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General formulation of covariant helicity-coupling amplitudes
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A general formulation is given for constructing covariant helicity-coupling amplitudes involving two-body
decays with arbitrary integer spins. The decay amplitudes are given exclusively in terms of both definite orbital
angular momentum and total intrinsic spin. A systematic method is developed for calculating the energy and
momentum dependence of daughter particles in the decay amplitudes, and a general formula for arbitrary
integer spins is given. A number of illustrative examples is worked out, among which is that of the Higgs
boson decay into two gauge bosof80556-282(97)03423-1

PACS numbgs): 13.25-k, 13.60.Le, 13.75.Lb, 14.46n

[. INTRODUCTION structing the decay amplitudes in the momentum space, the
spin-1 wave functions and their projection operators. In par-
The purpose of this paper is to present a derivation oticular, the form of a rank} tensor is derived corresponding
covariant helicity-coupling amplitudes for a parent state withto the general wave function for an arbitrary integer spin
an arbitrary integer spif decaying into two daughter states with a givenz component of spim, i.e., the tensor counter-
with arbitrary integer spins and o It was shown in a pre- part to the familiar ket statedm). To the best of the author’s
vious paper by the authdd] that, if a daughter particle has knowledge, such a tensor has been derived for the first time
spin 1 or higher, the helicity-coupling amplitudes depend inin a closed form. In Sec. V, a derivation is given of the
general on the Lorentz factar=E/m, wherem is the mass invariant /'S-coupling amplitudes for the decay—s+o
of the daughter ané& is its energy in the parent rest frame. and, finally, the recoupling coefficient connecting them to
The paper emphasized a simplification that results from théhose in the helicity basis is given—which represents the
exclusive use of spin tensdrg] and momenta defined along main result of this paper.
the helicity axis for the daughter states. This technique sepa- In Secs. VI through X, a wide-ranging and carefully cho-
rates out the angular distribution contained in Ehéunction  sen array of decay problems is given to illustrate the methods
from the problem of finding a proper energy and momentundeveloped in this paper. The first examg&ec. V) is the
dependence of the helicity-coupling amplitudes. simplest which requires introduction of the Lorentz factor. A
The author has recently written an updated preprint on th@ery important consequence is that the distribution resulting
paper[3], which gives a more consistent formulation with from an S-wave decay turns out to be anisotropic, which
detailed intermediate steps for calculating the amplitudes innevertheless tends toward an isotropic distribution in the
volving decays of practical importance. In this paper anonrelativistic limit. The second examp(&ec. VIl deals
different—and perhaps more efficient—technique has beewith a decay in which both the Lorentz factor and the depen-
developed for constructing the decay amplitudes. For a mordence on the mass of the parent particle appear together in
basic exposition of the spin formalisms, the reader may wislihe decay amplitudes. In the third examgiec. VIII), a
to consult the CERN Yellow Report by the autH@i and  polynomial dependence on the Lorentz factor appears for the
also a recent paper by Filippieit al. [5] on covariant spin first time. Moreover, this example shows how different poly-
tensors. nomials of the Lorentz factor could appear in the helicity-
The y dependence is not unique, depending in general ogoupling amplitudes, depending on the way the tensors are
the exact form of the decay amplitude one uses. It is shownsed to construct them.
that the functional form ofy becomes unique and simple, if A decay mode in which both decay products have spins
the decay amplitudes are given in terms of definite orbitagreater than one is treated in the fourth exan{@ec. 1X.
angular momentunr” and total intrinsic spirS. Therefore, Specifically, a hypothetical Higgs boson decay into tWo
one has systematically and exclusively utilized the projectiorbosons is considered, which includes the possibility of parity
operators corresponding to puBand pure/, with their  violation in the decay. It is shown in this example that the
definitions suitably extended in this paper to the relativisticLorentz factor is crucial in deducing that the Higgs boson
case. This method provides, in addition, a means of systencoupling to twoW bosons, in the high-mass limit, tends to-
atically handling all the decays which involve photons in thewards that of a boson decaying into two bos¢@sldstone
final state on an equal footing. bosons. In the final exampléSec. X, the case of a spin-1
Section Il is devoted to an exposition of the classic decaybject decaying into a spin-2 and a spin-1 particle is given.
amplitudes in the helicity formalism. What is new here is theAs the reader will discover, this example becomes very con-
general formula giving the number of independent helicity-voluted, requiring intrinsic spins 1, 2, and 3 and an orbital
coupling amplitudes for the decay proceks s+ o, where  angular momentum of up to 4 in the final state. For such a
the spins involved are any arbitrary integers. The results arease—and for more complex cases—it is very important that
also given in a tabular form for a few cases of practicalone is in possession of a general formula, obviating the need
importance. Sections Ill and IV cover the problem of con-to work out contractions involving high-rank tensoisee
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Sec. V for such a general formyldf the spin-1 decay prod- and the ¢;m;/,m,|/3sm3) stands for the usual Clebsch-
uct turns out to be a photon, then this example illustrates &ordan coefficients. The formuld5) for the helicity-
case in which the number of independent parameters in theoupling amplitudes results from the usual scheme of cou-
helicity basis becomes smaller than that in th& basis. For  pling of the angular momenta but with theaxis chosen
further examples involving photons, the reader may consulélong the helicity axis. Note that the orbital angular momen-

Refs.[1] and[3]. Conclusions are given in Sec. XI. tum / has zeraz component in this case and the partiole
hasz component—v. The formula(5) was given for the
Il. HELICITY-COUPLING AMPLITUDES nonrelativistic case by Jacob and W[(ﬂﬁ in Appendix B of

