~27!. Choos-
ing thez axis in the direction ofpn in the source rest frame
one will have

pjk5~pjk
0 ,0,0,upu jk!, xnl5~ t,0,0,d!. ~57!

Taking into account the values pjk
0 5D jk/2m,

upu jk'2D jkEl /2vnmEn @see Eq.~35!# and using~27!, one
obtains the standard expression for the phase

pjk•xnl5
D jk

2vnm
S dn2

El

En

dl D 1
D jkEl

2vnmEn

~dn1dl !5
dn

vnL

5
tnc

L
. ~58!

From this expression it is again clear that if the distancedn is
fixed with accuracy better thanL by the position of the
source wave packet relative to the neutrino detector,
phases of the probability oscillations will remain fixed ev
after integration of~33! over the unobserved pointxl , and
the oscillations will be observed with respect to the value
dn . This condition again leads to the estimate~56!.

Remarkably, the phase~58! does not depend ondl . This
fact can also be explained as follows. Ifdn is fixed anddl
is changing, this means that the four-vectorxnl changes~say,
by the amountDxnl) in the direction of the charged lep
ton’s four-momentumpl ~this is clear from Fig. 1!. Then
the oscillation phase change ispjk•Dxnl}pjk•pl52Dpl

•pl52D(pl
2)/250. The expression~58! for the phase coin-

cides with that derived in@7#.
As noted already at the end of the previous section, an

it was discussed in@7#, if a neutrino is not detected oscilla
tions in the charged lepton detection probability disappea
any case due to orthogonality of neutrino mass eigensta
Specifically, it is the summation of~33! over the neutrino
flavor indexb that will eliminate the oscillatory terms.
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V. SOURCE IN A LOCALIZED SPACE-TIME REGION

First consider a hypothetical process in which a neutri
together with a charged lepton, is created at a fixed sp
time pointxc . Note that in this case the energy and mome
tum of the neutrino created is totally undetermined. T
probability amplitude of detecting neutrino-induced charg
lepton production of flavorb at the space-time pointxn will
contain the factor

Aba~xn ,xc!5(
j

Ub j
† U ja S̃j~xnc!, ~59!

if the charged lepton created together with the neutrino
point xc is of flavor a.

Again, as was already discussed in Sec. II, the total a
plitude that will describe the detection of a neutrino eve
will contain, besides the factor~59!, also those related to th
processes of creation, propagation, and detection of o
particles involved. These factors, however, are of particu
nature, and do not affect the dependence of the probab
amplitude of neutrino detection on the space-time pointsxn
andxc ; hence they will be omitted.

The propagatorSm(x) of Eq. ~2! has the leading
asymptotic behavior~see, e.g.,@11#!

Sm~x!;S e3p i /4

4A2p3/2D m3/2

~x2!3/4S 11
gaxa

Ax2 D exp~2 imAx2!,

for mAx2@1, ~60!

Sm~x!;
gaxa

2p2~x2!2
, for mAx2!1. ~61!

Hence, oscillations in the neutrino detection probabilities c
develop in space and time aroundxn only whenmjAxnc

2 *1

at least for the largest of the neutrino masses, sinceS̃j (xnc)

do not differ for differentj in the opposite limitmjAxnc
2 !1.

Consider, therefore, the case ofmjAxnc
2 @1 for all j . In this

limit the amplitude~59! up to one and the same factor will b
given by

Aba~xn ,xc!}(
j

mj
3/2Ub j

† U jaexp~2 imjAxnc
2 !. ~62!

Note the mass dependence of the coefficients in the
equation. The space-time variation of the probabilities of
corresponding processes will be given by

Pba~xn ,xc!5tr@¯Aba
† ~xn ,xc!¯Aba~xn ,xc!¯#

}(
j

mj
3uUb j

† U jau2

1(
j Þk

~mjmk!
3/2uUb j

† U jaUak
† Ukbu

3cos~mjkAxnc
2 1w jk

ab!, ~63!

where
,
e-
-
e
d

at

-
t

er
r
ty

n

st
e

mjk5mj2mk , ~64!

and w jk
ab are constant phases that stem from the produc

matricesU and U†. The last term in Eq.~63! describes
space-time oscillations of the probabilities.

