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General formulation of covariant helicity-coupling amplitudes

S. U. Chung
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

~Received 30 June 1997; published 5 December 1997!

A general formulation is given for constructing covariant helicity-coupling amplitudes involving two-body
decays with arbitrary integer spins. The decay amplitudes are given exclusively in terms of both definite orbital
angular momentum and total intrinsic spin. A systematic method is developed for calculating the energy and
momentum dependence of daughter particles in the decay amplitudes, and a general formula for arbitrary
integer spins is given. A number of illustrative examples is worked out, among which is that of the Higgs
boson decay into two gauge bosons.@S0556-2821~97!03423-1#

PACS number~s!: 13.25.2k, 13.60.Le, 13.75.Lb, 14.40.2n
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I. INTRODUCTION

The purpose of this paper is to present a derivation
covariant helicity-coupling amplitudes for a parent state w
an arbitrary integer spinJ decaying into two daughter state
with arbitrary integer spinss ands. It was shown in a pre-
vious paper by the author@1# that, if a daughter particle ha
spin 1 or higher, the helicity-coupling amplitudes depend
general on the Lorentz factorg5E/m, wherem is the mass
of the daughter andE is its energy in the parent rest fram
The paper emphasized a simplification that results from
exclusive use of spin tensors@2# and momenta defined alon
the helicity axis for the daughter states. This technique se
rates out the angular distribution contained in theD function
from the problem of finding a proper energy and moment
dependence of the helicity-coupling amplitudes.

The author has recently written an updated preprint on
paper@3#, which gives a more consistent formulation wi
detailed intermediate steps for calculating the amplitudes
volving decays of practical importance. In this paper
different—and perhaps more efficient—technique has b
developed for constructing the decay amplitudes. For a m
basic exposition of the spin formalisms, the reader may w
to consult the CERN Yellow Report by the author@4# and
also a recent paper by Filippiniet al. @5# on covariant spin
tensors.

Theg dependence is not unique, depending in genera
the exact form of the decay amplitude one uses. It is sho
that the functional form ofg becomes unique and simple,
the decay amplitudes are given in terms of definite orb
angular momentuml and total intrinsic spinS. Therefore,
one has systematically and exclusively utilized the project
operators corresponding to pureS and purel , with their
definitions suitably extended in this paper to the relativis
case. This method provides, in addition, a means of syst
atically handling all the decays which involve photons in t
final state on an equal footing.

Section II is devoted to an exposition of the classic de
amplitudes in the helicity formalism. What is new here is t
general formula giving the number of independent helici
coupling amplitudes for the decay processJ→s1s, where
the spins involved are any arbitrary integers. The results
also given in a tabular form for a few cases of practi
importance. Sections III and IV cover the problem of co
570556-2821/97/57~1!/431~12!/$10.00
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structing the decay amplitudes in the momentum space,
spin-1 wave functions and their projection operators. In p
ticular, the form of a rank-J tensor is derived correspondin
to the general wave function for an arbitrary integer spinJ
with a givenz component of spinm, i.e., the tensor counter
part to the familiar ket stateuJm&. To the best of the author’s
knowledge, such a tensor has been derived for the first t
in a closed form. In Sec. V, a derivation is given of th
invariant l S-coupling amplitudes for the decayJ→s1s
and, finally, the recoupling coefficient connecting them
those in the helicity basis is given—which represents
main result of this paper.

In Secs. VI through X, a wide-ranging and carefully ch
sen array of decay problems is given to illustrate the meth
developed in this paper. The first example~Sec. VI! is the
simplest which requires introduction of the Lorentz factor.
very important consequence is that the distribution result
from an S-wave decay turns out to be anisotropic, whi
nevertheless tends toward an isotropic distribution in
nonrelativistic limit. The second example~Sec. VII! deals
with a decay in which both the Lorentz factor and the dep
dence on the mass of the parent particle appear togeth
the decay amplitudes. In the third example~Sec. VIII!, a
polynomial dependence on the Lorentz factor appears for
first time. Moreover, this example shows how different po
nomials of the Lorentz factor could appear in the helici
coupling amplitudes, depending on the way the tensors
used to construct them.

A decay mode in which both decay products have sp
greater than one is treated in the fourth example~Sec. IX!.
Specifically, a hypothetical Higgs boson decay into twoW
bosons is considered, which includes the possibility of pa
violation in the decay. It is shown in this example that t
Lorentz factor is crucial in deducing that the Higgs bos
coupling to twoW bosons, in the high-mass limit, tends t
wards that of a boson decaying into two bosons~Goldstone
bosons!. In the final example~Sec. X!, the case of a spin-1
object decaying into a spin-2 and a spin-1 particle is giv
As the reader will discover, this example becomes very c
voluted, requiring intrinsic spins 1, 2, and 3 and an orbi
angular momentum of up to 4 in the final state. For suc
case—and for more complex cases—it is very important t
one is in possession of a general formula, obviating the n
to work out contractions involving high-rank tensors~see
431 © 1997 The American Physical Society
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432 57S. U. CHUNG
Sec. V for such a general formula!. If the spin-1 decay prod-
uct turns out to be a photon, then this example illustrate
case in which the number of independent parameters in
helicity basis becomes smaller than that in thel -S basis. For
further examples involving photons, the reader may con
Refs.@1# and @3#. Conclusions are given in Sec. XI.

II. HELICITY-COUPLING AMPLITUDES

Consider a state with spin~parity!5J(hJ) decaying into
two states withs(hs) ands(hs). The decay amplitudes ar
given, in the rest frame ofJ,

Mln
J ~q,w;M !}^q,w,lnuJMln&^JMlnuMuJM&

}DMd
J* ~w,q,0!Fln

J , ~1!

whereM is the invariant operator for the decay, andl andn
are the helicities of the two final-state particless ands with
d5l2n. The symbolM stands for thez component of the
spin J in a coordinate system fixed by production proce
The helicitiesl andn are rotational invariants by definition
The direction of the break-up momentum of the decay
particles is given by the anglesq andw in theJ rest frame.
Let x̂, ŷ, and ẑ be the coordinate system fixed in theJ rest
frame. It is important to recognize, for applications to s
quential decays, the exact nature of the body-fixed~helicity!
coordinate system implied by the arguments of theD func-
tion given above. Letx̂h , ŷh , and ẑh be the helicity coordi-
nate system fixed by thes decay. Then by definitionẑh de-
scribes the direction of thes in the J rest frame~termed the
helicity axis in this paper! and they axis is given byŷh