. . _ o their pioneering paper on helicity formalism. The main pur-
Consider a state with spiparity)=J(7;) decaying into pose of this paper is to show how this formula could be
two states withs(7s) ando(7,). The decay amplitudes are modified in the relativistic limit; the new formula is given in

given, in the rest frame af, Sec. V.
5 It should be useful to give here a general formula for the
My (9,9, M) (D, @ A V[IMN)(IMA Y| M|IM) number of independent amplitudes f6f . From Eq. (1)

one sees that the helicities are restricted| by v|<J. As
there is a one-to-one correspondence between the number for
independenE; ’s and that ofG’S's if the particles involved

are massive, the formula applies to both. It turns out that the
formula is simpler if it is given as a sum of those for both
positive and negative intrinsic parities of the parent particle.
The combined number may be succinctly written

«D¥ (¢, 9,0)F; 1)

whereM is the invariant operator for the decay, andndv
are the helicities of the two final-state partickkand o with
5=\—v. The symbolM stands for thez component of the
spinJ in a coordinate system fixed by production process
The helicitiesh andv are rotational invariants by definition.
The direction of the break-up momentum of the decaying
particles is given by the angle® and¢ in theJ rest frame.
Let X, y, andz be the coordinate system fixed in theest
frame. It is important to recognize, for applications to se-ynere

qguential decays, the exact nature of the body-fifteslicity)

coordinate system implied by the arguments of théunc- a=min{J,s+ o},

tion given above. Lef<h, §/h, andih be the helicity coordi-

nate system fixed by the decay. Then by definitioa;, de- b=min{J,s— o}, (8)
scribes the direction of the in the J rest frame(termed the

helicity axis in this papérand they axis is given byy, and one has assumed here thato. This formula breaks
% ZX 7, andXp =YX Z, down into three cases as follows.J&s+ o, one finds

The helicity-coupling amplitud&” given by

N,=(a+b+1)(a—s+o+1)+(s+o—a)(2J+1),
(7)

N;=(2s+1)(20+1). 9
Fy o (IMAY| M|IM) 2
But if s—o<J<s+ o, one has
is a rotational invariant. Parity conservation in the decay
leads to the relationship Nyj=(J+s—o+1)(J—-st+to+1)+(st+to—J)(2]+1).
(10)
F=mamsma( =) 7F, ® _
Finally, if J<s— o, one obtains
while, if the decay products and o are identical, the fol-

lowing additional relationship holds: N;=(20+1)(2J+1). (11
F,=(—)F), (4)  The formula(9) is obvious from the form of the amplitude

_ _ _ Fiv which has two subscripts corresponding to sgrend

for both integer and half-integer spins. o. The expressiorf11) shows thatN; is simply 2o+1 if

The helicity-coupling amplitude§” are, in the nonrela- J=0. In the /S-coupling scheme, the number of indepen-
tivistic limit, related to the/’S-coupling amplitudeSBJ/S via dentGJ/S’s is merely given by 2r+ 1; this is the number of

1o total intrinsic spinS, and / must be equal t& if J=0.
F=3
7S

2/+1 3
(/0S8]38)(sho—v|S6)GYs,

2J+1

Finally, the number of independent amplitudes for a given

intrinsic parity of the parent particle is given by
(5 NS+)=(NJ+ 1)/2 if F}, is nonzero[see Eq.(3)], while the

number isNS_)=(NJ— 1)/2 for the opposite intrinsic parity
where the coupling amplitudes have been given the normakyr which F2,=0. Note thatN, is always odd. If the two

Ization daughter particles are identical, then there exist additional
constraints on the amplitudes and the resulting nurhds
Z |Gis|2: E |Fi 2 6) smaller than that given above. The numblgris tabulated in
75 o g Table | for a few low values of the spins.
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TABLE I. Number of independent amplitudes. TABLE Il. Two-body decay:J—s+o.
s o J N§™) NG N; Parent Daughter 1 Daughter 2
0 0 0 0 1 1 Spin J s o
1 0 0 0 1 1 Parity 7, 7 Ny
1 0 1 1 2 3 Helicity N v
1 0 2 1 2 3 Momentum p q k
1 1 0 1 2 3 Energy Po do ko
1 1 1 3 4 7 Mass W m m
1 1 2 4 5 9 Energy/mass Vs Yo
1 1 3 4 5 9 Velocity Bs B
2 0 0 0 1 1 Wave function d*(N—v) o(N\) e(—v)
2 0 1 1 2 3
2 0 2 2 3 5
2 0 3 2 3 5 A, (\v)=[p" ", o(\),e(—v),d*(5)]. (16)
2 1 0 1 2 3
2 1 1 4 5 9 The square bracket here indicates that a Lorentz invariant
2 1 2 6 7 13 amplitude is to be constructed out of the five varialpes,
2 1 3 7 8 15 w, &, and¢* . As the momenta involved are all parallel with
2 1 4 7 8 15 the helicity axis, this formula merely gives the energy and

momentum dependence of the helicity-coupling amplitudes
but no angular dependence, as this is already contained in the
lll. DECAY AMPLITUDES IN MOMENTUM SPACE D function in the expressiofll). The variablesy stand for
The decay amplitudél) is simply given by the helicity- thJe s_et{/,S}, and the constantg, are the analogue of the
coupling amplitude itself if one set8=¢=0. It is obvious ~ C’s IN EQ. (). _
now that the helicity-coupling amplitudes can be derived The covariant functio, depends omp andr as well as
from the tensor formalism by restricting to the four-vectorsthe momentum-space wave functiofr tensors ¢*(4),
defined along the axis. Letp, g, andk be the four-momenta @ (A), ande(— ) for the particles], s, ando, whereé, \,

for the states), s, ando with massedV, m, and x, and— v are thez components of spin as defined before. Note
that the complex conjugate of tBewave function appears in
pP¥=(po,p), P?’=W2, q*=(04oe,q), Qg°=m? the above formula: it represents the initial state while those
of s and o correspond to the final states. As shown with
k®=(ko,k), Kk?=u? (12)  examples in later sections, one may set1 or n=0 with-

out loss of generality, depending on the intrinsic parities in-
and letr =q—k be the break-up four-momentum. Using the volved. In other words, the four-vectgr is used in the co-