The conditional probability that a neutrino event of flav
b is detected providedsomeneutrino event has been detect
is given by the expression

Pba
~cond!~xn ,xl !5NF(

j
mj

3uUb j
† U jau21(

j Þk
~mjmk!

3/2

3uUb j
† U jaUak

† Ukbucos~mjkAxnc
2 1w jk

ab!G ,
~65!

where the normalization factorN is given by

N215(
j

mj
3Ua j

† U ja . ~66!

The conditional probability has the normalization prope
(bPba

(cond)(xn ,xl)51 and gives the relative frequency of d
tection of the neutrino event of flavorb.

As an illustration consider mixing between two ma
eigenstatesn1 andn2, with two flavor eigenstatesnm andne .
Let, for definiteness,m1.m2,

nm5n1cosu1n2sinu, ne52n1sinu1n2cosu, ~67!

and let a neutrino be created in a flavor eigenstatenm . The
corresponding conditional probabilities of detecting mu
and electron events atxn will be

Pm
~cond!~xn ,xc!5N@m1

3cos4u1m2
3sin4u12~m1m2!3/2

3sin2ucos2ucos~DmAxnc
2 !#, ~68!

Pe
~cond!~xn ,xc!5N@m1

31m2
322~m1m2!3/2cos~DmAxnc

2 !#

3sin2ucos2u, ~69!

whereDm5m12m2, and

N215m1
3cos2u1m2

3sin2u. ~70!

The last terms in the square brackets in Eqs.~68! and ~69!
describe space-time oscillations of the probabilities. Beca
of mass dependence of the coefficients in these express
the amplitude of oscillations will be suppressed ifm2!m1,
and cosu is not too small.

The conditionsmjAxnc
2 @1, together with the asymptotic

form ~60! of the propagator, imply that all the mass eige
state neutrinosn j arrive at the space-time pointxn practically
as on-mass-shell particles, with four-velocityu5xnc /Axnc

2 .
In the opposite limitmAx2!1 the Feynman propagator ha
the asymptotic behavior~61! independent of mass. Then, fo
instance, in our example of two neutrinos, in the regi
m2Axnc

2 !1!m1Axnc
2 , which exists in the case of large rela

tive mass difference,m2!m1, one obtains
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Pm
~cond!~xn ,xc!5NFsin4u1

p

8
z3cos4u1Ap

2
z3/2sin2ucos2u

3cos~z23p/4!G , ~71!

Pe
~cond!~xn ,xc!5NS 11

p

8
z32Ap

2
z3/2cos~z23p/4! D

3sin2ucos2u, ~72!

where

z5m1Axnc
2 , N215sin2u1

p

8
z3cos2u. ~73!

It is important to stress the difference between the ca
of the sufficiently extended wave packet source and the fi
space-time point source. In the first case the probability
detecting a neutrino is given by Eq.~33! with the phase
given by Eq.~58!; in the second case the probability is give
by Eq. ~63!. The origin of this difference lies in the fact tha
in the former case the amplitude~1! involves integration over
xc , whereas in the latter case the pointxc is fixed. In the
asymptotic limit in which Eq.~60! is valid neutrino propa-
gators have strong preexponential mass dependence th
sults in the peculiar mass dependence of the probability~63!.
With propagators in the asymptotic limit~60! it can be ex-
plicitly demonstrated that integration of the amplitude~1!
over xc in the case of a monochromatic source produ
neutrino-mass-dependent factors that cancel out such
exponential neutrino-mass dependence of the probability
plitude and also modify the phase of the probability amp
tude, leading to Eq.~30!. In view of the derivation of Eq.
~30! presented in Sec. III such a demonstration in the m
text would be redundant. Therefore, in order to make t
point clear, we perform it in the Appendix.