} ẑ3 ẑh and x̂h5 ŷh3 ẑh .
The helicity-coupling amplitudeFJ given by

Fln
J }^JMlnuMuJM& ~2!

is a rotational invariant. Parity conservation in the dec
leads to the relationship

Fln
J 5hJhshs~2 !J2s2sF2l2n

J ~3!

while, if the decay productss and s are identical, the fol-
lowing additional relationship holds:

Fln
J 5~2 !JFnl

J ~4!

for both integer and half-integer spins.
The helicity-coupling amplitudesFJ are, in the nonrela-

tivistic limit, related to thel S-coupling amplitudesGl S
J via

Fln
J 5(

l S
S 2l 11

2J11 D 1/2

~ l 0SduJd!~sls2nuSd!Gl S
J ,

~5!

where the coupling amplitudes have been given the norm
ization

(
l S

uGl S
J u25(

ln
uFln

J u2 ~6!
a
he

lt

.

g

-
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and the (l 1m1l 2m2ul 3m3) stands for the usual Clebsch
Gordan coefficients. The formula~5! for the helicity-
coupling amplitudes results from the usual scheme of c
pling of the angular momenta but with thez axis chosen
along the helicity axis. Note that the orbital angular mome
tum l has zeroz component in this case and the particles
has z component2n. The formula~5! was given for the
nonrelativistic case by Jacob and Wick@6# in Appendix B of
their pioneering paper on helicity formalism. The main pu
pose of this paper is to show how this formula could
modified in the relativistic limit; the new formula is given i
Sec. V.

It should be useful to give here a general formula for t
number of independent amplitudes forFln

J . From Eq. ~1!
one sees that the helicities are restricted byul2nu<J. As
there is a one-to-one correspondence between the numbe
independentFln

J ’s and that ofGl S
J ’s if the particles involved

are massive, the formula applies to both. It turns out that
formula is simpler if it is given as a sum of those for bo
positive and negative intrinsic parities of the parent partic
The combined number may be succinctly written

NJ5~a1b11!~a2s1s11!1~s1s2a!~2J11!,
~7!

where

a5min$J,s1s%,

b5min$J,s2s%, ~8!

and one has assumed here thats>s. This formula breaks
down into three cases as follows. IfJ>s1s, one finds

NJ5~2s11!~2s11!. ~9!

But if s2s,J,s1s, one has

NJ5~J1s2s11!~J2s1s11!1~s1s2J!~2J11!.
~10!

Finally, if J,s2s, one obtains

NJ5~2s11!~2J11!. ~11!

The formula~9! is obvious from the form of the amplitud
Fln

J which has two subscripts corresponding to spinss and
s. The expression~11! shows thatNJ is simply 2s11 if
J50. In the l S-coupling scheme, the number of indepe
dentGl S

J ’s is merely given by 2s11; this is the number of
total intrinsic spinS, and l must be equal toS if J50.
Finally, the number of independent amplitudes for a giv
intrinsic parity of the parent particle is given b
NJ

(1)5(NJ11)/2 if F00
J is nonzero@see Eq.~3!#, while the

number isNJ
(2)5(NJ21)/2 for the opposite intrinsic parity

for which F00
J 50. Note thatNJ is always odd. If the two

daughter particles are identical, then there exist additio
constraints on the amplitudes and the resulting numberNJ is
smaller than that given above. The numberNJ is tabulated in
Table I for a few low values of the spins.
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III. DECAY AMPLITUDES IN MOMENTUM SPACE

The decay amplitude~1! is simply given by the helicity-
coupling amplitude itself if one setsq5w50. It is obvious
now that the helicity-coupling amplitudes can be deriv
from the tensor formalism by restricting to the four-vecto
defined along thez axis. Letp, q, andk be the four-momenta
for the statesJ, s, ands with massesW, m, andm,

pa5~p0 ,p!, p25W2, qa5~q0 ,q!, q25m2,

ka5~k0 ,k!, k25m2, ~12!

and letr 5q2k be the break-up four-momentum. Using th
Lorentz metricḡab , one has

pa5 ḡabpb5~p0 ,2p!, ~13!

and similarly for the other four-vectors. In this paper, one h
adopted the notationsp, q, k, and r to stand forboth the
four-momenta and the magnitudes of the three-mome
One can then define the following unitless quantities deri
from them:

gs5
q0

m
, gsbs5

q

m
, gs5

k0

m
,

and

gsbs5
k

m
. ~14!

One may now write an explicitly covariant expressi
~Lorentz scalar! for the helicity-coupling amplitudes

Fln
J 5(

a
gaAa~ln!, ~15!

where

TABLE I. Number of independent amplitudes.

s s J NJ
(2) NJ

(1) NJ

0 0 0 0 1 1
1 0 0 0 1 1
1 0 1 1 2 3
1 0 2 1 2 3
1 1 0 1 2 3
1 1 1 3 4 7
1 1 2 4 5 9
1 1 3 4 5 9
2 0 0 0 1 1
2 0 1 1 2 3
2 0 2 2 3 5
2 0 3 2 3 5
2 1 0 1 2 3
2 1 1 4 5 9
2 1 2 6 7 13
2 1 3 7 8 15
2 1 4 7 8 15
s

a.
d

Aa~ln!5@pn,r l ,v~l!,«~2n!,f* ~d!#. ~16!