Lorentz metric&lg, one has variant amplitudes at most once, if necessary, in order to
satisfy the requirement of parity conservation. The covariant
Pa= 9 asP?=(Po,—P), (13)  function A, can depend on any multipldsip to /) of r,

reflecting orbital angular momenta allowed in the decay. A
and similarly for the other four-vectors. In this paper, one hasummary of notations used in this paper is given in Table II.
adopted the notationp, g, k, andr to stand forboth the
four-momenta and the magnitudes of the three-momenta

! , . " - “IV. WAVE FUNCTIONS AND PROJECTION OPERATORS
One can then define the following unitless quantities derived

from them: The polarization four-vectors or wave functions appropri-
ate for the particled=1, s=1, ando=1 are well known.
_Y% 3 _a _ko Along with the relevant momenta
Vs m’ VsPs m’ Yo '
pa: (W;0,0,0),
and
k (14 q“=(90:;0,09) = (ysm;0,0,ys8sm),
’YO'EU'_ M . (17)
One may now write an explicitly covariant expression K= (Kg:0,0~ 0) = (Y:0,0— Yo Boit),

(Lorentz scalarfor the helicity-coupling amplitudes

r“=(do—ko;0,0,20),

where W=qo+ko, qo=vVm?+0q? ko=+u?+q?% and

where r=qg—Kk, the wave functions in thé rest frame are given by

Fi,= 2 9uAL\), (15)
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a(2)= T
P°(x)=7

#%(0)=(0;0,0,),

(0:1,+i,0), (18) [a~b]=§ aﬂxﬁ(m)bm(m):; akx,(m)b”x% (m).
(22)

If the quantization axis foy(m) is defined along the helicity
axis and ifa and/orb are either the wave functions defined

()= Ii(0'1+i 0) with the same quantization axis or four-vectors with zero
B N andy components, then an important simplification occurs:
the sum ormm disappears in Eq22).
0*(0)=(7ysBs:0,0,75), Using the prescriptiori21) or (22), it can be shown that
all the Lorentz scalars evaluated in theest frame may be
1 written as
e (x)=+—=(0;1,%i,0),
V2 [r- o(M)]= s T 3o,
8&(0):(_70[30;0,0’70). [r~s(m)]=y(, rﬁmo,
Note that * _
r- m)]=rdmg,
[r&* (M)]=" dno 23
PN =Qq0“(N)=Kk,e“(\)=0 ,
Pad )= due N Zhee ™) [o(m)-e(m')]=(~ 1) M+ y5yo(1— M%) |8,
for any \. . 5 5
These polarization four-vectors satisfy [w(m)- ¢*(M")]=[M"+ ys(1=M) ]S mr,
P.¢*(M)=0, [e(m)- ¢*(M")]=[M*+ y,(1—M?)] 6 -
dE(M) ¥ (M’ )= — Sy (19 There exists a second form of Lorentz invariant involving
the totally antisymmetric rank-4 tensor. For any four vectors
_ a, b, c, andd, it can be written
2 ba(M)Gh(M) =7 os(W),
m [abcd]= €,4,5a°bPc?d’. (24)
where Relevant invariants in the problem are
Tup(W)=— g+ p\fvgﬁ- (20 [pe(m)r & (m") J=ImWrdmqy,
m)ré*(m’)]=imWré,y,
The last equation of Eq19) is the usual projection operator [pe(m)rg™(m")] mm (25
for spin-1 states. Note that, in tierest frame,g(W) has a [po(Mm)re(m)]=—imWré,_
zero time-component andgt 1 for the space-components.
ande satisfy similar conditions, but with their owg’s, i.e.,  [pw(m)e(m’)¢*(m")]=iW[m(1—m"2)+m"(1—m’2) Yo
g(m) andg (). (1 — 2
One is now ready to exhibit all the Lorentz invariants M’ (1= M%) ¥s] v m+me-

involving spin-1 wave functions. One has adopted, in this

paper, exclusive use of the modified Lorentz mewig\)
for all the Lorentz scalars in the problem

The spin-2 wave functions can be written

_ G F(m)= > (ImyImy|2m)¢*(my) P(my), (26)
[a-b]=a“g .4(W)bP=(a-b), (1) e

wherea andb are arbitrary four-vectorsa andb are three- where m=m, +m,. This is orthogonal tq, symmetric in
the two indices and traceless under contraction witlor

vectors defined thd rest frame. The rationale for this ap- — ) .
proach is that pure-spin projection operators should be use@(W). The spin-2 wave functions fos and o are con-
to form Lorentz scalars, since the wave functionsfandos ~ Structed in the same way, but they are not traceless with
are not those of a pure spin-1 state in theest frame(a  respect to the modified metrg(W). For example, note that,
general formulation of this approach is given in the nextfor s=2,
section. Inspection of Eq(19) shows that the modified met-

ric g(W) is in fact equal to a spin-1 projection operator
consisting of a new spin-1 wave function, e g(m), defined

to be the same ag(m) [see Eq(18)]. One difference is that

¢(m) is a wave function defined in the initial system andwhere a colon indicates contraction over two neighboring
x(m) is that set up in the final state. Note that indices. It becomes traceless in the linyig—1. The spin-3

_ 2
[GW):w(m)]= \[§(‘}’§_1)5moa @7
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yvave_functions can be_constructed in a similar manner, start- X (2n;1mg|3m) ¢*(my) P(m,) ¥ (my),
ing with spin-2 and spin-1 wave functions, as follows: (28
#*PY(m)= >, (2n,;1ms|3m)$*A(n;) $?(ms) wherem=m; +m,+ m;. Note that these are orthogonalgo
nimy and are symmetric under interchange of any pairs in
{a,B,y}. They are also traceless, i.e., they vanish under con-
= 2 (1m;1my|2n,) traction withg orE(VV) for any pairs in{«, 3,7} In general,
m;mymg the wave function for a particle of spihis a rankd tensor