In reality, creation of a neutrino cannot occur at a fix
space-time point. However, a possible creation region m
happen to be sufficiently localized by the nature of t
source or by the experimenter, so that the phase differe
between components of~62! will be well fixed. Thus the
equations of this section will apply to the situation when
neutrino creation region is localized in space and time
such a way that

d@mjkA~xn2xc!
2#&1, ~74!

where by d@ f (xc)# we signify characteristic variation o
f (xc) due to variation ofxc over the creation region. As th
probability oscillation phasesmjkA(xn2xc)

2 are symmetric
with respect toxn↔xc interchange, this means that the cr
ation region is to be restricted in space and time by theos-
cillation time and length scales in the vicinity of the poi
xn . Since for small variations

d@mjkA~xn2xc!
2#'2

mjkxnc•dxc

Axnc
2

, ~75!
es
d
f

re-

s
re-

-
-

in
s

ht

es

n

-

these oscillation scales will be determined by the fo
momentum differencespjk5mjkxnc /Axnc

2 , with fixed four-
vectorxnc /Axnc

2 which is the neutrino four-velocityu at the
detection eventxn .

The same is also true as regards the detection poin
order to observe space-time oscillations of the probability
detection point must be localized within the limits given b
the oscillation time and length scales. If this is not so, that
if the resolution of the detection point is insufficient, th
oscillatory terms in the probabilities~68!,~69!,~71!,~72! will
be averaged, and only the so-calledglobal effects of appear-
ance and disappearance of neutrino flavor species will
observed.

Let us consider these criteria within the model of tw
neutrinos considered above. We have

p12p25uDm5p1

Dm

m1

, ~76!

wherep1 is the four-momentum of the heavier neutrino ma
specie at the detection point. In the case of close neut
masses,Dm!m1, the oscillation length and time will be
given by

Losc.Tosc.
m1

EnDm
'

m1
2

En
2

L, ~77!

whereL is given by Eq.~38! andEn is the neutrino energy a
the detection point. Then Eqs.~68!, ~69! will be valid as long
as

sx ,s t,
m1

2

En
2

L. ~78!

In the case of mass hierarchy,m1@m2 , we have

p12p2.p1 , ~79!

so that

Losc.Tosc.EH
21 , ~80!

whereEH is the energy of the heavier neutrino at the det
tion point. The equations for the probabilities in this case
valid for

sx ,s t,EH
21 . ~81!

Due to incoherent distribution of the sources in realis
situations~in a supernova or in the Sun!, or due to insuffi-
cient resolution of the space-time detection point as was
cussed above, the probabilities~68!,~69!,~71!,~72! will be av-
eraged over the source and/or detection sites and
oscillatory terms are likely to be averaged to give zero.
this case the probabilities will describe the so-calledglobal
effects of appearance and disappearance of neutrino fl
species. To obtain the relevant expressions in this case
must consider the integral of the~unaveraged, uncondi
tioned! probability Pm(xn ,xc) or Pe(xn ,xc) over the space-
time pointsxn , xc using the asymptotic expressions~60! and
~61! for the propagators and the property of the tra
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4426 57YU. V. SHTANOV
trg (a
† gb)54dab . Thus the expressions for averaged unco

ditioned probabilitiesPm andPe will be

Pm5CE
D
dxnc„tr@ S̃ 1

†~xn ,xc! S̃1~xn ,xc!#cos4u

1tr@ S̃ 2
†~xn ,xc! S̃2~xn ,xc!#sin4u…, ~82!

Pe5CE
D
dxnc„tr@ S̃ 1

†~xn ,xc! S̃1~xn ,xc!#

1tr@ S̃ 2
†~xn ,xc! S̃2~xn ,xc!#…sin2ucos2u, ~83!

whereC is a constant,Sj5Smj
as before, the expression fo

S̃m is given by Eq.~4!, and the integrals proceed over th
effective regionD of the values ofxnc determined by the
distribution of sources and detection points.

In the casemjAxnc
2 @1 the averagedconditional prob-

abilities will look like

Pm
~cond!5

m1
3cos4u1m2

3sin4u

m1
3cos2u1m2

3sin2u
, ~84!