The square bracket here indicates that a Lorentz invar
amplitude is to be constructed out of the five variablesp, r ,
v, «, andf* . As the momenta involved are all parallel wit
the helicity axis, this formula merely gives the energy a
momentum dependence of the helicity-coupling amplitud
but no angular dependence, as this is already contained in
D function in the expression~1!. The variablesa stand for
the set$l ,S%, and the constantsga are the analogue of the
Gl S

J in Eq. ~5!.
The covariant functionAa depends onp andr as well as

the momentum-space wave functions~or tensors! f* (d),
v(l), and«(2n) for the particlesJ, s, ands, whered, l,
and2n are thez components of spin as defined before. No
that the complex conjugate of theJ wave function appears in
the above formula: it represents the initial state while tho
of s and s correspond to the final states. As shown w
examples in later sections, one may setn51 or n50 with-
out loss of generality, depending on the intrinsic parities
volved. In other words, the four-vectorp is used in the co-
variant amplitudes at most once, if necessary, in order
satisfy the requirement of parity conservation. The covari
function Aa can depend on any multiples~up to l ) of r ,
reflecting orbital angular momenta allowed in the decay
summary of notations used in this paper is given in Table

IV. WAVE FUNCTIONS AND PROJECTION OPERATORS

The polarization four-vectors or wave functions approp
ate for the particlesJ51, s51, ands51 are well known.
Along with the relevant momenta

pa5~W;0,0,0!,

qa5~q0 ;0,0,q!5~gsm;0,0,gsbsm!,

~17!

ka5~k0 ;0,0,2q!5~gsm;0,0,2gsbsm!,

r a5~q02k0 ;0,0,2q!,

where W5q01k0, q05Am21q2, k05Am21q2, and
r 5q2k, the wave functions in theJ rest frame are given by

TABLE II. Two-body decay:J→s1s.

Parent Daughter 1 Daughter

Spin J s s
Parity h

J
hs hs

Helicity l n
Momentum p q k
Energy p0 q0 k0

Mass W m m
Energy/mass gs gs

Velocity bs bs

Wave function f* (l2n) v(l) «(2n)
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fa~6 !57
1

A2
~0;1,6 i ,0!, ~18!

fa~0!5~0;0,0,1!,

va~6 !57
1

A2
~0;1,6 i ,0!,

va~0!5~gsbs ;0,0,gs!,

«a~6 !57
1

A2
~0;1,6 i ,0!,

«a~0!5~2gsbs ;0,0,gs!.

Note that

pafa~l!5qava~l!5ka«a~l!50

for any l.
These polarization four-vectors satisfy

pafa~m!50,

fa* ~m!fa~m8!52dmm8, ~19!

(
m

fa~m!fb* ~m!5 g̃ab~W!,

where

g̃ab~W!52 ḡab1
papb

W2 . ~20!

The last equation of Eq.~19! is the usual projection operato
for spin-1 states. Note that, in theJ rest frame,g̃(W) has a
zero time-component and11 for the space-components.v

and« satisfy similar conditions, but with their owng̃ ’s, i.e.,
g̃(m) and g̃(m).

One is now ready to exhibit all the Lorentz invarian
involving spin-1 wave functions. One has adopted, in t
paper, exclusive use of the modified Lorentz metricg̃(W)
for all the Lorentz scalars in the problem

@a•b#[aa g̃ab~W!bb5~a•b!, ~21!

wherea andb are arbitrary four-vectors.a andb are three-
vectors defined theJ rest frame. The rationale for this ap
proach is that pure-spin projection operators should be u
to form Lorentz scalars, since the wave functions fors ands
are not those of a pure spin-1 state in theJ rest frame~a
general formulation of this approach is given in the ne
section!. Inspection of Eq.~19! shows that the modified met
ric g̃(W) is in fact equal to a spin-1 projection operat
consisting of a new spin-1 wave function, e.g.,x(m), defined
to be the same asf(m) @see Eq.~18!#. One difference is tha
f(m) is a wave function defined in the initial system a
x(m) is that set up in the final state. Note that
s

ed

t

@a•b#5(
m

amxm* ~m!bnxn~m!5(
m

amxm~m!bnxn* ~m!.

~22!

If the quantization axis forx(m) is defined along the helicity
axis and ifa and/orb are either the wave functions define
with the same quantization axis or four-vectors with zerox
and y components, then an important simplification occu
the sum onm disappears in Eq.~22!.

Using the prescription~21! or ~22!, it can be shown that
all the Lorentz scalars evaluated in theJ rest frame may be
written as

@r •v~m!#5gs rdm0 ,

@r •«~m!#5gs rdm0 ,

@r •f* ~m!#5rdm0 ,
~23!

@v~m!•«~m8!#5~21!m@m21gsgs~12m2!#dm,2m8,

@v~m!•f* ~m8!#5@m21gs~12m2!#dm,m8,

@«~m!•f* ~m8!#5@m21gs~12m2!#dm,m8.

There exists a second form of Lorentz invariant involvi
the totally antisymmetric rank-4 tensor. For any four vecto
a, b, c, andd, it can be written

@abcd#5eabgdaabbcgdd. ~24!

Relevant invariants in the problem are

@pv~m!rf* ~m8!#5 imWrdmm8,

@p«~m!rf* ~m8!#5 imWrdmm8, ~25!

@pv~m!r«~m8!#52 imWrdm2m8,

@pv~m!«~m8!f* ~m9!#5 iW@m~12m92!1m9~12m82!gs

2m8~12m2!gs#dm9,m1m8.

The spin-2 wave functions can be written

fab~m!5 (
m1m2

~1m11m2u2m!fa~m1!fb~m2!, ~26!

where m5m11m2. This is orthogonal top, symmetric in
the two indices and traceless under contraction withg or
g̃(W). The spin-2 wave functions fors and s are con-
structed in the same way, but they are not traceless w
respect to the modified metricg̃(W). For example, note that
for s52,

@ g̃~W!:v~m!#5A2

3
~gs

221!dm0 , ~27!

where a colon indicates contraction over two neighbor
indices. It becomes traceless in the limitgs→1. The spin-3
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wave functions can be constructed in a similar manner, s
ing with spin-2 and spin-1 wave functions, as follows:

fabg~m!5 (
n1m2

~2n11m3u3m!fab~n1!fg~m3!

5 (
m1m2m3

~1m11m2u2n1!
k

in

e

rt- 3~2n11m3u3m!fa~m1!fb~m2!fg~m3!,

~28!

wherem5m11m21m3. Note that these are orthogonal top
and are symmetric under interchange of any pairs
$a,b,g%. They are also traceless, i.e., they vanish under c
traction withg or g̃(W) for any pairs in$a,b,g%. In general,
the wave function for a particle of spinJ is a rank-J tensor
fa1a2•••aJ~m!5 (
m1m2•••

~1m11m2u2n1!~2n11m3u3n2!•••~J21nJ221mJuJm!fa1~m1!fa2~m2!•••fa
J~mJ!, ~29!
en.

y

ion

for
with m5m11m21•••1mJ and normalized by

fabg•••

* ~m!fabg•••~m8!5~2 !Jdmm8 ~30!

and

@f* ~m! ^ f~m8!#5dmm8, ~31!

where the symbol̂ stands for contraction of two equal-ran
tensors with the modified metricg̃(W).