U192 (m)= X, (1mylmy|2n;)(2n;1mg|3ny)- - - (3—1n;_,1my|Im) $1(my) p22(my) - - - p(my),  (29)

mymy- - -
|
with m=m;+m,+ - - - +m; and normalized by and
¢ZB7~-~(m)¢aﬁy“-(m,):(_)‘]5mm’ (30) m=m,—m_, (35)
and and that
[¢*(M)®p(M')]= Omny, (31 2m. =J*m-mq. (36)
where the symbop stands for contraction of two equal-rank It is apparent that the right-hand side must be always even.
tensors with the modified metrig(W). The first sum in Eq(33) goes over the allowed values ok,
The Clebsch-Gordan coefficients appearing in E2g)  divenJ andm. It is clear that the maximum is given by
have the following simple expressiofia]: J—m, so that my ranges from 0(1),2(3),..., to
J—m=ever(odd. The second sum in E@33) represents a

12 summation on the permutations

' ((+)(+)--(0)(0)---(=)(=)---}.

(J—m(j—m+1)
(2j+1)(2j+2)

(jm+11-1]j+1m)=

, , (j—m+1)(j+m+1)]*2 It is seen readily that the number of terms in the summation
(Jm10|1+1m)—[ 21 DG+ . (32 i
. . (j+m)(j+m+1)]* ) Jt
— = b'(mmy)=—"——"-"". 3
(jm—11+1|j+1m) 2122 (m,mo) M Tmolm_ | (37)
Using these formulas, one deduces that the generalJspinNote the following useful relationship:
wave function(29) can be transformed into s
d(—m)=(—)"¢*(m). (39)
%1 (m)=[al(m)]¥2D, 2m2 It is best to illustrate these formulas with examples for
Mo J=1, 2, and 3. Fod=1 one finds that Eq(33) reduces to

identities for¢(+) and ¢(0). ForJ=2, one finds

XE H*(+) - dPUO) - P =) -,
P PB(+2)=p(+)pP(+),

(33
1
where ¢"B(+1)=E[¢“(+)¢5(0)+¢“(0)¢B(+)], (39

(J+m)l(J—m)!

a’(m)= a2 (34 1
' ¢“5(0)=%[¢“(+)¢B(—)+¢“(—)¢B(+)]

and the indiceqd,- - - 85} have been broken up into three
distinct sets in the second summation, i.€a;} with 2
(i=1m,), {8} with (i=1mg), and{y;} with (i=1m_), + \[§¢“(0)¢B(0).
where m.. stands for the numbers ap(=)’s and m, for
#(0)’s. Note that and, forJ=3, the wave functions take on the form

J=m.+mo+m- PPN(+3)= $(+) B (+) b7 (+),
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[XS*(ma)@)w()\)]:fi(')’s)éma)\!
¢aﬁy(+2)—7[¢ ) pP(+)7(0) + ¢*(+) $P(0)

X¢7(+)+¢a(0)¢ﬁ(+)¢y(+)], [XU*(mb)@’S(_V)]:fg(')’a)5mb—w (43
(40)
where the symbok indicates, once again, a contraction be-
PV (+1)= i[¢a(+)¢ﬁ(+)¢y(_)+¢a(+) tween two tensors of equal rank with the modified metric

g(W). The functionsf are normalized to 1 ag—1 and are

P w 8 given below. The invariant amplitude corresponding to a
XPP(=) P (+)+ ()" (+)$7(+)] state of pure spils is then

2
+ EW’H )$P(0)$7(0) + $*(0) ¢p# eSAv)=[w(\)®xF (M) ®e(—1)]
(+)¢7(0)+ ¢*(0)p(0) 7 (+)], = (Sha— 1SS (¥) F2(7,) s,
(44)
P )=\/——[¢ (0)pP(+) (=) + ¢*(0)pP(—)
where 6=\—v. The first® signifies a contraction of the
X ¢y(+)+¢a(_)¢ﬁ(+)¢y(0)+¢a(+) indices{a1~ : 'C(S} [See ECI(41)] with the modified Lorentz
metric g(W), and the second one of the indidgs; - - - B,,}.
X ¢P(—)$7(0)+ ¢*“(+)P(0)7(—) A very important simplification results from using the spe-
5 cialized wave functions defined along the helicity axis: there
+ (=) PpP(0)pY(+)]+ \[gqﬁ"(O)d)ﬁ(O) |sSno summation on the index; in the projection opera'for
PS. The projection operator is merely given ly(5) mul
x $7(0). tiplied by Eq.(44).
The functionfs(ys) for s=1 is trivially given by, from
Eq. (23,
V. INVARIANT /S-COUPLING AMPLITUDES a.(23
In order to find a connection of the tensor formalism with X* (0 w(N)]
that of the/S-coupling scheme, one needs to develop the EN)=fH(y)=41 for x==1 (45)

concept of total intrinsic spits formed out of thes and o

polarization four-vectors and that of the pure orbital angular

momentum/” built out of r. Consider now a wave function
x3(mg) which is to form the basis for constructing the ket Where a dot within the bracket indicates, once again, a con-

State|Sn’g> One demands that this wave function have Zerdractlon of two four-vectors with the modified Lorentz metric

time component in the rest frame very similar tap [see g(W). Fors=2, the functionf takes on the form

Eqgs.(18) and(29)]:

ys for A=0,

S
Xay- gy -p,(Ms) fi(?'s)=;A (INg INH|2N)%E5(N ) Es(No) (46)
1h2
= 2 (SMOMISM)XG, o (Ma)xG,. .5, (M), so that
(41)
where ranks tensory(m,) and ranke tensory?(m,) are 1 for A=x2
the “rest-state”—and fictitious—wave functions, invented @ vs for A==1
for constructing projection operators, and hence exactly £ (ys) = 2 1 (47)
equal to Eq(33) with the indexJ changed to eithes or o. ?’s+ — for A=0.
Consequently® is a tensor of ranks+ o which acts on 3 3

ranks o and ranke & tensors, which are the “correct”
relativistic tensors corresponding to the decay prodsieisd  Similarly for s=3, one finds
o. The corresponding projection operator is a tensor of rank
2(s+ o) given by
Rra= 2 (1 D200 %20 Igl 3000
PS=2 xS(mg) x™* (my). (42 ne
s X &s(N2)€s(N3) (48)
It is seen that the invariant amplitudes must contain the prod-
ucts so that
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(1 for A\=+3 This can be easily generalized, so that one finds
ys for A==2 [7*(m)®rr---]=c,r" 6, (55)
4 1