Pe
~cond!5

~m1
31m2

3!sin2ucos2u

m1
3cos2u1m2

3sin2u
. ~85!

In the casem2Axnc
2 !1!m1Axnc

2 the averaged probabili
ties are more complicated because of more complica
space-time dependence of the corresponding unaver
probabilities. The result is

Pm
~cond!5

sin4u1hcos4u

sin2u1hcos2u
, ~86!

Pe
~cond!5

~11h!sin2ucos2u

sin2u1hcos2u
, ~87!

where h is a weighted average of the value
(p/8) z35(p/8) m1

3(xnc
2 )3/2 and is given by

h5

pm1
3E

D
uxu2~x2!25/2dx

8E
D
uxu2~x2!24dx

. ~88!

In the last expressionuxu25(x0)21uxu2, the integrals proceed
over the effective regionD of the values ofx5xnc deter-
mined by the distribution of sources and detection poin
and the space-time components ofxnc are to be taken in the
detection reference system.

To see whether the assumption of a well-localized n
trino source is realistic, let us make some estimates for
cases of solar and supernova neutrinos. We take all the
-

d
ed

,

-
e

ata

from the book@2#. In all these cases one hassx!s t , and it
is the value ofs t which will be important.1 In the case of
solar neutrinos

s t;1027 cm, En;10 MeV. ~89!

With D125m1
22m2

2;1024 eV2 in the case of close neutrin
masses the condition~78!, under which the formulas of this
section will apply, will read

m1*3 eV. ~90!

Since En
21;10212 cm, in the case of mass hierarchy th

formulas of this section will not work.
For supernova neutrinos from the core

s t;10214– 10213 cm, En;100 MeV, ~91!

so thatEn
21;10213 cm, the condition~81! will be on the

edge of fulfillment and the formulas of this section might
applicable.

For supernova neutrinos from the neutrino sphere

s t;1029 cm, En;10 MeV, ~92!

in the case of mass hierarchy the expressions of this sec
will not be applicable. In the case of close neutrino mas
for D125m1

22m2
2;1024 eV2 we will have the condition

m1*0.3 eV, ~93!

for which the relevant expressions of this section will app
In connection with the above examples we must note t

the probabilities~68!–~72! will refer to neutrinos as they
appear from the source. Subsequent neutrino scattering
the particles of the solar or supernova media will result in
well-known Mikheyev-Smirnov-Wolfenstein effect~see
@1,2# !, which is not considered in this paper.

To end this section let us stress once again that the crit
under which the equations of this section will apply a
given by Eq.~78! in the case of close neutrino masses, a
by Eq. ~81! in the case of neutrino mass hierarchy. In t
previous sections we discussed the case of a neutrino so
with sharp energy and momentum distribution; the formu
derived there are valid under conditions~31! and ~43!. Note
that these two cases, namely, of broad wave-packet neu
source and neutrino source localized in space-time, are
clusive but not exhaustive. Intermediate cases when nei
~31! and ~43! nor ~78! or ~81! are valid should be studied
separately, perhaps by different methods.

1Note that in@2# as well as in some other literaturesx usually
stands for the emittedneutrino wave packet spread. In this pape
both sx ands t denote the spread of the neutrinosource. Also note
that we put the speed of light as well as the Planck constant to u
and measures t in units of length.
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VI. SUMMARY

In this paper we treated the problem of neutrino flav
oscillations by consistently using space-time description
the relevant processes of particle creation and subseq
detection. We described the EPR-like experiments of det
ing a neutrino together with the accompanying charged
ton, as well as the standard textbook examples of neut
flavor space-time oscillations, without invokinga priori the
notion of particle trajectories. From our analysis it is al
clear why in fact it is possible to use such a notion. T
effective integration region~the region of constructive inter
ference! in the probability amplitude~1! over the space-time
point xc of particle creation is localized around the pla
determined by particle classical trajectories, and the con
bution to the phase of the amplitude comes mainly from
action along these trajectories. In the case of a wave pa
neutrino source our treatment enabled us to obtain in a ra
simple way the coherence lengths of the oscillations.
also considered the case of a neutrino source strongly lo
ized in space and time and in this case found out depend
of the probability oscillation amplitude on the neutrin
masses.
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APPENDIX: ALTERNATIVE DERIVATION
OF THE PROBABILITY AMPLITUDE