The Clebsch-Gordan coefficients appearing in Eq.~29!
have the following simple expressions@7#:

~ jm11121u j 11m!5F ~ j 2m!~ j 2m11!

~2 j 11!~2 j 12! G1/2

,

~ jm10u j 11m!5F ~ j 2m11!~ j 1m11!

~2 j 11!~ j 11! G1/2

, ~32!

~ jm21111u j 11m!5F ~ j 1m!~ j 1m11!

~2 j 11!~2 j 12! G1/2

.

Using these formulas, one deduces that the general spJ
wave function~29! can be transformed into

fd1•••dJ~m!5@aJ~m!#1/2(
m0

2m0/2

3(
P

fa1~1 !•••fb1~0!•••fg1~2 !•••,

~33!

where

aJ~m!5
~J1m!! ~J2m!!

~2J!!
~34!

and the indices$d1•••dJ% have been broken up into thre
distinct sets in the second summation, i.e.,$a i% with
( i 51,m1), $b i% with ( i 51,m0), and $g i% with ( i 51,m2),
where m6 stands for the numbers off(6)’s and m0 for
f(0)’s. Note that

J5m11m01m2
-

and

m5m12m2 , ~35!

and that

2m65J6m2m0 . ~36!

It is apparent that the right-hand side must be always ev
The first sum in Eq.~33! goes over the allowed values ofm0
given J and m. It is clear that the maximum is given b
J2m, so that m0 ranges from 0(1),2(3),. . . , to
J2m5even~odd!. The second sum in Eq.~33! represents a
summation on the permutations

$~1 !~1 !•••~0!~0!•••~2 !~2 !•••%.

It is seen readily that the number of terms in the summat
is

bJ~m,m0!5
J!

m1!m0!m2!
. ~37!

Note the following useful relationship:

f~2m!5~2 !mf* ~m!. ~38!

It is best to illustrate these formulas with examples
J51, 2, and 3. ForJ51 one finds that Eq.~33! reduces to
identities forf(1) andf(0). ForJ52, one finds

fab~12!5fa~1 !fb~1 !,

fab~11!5
1

A2
@fa~1 !fb~0!1fa~0!fb~1 !#, ~39!

fab~0!5
1

A6
@fa~1 !fb~2 !1fa~2 !fb~1 !#

1A2

3
fa~0!fb~0!,

and, forJ53, the wave functions take on the form

fabg~13!5fa~1 !fb~1 !fg~1 !,
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fabg~12!5
1

A3
@fa~1 !fb~1 !fg~0!1fa~1 !fb~0!

3fg~1 !1fa~0!fb~1 !fg~1 !#,
~40!

fabg~11!5
1

A15
@fa~1 !fb~1 !fg~2 !1fa~1 !

3fb~2 !fg~1 !1fa~2 !fb~1 !fg~1 !#

1
2

A15
@fa~1 !fb~0!fg~0!1fa~0!fb

~1 !fg~0!1fa~0!fb~0!fg~1 !#,

fabg~0!5
1

A10
@fa~0!fb~1 !fg~2 !1fa~0!fb~2 !

3fg~1 !1fa~2 !fb~1 !fg~0!1fa~1 !

3fb~2 !fg~0!1fa~1 !fb~0!fg~2 !

1fa~2 !fb~0!fg~1 !#1A2

5
fa~0!fb~0!

3fg~0!.

V. INVARIANT l S-COUPLING AMPLITUDES

In order to find a connection of the tensor formalism w
that of thel S-coupling scheme, one needs to develop
concept of total intrinsic spinS formed out of thes and s
polarization four-vectors and that of the pure orbital angu
momentuml built out of r . Consider now a wave function
xS(ms) which is to form the basis for constructing the k
stateuSms&. One demands that this wave function have z
time component in theJ rest frame very similar tof @see
Eqs.~18! and ~29!#:

xa1•••as ;b1•••bs

S ~ms!

5 (
mamb

~smasmbuSms!xa1•••as

s ~ma!xb1•••bs

s ~mb! ,

~41!

where rank-s tensorxs(ma) and rank-s tensorxs(mb) are
the ‘‘rest-state’’—and fictitious—wave functions, invente
for constructing projection operators, and hence exa
equal to Eq.~33! with the indexJ changed to eithers or s.
Consequently,xS is a tensor of ranks1s which acts on
rank-s v and rank-s « tensors, which are the ‘‘correct’
relativistic tensors corresponding to the decay productss and
s. The corresponding projection operator is a tensor of r
2(s1s) given by

PS5(
ms

xS~ms!x
S* ~ms!. ~42!

It is seen that the invariant amplitudes must contain the pr
ucts
e

r

o

ly

k

d-

@xs* ~ma! ^ v~l!#5 f l
s~gs!dmal ,

@xs* ~mb! ^ «~2n!#5 f n
s~gs!dmb2n , ~43!

where the symbol̂ indicates, once again, a contraction b
tween two tensors of equal rank with the modified met
g̃(W). The functionsf are normalized to 1 asg→1 and are
given below. The invariant amplitude corresponding to
state of pure spinS is then

eS~ln!5@v~l! ^ xS* ~ms! ^ «~2n!#

5~sls2nuSd! f l
s~gs! f n

s~gs!dmsd
,

~44!

where d5l2n. The first ^ signifies a contraction of the
indices$a1•••as% @see Eq.~41!# with the modified Lorentz
metric g̃(W), and the second one of the indices$b1•••bs%.
A very important simplification results from using the sp
cialized wave functions defined along the helicity axis: the
is no summation on the indexms in the projection operator
PS. The projection operator is merely given byxS(d) mul-
tiplied by Eq.~44!.

The function f l
s(gs) for s51 is trivially given by, from

Eq. ~23!,

js~l![ f l
~1!~gs!5H @x~1!* ~l!•v~l!#

1 for l561

gs for l50,

~45!

where a dot within the bracket indicates, once again, a c
traction of two four-vectors with the modified Lorentz metr
g̃(W). For s52, the functionf takes on the form

f l
s~gs!5 (

l1l2

~1l1 1l2u2l!2js~l1!js~l2! ~46!

so that

f l
~2!~gs!5H 1 for l562

gs for l561

2

3
gs

21
1

3
for l50.