3y = §y§+ g for x=+1 (49  where

2 3 c,=(101¢20)(201430)- - - (/' —1014/0)
ZN34 = -

E Yot 57s for A=0. o T2

Finally, one may work out the functiohfor s=4 as well: (27)!

from One is now ready to evaluate the final element of the

2 invariant/’S-coupling amplitudes
f2(ys)= ININ 52N 2)2(2N 41N 5]3Np) 2
)\('Ys) AT ahg ( 1 2| a) ( a 3| b) [pn:XS( 5),/(0)’¢*(5)]' (57)

X (BNpIN4[4N)2E(N 1) E5(N2) Es(N3) Eo(Na) wheren=1 for s+ o+/—J odd andn=0 otherwise. For
(500 example, ife=0 ands=/=J=1, then the invariant ampli-
tude can be written as
one sees that

[px(8)7(0)$* (8)]*=W(10 15[15). (58)
1 for A\=%4 . . . L
The right-hand side results from evaluating the expression in
ys for A=%3 the J rest frame. It can be shown that the last expression in
6 , 1 Eq. (25) with y,=17y,=1 is equivalent to the result above.
7 Yst 7 for A=%2 Consider another example:df=0, /=2 ands=J=1, then
f§\4)(—ys): { (51)  the invariant amplitude can be written, from E¢83) and
4 3
7’)/24‘ 7’)/3 for A==x1 (26)1
8 24 [x(8)- 7?(0)- ¢*(5)]*(20 15[19). (59
4 2 —
k3_57’s+ 3_57’5’L 35 for A=0. One can infer in general that the invariant amplitude of Eq.

(57) should take on the form, in th& rest frame,

The general formula for thé functions can be obtained by

inspecting Eqs(43) and (33): [p".x%(8),7(0),¢* (8)]*W"(/0S635).  (60)

The left-hand side is in reality proportional to the matrix

th(y)=a(m)X bl(mmg)(2y)™, (52  element
Mo
(/0S| M|J$6). (61
wherej, m, andy can stand fos, A, andvy, or o, v, andy,, . _
As in the previous sectiom, ranges fronD(1), 2(3),..., One can expand the stgts) in the usual way:
to J-m=ever(odd). It is easy to verify that this formula
gives the re§ult$45) for j=1, (47) for j=2, (49) for j=3, |98)=" E (1161j205136)]j161)262). (62
and (51) for j=4. 11611282

The analogue of the ket stdtém) may be represented by . . . . '
a rank/ tensor (m), defined to hzslve zero time component This is reduced to Eq60), if M is applied from the left first
and then followed by the ket statp$0) and|Sé).

in the J rest frame, since the orbital angular momentum is . ) - . .

defined only in this frame. The tensef (m), which corre- _The invariant helicity-coupling amplitude may now be
sponds to the “rest-state”—and fictitious—wave function written, from Eqs(44) and (60),

invented for constructing projection operators, is analogous

to the tensorsy®(m,) and x?(m,) introduced in Eq.(41). Fivzf, g/SA/S()\ V), (63
Therefore, the tensar’ (m) is exactly equal to E¢33) with ’s

the indexJ changed to”. The corresponding projection op- where

erator is a tensor of rank/2 given by
1/2

(/0S8]38)(sho— v|SS)

2J+1
XWrE5 (6 F9( Vo), (64)

P/=> #(m)7*(m). (53 A=

Again, one can simplify the treatment of orbital angular mo-
mentum by defining” (m) along the helicity axi§see¢ in  where the square-root factor has been introduced so that the
Eq. (18)]. If /=1, one finds formula above has an appearance similar to &). The
coefficientc , has been absorbed ingo The complex param-
[7D*(m)-r]=r6mg. (54)  etersg are unknown, to be determined from experiment.
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Once again, it is to be noted that1 for s+ o+ /—J odd

and n=0 otherwise. One could make the right-hand side

unitless by substitutingV andr by W=W/W, andr=r/r,
wherer refers to ther corresponding to the nominal mass
valuesW,, mg, and uy. One sees then that E(3) reduces
to Eq. (5), i.e.,g, .—GJs in the limit W—1,r—1, f—1,
andf)—1.

The expressioni63) is the main result of this paper. The
r’ dependence is familiar, but th& and y dependence are

S. U. CHUNG

2

Fo=7s| 9o+ §g2r2 (69)

|

whereJ=1. In the limit y;— 1, the expressions of E¢69)
reduce to those of Ed65) with the replacement

2
Gg: \/590, ng - \[ggzrz-

When the amplitudes are constructed with the aid of pro-

(70

not; theW factor is necessary to insure Lorentz covariance in€ction operators, the invariant helicity-coupling amplitudes

four dimensions, and the functional forms gnresult from
the boosted wave functions one needs to emplog fmdo.
A few examples are given below for illustration.

VI. b;(1239 - w+ =

Let J, s, ando stand for theb;(1235), thew and thew.
The net intrinsic parity is given by77J7ls770= +1 and

Fy=+F2,, and there are two allowed orbital angular mo-
menta, i.e./ =0 or /=2. The helicity-coupling amplitudes
have the following expansion in the nonrelativistic lifsee

Eq. (5]
2 1
V2F) = \£Gg+ \[56“" ,
1 2
Fo= \@Gg— \[§GJ,

whereJ= 1. According to the Particle Data Groyif], one
has, experimentally,

(65)

2

=0.26=0.04.