In this appendix we shall derive the expression for
probability amplitude~30! in the case of a monochromat
source, in the limit mnAxnc

2 @1, mlAxlc
2 @1, using the

asymptotic expression~60! for the propagators in the coor
dinate representation. The integral overxc in ~1! will be
evaluated in the stationary phase approximation, accord
to the assumption that the main contribution comes from
region of stationary phase of the integrand. This phase st
from the propagators and from the source current in~1! and
is given by the expression

F~xl ,xn ,xc!52mlAxlc
2 2mnAxnc

2 2p•xc , ~A1!

and its stationary point is determined from the condition

]F

]xc
a

[mlx̂lc
a 1mnx̂nc

a 2pa50, ~A2!

where the notation is usedx̂5x/Ax2. Sincex̂lc and x̂nc are
just four-velocities, respectively, of the charged lepton a
the neutrino at their respective detection points, Eq.~A2!
expresses the total energy-momentum conservation. N
that for different neutrino massesmn5mj the value ofxc
determined by Eq.~A2! will be different. Letxj be the solu-
tion for xc of Eq. ~A2! with mn5mj . For further conve-
r
f

ent
t-
-
o

e

i-
e
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al-
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.
-

n
-

e

g
e
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d

te

nience we make the notationxl2xj5xl j , xn2xj5xn j , and
x̂l j 5ul , x̂n j5un . The phaseF can be developed in power
of x5xc2xj around the stationary pointx50 with the result

F~xl ,xn ,xc!5
1

2
Cabxaxb1¯, ~A3!

where

Cab5cl~ul !a~ul !b1cn~un!a~un!b2~cl1cn!gab ,
~A4!

cl5
ml

Axl j
2

, cn5
mj

Axn j
2

. ~A5!

Dropping the higher order terms in~A3!, denoted by dots,
we will be interested in the value of a Gaussian integral

E d4xexpS i

2
CabxaxbD . ~A6!

This, up to a constant factor, is given byudet$Cab%u21/2. In
terms of the velocitiesv l and vn , respectively, of the
charged lepton and the neutrino in the source rest frame
determinant is given by

det$Cab%5clcn~cl1cn!2@~ul•un!221#5clcn~cl1cn!2

3
~v l1vn!2

~12v l
2!~12vn

2!
. ~A7!

The values ofcl andcn given by~A5! can be easily seen to
coincide with the extremal values, respectively, ofl l andln
determined by the system of Eqs.~8!, ~13!, and given by
~29!.

Combining all the factors in~1! together we obtain the
expression for the amplitude in the limit ofmn→0 for the
prefactors and up to an irrelevant constant as

(
j

clcn

~cl1cn!

A~12v l
2!~12vn

2!

v l1vn

3ODgaun
aOS~12gbul

b!Ub j
† U jaeiF j

5
1

md
ODgapn

aOS~ml2gbpl
b!(

j
Ub j

† U jaeiF j ,

~A8!

whereF j is the value of the phase at the stationary point
xc5xj that corresponds to neutrino mass speciej . In view of
the expression~A1! for the phase we see that this value
identical to that of Eq.~23!. Therefore the expression~A8!
for the amplitude coincides with that of Eq.~30!.

Note that the preexponential factors in the final express
~A8! for the amplitude remain finite in the limit ofmn50 in
spite of the fact that neutrino propagators~60! have preex-
ponential factorsmn

3/2. The reason is that the strong neutrin
mass dependence of these factors has been counterbal
by the neutrino-mass dependence of the valuexn j

2 as well as
of the factorudet$Cab%u21/2, with the determinant given by
~A7!. In the case of a fixed neutrino creation point there is
integration overxc and factorsmn

3/2 remain in the probability
amplitude, Eq.~62!.
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