~47!

Similarly for s53, one finds

f l
s~gs!5 (

l1l2l3

~1l1 1l2u2la!2~2la 1l3u3l!2js~l1!

3js~l2!js~l3! ~48!

so that
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f l
~3!~gs!55

1 for l563

gs for l562

4

5
gs

21
1

5
for l561

2

5
gs

31
3

5
gs for l50.

~49!

Finally, one may work out the functionf for s54 as well:
from

f l
s~gs!5 (

l1l2l3l4

~1l11l2u2la!2~2la1l3u3lb!2

3~3lb1l4u4l!2js~l1!js~l2!js~l3!js~l4!

~50!

one sees that

f l
~4!~gs!5

{
1 for l564

gs for l563

6

7
gs

21
1

7
for l562

4

7
gs

31
3

7
gs for l561

8

35
gs

41
24

35
gs

21
3

35
for l50.

~51!

The general formula for thef functions can be obtained b
inspecting Eqs.~43! and ~33!:

f m
j ~g!5aj~m!(

m0

bj~m,m0!~2g!m0, ~52!

wherej , m, andg can stand fors, l, andgs or s, n, andgs .
As in the previous section,m0 ranges from0(1), 2(3),. . . ,
to J2m5even~odd!. It is easy to verify that this formula
gives the results~45! for j 51, ~47! for j 52, ~49! for j 53,
and ~51! for j 54.

The analogue of the ket stateul m& may be represented b
a rank-l tensort l (m), defined to have zero time compone
in the J rest frame, since the orbital angular momentum
defined only in this frame. The tensort l (m), which corre-
sponds to the ‘‘rest-state’’—and fictitious—wave functio
invented for constructing projection operators, is analog
to the tensorsxs(ma) and xs(mb) introduced in Eq.~41!.
Therefore, the tensort l (m) is exactly equal to Eq.~33! with
the indexJ changed tol . The corresponding projection op
erator is a tensor of rank 2l given by

Pl 5(
m

t l ~m!t l * ~m!. ~53!

Again, one can simplify the treatment of orbital angular m
mentum by definingt l (m) along the helicity axis@seef in
Eq. ~18!#. If l 51, one finds

@t~1!* ~m!•r #5rdm0 . ~54!
s

s

-

This can be easily generalized, so that one finds

@t l * ~m! ^ rr •••#5cl r l dm0 , ~55!

where

cl 5~1010u20!~2010u30!•••~ l 21010ul 0!

5l ! F 2l

~2l !! G
1/2

. ~56!

One is now ready to evaluate the final element of
invariant l S-coupling amplitudes

@pn,xS~d!,t l ~0!,f* ~d!#, ~57!

wheren51 for s1s1l 2J odd andn50 otherwise. For
example, ifs50 ands5l 5J51, then the invariant ampli-
tude can be written as

@px~d!t~0!f* ~d!#}W~10 1du1d!. ~58!

The right-hand side results from evaluating the expressio
the J rest frame. It can be shown that the last expression
Eq. ~25! with gs5gs51 is equivalent to the result above
Consider another example: ifs50, l 52 ands5J51, then
the invariant amplitude can be written, from Eqs.~23! and
~26!,

@x~d!•t~2!~0!•f* ~d!#}~20 1du1d!. ~59!

One can infer in general that the invariant amplitude of E
~57! should take on the form, in theJ rest frame,

@pn,xS~d!,t l ~0!,f* ~d!#}Wn~ l 0SduJd!. ~60!

The left-hand side is in reality proportional to the matr
element

^l 0 SduMuJd&. ~61!

One can expand the stateuJd& in the usual way:

uJd&5 (
j 1d1 j 2d2

~ j 1d1 j 2d2uJd!u j 1d1 j 2d2&. ~62!

This is reduced to Eq.~60!, if M is applied from the left first
and then followed by the ket statesul 0& and uSd&.

The invariant helicity-coupling amplitude may now b
written, from Eqs.~44! and ~60!,

Fln
J 5(

l S
g

l S
Al S~ln!, ~63!

where

Al S~ln!5S 2l 11

2J11 D 1/2

~ l 0SduJd!~sls2nuSd!

3Wnr l f l
s~gs! f n

s~gs!, ~64!

where the square-root factor has been introduced so tha
formula above has an appearance similar to Eq.~5!. The
coefficientcl has been absorbed intog. The complex param-
eters g are unknown, to be determined from experime
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Once again, it is to be noted thatn51 for s1s1l 2J odd
and n50 otherwise. One could make the right-hand s
unitless by substitutingW andr by Ŵ5W/W0 and r̂ 5r /r 0,
wherer 0 refers to ther corresponding to the nominal mas
valuesW0, m0, andm0. One sees then that Eq.~63! reduces
to Eq. ~5!, i.e., g

l S
→Gl S

J in the limit Ŵ→1, r̂→1, f l
s→1,

and f n
s→1.

The expression~63! is the main result of this paper. Th
r l dependence is familiar, but theW andg dependence are
not; theW factor is necessary to insure Lorentz covariance
four dimensions, and the functional forms ong result from
the boosted wave functions one needs to employ fors ands.
A few examples are given below for illustration.

VI. b1„1235…˜v1p

Let J, s, ands stand for theb1(1235), thev and thep.
The net intrinsic parity is given byh

J
hshs511 and

Fl
J51F2l

J , and there are two allowed orbital angular m
menta, i.e.,l 50 or l 52. The helicity-coupling amplitudes
have the following expansion in the nonrelativistic limit@see
Eq. ~5!#:

A2F1
J 5A2

3
G0

J1A1

3
G2

J ,

F0
J5A1

3
G0

J2A2

3
G2

J , ~65!

whereJ51. According to the Particle Data Group@8#, one
has, experimentally,

UG2
J

G0
JU50.2660.04. ~66!

There are two covariant decay amplitudes correspond
to S and D waves in the problem, before introduction
projection operators:

A0~l!5@v~l!•f* ~l!#,

A2~l!5@v~l!•t~2!~0!•f* ~l!#c2r 2. ~67!

The form of theA2 given above may be more efficient, e
pecially for high values ofl , than that given in the earlie
paper@1#:

A2~l!5@v~l!•r #@r •f* ~l!#2
1

3
r 2@v~l!•f* ~l!#.