GJ
\

Gg

There are two covariant decay amplitudes corresponding

to S and D waves in the problem, before introduction of
projection operators:

As(N)=[w(N)-¢*(N)],
As(N)=[w(N)- 72(0)- ¢* (N)]cr2. (67)

The form of theA, given above may be more efficient, es-
pecially for high values of’, than that given in the earlier
paper[1]:

1
Ax(N)=[w(N)-r][r-¢*(N)]— §f2[w(?\)~¢*(>\)]-

The helicity-coupling amplitudes are given by
FR=0oAs(\) +G2A:(N), (68)

whereg, andg, are arbitrary constants. Evaluating tAés
in the J rest frame, one obtains

1
F‘l=go— §gzr2,

are simply given by Eq(63):

2 1
V2F = \@904' \[592"2,
1 2
Fg:( \[ggo_ \[ggzrz) Ys-

The g’s in this expression are of course proportional to the
g’s in Eq. (69).

It is instructive to work out the angular distribution for
this decay. Suppose that decays into 3r and the orienta-
tion of the normal to its decay plane is given b§'(¢’) in

the helicity coordinate systefix,,yy,z,} as defined in Sec.
lll. Then the overall decay amplitude is

(71)

MJ(ﬁ,go,ﬁ',(p',M)oc; Dy (¢,9,00F;D5% (¢’ ,9',0).
(72)

In terms of the density matrig defined in thel rest frame,
the angular distributiot is

1(9,0,9",¢" )% 2 p,..Diir(¢,9.0Dy,,.(¢,9,0
MM’
AN

Sx

XFIFYDSs(¢',9',00D5 (¢’ 9',0).

(73

For the purpose of illustration, it is sufficient to take the
special case in whichy=1 and all the other elements are
zero. Then, after integrating over and¢’, one finds

(9,972 2 [doy () R dio(9)1% (74

This leads to two very similar distributions:
1(9)|Fyl2co(9)+ |F |?sir?(9), (75)
1(9")x|Fg|2co(9)+|F7 |2sir(9"). (76)

If one assumes that thg'’s are relatively real, one obtains,
from Eq. (69),

2
|(9)2gf[ (72— 1)coS () + 1]+ 30oGar (27+1)

X co(9)—1]+ %g§r4[(4y§—1)co§(i})+l],

(77
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2
1(8") g3 (¥5—1)cog(§')+1]+ §gogzr2[(2y§+ 1) V2F P = —W(i 2 2) r,

1
X co$(9') 1]+ 5 g5r*{ (475~ 1)cos(9') +1]. e ( 1 2 2)

2F =Wy | ——=g,+ —= . 83

(78 ' Y \/ggl \/gggl' r 83

Two noteworthy results of this exercise g the S-wave  With a proper redefinition of thg'’s, it can be shown that

term containing the factogj is no longer isotropic in the Egs.(82) and(83) are identical.

cosines fory,>1, and(b) the D-wave term withg3 is a

polynomial of qrder 2 in the c_:os_;ines, reflecting tht_a fact 'Fhat VIIl. a3(2050—f,(1270 =

the parent particle has=1. It is important to note, in addi-

tion, that the singularities implicit with the presence of co-  This decay is so far unobserved, but it affords an oppor-

sines in the amp"tudes are Cance”edrﬁyand Vs tun|ty to eXplore new territory regarding the structure of
It is illuminating to work out the angular distribution helicity-coupling amplitudes. There are thrée’s corre-

again within the nonrelativistic formalism with canonical sponding to/'=1, 3, and 5:

guantization. Integrating over the variables corresponding to

the w decay and ovep, one finds, forpg=1, 2 2 1
y poo J2F)= \[76{+ \[§G§+ EGJ,
1(9) >, GIGY5 >, (/ms—m|J0)(/'ms—m|JO)
Vo m
4 1 10
J_ J J J
XYP(9,0Y7,(9,0). (79 ﬁFl—T%Gl— EGs— \/2:165, (84)
With the substitution$70), it can be shown that this angular
distribution reduces to that of E77) in the limit ys— 1. 3 o2 \E)GJ
0o 1 3 5
J35 J15 21

VIl pp(3P,)—f,(1270+ o
in the nonrelativistic limit. The covariant amplitudes are, us-

The net intrinsic parity i97,7sm,=—1 and there are two ing the  and 7's,

helicity-coupling amplitudes$?) and F{?) corresponding to

/=1and/=3: AN =[w(N):d*(\) 1],

\/§F<22>:_ie<12>_i(3<32>, A3(>\)=[-w()\)-7(3)(0):¢*(>\)-]Wc3r3, (85)
V5 V5
As(\)=[w(N):77(0)..¢* (N)]csr®
\/EF(Z)I—iG(Z)-F iG(Z) (80)
! 5t 5 °® for /=1,/=3, and/ =5, respectively. The notatidn -
indicates that the first and the last free indices wifHirare
in the nonrelativistic limit. _ _ to be contracted with the modified metg¢W). The symbol
The covariant amplitudes corresponding to pure orbital- stands for contraction over three neighboring indices. One
angular momenta are finds
Ar=[pro-¢*], 1 2 2
FJ=—( — —Qgar?+ — 44)r,
As=[pw- 7I(0)- ¢* Jear, (81 © B B A

before projection operators are introduced. The amplitudes 2 1 10

with A\=+2 and\=+1 lead to Fi= \/1:575(291—{— §g3r2— ﬁgsr“)r, (86)
(2) 1 2
P27 =W 91~ 50511, , Bl (2,1 4 (3,1
Fo= 5(91(5734' §) + 1_593(573_ E) r?
2 1 2 )
Fi7 =Wy, 5911 5 0sr|r (82 N 20 (2 2, 1,
639513 YsT 3| (T

for two arbitrary complex constanty; and g;. With the
technique of projection operators, thés assume the form, whereg,, g3, andgs are arbitrary constants. If one takes the
from Eq. (63), limit ys—1, then the substitutions
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7 2 2
Gi= \[ggl, Gi=- 593 Foo=7?| Yoot §gzzr2 , (91
and where Wy is the Higgs boson mass and one has put
v=17ys=7, in the H rest frame. Alternatively, one may use
2 Eq. (63) to write
G3=2 \/:95 (87)
63
) \f 1 \f 2
transforms Eq(86) into Eq. (84). Fie= §gooiE911WHf+ g922 "
With the introduction of projection operators, one finds,
from Eq. (63),
J 2 1 2
Foo=77| — 39071 \/ 3927 92