The helicity-coupling amplitudes are given by

Fl
J5g0A0~l!1g2A2~l!, ~68!

whereg0 andg2 are arbitrary constants. Evaluating theA’s
in the J rest frame, one obtains

F1
J 5g02

1

3
g2r 2,
e

n

g

F0
J5gsS g01

2

3
g2r 2D , ~69!

whereJ51. In the limit gs→1, the expressions of Eq.~69!
reduce to those of Eq.~65! with the replacement

G0
J5A3g0 , G2

J52A2

3
g2r 2. ~70!

When the amplitudes are constructed with the aid of p
jection operators, the invariant helicity-coupling amplitud
are simply given by Eq.~63!:

A2F1
J 5A2

3
g01A1

3
g2r 2,

F0
J5SA1

3
g02A2

3
g2r 2D gs . ~71!

The g’s in this expression are of course proportional to t
g’s in Eq. ~69!.

It is instructive to work out the angular distribution fo
this decay. Suppose thatv decays into 3p and the orienta-
tion of the normal to its decay plane is given by (q8,w8) in
the helicity coordinate system$x̂h ,ŷh ,ẑh% as defined in Sec
III. Then the overall decay amplitude is

MJ~q,w,q8,w8,M !}(
l

DMl
J* ~w,q,0!Fl

JDl0
s* ~w8,q8,0!.

~72!

In terms of the density matrixr defined in theJ rest frame,
the angular distributionI is

I ~q,w,q8,w8!} (
MM8
ll8

r
MM8

DMl
J* ~w,q,0!DM8l8

J
~w,q,0!

3Fl
JFl8

J* Dl0
s* ~w8,q8,0!Dl80

s
~w8,q8,0!.

~73!

For the purpose of illustration, it is sufficient to take th
special case in whichr0051 and all the other elements ar
zero. Then, after integrating overw andw8, one finds

I ~q,q8!}(
l

@d0l
J ~q!#2uFl

J u2@dl0
s ~q8!#2. ~74!

This leads to two very similar distributions:

I ~q!}uF0
Ju2cos2~q!1uF1

J u2sin2~q!, ~75!

I ~q8!}uF0
Ju2cos2~q8!1uF1

J u2sin2~q8!. ~76!

If one assumes that thegi ’s are relatively real, one obtains
from Eq. ~69!,

I ~q!}g0
2@~gs

221!cos2~q!11#1
2

3
g0g2r 2@~2gs

211!

3cos2~q!21#1
1

9
g2

2r 4@~4gs
221!cos2~q!11#,

~77!
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I ~q8!}g0
2@~gs

221!cos2~q8!11#1
2

3
g0g2r 2@~2gs

211!

3cos2~q8!21#1
1

9
g2

2r 4@~4gs
221!cos2~q8!11#.

~78!

Two noteworthy results of this exercise are~a! the S-wave
term containing the factorg0

2 is no longer isotropic in the
cosines forgs.1, and ~b! the D-wave term withg2

2 is a
polynomial of order 2 in the cosines, reflecting the fact th
the parent particle hasJ51. It is important to note, in addi
tion, that the singularities implicit with the presence of c
sines in the amplitudes are cancelled byr 2 andgs .

It is illuminating to work out the angular distributio
again within the nonrelativistic formalism with canonic
quantization. Integrating over the variables correspondin
the v decay and overw, one finds, forr0051,

I ~q!}(
l l 8

Gl
J Gl 8

J* (
m

~ l ms2muJ0!~ l 8ms2muJ0!

3Yl
m~q,0!Yl 8

m
~q,0!. ~79!

With the substitutions~70!, it can be shown that this angula
distribution reduces to that of Eq.~77! in the limit gs→1.

VII. p̄p„

3P2…˜f 2„1270…1p

The net intrinsic parity ish
J
hshs521 and there are two

helicity-coupling amplitudesF2
(2) andF1

(2) corresponding to
l 51 andl 53:

A2F2
~2!52

2

A5
G1

~2!2
1

A5
G3

~2! ,

A2F1
~2!52

1

A5
G1

~2!1
2

A5
G3

~2! ~80!

in the nonrelativistic limit.
The covariant amplitudes corresponding to pure orb

angular momenta are

A15@prv•f* #,

A35@pv•t~3!~0!•f* #c3r 3, ~81!

before projection operators are introduced. The amplitu
with l512 andl511 lead to

F2
~2!5WS g12

1

5
g3r 2D r ,

F1
~2!5WgsS 1

2
g11

2

5
g3r 2D r ~82!

for two arbitrary complex constantsg1 and g3. With the
technique of projection operators, theF ’s assume the form
from Eq. ~63!,
t

-

to

l

s

A2F2
~2!52WS 2

A5
g11

1

A5
g3r 2D r ,

A2F1
~2!5WgsS 2

1

A5
g11

2

A5
g3r 2D r . ~83!

With a proper redefinition of theg’s, it can be shown that
Eqs.~82! and ~83! are identical.

VIII. a3„2050…˜f 2„1270…p

This decay is so far unobserved, but it affords an opp
tunity to explore new territory regarding the structure
helicity-coupling amplitudes. There are threeFJ’s corre-
sponding tol 51, 3, and 5:

A2F2
J5A2

7
G1

J1A2

3
G3

J1
1

A21
G5

J ,

A2F1
J5

4

A35
G1

J2
1

A15
G3

J2A10

21
G5

J , ~84!

F0
J5

3

A35
G1

J2
2

A15
G3

J1A10

21
G5

J

in the nonrelativistic limit. The covariant amplitudes are, u
ing thev andt ’s,

A1~l!5@v~l!:f* ~l!•r #,

A3~l!5@•v~l!•t~3!~0!:f* ~l!•#
W
c3r 3, ~85!

A5~l!5@v~l!:t~5!~0![f* ~l!#c5r 5

for l 51, l 53, andl 55, respectively. The notation@••#W
indicates that the first and the last free indices within@ # are
to be contracted with the modified metricg̃(W). The symbol
[ stands for contraction over three neighboring indices. O
finds

F2
J5

1

A3
S g12

2

5
g3r 21

2

21
g544D r ,

F1
J5A 2

15
gsS 2g11

1

5
g3r 22

10

21
g5r 4D r , ~86!