J 2 2 2 1 4
V2F3= 791+ \g9ar "t —=0s |1, o _ _ o
V21 This is of course equivalent to E(1) with a redefinition of
theg’s. In a phenomenological approach adopted here, it is
JBFI= i B i 2 \/@ 4 88 seen that the Higgs boson decay into gauge bosons depends
1= \/%91 \/1—593r 57957 |T7s: (88 o three parametetgy,, 911, andgs,, which can depend in
general on the Higgs boson and gauge-boson masses.
The decay probability is, summed over the helicities,

o[ 3 2 2+\F)422+1
0= Egl \/ngsr 2_195r r§3’s 3/

One is now confronted with a crucial difference betw&n  since theD function is an identity forJ=0. If the Higgs

in Egs.(86) and(89): it is seen that the functional forms for boson mas¥V is very much larger than thé&/ mass and the

¥s can be different for/=1, 3, or 5 with the amplitudes parameteg’s depend weakly on the masses, then the decay
constructed directly out ofs, whereas they are the same probability | is dominated byF3 | only, i.e., bothw* and

loe|FY L |2+ |FR2+[F2 %, (93

when the intermediate wave functignis used instead. W™ have zero helicities. Consider now the deéhy: yy. In
this casel is given by|F2.|? i.e., both of they's are re-
IX. HoW*w~ stricted to+ helicities. Note clear separation of the decay

) . . ) amplitudes for these two cases.

Consider the decay of a Higgs particle into two gauge |, the standard model, the decay amplitude is given by, in
g?;?;}ség hu?;ro :r?(lnlr:te“nnt?r;fsc%? CaaI:obl;Eeoc') 11’ %rr22, Véﬁ'tlesit::e the lowest-order tree diagram, the Lorentz megig; itself,
Hisa chm article oné must have- S—,07 /,_'S_l or which is contained in the amplitud&,, in Eq. (90). Once

P ’ AN again, within the context of the projection operators used in

/' =S=2. For the purpose of illustration, it is assumed that,, : s oo
the Higgs boson decay can be parity nonconserving. In thtehls paper, the appropriate Lorentz metric is the modified

nonrelativistic limit, the helicity-coupling amplitudes are ©N€: i-€-.945(Wi). It should be pointed out that parity vio-
lation can occur only through the fermion loop in the decay

given by . - .
of Higgs bosons, and therefore it is expected to be relatively
1 1 1 small. If parity is conserved in the decay, then one must set
Fl,.= \@GgotEGiﬁ \/%ng, g1:=0, and one ha&?., =F” _ in this case.
X. Jp—a,(1320p
Fli= — \/ 26l /=G (89) i i
00 300 3722 In order to further illustrate the techniques, one treats here

a case in which botls and o have spins greater than zero.
J

whereJ=0. Note that Eq(3) is no longer valid, ifG}, is ~ This decay involvesS=1, 2, and 3 with/" taking on the
nonzero, and that Bose symmetry for two gauge bosons ialues 0, 2, or 4.

automatic in this formulation. The invariant amplitudes may be written, noting tlais
The decay amplitudes may be written a tensor of rank 3,
Ao A v)=[e(—»)- 0(M)], Aor(Av) =P (A v) x4, (5 TP (W) TV (W) (),
An(Av)=[pe(—v)ro(A)], (90) Azs(Av)=e3(\v)[72(0):x%(8)- ¢* (8)]cor?, (94)
A\ v)=[e(—»)-72(0)- w(\)]cor?. Ay A ) =P (\n)[x¥(8)..7V(0)- ¢* () ]car?,
The amplitudeg90) lead to whereS can be 1, 2, or 3 and the first subscriptfostands

for /. One sees that there are five distinct amplitudes in the
problem.eS(\v) is a function already defined in E¢44). It

1
I 4 L0
P 2=~ Goo* 91Whl + 3022 should be noted that the rank-3 tengpiis symmetric and
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traceless in the first two indices bnbt with the third(note  statistics on the parent state with a finite width, one may be
the semicolon indicating this distinctinn able to discern different? dependence for ead®’.
If one insists on bypassing the projection operators, the

amplitudes may be written
XI. CONCLUSIONS

An(Av)=[e(=v) o(A)- ¢* ()], In this paper a general formalism is developed for con-
P 2O 2 structing covariant helicity-coupling amplituder,]\V in an
Az(Av)=[e(=)- 0(A)- 77(0)- $*(9)]czr", arbitrary two-body decay)—s+o (the spins are used to
designate the particles as well—see Table The decay
— _ . ~2) * 2
Az\v)=[e(=)w(X) 77(0)¢*(d)]cr (99 amplitudes are given as expansions in the total intrinsic spin
S and pure orbital angular momentwh For the purpose,

= — ). 2 X L 2
AodAv)=[e(=v)-77(0)- (M) $7(9)]Czr %, one has introduced intermediate wave functigiisns) and
ol C A gk 4 7(m), which are the tensor analogues of the ket stg$es,)
A v)=[e(=)@(\)~77(0)- 7 (d)]Car, and|/m). By requiring that they have vanishing time com-

ponents in thel rest frame, the covariant decay amplitudes
reduce to those involving three-vectors only in therest
frame. This is a general rule without exception: disregard
time components of all the four-vectops (parent momen-
m), r (decay relative momentume (wave function for

where the square bracket &, implies a contraction over
four free indices with the totally antisymmetric rank-4 tensor
[see Eq.24)]. These lead td="’s with functional forms on
vs Which are dependent ori in general. As the above am-

plitudes are not unique, one may conclude that the resultin X
v, dependence is not unique either. ecay producs), ¢ (wave function for decay product),