F0
J5A3

5H g1S 2

3
gs

21
1

3D1
4

15
g3S 3

2
gs

22
1

2D r 2

1
20

63
g5S 2

3
gs

21
1

3D r 4J r ,

whereg1, g3, andg5 are arbitrary constants. If one takes th
limit gs→1, then the substitutions
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G1
J5A7

3
g1 , G3

J52
2

5
g3 ,

and

G5
J52A 2

63
g5 ~87!

transforms Eq.~86! into Eq. ~84!.
With the introduction of projection operators, one find

from Eq. ~63!,

A2F2
J5SA2

7
g11A2

3
g3r 21

1

A21
g5r 4D r ,

A2F1
J5S 4

A35
g12

1

A15
g3r 22A10

21
g5r 4D rgs , ~88!

F0
J5S 3

A35
g12

2

A15
g3r 21A10

21
g5r 4D r S 2

3
gs

21
1

3D .

One is now confronted with a crucial difference betweenF0
J

in Eqs.~86! and~88!: it is seen that the functional forms fo
gs can be different forl 51, 3, or 5 with the amplitudes
constructed directly out ofv, whereas they are the sam
when the intermediate wave functionx is used instead.

IX. H˜W1W2

Consider the decay of a Higgs particle into two gau
bosons. The total intrinsic spinS can be 0, 1, or 2, while the
orbital angular momentuml can also be 0, 1, or 2. But sinc
H is a scalar particle, one must havel 5S50, l 5S51, or
l 5S52. For the purpose of illustration, it is assumed th
the Higgs boson decay can be parity nonconserving. In
nonrelativistic limit, the helicity-coupling amplitudes ar
given by

F66
J 5A1

3
G00

J 6
1

A2
G11

J 1A1

6
G22

J ,

F00
J 52A1

3
G00

J 1A2

3
G22

J , ~89!

whereJ50. Note that Eq.~3! is no longer valid, ifG11
J is

nonzero, and that Bose symmetry for two gauge boson
automatic in this formulation.

The decay amplitudes may be written

A00~ln!5@«~2n!•v~l!#,

A11~ln!5@p«~2n!rv~l!#, ~90!

A22~ln!5@«~2n!•t~2!~0!•v~l!#c2r 2.

The amplitudes~90! lead to

F66
J 52g006g11WHr 1

1

3
g22r

2,
,

e

t
e

is

F00
J 5g2S g001

2

3
g22r

2D , ~91!

where WH is the Higgs boson mass and one has
g5gs5gs in the H rest frame. Alternatively, one may us
Eq. ~63! to write

F66
J 5A1

3
g006

1

A2
g11WHr 1A1

6
g22r

2,

F00
J 5g2S 2A1

3
g001A2

3
g22r

2D . ~92!

This is of course equivalent to Eq.~91! with a redefinition of
the g’s. In a phenomenological approach adopted here,
seen that the Higgs boson decay into gauge bosons dep
on three parametersg00, g11, andg22, which can depend in
general on the Higgs boson and gauge-boson masses.

The decay probability is, summed over the helicities,

I}uF11
J u21uF00

J u21uF22
J u2, ~93!

since theD function is an identity forJ50. If the Higgs
boson massWH is very much larger than theW mass and the
parameterg’s depend weakly on the masses, then the de
probability I is dominated byuF00

J u2 only, i.e., bothW1 and
W2 have zero helicities. Consider now the decayH→gg. In
this caseI is given by uF66

J u2, i.e., both of theg ’s are re-
stricted to6 helicities. Note clear separation of the dec
amplitudes for these two cases.

In the standard model, the decay amplitude is given by
the lowest-order tree diagram, the Lorentz metricḡab itself,
which is contained in the amplitudeA00 in Eq. ~90!. Once
again, within the context of the projection operators used
this paper, the appropriate Lorentz metric is the modifi
one, i.e.,g̃ab(WH). It should be pointed out that parity vio
lation can occur only through the fermion loop in the dec
of Higgs bosons, and therefore it is expected to be relativ
small. If parity is conserved in the decay, then one must
g1150, and one hasF11

J 5F22
J in this case.

X. J/c˜a2„1320…r

In order to further illustrate the techniques, one treats h
a case in which boths and s have spins greater than zer
This decay involvesS51, 2, and 3 withl taking on the
values 0, 2, or 4.

The invariant amplitudes may be written, noting thatx is
a tensor of rank 3,

A01~ln!5e~1!~ln!xab;r
~1! ~d! g̃br~W! g̃ag~W!fg* ~d!,

A2S~ln!5eS~ln!@t~2!~0!:xS~d!•f* ~d!#c2r 2, ~94!

A43~ln!5e~3!~ln!@x~3!~d![t~4!~0!•f* ~d!#c4r 4,

whereS can be 1, 2, or 3 and the first subscript ofA stands
for l . One sees that there are five distinct amplitudes in
problem.eS(ln) is a function already defined in Eq.~44!. It
should be noted that the rank-3 tensorx is symmetric and
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traceless in the first two indices butnot with the third ~note
the semicolon indicating this distinction!.

If one insists on bypassing the projection operators,
amplitudes may be written

A01~ln!5@«~2n!•v~l!•f* ~d!#,

A21~ln!5@«~2n!•v~l!•t~2!~0!•f* ~d!#c2r 2,

A22~ln!5@«~2n!v~l!•t~2!~0!f* ~d!#c2r 2, ~95!

A23~ln!5@«~2n!•t~2!~0!•v~l!•f* ~d!#c2r 2,

A43~ln!5@«~2n!v~l![t~4!~0!•f* ~d!#c4r 4,

where the square bracket inA22 implies a contraction ove
four free indices with the totally antisymmetric rank-4 tens
@see Eq.~24!#. These lead toFJ’s with functional forms on
gs which are dependent onl in general. As the above am
plitudes are not unique, one may conclude that the resul
gs dependence is not unique either.

In a phenomenological approach, therefore, it may
more practical to simply read off the form of the helicit
coupling amplitudes from Eq.~63!:

A2F21
J 5A2

5
g011A1

5
g21r

21A1

3
g22r

21A 4

105
g23r

2

1A 1

35
g43r

4,

A2F10
J 5S 2A1

5
g012A 1

10
g21r

21A1

6
g22r

2

1A 32

105
g23r

21A 8

35
g43r

4D gsgs ,

A2F11
J 5SA1

5
g012A2

5
g21r

21A 6

35
g23r

2

2A 8

35
g43r

4D gs , ~96!

A2F0,21
J 5SA 1

15
g011A 1

30
g21r

22A1

2
g22r

21A 8

35
g23r

2

1A 6

35
g43r

4D S 2

3
gs

21
1

3D ,

F00
J 5S 2A 2

15
g011A 4

15
g21r

21A 9

35
g23r

22A12

35
g43r

4D
3S 2

3
gs

21
1

3Dgs .

If s is a photon, then the second and the fifth equati
above are absent, and the angular distribution depend
general on threeFJ’s. It is seen that there are neverthele
five g’s; one is in fact confronted with three independe
coefficients ofr 2 for threeFJ’s. In principle, with sufficient
e

r

g

e

s
in

s
t

statistics on the parent state with a finite width, one may
able to discern differentr 2 dependence for eachFJ.

XI. CONCLUSIONS

In this paper a general formalism is developed for co
structing covariant helicity-coupling amplitudesFln

J in an
arbitrary two-body decayJ→s1s ~the spins are used to
designate the particles as well—see Table II!. The decay
amplitudes are given as expansions in the total intrinsic s
S and pure orbital angular momentuml . For the purpose,
one has introduced intermediate wave functionsx(ms) and
t(m), which are the tensor analogues of the ket statesuSms&
and ul m&. By requiring that they have vanishing time com
ponents in theJ rest frame, the covariant decay amplitud
reduce to those involving three-vectors only in theJ rest
frame. This is a general rule without exception: disrega
time components of all the four-vectorsp ~parent momen-
tum!, r ~decay relative momentum!, v ~wave function for
decay products), « ~wave function for decay products),
and f* ~wave function for parent particle! in the problem;
replaceg̃(W) by d i j with i , j 51,2,3 wherever an inner prod
uct appears in the amplitudes; and replace the Lorentz sc
(pabc) by its three-vector counterpartW(a•b3c) (W is the
mass of the parent particle!. This rule applies even to an
S-wave decay, e.g., forb1(1235)→vp the amplitude is
(v•f* ) in the J rest frame~see Sec. VI!.

The helicity coupling amplitudes have been shown to
pend in general on four variables:W, r ~in this case, magni-
tude of the three-vector!, gs ~the Lorentz factor for the deca
products), andgs ~the same for the decay products), with
the latter three evaluated in theJ rest frame. Note that, if the
statesJ, s, ands have finite widths, then the massesW, m,
and m themselves are all continuous variables nad he
should be treated as variables in the problem. In addition
has been shown that the dependence on the Lorentz facto
present only if the spinss and s are greater than zero. In
deed, ifs5s50, then the covariant helicity-coupling ampl
tudeF0

J is merely given byr J, identical to the result of the
nonrelativistic formalism. It should be emphasized that
Zemach formalism@9# is essentially nonrelativistic, since th
g factors have been completely ignored in his formulatio

Energy dependence of the helicity-coupling amplitudes
a necessary consequence of the fact that the decay produs
ands have finite momenta in theJ rest frame. Specifically,
if one of the decay products is a spin-0 particle, the helicity-
coupling amplitudeFl

J is in general a polynomial of orde
s2ulu in gs , wherel is the helicity of s. The functional
dependence ongs is simple indeed ifs51; it is a monomial.
Thus F0

J is simply proportional togs . Likewise, if s52,
thenF1

J is shown to be proportional togs , but F0
J depends

on a functional form ofgs , different in general for eachl
~see Sec. VIII for an example!.

One of the main objectives of this paper has been to p
out that a more systematic and appropriate way is to emp
the projection operators for boths and s, when their spins
are greater than zero. This formalism naturally leads to ov
all multiplicative factors on theg dependence which can b
easily calculated. In addition, the formalism gives t
helicity-coupling amplitudes in terms of thel S-coupling
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amplitudes, closely resembling those familiar in the nonr
ativistic limit. This formula, given in Eqs.~63! and ~64!, is
the main result of this paper. The functional forms forg have
been shown explicitly for spins up to 4, and the gene
formula for arbitrary integer spin is given in Eq.~52!. One
may note that this formula is derived in a straightforwa
way from the general expression for a wave function of
bitrary integer spin, given in Eq.~33!. To the best knowledge
of the author, such a general expression for the wave fu
tion has been worked out for the first time in this paper.

In the limit W→`, the variablesr andg ’s also go to`.
The factor r l is in practice always replaced by a Blat
Weisskopf function~see@1#! which approaches a constant
r→`. The Lorentz factors are kinematical in origin an
therefore must remain undamped in the covariant am
tudes. One sees then that the angular distribution, in the l
W→`, is determined by only oneFab

J wherea5minulu and
b5minunu allowed in the problem. For example, consider t
decay of a Higgs particle into two gauge bosons. As
Higgs boson mass tends to infinity, the decay amplitude
essentially determined by a single helicity-coupling amp
tudeF00

J ; in other words, the gauge bosons behave as if t
were scalar particles~Goldstone bosons! @10#.

The decays involving a photon in the final state should
treated in the same way: the decay amplitudes are give
expansion in a state of definiteS andl , as if the photon were
a massive vector particle, e.g.,r(770) orv(782). One then
imposes a condition that the photon wave function have
zeroz component. The intermediate wave functionsx andt,
l-

l

-

c-

i-
it

e
is
-
y

e
an

o

required for this procedure, have nothing to do with the ph
ton; they correspond to those of unobserved~and massive!
spin-1 or higher-spin particles, defined to have zero ti
components in the parent rest frame. This approach all
for photons to be treated in exactly the same way as mas
particles—appropriate for helicity-coupling amplitudes.

The unknowns in the decay problem, denoted asgi j ’s in
this paper throughout~or simplygi ’s depending on the prob
lem!, have been treated as constants. It should be clear, h
ever, that one has chosen here amodel—one which satisfies
Lorentz invariance, incorporating the concept of definiteS
andl —but amodelnonetheless. In general, thegi j ’s should
be functions of invariant variables in the problem, but—
the absence of dynamics—the functions are unknown. I
shown that there exists a one-to-one correspondence bet
the number of theFln

J ’s andgi j ’s. This is certainly the case
without exceptions, for the decays involving massive p
ticles. However, if one of the decay particles is a photo
then the number of thegi j ’s can exceed that of theFln

J ’s, as
shown in the last example in this paper.
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