In a phenomenological approach, therefore, it may pédnd ¢* (wave function for parent particien the problem;
more practical to simply read off the form of the helicity- replaceg(W) by &; with i,j=1,2,3 wherever an inner prod-

coupling amplitudes from Eq63): uct appears in the amplitudes; and replace the Lorentz scalar
(pabg by its three-vector counterpaf(a- bxc) (W is the
mass of the parent partigleThis rule applies even to an
901+ 921r >+ gzzf 2+ 105923! S-wave decay, e.g., fob;(1235)—wm the amplitude is
(w- @*) in the J rest frame(see Sec. VL
\/> The helicity coupling amplitudes have been shown to de-
+\ 52943, pend in general on four variablegd!, r (in this case, magni-
tude of the three-vectiiry, (the Lorentz factor for the decay
1 1 1 products), andy, (the same for the decay produg}, with
\/EFL):( - \[ggol— \/1:0921r2+ \[Egzzrz the latter three evaluated in tderest frame. Note that, if the
states], s, ando have finite widths, then the masség m,
32 8 and u themselves are all continuous variables nad hence
Esgz3r2+ \/7943r )ysyg, should be treated as variables in the problem. In addition, it
has been shown that the dependence on the Lorentz factors is
present only if the spins and o are greater than zero. In-
_( \[901 \[Qer + \/>923r deed, ifs=0=0, then the covariant helicity-coupling ampli-
tude Fg is merely given byr?, identical to the result of the
nonrelativistic formalism. It should be emphasized that the
_ \fgd )7’3, (96) Zemach formalisni9] is essentially nonrelativistic, since the
v factors have been completely ignored in his formulation.

B \/T \/T ) \F 5 \/§ 5 a necessary consequence of the fact that the decay praducts
—1_( 7edo1t Vggdar " N 29220 1\ 35025 and o have finite momenta in th& rest frame. Specifically,
’ s—|\| in ys, where\ is the helicity ofs. The functional
on a functional form ofy,, different in general for eack’
out that a more systematic and appropriate way is to employ
general on thre&”’s. It is seen that there are neverthelessall multiplicative factors on they dependence which can be

Energy dependence of the helicity-coupling amplitudes is
if one of the decay produet is a spin-0 particle, the helicity-
6 (2, 1 coupling amplitudeF; is in general a polynomial of order
T\ 394 |35 3
dependence of is simple indeed i6=1; it is a monomial.
Thus Ff) is simply proportional toys. Likewise, if s=2,
901 ngr g23r g43r thenF3 is shown to be proportional ty,, but F} depends
1 (see Sec. VIl for an example
3 75 3] Yo One of the main objectives of this paper has been to point
If o is a photon, then the second and the fifth equationshe projection operators for bothand o, when their spins
above are absent, and the angular distribution depends #&re greater than zero. This formalism naturally leads to over-
five g's; one is in fact confronted with three independenteasily calculated. In addition, the formalism gives the
coefficients ofr? for threeF”’s. In principle, with sufficient  helicity-coupling amplitudes in terms of th&S-coupling
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amplitudes, closely resembling those familiar in the nonrel+equired for this procedure, have nothing to do with the pho-
ativistic limit. This formula, given in Egs(63) and (64), is  ton; they correspond to those of unobseryadd massive

the main result of this paper. The functional forms fdnave  spin-1 or higher-spin particles, defined to have zero time
been shown explicitly for spins up to 4, and the generakomponents in the parent rest frame. This approach allows
formula for arbitrary integer spin is given in E62). One for photons to be treated in exactly the same way as massive
may note that this formula is derived in a straightforwardparticles—appropriate for helicity-coupling amplitudes.

way from the general expression for a wave function of ar- The unknowns in the decay problem, denotedyg's in
bitrary integer spin, given in E433). To the best knowledge this paper throughoubr simplyg;’s depending on the prob-

of the author, such a general expression for the wave fundem), have been treated as constants. It should be clear, how-
tion has been worked out for the first time in this paper. ever, that one has chosen hermadel—one which satisfies

In the limit W— oo, the variables andy’s also go tox. Lorentz invariance, incorporating the concept of defirSte
The factorr” is in practice always replaced by a Blatt- and/—but amodelnonetheless. In general, thg’s should
Weisskopf function(see[1]) which approaches a constant as be functions of invariant variables in the problem, but—in
r—oo. The Lorentz factors are kinematical in origin and the absence of dynamics—the functions are unknown. It is
therefore must remain undamped in the covariant amplishown that there exists a one-to-one correspondence between
tudes. One sees then that the angular distribution, in the limithe number of thé ,’s andg;;’s. This is certainly the case,
W—oo, is determined by only onE;b wherea=min|]\| and  without exceptions, for the decays involving massive par-
b=min|| allowed in the problem. For example, consider theticles. However, if one of the decay particles is a photon,
decay of a Higgs particle into two gauge bosons. As thehen the number of thg;;’s can exceed that of tHé;"\,,’s, as
Higgs boson mass tends to infinity, the decay amplitude ishown in the last example in this paper.
essentially determined by a single helicity-coupling ampli-
tude Fgo; in other words, the gauge bosons behave as if they
were scalar particle@Goldstone bosong10].

The decays involving a photon in the final state should be The author acknowledges helpful discussions with S.
treated in the same way: the decay amplitudes are given @Dawson, W. Marciano, F. Paige, and T. L. Trueman. He is
expansion in a state of defini@®and/, as if the photon were indebted to H. Willutzki and S. Protopopescu for their com-
a massive vector particle, e.@(770) orw(782). One then ments upon reading the manuscript. BNL operates under
imposes a condition that the photon wave function have n@ontract number DE-AC02-76CH00016 with the U.S. De-
zeroz component. The intermediate wave functignand 7, partment of Energy.
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